1/* 2* xxHash - Fast Hash algorithm 3* Copyright (C) 2012-2016, Yann Collet 4* 5* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 6* 7* Redistribution and use in source and binary forms, with or without 8* modification, are permitted provided that the following conditions are 9* met: 10* 11* * Redistributions of source code must retain the above copyright 12* notice, this list of conditions and the following disclaimer. 13* * Redistributions in binary form must reproduce the above 14* copyright notice, this list of conditions and the following disclaimer 15* in the documentation and/or other materials provided with the 16* distribution. 17* 18* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29* 30* You can contact the author at : 31* - xxHash homepage: http://www.xxhash.com 32* - xxHash source repository : https://github.com/Cyan4973/xxHash 33*/ 34 35 36/* ************************************* 37* Tuning parameters 38***************************************/ 39/*!XXH_FORCE_MEMORY_ACCESS : 40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. 41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. 42 * The below switch allow to select different access method for improved performance. 43 * Method 0 (default) : use `memcpy()`. Safe and portable. 44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). 45 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. 46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. 47 * It can generate buggy code on targets which do not support unaligned memory accesses. 48 * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) 49 * See http://stackoverflow.com/a/32095106/646947 for details. 50 * Prefer these methods in priority order (0 > 1 > 2) 51 */ 52#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ 53# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) 54# define XXH_FORCE_MEMORY_ACCESS 2 55# elif defined(__INTEL_COMPILER) || \ 56 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) 57# define XXH_FORCE_MEMORY_ACCESS 1 58# endif 59#endif 60 61/*!XXH_ACCEPT_NULL_INPUT_POINTER : 62 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. 63 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. 64 * By default, this option is disabled. To enable it, uncomment below define : 65 */ 66/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ 67 68/*!XXH_FORCE_NATIVE_FORMAT : 69 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. 70 * Results are therefore identical for little-endian and big-endian CPU. 71 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. 72 * Should endian-independence be of no importance for your application, you may set the #define below to 1, 73 * to improve speed for Big-endian CPU. 74 * This option has no impact on Little_Endian CPU. 75 */ 76#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ 77# define XXH_FORCE_NATIVE_FORMAT 0 78#endif 79 80/*!XXH_FORCE_ALIGN_CHECK : 81 * This is a minor performance trick, only useful with lots of very small keys. 82 * It means : check for aligned/unaligned input. 83 * The check costs one initial branch per hash; set to 0 when the input data 84 * is guaranteed to be aligned. 85 */ 86#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ 87# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) 88# define XXH_FORCE_ALIGN_CHECK 0 89# else 90# define XXH_FORCE_ALIGN_CHECK 1 91# endif 92#endif 93 94 95/* ************************************* 96* Includes & Memory related functions 97***************************************/ 98/*! Modify the local functions below should you wish to use some other memory routines 99* for malloc(), free() */ 100#include <stdlib.h> 101static void* XXH_malloc(size_t s) { return malloc(s); } 102static void XXH_free (void* p) { free(p); } 103/*! and for memcpy() */ 104#include <string.h> 105static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } 106 107#define XXH_STATIC_LINKING_ONLY 108#include "xxhash.h" 109 110 111/* ************************************* 112* Compiler Specific Options 113***************************************/ 114#ifdef _MSC_VER /* Visual Studio */ 115# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 116# define FORCE_INLINE static __forceinline 117#else 118# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ 119# ifdef __GNUC__ 120# define FORCE_INLINE static inline __attribute__((always_inline)) 121# else 122# define FORCE_INLINE static inline 123# endif 124# else 125# define FORCE_INLINE static 126# endif /* __STDC_VERSION__ */ 127#endif 128 129 130/* ************************************* 131* Basic Types 132***************************************/ 133#ifndef MEM_MODULE 134# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 135# include <stdint.h> 136 typedef uint8_t BYTE; 137 typedef uint16_t U16; 138 typedef uint32_t U32; 139 typedef int32_t S32; 140# else 141 typedef unsigned char BYTE; 142 typedef unsigned short U16; 143 typedef unsigned int U32; 144 typedef signed int S32; 145# endif 146#endif 147 148#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) 149 150/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ 151static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } 152 153#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) 154 155/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ 156/* currently only defined for gcc and icc */ 157typedef union { U32 u32; } __attribute__((packed)) unalign; 158static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } 159 160#else 161 162/* portable and safe solution. Generally efficient. 163 * see : http://stackoverflow.com/a/32095106/646947 164 */ 165static U32 XXH_read32(const void* memPtr) 166{ 167 U32 val; 168 memcpy(&val, memPtr, sizeof(val)); 169 return val; 170} 171 172#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ 173 174 175/* **************************************** 176* Compiler-specific Functions and Macros 177******************************************/ 178#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) 179 180/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ 181#if defined(_MSC_VER) 182# define XXH_rotl32(x,r) _rotl(x,r) 183# define XXH_rotl64(x,r) _rotl64(x,r) 184#else 185# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) 186# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) 187#endif 188 189#if defined(_MSC_VER) /* Visual Studio */ 190# define XXH_swap32 _byteswap_ulong 191#elif XXH_GCC_VERSION >= 403 192# define XXH_swap32 __builtin_bswap32 193#else 194static U32 XXH_swap32 (U32 x) 195{ 196 return ((x << 24) & 0xff000000 ) | 197 ((x << 8) & 0x00ff0000 ) | 198 ((x >> 8) & 0x0000ff00 ) | 199 ((x >> 24) & 0x000000ff ); 200} 201#endif 202 203 204/* ************************************* 205* Architecture Macros 206***************************************/ 207typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; 208 209/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ 210#ifndef XXH_CPU_LITTLE_ENDIAN 211 static const int g_one = 1; 212# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) 213#endif 214 215 216/* *************************** 217* Memory reads 218*****************************/ 219typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; 220 221FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) 222{ 223 if (align==XXH_unaligned) 224 return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); 225 else 226 return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); 227} 228 229FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) 230{ 231 return XXH_readLE32_align(ptr, endian, XXH_unaligned); 232} 233 234static U32 XXH_readBE32(const void* ptr) 235{ 236 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); 237} 238 239 240/* ************************************* 241* Macros 242***************************************/ 243#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ 244XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } 245 246 247/* ******************************************************************* 248* 32-bits hash functions 249*********************************************************************/ 250static const U32 PRIME32_1 = 2654435761U; 251static const U32 PRIME32_2 = 2246822519U; 252static const U32 PRIME32_3 = 3266489917U; 253static const U32 PRIME32_4 = 668265263U; 254static const U32 PRIME32_5 = 374761393U; 255 256static U32 XXH32_round(U32 seed, U32 input) 257{ 258 seed += input * PRIME32_2; 259 seed = XXH_rotl32(seed, 13); 260 seed *= PRIME32_1; 261 return seed; 262} 263 264FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) 265{ 266 const BYTE* p = (const BYTE*)input; 267 const BYTE* bEnd = p + len; 268 U32 h32; 269#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) 270 271#ifdef XXH_ACCEPT_NULL_INPUT_POINTER 272 if (p==NULL) { 273 len=0; 274 bEnd=p=(const BYTE*)(size_t)16; 275 } 276#endif 277 278 if (len>=16) { 279 const BYTE* const limit = bEnd - 16; 280 U32 v1 = seed + PRIME32_1 + PRIME32_2; 281 U32 v2 = seed + PRIME32_2; 282 U32 v3 = seed + 0; 283 U32 v4 = seed - PRIME32_1; 284 285 do { 286 v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; 287 v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; 288 v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; 289 v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; 290 } while (p<=limit); 291 292 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); 293 } else { 294 h32 = seed + PRIME32_5; 295 } 296 297 h32 += (U32) len; 298 299 while (p+4<=bEnd) { 300 h32 += XXH_get32bits(p) * PRIME32_3; 301 h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; 302 p+=4; 303 } 304 305 while (p<bEnd) { 306 h32 += (*p) * PRIME32_5; 307 h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; 308 p++; 309 } 310 311 h32 ^= h32 >> 15; 312 h32 *= PRIME32_2; 313 h32 ^= h32 >> 13; 314 h32 *= PRIME32_3; 315 h32 ^= h32 >> 16; 316 317 return h32; 318} 319 320 321XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) 322{ 323#if 0 324 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 325 XXH32_state_t state; 326 XXH32_reset(&state, seed); 327 XXH32_update(&state, input, len); 328 return XXH32_digest(&state); 329#else 330 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 331 332 if (XXH_FORCE_ALIGN_CHECK) { 333 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ 334 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 335 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); 336 else 337 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); 338 } } 339 340 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 341 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); 342 else 343 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); 344#endif 345} 346 347 348 349/*====== Hash streaming ======*/ 350 351XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) 352{ 353 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); 354} 355XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) 356{ 357 XXH_free(statePtr); 358 return XXH_OK; 359} 360 361XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) 362{ 363 memcpy(dstState, srcState, sizeof(*dstState)); 364} 365 366XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) 367{ 368 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ 369 memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ 370 state.v1 = seed + PRIME32_1 + PRIME32_2; 371 state.v2 = seed + PRIME32_2; 372 state.v3 = seed + 0; 373 state.v4 = seed - PRIME32_1; 374 memcpy(statePtr, &state, sizeof(state)); 375 return XXH_OK; 376} 377 378 379FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) 380{ 381 const BYTE* p = (const BYTE*)input; 382 const BYTE* const bEnd = p + len; 383 384#ifdef XXH_ACCEPT_NULL_INPUT_POINTER 385 if (input==NULL) return XXH_ERROR; 386#endif 387 388 state->total_len_32 += (unsigned)len; 389 state->large_len |= (len>=16) | (state->total_len_32>=16); 390 391 if (state->memsize + len < 16) { /* fill in tmp buffer */ 392 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); 393 state->memsize += (unsigned)len; 394 return XXH_OK; 395 } 396 397 if (state->memsize) { /* some data left from previous update */ 398 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); 399 { const U32* p32 = state->mem32; 400 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; 401 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; 402 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; 403 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; 404 } 405 p += 16-state->memsize; 406 state->memsize = 0; 407 } 408 409 if (p <= bEnd-16) { 410 const BYTE* const limit = bEnd - 16; 411 U32 v1 = state->v1; 412 U32 v2 = state->v2; 413 U32 v3 = state->v3; 414 U32 v4 = state->v4; 415 416 do { 417 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; 418 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; 419 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; 420 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; 421 } while (p<=limit); 422 423 state->v1 = v1; 424 state->v2 = v2; 425 state->v3 = v3; 426 state->v4 = v4; 427 } 428 429 if (p < bEnd) { 430 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); 431 state->memsize = (unsigned)(bEnd-p); 432 } 433 434 return XXH_OK; 435} 436 437XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) 438{ 439 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 440 441 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 442 return XXH32_update_endian(state_in, input, len, XXH_littleEndian); 443 else 444 return XXH32_update_endian(state_in, input, len, XXH_bigEndian); 445} 446 447 448 449FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) 450{ 451 const BYTE * p = (const BYTE*)state->mem32; 452 const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; 453 U32 h32; 454 455 if (state->large_len) { 456 h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); 457 } else { 458 h32 = state->v3 /* == seed */ + PRIME32_5; 459 } 460 461 h32 += state->total_len_32; 462 463 while (p+4<=bEnd) { 464 h32 += XXH_readLE32(p, endian) * PRIME32_3; 465 h32 = XXH_rotl32(h32, 17) * PRIME32_4; 466 p+=4; 467 } 468 469 while (p<bEnd) { 470 h32 += (*p) * PRIME32_5; 471 h32 = XXH_rotl32(h32, 11) * PRIME32_1; 472 p++; 473 } 474 475 h32 ^= h32 >> 15; 476 h32 *= PRIME32_2; 477 h32 ^= h32 >> 13; 478 h32 *= PRIME32_3; 479 h32 ^= h32 >> 16; 480 481 return h32; 482} 483 484 485XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) 486{ 487 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 488 489 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 490 return XXH32_digest_endian(state_in, XXH_littleEndian); 491 else 492 return XXH32_digest_endian(state_in, XXH_bigEndian); 493} 494 495 496/*====== Canonical representation ======*/ 497 498/*! Default XXH result types are basic unsigned 32 and 64 bits. 499* The canonical representation follows human-readable write convention, aka big-endian (large digits first). 500* These functions allow transformation of hash result into and from its canonical format. 501* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. 502*/ 503 504XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) 505{ 506 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); 507 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); 508 memcpy(dst, &hash, sizeof(*dst)); 509} 510 511XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) 512{ 513 return XXH_readBE32(src); 514} 515 516 517#ifndef XXH_NO_LONG_LONG 518 519/* ******************************************************************* 520* 64-bits hash functions 521*********************************************************************/ 522 523/*====== Memory access ======*/ 524 525#ifndef MEM_MODULE 526# define MEM_MODULE 527# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 528# include <stdint.h> 529 typedef uint64_t U64; 530# else 531 typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ 532# endif 533#endif 534 535 536#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) 537 538/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ 539static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } 540 541#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) 542 543/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ 544/* currently only defined for gcc and icc */ 545typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; 546static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } 547 548#else 549 550/* portable and safe solution. Generally efficient. 551 * see : http://stackoverflow.com/a/32095106/646947 552 */ 553 554static U64 XXH_read64(const void* memPtr) 555{ 556 U64 val; 557 memcpy(&val, memPtr, sizeof(val)); 558 return val; 559} 560 561#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ 562 563#if defined(_MSC_VER) /* Visual Studio */ 564# define XXH_swap64 _byteswap_uint64 565#elif XXH_GCC_VERSION >= 403 566# define XXH_swap64 __builtin_bswap64 567#else 568static U64 XXH_swap64 (U64 x) 569{ 570 return ((x << 56) & 0xff00000000000000ULL) | 571 ((x << 40) & 0x00ff000000000000ULL) | 572 ((x << 24) & 0x0000ff0000000000ULL) | 573 ((x << 8) & 0x000000ff00000000ULL) | 574 ((x >> 8) & 0x00000000ff000000ULL) | 575 ((x >> 24) & 0x0000000000ff0000ULL) | 576 ((x >> 40) & 0x000000000000ff00ULL) | 577 ((x >> 56) & 0x00000000000000ffULL); 578} 579#endif 580 581FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) 582{ 583 if (align==XXH_unaligned) 584 return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); 585 else 586 return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); 587} 588 589FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) 590{ 591 return XXH_readLE64_align(ptr, endian, XXH_unaligned); 592} 593 594static U64 XXH_readBE64(const void* ptr) 595{ 596 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); 597} 598 599 600/*====== xxh64 ======*/ 601 602static const U64 PRIME64_1 = 11400714785074694791ULL; 603static const U64 PRIME64_2 = 14029467366897019727ULL; 604static const U64 PRIME64_3 = 1609587929392839161ULL; 605static const U64 PRIME64_4 = 9650029242287828579ULL; 606static const U64 PRIME64_5 = 2870177450012600261ULL; 607 608static U64 XXH64_round(U64 acc, U64 input) 609{ 610 acc += input * PRIME64_2; 611 acc = XXH_rotl64(acc, 31); 612 acc *= PRIME64_1; 613 return acc; 614} 615 616static U64 XXH64_mergeRound(U64 acc, U64 val) 617{ 618 val = XXH64_round(0, val); 619 acc ^= val; 620 acc = acc * PRIME64_1 + PRIME64_4; 621 return acc; 622} 623 624FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) 625{ 626 const BYTE* p = (const BYTE*)input; 627 const BYTE* const bEnd = p + len; 628 U64 h64; 629#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) 630 631#ifdef XXH_ACCEPT_NULL_INPUT_POINTER 632 if (p==NULL) { 633 len=0; 634 bEnd=p=(const BYTE*)(size_t)32; 635 } 636#endif 637 638 if (len>=32) { 639 const BYTE* const limit = bEnd - 32; 640 U64 v1 = seed + PRIME64_1 + PRIME64_2; 641 U64 v2 = seed + PRIME64_2; 642 U64 v3 = seed + 0; 643 U64 v4 = seed - PRIME64_1; 644 645 do { 646 v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; 647 v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; 648 v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; 649 v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; 650 } while (p<=limit); 651 652 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 653 h64 = XXH64_mergeRound(h64, v1); 654 h64 = XXH64_mergeRound(h64, v2); 655 h64 = XXH64_mergeRound(h64, v3); 656 h64 = XXH64_mergeRound(h64, v4); 657 658 } else { 659 h64 = seed + PRIME64_5; 660 } 661 662 h64 += (U64) len; 663 664 while (p+8<=bEnd) { 665 U64 const k1 = XXH64_round(0, XXH_get64bits(p)); 666 h64 ^= k1; 667 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; 668 p+=8; 669 } 670 671 if (p+4<=bEnd) { 672 h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; 673 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; 674 p+=4; 675 } 676 677 while (p<bEnd) { 678 h64 ^= (*p) * PRIME64_5; 679 h64 = XXH_rotl64(h64, 11) * PRIME64_1; 680 p++; 681 } 682 683 h64 ^= h64 >> 33; 684 h64 *= PRIME64_2; 685 h64 ^= h64 >> 29; 686 h64 *= PRIME64_3; 687 h64 ^= h64 >> 32; 688 689 return h64; 690} 691 692 693XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) 694{ 695#if 0 696 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 697 XXH64_state_t state; 698 XXH64_reset(&state, seed); 699 XXH64_update(&state, input, len); 700 return XXH64_digest(&state); 701#else 702 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 703 704 if (XXH_FORCE_ALIGN_CHECK) { 705 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ 706 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 707 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); 708 else 709 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); 710 } } 711 712 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 713 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); 714 else 715 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); 716#endif 717} 718 719/*====== Hash Streaming ======*/ 720 721XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) 722{ 723 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); 724} 725XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) 726{ 727 XXH_free(statePtr); 728 return XXH_OK; 729} 730 731XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) 732{ 733 memcpy(dstState, srcState, sizeof(*dstState)); 734} 735 736XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) 737{ 738 XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ 739 memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ 740 state.v1 = seed + PRIME64_1 + PRIME64_2; 741 state.v2 = seed + PRIME64_2; 742 state.v3 = seed + 0; 743 state.v4 = seed - PRIME64_1; 744 memcpy(statePtr, &state, sizeof(state)); 745 return XXH_OK; 746} 747 748FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) 749{ 750 const BYTE* p = (const BYTE*)input; 751 const BYTE* const bEnd = p + len; 752 753#ifdef XXH_ACCEPT_NULL_INPUT_POINTER 754 if (input==NULL) return XXH_ERROR; 755#endif 756 757 state->total_len += len; 758 759 if (state->memsize + len < 32) { /* fill in tmp buffer */ 760 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); 761 state->memsize += (U32)len; 762 return XXH_OK; 763 } 764 765 if (state->memsize) { /* tmp buffer is full */ 766 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); 767 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); 768 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); 769 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); 770 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); 771 p += 32-state->memsize; 772 state->memsize = 0; 773 } 774 775 if (p+32 <= bEnd) { 776 const BYTE* const limit = bEnd - 32; 777 U64 v1 = state->v1; 778 U64 v2 = state->v2; 779 U64 v3 = state->v3; 780 U64 v4 = state->v4; 781 782 do { 783 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; 784 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; 785 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; 786 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; 787 } while (p<=limit); 788 789 state->v1 = v1; 790 state->v2 = v2; 791 state->v3 = v3; 792 state->v4 = v4; 793 } 794 795 if (p < bEnd) { 796 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); 797 state->memsize = (unsigned)(bEnd-p); 798 } 799 800 return XXH_OK; 801} 802 803XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) 804{ 805 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 806 807 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 808 return XXH64_update_endian(state_in, input, len, XXH_littleEndian); 809 else 810 return XXH64_update_endian(state_in, input, len, XXH_bigEndian); 811} 812 813FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) 814{ 815 const BYTE * p = (const BYTE*)state->mem64; 816 const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; 817 U64 h64; 818 819 if (state->total_len >= 32) { 820 U64 const v1 = state->v1; 821 U64 const v2 = state->v2; 822 U64 const v3 = state->v3; 823 U64 const v4 = state->v4; 824 825 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 826 h64 = XXH64_mergeRound(h64, v1); 827 h64 = XXH64_mergeRound(h64, v2); 828 h64 = XXH64_mergeRound(h64, v3); 829 h64 = XXH64_mergeRound(h64, v4); 830 } else { 831 h64 = state->v3 + PRIME64_5; 832 } 833 834 h64 += (U64) state->total_len; 835 836 while (p+8<=bEnd) { 837 U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); 838 h64 ^= k1; 839 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; 840 p+=8; 841 } 842 843 if (p+4<=bEnd) { 844 h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; 845 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; 846 p+=4; 847 } 848 849 while (p<bEnd) { 850 h64 ^= (*p) * PRIME64_5; 851 h64 = XXH_rotl64(h64, 11) * PRIME64_1; 852 p++; 853 } 854 855 h64 ^= h64 >> 33; 856 h64 *= PRIME64_2; 857 h64 ^= h64 >> 29; 858 h64 *= PRIME64_3; 859 h64 ^= h64 >> 32; 860 861 return h64; 862} 863 864XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) 865{ 866 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 867 868 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 869 return XXH64_digest_endian(state_in, XXH_littleEndian); 870 else 871 return XXH64_digest_endian(state_in, XXH_bigEndian); 872} 873 874 875/*====== Canonical representation ======*/ 876 877XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) 878{ 879 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); 880 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); 881 memcpy(dst, &hash, sizeof(*dst)); 882} 883 884XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) 885{ 886 return XXH_readBE64(src); 887} 888 889#endif /* XXH_NO_LONG_LONG */ 890