1/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */ 2 3/* 4 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org> 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Rob Clark <robclark@freedesktop.org> 27 */ 28 29#include "util/u_math.h" 30 31#include "freedreno_util.h" 32 33#include "ir3.h" 34 35/* 36 * Legalize: 37 * 38 * We currently require that scheduling ensures that we have enough nop's 39 * in all the right places. The legalize step mostly handles fixing up 40 * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's 41 * into fewer nop's w/ rpt flag. 42 */ 43 44struct ir3_legalize_ctx { 45 bool has_samp; 46 int max_bary; 47}; 48 49/* We want to evaluate each block from the position of any other 50 * predecessor block, in order that the flags set are the union 51 * of all possible program paths. For stopping condition, we 52 * want to stop when the pair of <pred-block, current-block> has 53 * been visited already. 54 * 55 * XXX is that completely true? We could have different needs_xyz 56 * flags set depending on path leading to pred-block.. we could 57 * do *most* of this based on chasing src instructions ptrs (and 58 * following all phi srcs).. except the write-after-read hazzard. 59 * 60 * For now we just set ss/sy flag on first instruction on block, 61 * and handle everything within the block as before. 62 */ 63 64static void 65legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block) 66{ 67 struct ir3_instruction *last_input = NULL; 68 struct ir3_instruction *last_rel = NULL; 69 struct list_head instr_list; 70 regmask_t needs_ss_war; /* write after read */ 71 regmask_t needs_ss; 72 regmask_t needs_sy; 73 74 regmask_init(&needs_ss_war); 75 regmask_init(&needs_ss); 76 regmask_init(&needs_sy); 77 78 /* remove all the instructions from the list, we'll be adding 79 * them back in as we go 80 */ 81 list_replace(&block->instr_list, &instr_list); 82 list_inithead(&block->instr_list); 83 84 list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) { 85 struct ir3_register *reg; 86 unsigned i; 87 88 if (is_meta(n)) 89 continue; 90 91 if (is_input(n)) { 92 struct ir3_register *inloc = n->regs[1]; 93 assert(inloc->flags & IR3_REG_IMMED); 94 ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val); 95 } 96 97 /* NOTE: consider dst register too.. it could happen that 98 * texture sample instruction (for example) writes some 99 * components which are unused. A subsequent instruction 100 * that writes the same register can race w/ the sam instr 101 * resulting in undefined results: 102 */ 103 for (i = 0; i < n->regs_count; i++) { 104 reg = n->regs[i]; 105 106 if (reg_gpr(reg)) { 107 108 /* TODO: we probably only need (ss) for alu 109 * instr consuming sfu result.. need to make 110 * some tests for both this and (sy).. 111 */ 112 if (regmask_get(&needs_ss, reg)) { 113 n->flags |= IR3_INSTR_SS; 114 regmask_init(&needs_ss); 115 } 116 117 if (regmask_get(&needs_sy, reg)) { 118 n->flags |= IR3_INSTR_SY; 119 regmask_init(&needs_sy); 120 } 121 } 122 123 /* TODO: is it valid to have address reg loaded from a 124 * relative src (ie. mova a0, c<a0.x+4>)? If so, the 125 * last_rel check below should be moved ahead of this: 126 */ 127 if (reg->flags & IR3_REG_RELATIV) 128 last_rel = n; 129 } 130 131 if (n->regs_count > 0) { 132 reg = n->regs[0]; 133 if (regmask_get(&needs_ss_war, reg)) { 134 n->flags |= IR3_INSTR_SS; 135 regmask_init(&needs_ss_war); // ??? I assume? 136 } 137 138 if (last_rel && (reg->num == regid(REG_A0, 0))) { 139 last_rel->flags |= IR3_INSTR_UL; 140 last_rel = NULL; 141 } 142 } 143 144 /* cat5+ does not have an (ss) bit, if needed we need to 145 * insert a nop to carry the sync flag. Would be kinda 146 * clever if we were aware of this during scheduling, but 147 * this should be a pretty rare case: 148 */ 149 if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) { 150 struct ir3_instruction *nop; 151 nop = ir3_NOP(block); 152 nop->flags |= IR3_INSTR_SS; 153 n->flags &= ~IR3_INSTR_SS; 154 } 155 156 /* need to be able to set (ss) on first instruction: */ 157 if (list_empty(&block->instr_list) && (opc_cat(n->opc) >= 5)) 158 ir3_NOP(block); 159 160 if (is_nop(n) && !list_empty(&block->instr_list)) { 161 struct ir3_instruction *last = list_last_entry(&block->instr_list, 162 struct ir3_instruction, node); 163 if (is_nop(last) && (last->repeat < 5)) { 164 last->repeat++; 165 last->flags |= n->flags; 166 continue; 167 } 168 } 169 170 list_addtail(&n->node, &block->instr_list); 171 172 if (is_sfu(n)) 173 regmask_set(&needs_ss, n->regs[0]); 174 175 if (is_tex(n)) { 176 /* this ends up being the # of samp instructions.. but that 177 * is ok, everything else only cares whether it is zero or 178 * not. We do this here, rather than when we encounter a 179 * SAMP decl, because (especially in binning pass shader) 180 * the samp instruction(s) could get eliminated if the 181 * result is not used. 182 */ 183 ctx->has_samp = true; 184 regmask_set(&needs_sy, n->regs[0]); 185 } else if (is_load(n)) { 186 /* seems like ldlv needs (ss) bit instead?? which is odd but 187 * makes a bunch of flat-varying tests start working on a4xx. 188 */ 189 if (n->opc == OPC_LDLV) 190 regmask_set(&needs_ss, n->regs[0]); 191 else 192 regmask_set(&needs_sy, n->regs[0]); 193 } 194 195 /* both tex/sfu appear to not always immediately consume 196 * their src register(s): 197 */ 198 if (is_tex(n) || is_sfu(n) || is_load(n)) { 199 foreach_src(reg, n) { 200 if (reg_gpr(reg)) 201 regmask_set(&needs_ss_war, reg); 202 } 203 } 204 205 if (is_input(n)) 206 last_input = n; 207 } 208 209 if (last_input) { 210 /* special hack.. if using ldlv to bypass interpolation, 211 * we need to insert a dummy bary.f on which we can set 212 * the (ei) flag: 213 */ 214 if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) { 215 struct ir3_instruction *baryf; 216 217 /* (ss)bary.f (ei)r63.x, 0, r0.x */ 218 baryf = ir3_instr_create(block, OPC_BARY_F); 219 baryf->flags |= IR3_INSTR_SS; 220 ir3_reg_create(baryf, regid(63, 0), 0); 221 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0; 222 ir3_reg_create(baryf, regid(0, 0), 0); 223 224 /* insert the dummy bary.f after last_input: */ 225 list_delinit(&baryf->node); 226 list_add(&baryf->node, &last_input->node); 227 228 last_input = baryf; 229 } 230 last_input->regs[0]->flags |= IR3_REG_EI; 231 } 232 233 if (last_rel) 234 last_rel->flags |= IR3_INSTR_UL; 235 236 list_first_entry(&block->instr_list, struct ir3_instruction, node) 237 ->flags |= IR3_INSTR_SS | IR3_INSTR_SY; 238} 239 240/* NOTE: branch instructions are always the last instruction(s) 241 * in the block. We take advantage of this as we resolve the 242 * branches, since "if (foo) break;" constructs turn into 243 * something like: 244 * 245 * block3 { 246 * ... 247 * 0029:021: mov.s32s32 r62.x, r1.y 248 * 0082:022: br !p0.x, target=block5 249 * 0083:023: br p0.x, target=block4 250 * // succs: if _[0029:021: mov.s32s32] block4; else block5; 251 * } 252 * block4 { 253 * 0084:024: jump, target=block6 254 * // succs: block6; 255 * } 256 * block5 { 257 * 0085:025: jump, target=block7 258 * // succs: block7; 259 * } 260 * 261 * ie. only instruction in block4/block5 is a jump, so when 262 * resolving branches we can easily detect this by checking 263 * that the first instruction in the target block is itself 264 * a jump, and setup the br directly to the jump's target 265 * (and strip back out the now unreached jump) 266 * 267 * TODO sometimes we end up with things like: 268 * 269 * br !p0.x, #2 270 * br p0.x, #12 271 * add.u r0.y, r0.y, 1 272 * 273 * If we swapped the order of the branches, we could drop one. 274 */ 275static struct ir3_block * 276resolve_dest_block(struct ir3_block *block) 277{ 278 /* special case for last block: */ 279 if (!block->successors[0]) 280 return block; 281 282 /* NOTE that we may or may not have inserted the jump 283 * in the target block yet, so conditions to resolve 284 * the dest to the dest block's successor are: 285 * 286 * (1) successor[1] == NULL && 287 * (2) (block-is-empty || only-instr-is-jump) 288 */ 289 if (block->successors[1] == NULL) { 290 if (list_empty(&block->instr_list)) { 291 return block->successors[0]; 292 } else if (list_length(&block->instr_list) == 1) { 293 struct ir3_instruction *instr = list_first_entry( 294 &block->instr_list, struct ir3_instruction, node); 295 if (instr->opc == OPC_JUMP) 296 return block->successors[0]; 297 } 298 } 299 return block; 300} 301 302static bool 303resolve_jump(struct ir3_instruction *instr) 304{ 305 struct ir3_block *tblock = 306 resolve_dest_block(instr->cat0.target); 307 struct ir3_instruction *target; 308 309 if (tblock != instr->cat0.target) { 310 list_delinit(&instr->cat0.target->node); 311 instr->cat0.target = tblock; 312 return true; 313 } 314 315 target = list_first_entry(&tblock->instr_list, 316 struct ir3_instruction, node); 317 318 if ((!target) || (target->ip == (instr->ip + 1))) { 319 list_delinit(&instr->node); 320 return true; 321 } else { 322 instr->cat0.immed = 323 (int)target->ip - (int)instr->ip; 324 } 325 return false; 326} 327 328/* resolve jumps, removing jumps/branches to immediately following 329 * instruction which we end up with from earlier stages. Since 330 * removing an instruction can invalidate earlier instruction's 331 * branch offsets, we need to do this iteratively until no more 332 * branches are removed. 333 */ 334static bool 335resolve_jumps(struct ir3 *ir) 336{ 337 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) 338 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) 339 if (is_flow(instr) && instr->cat0.target) 340 if (resolve_jump(instr)) 341 return true; 342 343 return false; 344} 345 346/* we want to mark points where divergent flow control re-converges 347 * with (jp) flags. For now, since we don't do any optimization for 348 * things that start out as a 'do {} while()', re-convergence points 349 * will always be a branch or jump target. Note that this is overly 350 * conservative, since unconditional jump targets are not convergence 351 * points, we are just assuming that the other path to reach the jump 352 * target was divergent. If we were clever enough to optimize the 353 * jump at end of a loop back to a conditional branch into a single 354 * conditional branch, ie. like: 355 * 356 * add.f r1.w, r0.x, (neg)(r)c2.x <= loop start 357 * mul.f r1.z, r1.z, r0.x 358 * mul.f r1.y, r1.y, r0.x 359 * mul.f r0.z, r1.x, r0.x 360 * mul.f r0.w, r0.y, r0.x 361 * cmps.f.ge r0.x, (r)c2.y, (r)r1.w 362 * add.s r0.x, (r)r0.x, (r)-1 363 * sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x 364 * cmps.f.eq p0.x, r0.x, c3.y 365 * mov.f32f32 r0.x, r1.w 366 * mov.f32f32 r0.y, r0.w 367 * mov.f32f32 r1.x, r0.z 368 * (rpt2)nop 369 * br !p0.x, #-13 370 * (jp)mul.f r0.x, c263.y, r1.y 371 * 372 * Then we'd have to be more clever, as the convergence point is no 373 * longer a branch or jump target. 374 */ 375static void 376mark_convergence_points(struct ir3 *ir) 377{ 378 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { 379 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { 380 if (is_flow(instr) && instr->cat0.target) { 381 struct ir3_instruction *target = 382 list_first_entry(&instr->cat0.target->instr_list, 383 struct ir3_instruction, node); 384 target->flags |= IR3_INSTR_JP; 385 } 386 } 387 } 388} 389 390void 391ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary) 392{ 393 struct ir3_legalize_ctx ctx = { 394 .max_bary = -1, 395 }; 396 397 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { 398 legalize_block(&ctx, block); 399 } 400 401 *has_samp = ctx.has_samp; 402 *max_bary = ctx.max_bary; 403 404 do { 405 ir3_count_instructions(ir); 406 } while(resolve_jumps(ir)); 407 408 mark_convergence_points(ir); 409} 410