ir3_legalize.c revision 457f7c2a2a93b45396ac66e0d4b3896d2db8fdf3
1/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3/*
4 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 *    Rob Clark <robclark@freedesktop.org>
27 */
28
29#include "util/u_math.h"
30
31#include "freedreno_util.h"
32
33#include "ir3.h"
34
35/*
36 * Legalize:
37 *
38 * We currently require that scheduling ensures that we have enough nop's
39 * in all the right places.  The legalize step mostly handles fixing up
40 * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
41 * into fewer nop's w/ rpt flag.
42 */
43
44struct ir3_legalize_ctx {
45	bool has_samp;
46	int max_bary;
47};
48
49/* We want to evaluate each block from the position of any other
50 * predecessor block, in order that the flags set are the union
51 * of all possible program paths.  For stopping condition, we
52 * want to stop when the pair of <pred-block, current-block> has
53 * been visited already.
54 *
55 * XXX is that completely true?  We could have different needs_xyz
56 * flags set depending on path leading to pred-block.. we could
57 * do *most* of this based on chasing src instructions ptrs (and
58 * following all phi srcs).. except the write-after-read hazzard.
59 *
60 * For now we just set ss/sy flag on first instruction on block,
61 * and handle everything within the block as before.
62 */
63
64static void
65legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
66{
67	struct ir3_instruction *last_input = NULL;
68	struct ir3_instruction *last_rel = NULL;
69	struct list_head instr_list;
70	regmask_t needs_ss_war;       /* write after read */
71	regmask_t needs_ss;
72	regmask_t needs_sy;
73
74	regmask_init(&needs_ss_war);
75	regmask_init(&needs_ss);
76	regmask_init(&needs_sy);
77
78	/* remove all the instructions from the list, we'll be adding
79	 * them back in as we go
80	 */
81	list_replace(&block->instr_list, &instr_list);
82	list_inithead(&block->instr_list);
83
84	list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
85		struct ir3_register *reg;
86		unsigned i;
87
88		if (is_meta(n))
89			continue;
90
91		if (is_input(n)) {
92			struct ir3_register *inloc = n->regs[1];
93			assert(inloc->flags & IR3_REG_IMMED);
94			ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
95		}
96
97		/* NOTE: consider dst register too.. it could happen that
98		 * texture sample instruction (for example) writes some
99		 * components which are unused.  A subsequent instruction
100		 * that writes the same register can race w/ the sam instr
101		 * resulting in undefined results:
102		 */
103		for (i = 0; i < n->regs_count; i++) {
104			reg = n->regs[i];
105
106			if (reg_gpr(reg)) {
107
108				/* TODO: we probably only need (ss) for alu
109				 * instr consuming sfu result.. need to make
110				 * some tests for both this and (sy)..
111				 */
112				if (regmask_get(&needs_ss, reg)) {
113					n->flags |= IR3_INSTR_SS;
114					regmask_init(&needs_ss);
115				}
116
117				if (regmask_get(&needs_sy, reg)) {
118					n->flags |= IR3_INSTR_SY;
119					regmask_init(&needs_sy);
120				}
121			}
122
123			/* TODO: is it valid to have address reg loaded from a
124			 * relative src (ie. mova a0, c<a0.x+4>)?  If so, the
125			 * last_rel check below should be moved ahead of this:
126			 */
127			if (reg->flags & IR3_REG_RELATIV)
128				last_rel = n;
129		}
130
131		if (n->regs_count > 0) {
132			reg = n->regs[0];
133			if (regmask_get(&needs_ss_war, reg)) {
134				n->flags |= IR3_INSTR_SS;
135				regmask_init(&needs_ss_war); // ??? I assume?
136			}
137
138			if (last_rel && (reg->num == regid(REG_A0, 0))) {
139				last_rel->flags |= IR3_INSTR_UL;
140				last_rel = NULL;
141			}
142		}
143
144		/* cat5+ does not have an (ss) bit, if needed we need to
145		 * insert a nop to carry the sync flag.  Would be kinda
146		 * clever if we were aware of this during scheduling, but
147		 * this should be a pretty rare case:
148		 */
149		if ((n->flags & IR3_INSTR_SS) && (n->category >= 5)) {
150			struct ir3_instruction *nop;
151			nop = ir3_NOP(block);
152			nop->flags |= IR3_INSTR_SS;
153			n->flags &= ~IR3_INSTR_SS;
154		}
155
156		/* need to be able to set (ss) on first instruction: */
157		if (list_empty(&block->instr_list) && (n->category >= 5))
158			ir3_NOP(block);
159
160		if (is_nop(n) && !list_empty(&block->instr_list)) {
161			struct ir3_instruction *last = list_last_entry(&block->instr_list,
162					struct ir3_instruction, node);
163			if (is_nop(last) && (last->repeat < 5)) {
164				last->repeat++;
165				last->flags |= n->flags;
166				continue;
167			}
168		}
169
170		list_addtail(&n->node, &block->instr_list);
171
172		if (is_sfu(n))
173			regmask_set(&needs_ss, n->regs[0]);
174
175		if (is_tex(n)) {
176			/* this ends up being the # of samp instructions.. but that
177			 * is ok, everything else only cares whether it is zero or
178			 * not.  We do this here, rather than when we encounter a
179			 * SAMP decl, because (especially in binning pass shader)
180			 * the samp instruction(s) could get eliminated if the
181			 * result is not used.
182			 */
183			ctx->has_samp = true;
184			regmask_set(&needs_sy, n->regs[0]);
185		} else if (is_mem(n)) {
186			regmask_set(&needs_sy, n->regs[0]);
187		}
188
189		/* both tex/sfu appear to not always immediately consume
190		 * their src register(s):
191		 */
192		if (is_tex(n) || is_sfu(n) || is_mem(n)) {
193			foreach_src(reg, n) {
194				if (reg_gpr(reg))
195					regmask_set(&needs_ss_war, reg);
196			}
197		}
198
199		if (is_input(n))
200			last_input = n;
201	}
202
203	if (last_input) {
204		/* special hack.. if using ldlv to bypass interpolation,
205		 * we need to insert a dummy bary.f on which we can set
206		 * the (ei) flag:
207		 */
208		if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
209			struct ir3_instruction *baryf;
210
211			/* (ss)bary.f (ei)r63.x, 0, r0.x */
212			baryf = ir3_instr_create(block, 2, OPC_BARY_F);
213			baryf->flags |= IR3_INSTR_SS;
214			ir3_reg_create(baryf, regid(63, 0), 0);
215			ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
216			ir3_reg_create(baryf, regid(0, 0), 0);
217
218			/* insert the dummy bary.f after last_input: */
219			list_delinit(&baryf->node);
220			list_add(&baryf->node, &last_input->node);
221
222			last_input = baryf;
223		}
224		last_input->regs[0]->flags |= IR3_REG_EI;
225	}
226
227	if (last_rel)
228		last_rel->flags |= IR3_INSTR_UL;
229
230	list_first_entry(&block->instr_list, struct ir3_instruction, node)
231		->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
232}
233
234/* NOTE: branch instructions are always the last instruction(s)
235 * in the block.  We take advantage of this as we resolve the
236 * branches, since "if (foo) break;" constructs turn into
237 * something like:
238 *
239 *   block3 {
240 *   	...
241 *   	0029:021: mov.s32s32 r62.x, r1.y
242 *   	0082:022: br !p0.x, target=block5
243 *   	0083:023: br p0.x, target=block4
244 *   	// succs: if _[0029:021: mov.s32s32] block4; else block5;
245 *   }
246 *   block4 {
247 *   	0084:024: jump, target=block6
248 *   	// succs: block6;
249 *   }
250 *   block5 {
251 *   	0085:025: jump, target=block7
252 *   	// succs: block7;
253 *   }
254 *
255 * ie. only instruction in block4/block5 is a jump, so when
256 * resolving branches we can easily detect this by checking
257 * that the first instruction in the target block is itself
258 * a jump, and setup the br directly to the jump's target
259 * (and strip back out the now unreached jump)
260 *
261 * TODO sometimes we end up with things like:
262 *
263 *    br !p0.x, #2
264 *    br p0.x, #12
265 *    add.u r0.y, r0.y, 1
266 *
267 * If we swapped the order of the branches, we could drop one.
268 */
269static struct ir3_block *
270resolve_dest_block(struct ir3_block *block)
271{
272	/* special case for last block: */
273	if (!block->successors[0])
274		return block;
275
276	/* NOTE that we may or may not have inserted the jump
277	 * in the target block yet, so conditions to resolve
278	 * the dest to the dest block's successor are:
279	 *
280	 *   (1) successor[1] == NULL &&
281	 *   (2) (block-is-empty || only-instr-is-jump)
282	 */
283	if (block->successors[1] == NULL) {
284		if (list_empty(&block->instr_list)) {
285			return block->successors[0];
286		} else if (list_length(&block->instr_list) == 1) {
287			struct ir3_instruction *instr = list_first_entry(
288					&block->instr_list, struct ir3_instruction, node);
289			if (is_flow(instr) && (instr->opc == OPC_JUMP))
290				return block->successors[0];
291		}
292	}
293	return block;
294}
295
296static bool
297resolve_jump(struct ir3_instruction *instr)
298{
299	struct ir3_block *tblock =
300		resolve_dest_block(instr->cat0.target);
301	struct ir3_instruction *target;
302
303	if (tblock != instr->cat0.target) {
304		list_delinit(&instr->cat0.target->node);
305		instr->cat0.target = tblock;
306		return true;
307	}
308
309	target = list_first_entry(&tblock->instr_list,
310				struct ir3_instruction, node);
311
312	if ((!target) || (target->ip == (instr->ip + 1))) {
313		list_delinit(&instr->node);
314		return true;
315	} else {
316		instr->cat0.immed =
317			(int)target->ip - (int)instr->ip;
318	}
319	return false;
320}
321
322/* resolve jumps, removing jumps/branches to immediately following
323 * instruction which we end up with from earlier stages.  Since
324 * removing an instruction can invalidate earlier instruction's
325 * branch offsets, we need to do this iteratively until no more
326 * branches are removed.
327 */
328static bool
329resolve_jumps(struct ir3 *ir)
330{
331	list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
332		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
333			if (is_flow(instr) && instr->cat0.target)
334				if (resolve_jump(instr))
335					return true;
336
337	return false;
338}
339
340/* we want to mark points where divergent flow control re-converges
341 * with (jp) flags.  For now, since we don't do any optimization for
342 * things that start out as a 'do {} while()', re-convergence points
343 * will always be a branch or jump target.  Note that this is overly
344 * conservative, since unconditional jump targets are not convergence
345 * points, we are just assuming that the other path to reach the jump
346 * target was divergent.  If we were clever enough to optimize the
347 * jump at end of a loop back to a conditional branch into a single
348 * conditional branch, ie. like:
349 *
350 *    add.f r1.w, r0.x, (neg)(r)c2.x   <= loop start
351 *    mul.f r1.z, r1.z, r0.x
352 *    mul.f r1.y, r1.y, r0.x
353 *    mul.f r0.z, r1.x, r0.x
354 *    mul.f r0.w, r0.y, r0.x
355 *    cmps.f.ge r0.x, (r)c2.y, (r)r1.w
356 *    add.s r0.x, (r)r0.x, (r)-1
357 *    sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x
358 *    cmps.f.eq p0.x, r0.x, c3.y
359 *    mov.f32f32 r0.x, r1.w
360 *    mov.f32f32 r0.y, r0.w
361 *    mov.f32f32 r1.x, r0.z
362 *    (rpt2)nop
363 *    br !p0.x, #-13
364 *    (jp)mul.f r0.x, c263.y, r1.y
365 *
366 * Then we'd have to be more clever, as the convergence point is no
367 * longer a branch or jump target.
368 */
369static void
370mark_convergence_points(struct ir3 *ir)
371{
372	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
373		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
374			if (is_flow(instr) && instr->cat0.target) {
375				struct ir3_instruction *target =
376					list_first_entry(&instr->cat0.target->instr_list,
377							struct ir3_instruction, node);
378				target->flags |= IR3_INSTR_JP;
379			}
380		}
381	}
382}
383
384void
385ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary)
386{
387	struct ir3_legalize_ctx ctx = {
388			.max_bary = -1,
389	};
390
391	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
392		legalize_block(&ctx, block);
393	}
394
395	*has_samp = ctx.has_samp;
396	*max_bary = ctx.max_bary;
397
398	do {
399		ir3_count_instructions(ir);
400	} while(resolve_jumps(ir));
401
402	mark_convergence_points(ir);
403}
404