1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "compiler/nir/nir_builder.h"
25
26#include "blorp_priv.h"
27#include "brw_meta_util.h"
28
29/* header-only include needed for _mesa_unorm_to_float and friends. */
30#include "mesa/main/format_utils.h"
31
32#define FILE_DEBUG_FLAG DEBUG_BLORP
33
34static const bool split_blorp_blit_debug = false;
35
36/**
37 * Enum to specify the order of arguments in a sampler message
38 */
39enum sampler_message_arg
40{
41   SAMPLER_MESSAGE_ARG_U_FLOAT,
42   SAMPLER_MESSAGE_ARG_V_FLOAT,
43   SAMPLER_MESSAGE_ARG_U_INT,
44   SAMPLER_MESSAGE_ARG_V_INT,
45   SAMPLER_MESSAGE_ARG_R_INT,
46   SAMPLER_MESSAGE_ARG_SI_INT,
47   SAMPLER_MESSAGE_ARG_MCS_INT,
48   SAMPLER_MESSAGE_ARG_ZERO_INT,
49};
50
51struct brw_blorp_blit_vars {
52   /* Input values from brw_blorp_wm_inputs */
53   nir_variable *v_discard_rect;
54   nir_variable *v_rect_grid;
55   nir_variable *v_coord_transform;
56   nir_variable *v_src_z;
57   nir_variable *v_src_offset;
58   nir_variable *v_dst_offset;
59
60   /* gl_FragCoord */
61   nir_variable *frag_coord;
62
63   /* gl_FragColor */
64   nir_variable *color_out;
65};
66
67static void
68brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
69                         const struct brw_blorp_blit_prog_key *key)
70{
71    /* Blended and scaled blits never use pixel discard. */
72    assert(!key->use_kill || !(key->blend && key->blit_scaled));
73
74#define LOAD_INPUT(name, type)\
75   v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
76
77   LOAD_INPUT(discard_rect, glsl_vec4_type())
78   LOAD_INPUT(rect_grid, glsl_vec4_type())
79   LOAD_INPUT(coord_transform, glsl_vec4_type())
80   LOAD_INPUT(src_z, glsl_uint_type())
81   LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
82   LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
83
84#undef LOAD_INPUT
85
86   v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
87                                       glsl_vec4_type(), "gl_FragCoord");
88   v->frag_coord->data.location = VARYING_SLOT_POS;
89   v->frag_coord->data.origin_upper_left = true;
90
91   v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
92                                      glsl_vec4_type(), "gl_FragColor");
93   v->color_out->data.location = FRAG_RESULT_COLOR;
94}
95
96static nir_ssa_def *
97blorp_blit_get_frag_coords(nir_builder *b,
98                           const struct brw_blorp_blit_prog_key *key,
99                           struct brw_blorp_blit_vars *v)
100{
101   nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
102
103   /* Account for destination surface intratile offset
104    *
105    * Transformation parameters giving translation from destination to source
106    * coordinates don't take into account possible intra-tile destination
107    * offset.  Therefore it has to be first subtracted from the incoming
108    * coordinates.  Vertices are set up based on coordinates containing the
109    * intra-tile offset.
110    */
111   if (key->need_dst_offset)
112      coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
113
114   if (key->persample_msaa_dispatch) {
115      return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
116                      nir_load_sample_id(b));
117   } else {
118      return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
119   }
120}
121
122/**
123 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
124 * coordinates.
125 */
126static nir_ssa_def *
127blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
128                           struct brw_blorp_blit_vars *v)
129{
130   nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
131
132   nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
133                                     nir_channel(b, coord_transform, 3));
134   nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
135                                  nir_channel(b, coord_transform, 2));
136
137   return nir_ffma(b, src_pos, mul, offset);
138}
139
140static inline void
141blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
142                                  struct brw_blorp_blit_vars *v)
143{
144   nir_ssa_def *c0, *c1, *c2, *c3;
145   nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
146   nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
147   nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
148   nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
149   nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
150
151   c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
152   c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
153   c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
154   c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
155
156   nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
157
158   nir_intrinsic_instr *discard =
159      nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
160   discard->src[0] = nir_src_for_ssa(oob);
161   nir_builder_instr_insert(b, &discard->instr);
162}
163
164static nir_tex_instr *
165blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
166                           nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
167                           nir_alu_type dst_type)
168{
169   nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
170
171   tex->op = op;
172
173   tex->dest_type = dst_type;
174   tex->is_array = false;
175   tex->is_shadow = false;
176
177   /* Blorp only has one texture and it's bound at unit 0 */
178   tex->texture = NULL;
179   tex->sampler = NULL;
180   tex->texture_index = 0;
181   tex->sampler_index = 0;
182
183   /* To properly handle 3-D and 2-D array textures, we pull the Z component
184    * from an input.  TODO: This is a bit magic; we should probably make this
185    * more explicit in the future.
186    */
187   assert(pos->num_components >= 2);
188   pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
189                     nir_load_var(b, v->v_src_z));
190
191   tex->src[0].src_type = nir_tex_src_coord;
192   tex->src[0].src = nir_src_for_ssa(pos);
193   tex->coord_components = 3;
194
195   nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
196
197   return tex;
198}
199
200static nir_ssa_def *
201blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
202              nir_ssa_def *pos, nir_alu_type dst_type)
203{
204   nir_tex_instr *tex =
205      blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
206
207   assert(pos->num_components == 2);
208   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
209   tex->src[1].src_type = nir_tex_src_lod;
210   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
211
212   nir_builder_instr_insert(b, &tex->instr);
213
214   return &tex->dest.ssa;
215}
216
217static nir_ssa_def *
218blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
219              nir_ssa_def *pos, nir_alu_type dst_type)
220{
221   nir_tex_instr *tex =
222      blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
223
224   tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
225   tex->src[1].src_type = nir_tex_src_lod;
226   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
227
228   nir_builder_instr_insert(b, &tex->instr);
229
230   return &tex->dest.ssa;
231}
232
233static nir_ssa_def *
234blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
235                 nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
236{
237   nir_tex_instr *tex =
238      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
239                                 mcs != NULL ? 3 : 2, dst_type);
240
241   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
242
243   tex->src[1].src_type = nir_tex_src_ms_index;
244   if (pos->num_components == 2) {
245      tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
246   } else {
247      assert(pos->num_components == 3);
248      tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
249   }
250
251   if (mcs) {
252      tex->src[2].src_type = nir_tex_src_ms_mcs;
253      tex->src[2].src = nir_src_for_ssa(mcs);
254   }
255
256   nir_builder_instr_insert(b, &tex->instr);
257
258   return &tex->dest.ssa;
259}
260
261static nir_ssa_def *
262blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
263{
264   nir_tex_instr *tex =
265      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
266                                 pos, 1, nir_type_int);
267
268   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
269
270   nir_builder_instr_insert(b, &tex->instr);
271
272   return &tex->dest.ssa;
273}
274
275static nir_ssa_def *
276nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
277                  uint32_t src_mask, int src_left_shift)
278{
279   nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
280
281   nir_ssa_def *shifted;
282   if (src_left_shift > 0) {
283      shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
284   } else if (src_left_shift < 0) {
285      shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
286   } else {
287      assert(src_left_shift == 0);
288      shifted = masked;
289   }
290
291   return nir_ior(b, dst, shifted);
292}
293
294/**
295 * Emit code to compensate for the difference between Y and W tiling.
296 *
297 * This code modifies the X and Y coordinates according to the formula:
298 *
299 *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
300 *
301 * (See brw_blorp_build_nir_shader).
302 */
303static inline nir_ssa_def *
304blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
305{
306   assert(pos->num_components == 2);
307   nir_ssa_def *x_Y = nir_channel(b, pos, 0);
308   nir_ssa_def *y_Y = nir_channel(b, pos, 1);
309
310   /* Given X and Y coordinates that describe an address using Y tiling,
311    * translate to the X and Y coordinates that describe the same address
312    * using W tiling.
313    *
314    * If we break down the low order bits of X and Y, using a
315    * single letter to represent each low-order bit:
316    *
317    *   X = A << 7 | 0bBCDEFGH
318    *   Y = J << 5 | 0bKLMNP                                       (1)
319    *
320    * Then we can apply the Y tiling formula to see the memory offset being
321    * addressed:
322    *
323    *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
324    *
325    * If we apply the W detiling formula to this memory location, that the
326    * corresponding X' and Y' coordinates are:
327    *
328    *   X' = A << 6 | 0bBCDPFH                                     (3)
329    *   Y' = J << 6 | 0bKLMNEG
330    *
331    * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
332    * we need to make the following computation:
333    *
334    *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
335    *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
336    */
337   nir_ssa_def *x_W = nir_imm_int(b, 0);
338   x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
339   x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
340   x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
341
342   nir_ssa_def *y_W = nir_imm_int(b, 0);
343   y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
344   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
345   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
346
347   return nir_vec2(b, x_W, y_W);
348}
349
350/**
351 * Emit code to compensate for the difference between Y and W tiling.
352 *
353 * This code modifies the X and Y coordinates according to the formula:
354 *
355 *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
356 *
357 * (See brw_blorp_build_nir_shader).
358 */
359static inline nir_ssa_def *
360blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
361{
362   assert(pos->num_components == 2);
363   nir_ssa_def *x_W = nir_channel(b, pos, 0);
364   nir_ssa_def *y_W = nir_channel(b, pos, 1);
365
366   /* Applying the same logic as above, but in reverse, we obtain the
367    * formulas:
368    *
369    * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
370    * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
371    */
372   nir_ssa_def *x_Y = nir_imm_int(b, 0);
373   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
374   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
375   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
376   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
377
378   nir_ssa_def *y_Y = nir_imm_int(b, 0);
379   y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
380   y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
381
382   return nir_vec2(b, x_Y, y_Y);
383}
384
385/**
386 * Emit code to compensate for the difference between MSAA and non-MSAA
387 * surfaces.
388 *
389 * This code modifies the X and Y coordinates according to the formula:
390 *
391 *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
392 *
393 * (See brw_blorp_blit_program).
394 */
395static inline nir_ssa_def *
396blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
397                      unsigned num_samples, enum isl_msaa_layout layout)
398{
399   assert(pos->num_components == 2 || pos->num_components == 3);
400
401   switch (layout) {
402   case ISL_MSAA_LAYOUT_NONE:
403      assert(pos->num_components == 2);
404      return pos;
405   case ISL_MSAA_LAYOUT_ARRAY:
406      /* No translation needed */
407      return pos;
408   case ISL_MSAA_LAYOUT_INTERLEAVED: {
409      nir_ssa_def *x_in = nir_channel(b, pos, 0);
410      nir_ssa_def *y_in = nir_channel(b, pos, 1);
411      nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
412                                                     nir_channel(b, pos, 2);
413
414      nir_ssa_def *x_out = nir_imm_int(b, 0);
415      nir_ssa_def *y_out = nir_imm_int(b, 0);
416      switch (num_samples) {
417      case 2:
418      case 4:
419         /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
420          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
421          *         Y' = Y
422          *
423          * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
424          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
425          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
426          */
427         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
428         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
429         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
430         if (num_samples == 2) {
431            y_out = y_in;
432         } else {
433            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
434            y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
435            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
436         }
437         break;
438
439      case 8:
440         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
441          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
442          *              | (X & 0b1)
443          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
444          */
445         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
446         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
447         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
448         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
449         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
450         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
451         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
452         break;
453
454      case 16:
455         /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
456          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
457          *              | (X & 0b1)
458          *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
459          *              | (Y & 0b1)
460          */
461         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
462         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
463         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
464         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
465         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
466         y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
467         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
468         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
469         break;
470
471      default:
472         unreachable("Invalid number of samples for IMS layout");
473      }
474
475      return nir_vec2(b, x_out, y_out);
476   }
477
478   default:
479      unreachable("Invalid MSAA layout");
480   }
481}
482
483/**
484 * Emit code to compensate for the difference between MSAA and non-MSAA
485 * surfaces.
486 *
487 * This code modifies the X and Y coordinates according to the formula:
488 *
489 *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
490 *
491 * (See brw_blorp_blit_program).
492 */
493static inline nir_ssa_def *
494blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
495                      unsigned num_samples, enum isl_msaa_layout layout)
496{
497   assert(pos->num_components == 2 || pos->num_components == 3);
498
499   switch (layout) {
500   case ISL_MSAA_LAYOUT_NONE:
501      /* No translation necessary, and S should already be zero. */
502      assert(pos->num_components == 2);
503      return pos;
504   case ISL_MSAA_LAYOUT_ARRAY:
505      /* No translation necessary. */
506      return pos;
507   case ISL_MSAA_LAYOUT_INTERLEAVED: {
508      assert(pos->num_components == 2);
509
510      nir_ssa_def *x_in = nir_channel(b, pos, 0);
511      nir_ssa_def *y_in = nir_channel(b, pos, 1);
512
513      nir_ssa_def *x_out = nir_imm_int(b, 0);
514      nir_ssa_def *y_out = nir_imm_int(b, 0);
515      nir_ssa_def *s_out = nir_imm_int(b, 0);
516      switch (num_samples) {
517      case 2:
518      case 4:
519         /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
520          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
521          *         S = (X & 0b10) >> 1
522          *
523          * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
524          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
525          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
526          *         S = (Y & 0b10) | (X & 0b10) >> 1
527          */
528         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
529         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
530         if (num_samples == 2) {
531            y_out = y_in;
532            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
533         } else {
534            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
535            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
536            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
537            s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
538         }
539         break;
540
541      case 8:
542         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
543          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
544          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
545          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
546          */
547         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
548         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
549         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
550         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
551         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
552         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
553         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
554         break;
555
556      case 16:
557         /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
558          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
559          *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
560          *         S = (Y & 0b100) << 1 | (X & 0b100) |
561          *             (Y & 0b10) | (X & 0b10) >> 1
562          */
563         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
564         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
565         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
566         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
567         s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
568         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
569         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
570         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
571         break;
572
573      default:
574         unreachable("Invalid number of samples for IMS layout");
575      }
576
577      return nir_vec3(b, x_out, y_out, s_out);
578   }
579
580   default:
581      unreachable("Invalid MSAA layout");
582   }
583}
584
585/**
586 * Count the number of trailing 1 bits in the given value.  For example:
587 *
588 * count_trailing_one_bits(0) == 0
589 * count_trailing_one_bits(7) == 3
590 * count_trailing_one_bits(11) == 2
591 */
592static inline int count_trailing_one_bits(unsigned value)
593{
594#ifdef HAVE___BUILTIN_CTZ
595   return __builtin_ctz(~value);
596#else
597   return _mesa_bitcount(value & ~(value + 1));
598#endif
599}
600
601static nir_ssa_def *
602blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
603                               nir_ssa_def *pos, unsigned tex_samples,
604                               enum isl_aux_usage tex_aux_usage,
605                               nir_alu_type dst_type)
606{
607   /* If non-null, this is the outer-most if statement */
608   nir_if *outer_if = NULL;
609
610   nir_variable *color =
611      nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
612
613   nir_ssa_def *mcs = NULL;
614   if (tex_aux_usage == ISL_AUX_USAGE_MCS)
615      mcs = blorp_nir_txf_ms_mcs(b, v, pos);
616
617   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
618    *
619    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
620    *
621    * This ensures that when all samples have the same value, no numerical
622    * precision is lost, since each addition operation always adds two equal
623    * values, and summing two equal floating point values does not lose
624    * precision.
625    *
626    * We perform this computation by treating the texture_data array as a
627    * stack and performing the following operations:
628    *
629    * - push sample 0 onto stack
630    * - push sample 1 onto stack
631    * - add top two stack entries
632    * - push sample 2 onto stack
633    * - push sample 3 onto stack
634    * - add top two stack entries
635    * - add top two stack entries
636    * - divide top stack entry by 4
637    *
638    * Note that after pushing sample i onto the stack, the number of add
639    * operations we do is equal to the number of trailing 1 bits in i.  This
640    * works provided the total number of samples is a power of two, which it
641    * always is for i965.
642    *
643    * For integer formats, we replace the add operations with average
644    * operations and skip the final division.
645    */
646   nir_ssa_def *texture_data[5];
647   unsigned stack_depth = 0;
648   for (unsigned i = 0; i < tex_samples; ++i) {
649      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
650
651      /* Push sample i onto the stack */
652      assert(stack_depth < ARRAY_SIZE(texture_data));
653
654      nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
655                                        nir_channel(b, pos, 1),
656                                        nir_imm_int(b, i));
657      texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
658
659      if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
660         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
661          * suggests an optimization:
662          *
663          *     "A simple optimization with probable large return in
664          *     performance is to compare the MCS value to zero (indicating
665          *     all samples are on sample slice 0), and sample only from
666          *     sample slice 0 using ld2dss if MCS is zero."
667          *
668          * Note that in the case where the MCS value is zero, sampling from
669          * sample slice 0 using ld2dss and sampling from sample 0 using
670          * ld2dms are equivalent (since all samples are on sample slice 0).
671          * Since we have already sampled from sample 0, all we need to do is
672          * skip the remaining fetches and averaging if MCS is zero.
673          */
674         nir_ssa_def *mcs_zero =
675            nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
676         if (tex_samples == 16) {
677            mcs_zero = nir_iand(b, mcs_zero,
678               nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
679         }
680
681         nir_if *if_stmt = nir_if_create(b->shader);
682         if_stmt->condition = nir_src_for_ssa(mcs_zero);
683         nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
684
685         b->cursor = nir_after_cf_list(&if_stmt->then_list);
686         nir_store_var(b, color, texture_data[0], 0xf);
687
688         b->cursor = nir_after_cf_list(&if_stmt->else_list);
689         outer_if = if_stmt;
690      }
691
692      for (int j = 0; j < count_trailing_one_bits(i); j++) {
693         assert(stack_depth >= 2);
694         --stack_depth;
695
696         assert(dst_type == nir_type_float);
697         texture_data[stack_depth - 1] =
698            nir_fadd(b, texture_data[stack_depth - 1],
699                        texture_data[stack_depth]);
700      }
701   }
702
703   /* We should have just 1 sample on the stack now. */
704   assert(stack_depth == 1);
705
706   texture_data[0] = nir_fmul(b, texture_data[0],
707                              nir_imm_float(b, 1.0 / tex_samples));
708
709   nir_store_var(b, color, texture_data[0], 0xf);
710
711   if (outer_if)
712      b->cursor = nir_after_cf_node(&outer_if->cf_node);
713
714   return nir_load_var(b, color);
715}
716
717static inline nir_ssa_def *
718nir_imm_vec2(nir_builder *build, float x, float y)
719{
720   nir_const_value v;
721
722   memset(&v, 0, sizeof(v));
723   v.f32[0] = x;
724   v.f32[1] = y;
725
726   return nir_build_imm(build, 4, 32, v);
727}
728
729static nir_ssa_def *
730blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
731                                unsigned tex_samples,
732                                const struct brw_blorp_blit_prog_key *key,
733                                struct brw_blorp_blit_vars *v)
734{
735   nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
736   nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
737   nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
738
739   /* Translate coordinates to lay out the samples in a rectangular  grid
740    * roughly corresponding to sample locations.
741    */
742   pos_xy = nir_fmul(b, pos_xy, scale);
743   /* Adjust coordinates so that integers represent pixel centers rather
744    * than pixel edges.
745    */
746   pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
747   /* Clamp the X, Y texture coordinates to properly handle the sampling of
748    * texels on texture edges.
749    */
750   pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
751                        nir_vec2(b, nir_channel(b, rect_grid, 0),
752                                    nir_channel(b, rect_grid, 1)));
753
754   /* Store the fractional parts to be used as bilinear interpolation
755    * coefficients.
756    */
757   nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
758   /* Round the float coordinates down to nearest integer */
759   pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
760
761   nir_ssa_def *tex_data[4];
762   for (unsigned i = 0; i < 4; ++i) {
763      float sample_off_x = (float)(i & 0x1) / key->x_scale;
764      float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
765      nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
766
767      nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
768      nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
769
770      /* The MCS value we fetch has to match up with the pixel that we're
771       * sampling from. Since we sample from different pixels in each
772       * iteration of this "for" loop, the call to mcs_fetch() should be
773       * here inside the loop after computing the pixel coordinates.
774       */
775      nir_ssa_def *mcs = NULL;
776      if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
777         mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
778
779      /* Compute sample index and map the sample index to a sample number.
780       * Sample index layout shows the numbering of slots in a rectangular
781       * grid of samples with in a pixel. Sample number layout shows the
782       * rectangular grid of samples roughly corresponding to the real sample
783       * locations with in a pixel.
784       * In case of 4x MSAA, layout of sample indices matches the layout of
785       * sample numbers:
786       *           ---------
787       *           | 0 | 1 |
788       *           ---------
789       *           | 2 | 3 |
790       *           ---------
791       *
792       * In case of 8x MSAA the two layouts don't match.
793       * sample index layout :  ---------    sample number layout :  ---------
794       *                        | 0 | 1 |                            | 3 | 7 |
795       *                        ---------                            ---------
796       *                        | 2 | 3 |                            | 5 | 0 |
797       *                        ---------                            ---------
798       *                        | 4 | 5 |                            | 1 | 2 |
799       *                        ---------                            ---------
800       *                        | 6 | 7 |                            | 4 | 6 |
801       *                        ---------                            ---------
802       *
803       * Fortunately, this can be done fairly easily as:
804       * S' = (0x17306425 >> (S * 4)) & 0xf
805       *
806       * In the case of 16x MSAA the two layouts don't match.
807       * Sample index layout:                Sample number layout:
808       * ---------------------               ---------------------
809       * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
810       * ---------------------               ---------------------
811       * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
812       * ---------------------               ---------------------
813       * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
814       * ---------------------               ---------------------
815       * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
816       * ---------------------               ---------------------
817       *
818       * This is equivalent to
819       * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
820       */
821      nir_ssa_def *frac = nir_ffract(b, sample_coords);
822      nir_ssa_def *sample =
823         nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
824                                            key->x_scale * key->y_scale));
825      sample = nir_f2i(b, sample);
826
827      if (tex_samples == 8) {
828         sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
829                                       nir_ishl(b, sample, nir_imm_int(b, 2))),
830                           nir_imm_int(b, 0xf));
831      } else if (tex_samples == 16) {
832         nir_ssa_def *sample_low =
833            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
834                                 nir_ishl(b, sample, nir_imm_int(b, 2))),
835                     nir_imm_int(b, 0xf));
836         nir_ssa_def *sample_high =
837            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
838                                 nir_ishl(b, nir_iadd(b, sample,
839                                                      nir_imm_int(b, -8)),
840                                          nir_imm_int(b, 2))),
841                     nir_imm_int(b, 0xf));
842
843         sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
844                            sample_low, sample_high);
845      }
846      nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
847                                        nir_channel(b, sample_coords_int, 1),
848                                        sample);
849      tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
850   }
851
852   nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
853   nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
854   return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
855                      nir_flrp(b, tex_data[2], tex_data[3], frac_x),
856                      frac_y);
857}
858
859/** Perform a color bit-cast operation
860 *
861 * For copy operations involving CCS, we may need to use different formats for
862 * the source and destination surfaces.  The two formats must both be UINT
863 * formats and must have the same size but may have different bit layouts.
864 * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
865 * to R16G16_UINT.  This function generates code to shuffle bits around to get
866 * us from one to the other.
867 */
868static nir_ssa_def *
869bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
870               const struct brw_blorp_blit_prog_key *key)
871{
872   assert(key->texture_data_type == nir_type_uint);
873
874   if (key->dst_bpc > key->src_bpc) {
875      nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
876      nir_ssa_def *dst_chan[2] = { u, u };
877      unsigned shift = 0;
878      unsigned dst_idx = 0;
879      for (unsigned i = 0; i < 4; i++) {
880         nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
881                                            nir_imm_int(b, shift));
882         if (shift == 0) {
883            dst_chan[dst_idx] = shifted;
884         } else {
885            dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
886         }
887
888         shift += key->src_bpc;
889         if (shift >= key->dst_bpc) {
890            dst_idx++;
891            shift = 0;
892         }
893      }
894
895      return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
896   } else {
897      assert(key->dst_bpc < key->src_bpc);
898
899      nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
900
901      nir_ssa_def *dst_chan[4];
902      unsigned src_idx = 0;
903      unsigned shift = 0;
904      for (unsigned i = 0; i < 4; i++) {
905         dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
906                                               nir_imm_int(b, shift)),
907                                   mask);
908         shift += key->dst_bpc;
909         if (shift >= key->src_bpc) {
910            src_idx++;
911            shift = 0;
912         }
913      }
914
915      return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
916   }
917}
918
919/**
920 * Generator for WM programs used in BLORP blits.
921 *
922 * The bulk of the work done by the WM program is to wrap and unwrap the
923 * coordinate transformations used by the hardware to store surfaces in
924 * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
925 * sample index for a multisampled surface) to a memory offset by the
926 * following formulas:
927 *
928 *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
929 *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
930 *
931 * For a single-sampled surface, or for a multisampled surface using
932 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
933 * function:
934 *
935 *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
936 *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
937 *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
938 *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
939 *
940 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
941 * embeds the sample number into bit 1 of the X and Y coordinates:
942 *
943 *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
944 *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
945 *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
946 *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
947 *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
948 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
949 *           S = (Y & 0b10) | (X & 0b10) >> 1
950 *
951 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
952 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
953 * the Y coordinate:
954 *
955 *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
956 *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
957 *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
958 *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
959 *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
960 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
961 *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
962 *
963 * For X tiling, tile() combines together the low-order bits of the X and Y
964 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
965 * bytes wide and 8 rows high:
966 *
967 *   tile(x_tiled, X, Y, S) = A
968 *     where A = tile_num << 12 | offset
969 *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
970 *           offset = (Y' & 0b111) << 9
971 *                    | (X & 0b111111111)
972 *           X' = X * cpp
973 *           Y' = Y + S * qpitch
974 *   detile(x_tiled, A) = (X, Y, S)
975 *     where X = X' / cpp
976 *           Y = Y' % qpitch
977 *           S = Y' / qpitch
978 *           Y' = (tile_num / tile_pitch) << 3
979 *                | (A & 0b111000000000) >> 9
980 *           X' = (tile_num % tile_pitch) << 9
981 *                | (A & 0b111111111)
982 *
983 * (In all tiling formulas, cpp is the number of bytes occupied by a single
984 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
985 * to fill the width of the surface, and qpitch is the spacing (in rows)
986 * between array slices).
987 *
988 * For Y tiling, tile() combines together the low-order bits of the X and Y
989 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
990 * bytes wide and 32 rows high:
991 *
992 *   tile(y_tiled, X, Y, S) = A
993 *     where A = tile_num << 12 | offset
994 *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
995 *           offset = (X' & 0b1110000) << 5
996 *                    | (Y' & 0b11111) << 4
997 *                    | (X' & 0b1111)
998 *           X' = X * cpp
999 *           Y' = Y + S * qpitch
1000 *   detile(y_tiled, A) = (X, Y, S)
1001 *     where X = X' / cpp
1002 *           Y = Y' % qpitch
1003 *           S = Y' / qpitch
1004 *           Y' = (tile_num / tile_pitch) << 5
1005 *                | (A & 0b111110000) >> 4
1006 *           X' = (tile_num % tile_pitch) << 7
1007 *                | (A & 0b111000000000) >> 5
1008 *                | (A & 0b1111)
1009 *
1010 * For W tiling, tile() combines together the low-order bits of the X and Y
1011 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
1012 * bytes wide and 64 rows high (note that W tiling is only used for stencil
1013 * buffers, which always have cpp = 1 and S=0):
1014 *
1015 *   tile(w_tiled, X, Y, S) = A
1016 *     where A = tile_num << 12 | offset
1017 *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
1018 *           offset = (X' & 0b111000) << 6
1019 *                    | (Y' & 0b111100) << 3
1020 *                    | (X' & 0b100) << 2
1021 *                    | (Y' & 0b10) << 2
1022 *                    | (X' & 0b10) << 1
1023 *                    | (Y' & 0b1) << 1
1024 *                    | (X' & 0b1)
1025 *           X' = X * cpp = X
1026 *           Y' = Y + S * qpitch
1027 *   detile(w_tiled, A) = (X, Y, S)
1028 *     where X = X' / cpp = X'
1029 *           Y = Y' % qpitch = Y'
1030 *           S = Y / qpitch = 0
1031 *           Y' = (tile_num / tile_pitch) << 6
1032 *                | (A & 0b111100000) >> 3
1033 *                | (A & 0b1000) >> 2
1034 *                | (A & 0b10) >> 1
1035 *           X' = (tile_num % tile_pitch) << 6
1036 *                | (A & 0b111000000000) >> 6
1037 *                | (A & 0b10000) >> 2
1038 *                | (A & 0b100) >> 1
1039 *                | (A & 0b1)
1040 *
1041 * Finally, for a non-tiled surface, tile() simply combines together the X and
1042 * Y coordinates in the natural way:
1043 *
1044 *   tile(untiled, X, Y, S) = A
1045 *     where A = Y * pitch + X'
1046 *           X' = X * cpp
1047 *           Y' = Y + S * qpitch
1048 *   detile(untiled, A) = (X, Y, S)
1049 *     where X = X' / cpp
1050 *           Y = Y' % qpitch
1051 *           S = Y' / qpitch
1052 *           X' = A % pitch
1053 *           Y' = A / pitch
1054 *
1055 * (In these formulas, pitch is the number of bytes occupied by a single row
1056 * of samples).
1057 */
1058static nir_shader *
1059brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
1060                           const struct brw_blorp_blit_prog_key *key)
1061{
1062   const struct gen_device_info *devinfo = blorp->isl_dev->info;
1063   nir_ssa_def *src_pos, *dst_pos, *color;
1064
1065   /* Sanity checks */
1066   if (key->dst_tiled_w && key->rt_samples > 1) {
1067      /* If the destination image is W tiled and multisampled, then the thread
1068       * must be dispatched once per sample, not once per pixel.  This is
1069       * necessary because after conversion between W and Y tiling, there's no
1070       * guarantee that all samples corresponding to a single pixel will still
1071       * be together.
1072       */
1073      assert(key->persample_msaa_dispatch);
1074   }
1075
1076   if (key->blend) {
1077      /* We are blending, which means we won't have an opportunity to
1078       * translate the tiling and sample count for the texture surface.  So
1079       * the surface state for the texture must be configured with the correct
1080       * tiling and sample count.
1081       */
1082      assert(!key->src_tiled_w);
1083      assert(key->tex_samples == key->src_samples);
1084      assert(key->tex_layout == key->src_layout);
1085      assert(key->tex_samples > 0);
1086   }
1087
1088   if (key->persample_msaa_dispatch) {
1089      /* It only makes sense to do persample dispatch if the render target is
1090       * configured as multisampled.
1091       */
1092      assert(key->rt_samples > 0);
1093   }
1094
1095   /* Make sure layout is consistent with sample count */
1096   assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
1097          (key->tex_samples <= 1));
1098   assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
1099          (key->rt_samples <= 1));
1100   assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
1101          (key->src_samples <= 1));
1102   assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
1103          (key->dst_samples <= 1));
1104
1105   nir_builder b;
1106   nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
1107
1108   struct brw_blorp_blit_vars v;
1109   brw_blorp_blit_vars_init(&b, &v, key);
1110
1111   dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
1112
1113   /* Render target and texture hardware don't support W tiling until Gen8. */
1114   const bool rt_tiled_w = false;
1115   const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
1116
1117   /* The address that data will be written to is determined by the
1118    * coordinates supplied to the WM thread and the tiling and sample count of
1119    * the render target, according to the formula:
1120    *
1121    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
1122    *
1123    * If the actual tiling and sample count of the destination surface are not
1124    * the same as the configuration of the render target, then these
1125    * coordinates are wrong and we have to adjust them to compensate for the
1126    * difference.
1127    */
1128   if (rt_tiled_w != key->dst_tiled_w ||
1129       key->rt_samples != key->dst_samples ||
1130       key->rt_layout != key->dst_layout) {
1131      dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
1132                                      key->rt_layout);
1133      /* Now (X, Y, S) = detile(rt_tiling, offset) */
1134      if (rt_tiled_w != key->dst_tiled_w)
1135         dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
1136      /* Now (X, Y, S) = detile(rt_tiling, offset) */
1137      dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
1138                                      key->dst_layout);
1139   }
1140
1141   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
1142    *
1143    * That is: X, Y and S now contain the true coordinates and sample index of
1144    * the data that the WM thread should output.
1145    *
1146    * If we need to kill pixels that are outside the destination rectangle,
1147    * now is the time to do it.
1148    */
1149   if (key->use_kill) {
1150      assert(!(key->blend && key->blit_scaled));
1151      blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
1152   }
1153
1154   src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
1155   if (dst_pos->num_components == 3) {
1156      /* The sample coordinate is an integer that we want left alone but
1157       * blorp_blit_apply_transform() blindly applies the transform to all
1158       * three coordinates.  Grab the original sample index.
1159       */
1160      src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
1161                             nir_channel(&b, src_pos, 1),
1162                             nir_channel(&b, dst_pos, 2));
1163   }
1164
1165   /* If the source image is not multisampled, then we want to fetch sample
1166    * number 0, because that's the only sample there is.
1167    */
1168   if (key->src_samples == 1)
1169      src_pos = nir_channels(&b, src_pos, 0x3);
1170
1171   /* X, Y, and S are now the coordinates of the pixel in the source image
1172    * that we want to texture from.  Exception: if we are blending, then S is
1173    * irrelevant, because we are going to fetch all samples.
1174    */
1175   if (key->blend && !key->blit_scaled) {
1176      /* Resolves (effecively) use texelFetch, so we need integers and we
1177       * don't care about the sample index if we got one.
1178       */
1179      src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
1180
1181      if (devinfo->gen == 6) {
1182         /* Because gen6 only supports 4x interleved MSAA, we can do all the
1183          * blending we need with a single linear-interpolated texture lookup
1184          * at the center of the sample. The texture coordinates to be odd
1185          * integers so that they correspond to the center of a 2x2 block
1186          * representing the four samples that maxe up a pixel.  So we need
1187          * to multiply our X and Y coordinates each by 2 and then add 1.
1188          */
1189         src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
1190         src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
1191         src_pos = nir_i2f(&b, src_pos);
1192         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1193      } else {
1194         /* Gen7+ hardware doesn't automaticaly blend. */
1195         color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
1196                                                key->tex_aux_usage,
1197                                                key->texture_data_type);
1198      }
1199   } else if (key->blend && key->blit_scaled) {
1200      assert(!key->use_kill);
1201      color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
1202   } else {
1203      if (key->bilinear_filter) {
1204         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
1205      } else {
1206         /* We're going to use texelFetch, so we need integers */
1207         if (src_pos->num_components == 2) {
1208            src_pos = nir_f2i(&b, src_pos);
1209         } else {
1210            assert(src_pos->num_components == 3);
1211            src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
1212                                   nir_channel(&b, nir_f2i(&b, src_pos), 1),
1213                                   nir_channel(&b, src_pos, 2));
1214         }
1215
1216         /* We aren't blending, which means we just want to fetch a single
1217          * sample from the source surface.  The address that we want to fetch
1218          * from is related to the X, Y and S values according to the formula:
1219          *
1220          * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
1221          *
1222          * If the actual tiling and sample count of the source surface are
1223          * not the same as the configuration of the texture, then we need to
1224          * adjust the coordinates to compensate for the difference.
1225          */
1226         if (tex_tiled_w != key->src_tiled_w ||
1227             key->tex_samples != key->src_samples ||
1228             key->tex_layout != key->src_layout) {
1229            src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
1230                                            key->src_layout);
1231            /* Now (X, Y, S) = detile(src_tiling, offset) */
1232            if (tex_tiled_w != key->src_tiled_w)
1233               src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
1234            /* Now (X, Y, S) = detile(tex_tiling, offset) */
1235            src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
1236                                            key->tex_layout);
1237         }
1238
1239         if (key->need_src_offset)
1240            src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
1241
1242         /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
1243          *
1244          * In other words: X, Y, and S now contain values which, when passed to
1245          * the texturing unit, will cause data to be read from the correct
1246          * memory location.  So we can fetch the texel now.
1247          */
1248         if (key->src_samples == 1) {
1249            color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
1250         } else {
1251            nir_ssa_def *mcs = NULL;
1252            if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
1253               mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
1254
1255            color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
1256         }
1257      }
1258   }
1259
1260   if (key->dst_bpc != key->src_bpc)
1261      color = bit_cast_color(&b, color, key);
1262
1263   if (key->dst_rgb) {
1264      /* The destination image is bound as a red texture three times as wide
1265       * as the actual image.  Our shader is effectively running one color
1266       * component at a time.  We need to pick off the appropriate component
1267       * from the source color and write that to destination red.
1268       */
1269      assert(dst_pos->num_components == 2);
1270      nir_ssa_def *comp =
1271         nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
1272
1273      nir_ssa_def *color_component =
1274         nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
1275                       nir_channel(&b, color, 0),
1276                       nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
1277                                     nir_channel(&b, color, 1),
1278                                     nir_channel(&b, color, 2)));
1279
1280      nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
1281      color = nir_vec4(&b, color_component, u, u, u);
1282   }
1283
1284   nir_store_var(&b, v.color_out, color, 0xf);
1285
1286   return b.shader;
1287}
1288
1289static void
1290brw_blorp_get_blit_kernel(struct blorp_context *blorp,
1291                          struct blorp_params *params,
1292                          const struct brw_blorp_blit_prog_key *prog_key)
1293{
1294   if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
1295                            &params->wm_prog_kernel, &params->wm_prog_data))
1296      return;
1297
1298   void *mem_ctx = ralloc_context(NULL);
1299
1300   const unsigned *program;
1301   unsigned program_size;
1302   struct brw_wm_prog_data prog_data;
1303
1304   nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
1305   struct brw_wm_prog_key wm_key;
1306   brw_blorp_init_wm_prog_key(&wm_key);
1307   wm_key.tex.compressed_multisample_layout_mask =
1308      prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
1309   wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
1310   wm_key.multisample_fbo = prog_key->rt_samples > 1;
1311
1312   program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
1313                              &prog_data, &program_size);
1314
1315   blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
1316                        program, program_size,
1317                        &prog_data.base, sizeof(prog_data),
1318                        &params->wm_prog_kernel, &params->wm_prog_data);
1319
1320   ralloc_free(mem_ctx);
1321}
1322
1323static void
1324brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
1325                                GLfloat src0, GLfloat src1,
1326                                GLfloat dst0, GLfloat dst1,
1327                                bool mirror)
1328{
1329   double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
1330   if (!mirror) {
1331      /* When not mirroring a coordinate (say, X), we need:
1332       *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1333       * Therefore:
1334       *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1335       *
1336       * blorp program uses "round toward zero" to convert the
1337       * transformed floating point coordinates to integer coordinates,
1338       * whereas the behaviour we actually want is "round to nearest",
1339       * so 0.5 provides the necessary correction.
1340       */
1341      xform->multiplier = scale;
1342      xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
1343   } else {
1344      /* When mirroring X we need:
1345       *   src_x - src_x0 = dst_x1 - dst_x - 0.5
1346       * Therefore:
1347       *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1348       */
1349      xform->multiplier = -scale;
1350      xform->offset = src0 + ((double)dst1 - 0.5) * scale;
1351   }
1352}
1353
1354static inline void
1355surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
1356                             uint32_t *tile_x_px, uint32_t *tile_y_px)
1357{
1358   if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1359      struct isl_extent2d px_size_sa =
1360         isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
1361      assert(info->tile_x_sa % px_size_sa.width == 0);
1362      assert(info->tile_y_sa % px_size_sa.height == 0);
1363      *tile_x_px = info->tile_x_sa / px_size_sa.width;
1364      *tile_y_px = info->tile_y_sa / px_size_sa.height;
1365   } else {
1366      *tile_x_px = info->tile_x_sa;
1367      *tile_y_px = info->tile_y_sa;
1368   }
1369}
1370
1371static void
1372surf_convert_to_single_slice(const struct isl_device *isl_dev,
1373                             struct brw_blorp_surface_info *info)
1374{
1375   /* Just bail if we have nothing to do. */
1376   if (info->surf.dim == ISL_SURF_DIM_2D &&
1377       info->view.base_level == 0 && info->view.base_array_layer == 0 &&
1378       info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
1379      return;
1380
1381   /* If this gets triggered then we've gotten here twice which.  This
1382    * shouldn't happen thanks to the above early return.
1383    */
1384   assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
1385
1386   uint32_t layer = 0, z = 0;
1387   if (info->surf.dim == ISL_SURF_DIM_3D)
1388      z = info->view.base_array_layer + info->z_offset;
1389   else
1390      layer = info->view.base_array_layer;
1391
1392   uint32_t x_offset_sa, y_offset_sa;
1393   isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
1394                                layer, z, &x_offset_sa, &y_offset_sa);
1395
1396   uint32_t byte_offset;
1397   isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
1398                                      info->surf.format, info->surf.row_pitch,
1399                                      x_offset_sa, y_offset_sa,
1400                                      &byte_offset,
1401                                      &info->tile_x_sa, &info->tile_y_sa);
1402   info->addr.offset += byte_offset;
1403
1404   const uint32_t slice_width_px =
1405      minify(info->surf.logical_level0_px.width, info->view.base_level);
1406   const uint32_t slice_height_px =
1407      minify(info->surf.logical_level0_px.height, info->view.base_level);
1408
1409   uint32_t tile_x_px, tile_y_px;
1410   surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
1411
1412   struct isl_surf_init_info init_info = {
1413      .dim = ISL_SURF_DIM_2D,
1414      .format = info->surf.format,
1415      .width = slice_width_px + tile_x_px,
1416      .height = slice_height_px + tile_y_px,
1417      .depth = 1,
1418      .levels = 1,
1419      .array_len = 1,
1420      .samples = info->surf.samples,
1421      .min_pitch = info->surf.row_pitch,
1422      .usage = info->surf.usage,
1423      .tiling_flags = 1 << info->surf.tiling,
1424   };
1425
1426   isl_surf_init_s(isl_dev, &info->surf, &init_info);
1427   assert(info->surf.row_pitch == init_info.min_pitch);
1428
1429   /* The view is also different now. */
1430   info->view.base_level = 0;
1431   info->view.levels = 1;
1432   info->view.base_array_layer = 0;
1433   info->view.array_len = 1;
1434   info->z_offset = 0;
1435}
1436
1437static void
1438surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
1439                           struct brw_blorp_surface_info *info)
1440{
1441   assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1442
1443   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1444   surf_convert_to_single_slice(isl_dev, info);
1445
1446   info->surf.logical_level0_px = info->surf.phys_level0_sa;
1447   info->surf.samples = 1;
1448   info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
1449}
1450
1451static void
1452surf_retile_w_to_y(const struct isl_device *isl_dev,
1453                   struct brw_blorp_surface_info *info)
1454{
1455   assert(info->surf.tiling == ISL_TILING_W);
1456
1457   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
1458   surf_convert_to_single_slice(isl_dev, info);
1459
1460   /* On gen7+, we don't have interleaved multisampling for color render
1461    * targets so we have to fake it.
1462    *
1463    * TODO: Are we sure we don't also need to fake it on gen6?
1464    */
1465   if (isl_dev->info->gen > 6 &&
1466       info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1467      surf_fake_interleaved_msaa(isl_dev, info);
1468   }
1469
1470   if (isl_dev->info->gen == 6) {
1471      /* Gen6 stencil buffers have a very large alignment coming in from the
1472       * miptree.  It's out-of-bounds for what the surface state can handle.
1473       * Since we have a single layer and level, it doesn't really matter as
1474       * long as we don't pass a bogus value into isl_surf_fill_state().
1475       */
1476      info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
1477   }
1478
1479   /* Now that we've converted everything to a simple 2-D surface with only
1480    * one miplevel, we can go about retiling it.
1481    */
1482   const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
1483   info->surf.tiling = ISL_TILING_Y0;
1484   info->surf.logical_level0_px.width =
1485      ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
1486   info->surf.logical_level0_px.height =
1487      ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
1488   info->tile_x_sa *= 2;
1489   info->tile_y_sa /= 2;
1490}
1491
1492static bool
1493can_shrink_surface(const struct brw_blorp_surface_info *surf)
1494{
1495   /* The current code doesn't support offsets into the aux buffers. This
1496    * should be possible, but we need to make sure the offset is page
1497    * aligned for both the surface and the aux buffer surface. Generally
1498    * this mean using the page aligned offset for the aux buffer.
1499    *
1500    * Currently the cases where we must split the blit are limited to cases
1501    * where we don't have a aux buffer.
1502    */
1503   if (surf->aux_addr.buffer != NULL)
1504      return false;
1505
1506   /* We can't support splitting the blit for gen <= 7, because the qpitch
1507    * size is calculated by the hardware based on the surface height for
1508    * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
1509    */
1510   if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
1511      return false;
1512
1513   return true;
1514}
1515
1516static bool
1517can_shrink_surfaces(const struct blorp_params *params)
1518{
1519   return
1520      can_shrink_surface(&params->src) &&
1521      can_shrink_surface(&params->dst);
1522}
1523
1524static unsigned
1525get_max_surface_size(const struct gen_device_info *devinfo,
1526                     const struct blorp_params *params)
1527{
1528   const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
1529   if (split_blorp_blit_debug && can_shrink_surfaces(params))
1530      return max >> 4; /* A smaller restriction when debug is enabled */
1531   else
1532      return max;
1533}
1534
1535struct blt_axis {
1536   double src0, src1, dst0, dst1;
1537   bool mirror;
1538};
1539
1540struct blt_coords {
1541   struct blt_axis x, y;
1542};
1543
1544static void
1545surf_fake_rgb_with_red(const struct isl_device *isl_dev,
1546                       struct brw_blorp_surface_info *info,
1547                       uint32_t *x, uint32_t *width)
1548{
1549   surf_convert_to_single_slice(isl_dev, info);
1550
1551   info->surf.logical_level0_px.width *= 3;
1552   info->surf.phys_level0_sa.width *= 3;
1553   *x *= 3;
1554   *width *= 3;
1555
1556   enum isl_format red_format;
1557   switch (info->view.format) {
1558   case ISL_FORMAT_R8G8B8_UNORM:
1559      red_format = ISL_FORMAT_R8_UNORM;
1560      break;
1561   case ISL_FORMAT_R8G8B8_UINT:
1562      red_format = ISL_FORMAT_R8_UINT;
1563      break;
1564   case ISL_FORMAT_R16G16B16_UNORM:
1565      red_format = ISL_FORMAT_R16_UNORM;
1566      break;
1567   case ISL_FORMAT_R16G16B16_UINT:
1568      red_format = ISL_FORMAT_R16_UINT;
1569      break;
1570   case ISL_FORMAT_R32G32B32_UINT:
1571      red_format = ISL_FORMAT_R32_UINT;
1572      break;
1573   default:
1574      unreachable("Invalid RGB copy destination format");
1575   }
1576   assert(isl_format_get_layout(red_format)->channels.r.type ==
1577          isl_format_get_layout(info->view.format)->channels.r.type);
1578   assert(isl_format_get_layout(red_format)->channels.r.bits ==
1579          isl_format_get_layout(info->view.format)->channels.r.bits);
1580
1581   info->surf.format = info->view.format = red_format;
1582}
1583
1584static void
1585fake_dest_rgb_with_red(const struct isl_device *dev,
1586                       struct blorp_params *params,
1587                       struct brw_blorp_blit_prog_key *wm_prog_key,
1588                       struct blt_coords *coords)
1589{
1590   /* Handle RGB destinations for blorp_copy */
1591   const struct isl_format_layout *dst_fmtl =
1592      isl_format_get_layout(params->dst.surf.format);
1593
1594   if (dst_fmtl->bpb % 3 == 0) {
1595      uint32_t dst_x = coords->x.dst0;
1596      uint32_t dst_width = coords->x.dst1 - dst_x;
1597      surf_fake_rgb_with_red(dev, &params->dst,
1598                             &dst_x, &dst_width);
1599      coords->x.dst0 = dst_x;
1600      coords->x.dst1 = dst_x + dst_width;
1601      wm_prog_key->dst_rgb = true;
1602      wm_prog_key->need_dst_offset = true;
1603   }
1604}
1605
1606enum blit_shrink_status {
1607   BLIT_NO_SHRINK = 0,
1608   BLIT_WIDTH_SHRINK = 1,
1609   BLIT_HEIGHT_SHRINK = 2,
1610};
1611
1612/* Try to blit. If the surface parameters exceed the size allowed by hardware,
1613 * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
1614 * returned, then the blit was successful.
1615 */
1616static enum blit_shrink_status
1617try_blorp_blit(struct blorp_batch *batch,
1618               struct blorp_params *params,
1619               struct brw_blorp_blit_prog_key *wm_prog_key,
1620               struct blt_coords *coords)
1621{
1622   const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
1623
1624   fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
1625
1626   if (isl_format_has_sint_channel(params->src.view.format)) {
1627      wm_prog_key->texture_data_type = nir_type_int;
1628   } else if (isl_format_has_uint_channel(params->src.view.format)) {
1629      wm_prog_key->texture_data_type = nir_type_uint;
1630   } else {
1631      wm_prog_key->texture_data_type = nir_type_float;
1632   }
1633
1634   /* src_samples and dst_samples are the true sample counts */
1635   wm_prog_key->src_samples = params->src.surf.samples;
1636   wm_prog_key->dst_samples = params->dst.surf.samples;
1637
1638   wm_prog_key->tex_aux_usage = params->src.aux_usage;
1639
1640   /* src_layout and dst_layout indicate the true MSAA layout used by src and
1641    * dst.
1642    */
1643   wm_prog_key->src_layout = params->src.surf.msaa_layout;
1644   wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
1645
1646   /* Round floating point values to nearest integer to avoid "off by one texel"
1647    * kind of errors when blitting.
1648    */
1649   params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
1650   params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
1651   params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
1652   params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
1653
1654   brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
1655                                   coords->x.src0, coords->x.src1,
1656                                   coords->x.dst0, coords->x.dst1,
1657                                   coords->x.mirror);
1658   brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
1659                                   coords->y.src0, coords->y.src1,
1660                                   coords->y.dst0, coords->y.dst1,
1661                                   coords->y.mirror);
1662
1663   if (devinfo->gen > 6 &&
1664       params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
1665      assert(params->dst.surf.samples > 1);
1666
1667      /* We must expand the rectangle we send through the rendering pipeline,
1668       * to account for the fact that we are mapping the destination region as
1669       * single-sampled when it is in fact multisampled.  We must also align
1670       * it to a multiple of the multisampling pattern, because the
1671       * differences between multisampled and single-sampled surface formats
1672       * will mean that pixels are scrambled within the multisampling pattern.
1673       * TODO: what if this makes the coordinates too large?
1674       *
1675       * Note: this only works if the destination surface uses the IMS layout.
1676       * If it's UMS, then we have no choice but to set up the rendering
1677       * pipeline as multisampled.
1678       */
1679      struct isl_extent2d px_size_sa =
1680         isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
1681      params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
1682      params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
1683      params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
1684      params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
1685
1686      surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
1687
1688      wm_prog_key->use_kill = true;
1689      wm_prog_key->need_dst_offset = true;
1690   }
1691
1692   if (params->dst.surf.tiling == ISL_TILING_W) {
1693      /* We must modify the rectangle we send through the rendering pipeline
1694       * (and the size and x/y offset of the destination surface), to account
1695       * for the fact that we are mapping it as Y-tiled when it is in fact
1696       * W-tiled.
1697       *
1698       * Both Y tiling and W tiling can be understood as organizations of
1699       * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
1700       * is different, but the layout of the 32-byte sub-tiles within the 4k
1701       * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
1702       * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
1703       * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
1704       *
1705       * Therefore, to account for the layout differences within the 32-byte
1706       * sub-tiles, we must expand the rectangle so the X coordinates of its
1707       * edges are multiples of 8 (the W sub-tile width), and its Y
1708       * coordinates of its edges are multiples of 4 (the W sub-tile height).
1709       * Then we need to scale the X and Y coordinates of the rectangle to
1710       * account for the differences in aspect ratio between the Y and W
1711       * sub-tiles.  We need to modify the layer width and height similarly.
1712       *
1713       * A correction needs to be applied when MSAA is in use: since
1714       * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
1715       * we need to align the Y coordinates to multiples of 8, so that when
1716       * they are divided by two they are still multiples of 4.
1717       *
1718       * Note: Since the x/y offset of the surface will be applied using the
1719       * SURFACE_STATE command packet, it will be invisible to the swizzling
1720       * code in the shader; therefore it needs to be in a multiple of the
1721       * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
1722       * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
1723       * buffer), and the miplevel alignment used for stencil buffers is 8
1724       * pixels horizontally and either 4 or 8 pixels vertically (see
1725       * intel_horizontal_texture_alignment_unit() and
1726       * intel_vertical_texture_alignment_unit()).
1727       *
1728       * Note: Also, since the SURFACE_STATE command packet can only apply
1729       * offsets that are multiples of 4 pixels horizontally and 2 pixels
1730       * vertically, it is important that the offsets will be multiples of
1731       * these sizes after they are converted into Y-tiled coordinates.
1732       * Fortunately they will be, since we know from above that the offsets
1733       * are a multiple of the 32-byte sub-tile size, and in Y-tiled
1734       * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
1735       *
1736       * TODO: what if this makes the coordinates (or the texture size) too
1737       * large?
1738       */
1739      const unsigned x_align = 8;
1740      const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
1741      params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
1742      params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
1743      params->x1 = ALIGN(params->x1, x_align) * 2;
1744      params->y1 = ALIGN(params->y1, y_align) / 2;
1745
1746      /* Retile the surface to Y-tiled */
1747      surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
1748
1749      wm_prog_key->dst_tiled_w = true;
1750      wm_prog_key->use_kill = true;
1751      wm_prog_key->need_dst_offset = true;
1752
1753      if (params->dst.surf.samples > 1) {
1754         /* If the destination surface is a W-tiled multisampled stencil
1755          * buffer that we're mapping as Y tiled, then we need to arrange for
1756          * the WM program to run once per sample rather than once per pixel,
1757          * because the memory layout of related samples doesn't match between
1758          * W and Y tiling.
1759          */
1760         wm_prog_key->persample_msaa_dispatch = true;
1761      }
1762   }
1763
1764   if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
1765      /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
1766       * Broadwell adds support for sampling from stencil.
1767       *
1768       * See the comments above concerning x/y offset alignment for the
1769       * destination surface.
1770       *
1771       * TODO: what if this makes the texture size too large?
1772       */
1773      surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
1774
1775      wm_prog_key->src_tiled_w = true;
1776      wm_prog_key->need_src_offset = true;
1777   }
1778
1779   /* tex_samples and rt_samples are the sample counts that are set up in
1780    * SURFACE_STATE.
1781    */
1782   wm_prog_key->tex_samples = params->src.surf.samples;
1783   wm_prog_key->rt_samples  = params->dst.surf.samples;
1784
1785   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1786    * use to access the source and destination surfaces.
1787    */
1788   wm_prog_key->tex_layout = params->src.surf.msaa_layout;
1789   wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
1790
1791   if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
1792      /* We are blitting from a multisample buffer to a multisample buffer, so
1793       * we must preserve samples within a pixel.  This means we have to
1794       * arrange for the WM program to run once per sample rather than once
1795       * per pixel.
1796       */
1797      wm_prog_key->persample_msaa_dispatch = true;
1798   }
1799
1800   params->num_samples = params->dst.surf.samples;
1801
1802   if (params->src.tile_x_sa || params->src.tile_y_sa) {
1803      assert(wm_prog_key->need_src_offset);
1804      surf_get_intratile_offset_px(&params->src,
1805                                   &params->wm_inputs.src_offset.x,
1806                                   &params->wm_inputs.src_offset.y);
1807   }
1808
1809   if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
1810      assert(wm_prog_key->need_dst_offset);
1811      surf_get_intratile_offset_px(&params->dst,
1812                                   &params->wm_inputs.dst_offset.x,
1813                                   &params->wm_inputs.dst_offset.y);
1814      params->x0 += params->wm_inputs.dst_offset.x;
1815      params->y0 += params->wm_inputs.dst_offset.y;
1816      params->x1 += params->wm_inputs.dst_offset.x;
1817      params->y1 += params->wm_inputs.dst_offset.y;
1818   }
1819
1820   /* For some texture types, we need to pass the layer through the sampler. */
1821   params->wm_inputs.src_z = params->src.z_offset;
1822
1823   brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key);
1824
1825   unsigned result = 0;
1826   unsigned max_surface_size = get_max_surface_size(devinfo, params);
1827   if (params->src.surf.logical_level0_px.width > max_surface_size ||
1828       params->dst.surf.logical_level0_px.width > max_surface_size)
1829      result |= BLIT_WIDTH_SHRINK;
1830   if (params->src.surf.logical_level0_px.height > max_surface_size ||
1831       params->dst.surf.logical_level0_px.height > max_surface_size)
1832      result |= BLIT_HEIGHT_SHRINK;
1833
1834   if (result == 0) {
1835      batch->blorp->exec(batch, params);
1836   }
1837
1838   return result;
1839}
1840
1841/* Adjust split blit source coordinates for the current destination
1842 * coordinates.
1843 */
1844static void
1845adjust_split_source_coords(const struct blt_axis *orig,
1846                           struct blt_axis *split_coords,
1847                           double scale)
1848{
1849   /* When scale is greater than 0, then we are growing from the start, so
1850    * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
1851    * source range shrinks from the end. In that case src0 is adjusted by
1852    * delta1, and src1 is adjusted by delta0.
1853    */
1854   double delta0 = scale * (split_coords->dst0 - orig->dst0);
1855   double delta1 = scale * (split_coords->dst1 - orig->dst1);
1856   split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
1857   split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
1858}
1859
1860static const struct isl_extent2d
1861get_px_size_sa(const struct isl_surf *surf)
1862{
1863   static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
1864
1865   if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
1866      return one_to_one;
1867   else
1868      return isl_get_interleaved_msaa_px_size_sa(surf->samples);
1869}
1870
1871static void
1872shrink_surface_params(const struct isl_device *dev,
1873                      struct brw_blorp_surface_info *info,
1874                      double *x0, double *x1, double *y0, double *y1)
1875{
1876   uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
1877   struct isl_extent2d px_size_sa;
1878   int adjust;
1879
1880   surf_convert_to_single_slice(dev, info);
1881
1882   px_size_sa = get_px_size_sa(&info->surf);
1883
1884   /* Because this gets called after we lower compressed images, the tile
1885    * offsets may be non-zero and we need to incorporate them in our
1886    * calculations.
1887    */
1888   x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
1889   y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
1890   isl_tiling_get_intratile_offset_sa(dev, info->surf.tiling,
1891                                      info->surf.format, info->surf.row_pitch,
1892                                      x_offset_sa, y_offset_sa,
1893                                      &byte_offset,
1894                                      &info->tile_x_sa, &info->tile_y_sa);
1895
1896   info->addr.offset += byte_offset;
1897
1898   adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
1899   *x0 += adjust;
1900   *x1 += adjust;
1901   info->tile_x_sa = 0;
1902
1903   adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
1904   *y0 += adjust;
1905   *y1 += adjust;
1906   info->tile_y_sa = 0;
1907
1908   size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
1909   info->surf.logical_level0_px.width = size;
1910   info->surf.phys_level0_sa.width = size * px_size_sa.w;
1911
1912   size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
1913   info->surf.logical_level0_px.height = size;
1914   info->surf.phys_level0_sa.height = size * px_size_sa.h;
1915}
1916
1917static void
1918shrink_surfaces(const struct isl_device *dev,
1919                struct blorp_params *params,
1920                struct brw_blorp_blit_prog_key *wm_prog_key,
1921                struct blt_coords *coords)
1922{
1923   /* Shrink source surface */
1924   shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
1925                         &coords->y.src0, &coords->y.src1);
1926   wm_prog_key->need_src_offset = false;
1927
1928   /* Shrink destination surface */
1929   shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
1930                         &coords->y.dst0, &coords->y.dst1);
1931   wm_prog_key->need_dst_offset = false;
1932}
1933
1934static void
1935do_blorp_blit(struct blorp_batch *batch,
1936              const struct blorp_params *orig_params,
1937              struct brw_blorp_blit_prog_key *wm_prog_key,
1938              const struct blt_coords *orig)
1939{
1940   struct blorp_params params;
1941   struct blt_coords blit_coords;
1942   struct blt_coords split_coords = *orig;
1943   double w = orig->x.dst1 - orig->x.dst0;
1944   double h = orig->y.dst1 - orig->y.dst0;
1945   double x_scale = (orig->x.src1 - orig->x.src0) / w;
1946   double y_scale = (orig->y.src1 - orig->y.src0) / h;
1947   if (orig->x.mirror)
1948      x_scale = -x_scale;
1949   if (orig->y.mirror)
1950      y_scale = -y_scale;
1951
1952   bool x_done, y_done;
1953   bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
1954   do {
1955      params = *orig_params;
1956      blit_coords = split_coords;
1957      if (shrink)
1958         shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
1959                         &blit_coords);
1960      enum blit_shrink_status result =
1961         try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
1962
1963      if (result & BLIT_WIDTH_SHRINK) {
1964         w /= 2.0;
1965         assert(w >= 1.0);
1966         split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1967         adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1968      }
1969      if (result & BLIT_HEIGHT_SHRINK) {
1970         h /= 2.0;
1971         assert(h >= 1.0);
1972         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1973         adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
1974      }
1975
1976      if (result != 0) {
1977         assert(can_shrink_surfaces(orig_params));
1978         shrink = true;
1979         continue;
1980      }
1981
1982      y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
1983      x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
1984      if (x_done) {
1985         break;
1986      } else if (y_done) {
1987         split_coords.x.dst0 += w;
1988         split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
1989         split_coords.y.dst0 = orig->y.dst0;
1990         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1991         adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
1992      } else {
1993         split_coords.y.dst0 += h;
1994         split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
1995         adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
1996      }
1997   } while (true);
1998}
1999
2000void
2001blorp_blit(struct blorp_batch *batch,
2002           const struct blorp_surf *src_surf,
2003           unsigned src_level, unsigned src_layer,
2004           enum isl_format src_format, struct isl_swizzle src_swizzle,
2005           const struct blorp_surf *dst_surf,
2006           unsigned dst_level, unsigned dst_layer,
2007           enum isl_format dst_format, struct isl_swizzle dst_swizzle,
2008           float src_x0, float src_y0,
2009           float src_x1, float src_y1,
2010           float dst_x0, float dst_y0,
2011           float dst_x1, float dst_y1,
2012           GLenum filter, bool mirror_x, bool mirror_y)
2013{
2014   struct blorp_params params;
2015   blorp_params_init(&params);
2016
2017   brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2018                               src_layer, src_format, false);
2019   brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2020                               dst_layer, dst_format, true);
2021
2022   params.src.view.swizzle = src_swizzle;
2023   params.dst.view.swizzle = dst_swizzle;
2024
2025   struct brw_blorp_blit_prog_key wm_prog_key = {
2026      .shader_type = BLORP_SHADER_TYPE_BLIT
2027   };
2028
2029   /* Scaled blitting or not. */
2030   wm_prog_key.blit_scaled =
2031      ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2032       (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2033
2034   /* Scaling factors used for bilinear filtering in multisample scaled
2035    * blits.
2036    */
2037   if (params.src.surf.samples == 16)
2038      wm_prog_key.x_scale = 4.0f;
2039   else
2040      wm_prog_key.x_scale = 2.0f;
2041   wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
2042
2043   if (filter == GL_LINEAR &&
2044       params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
2045      wm_prog_key.bilinear_filter = true;
2046
2047   if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
2048       (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
2049       !isl_format_has_int_channel(params.src.surf.format) &&
2050       params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
2051      /* We are downsampling a non-integer color buffer, so blend.
2052       *
2053       * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
2054       *
2055       *    "If the source formats are integer types or stencil values, a
2056       *    single sample's value is selected for each pixel."
2057       *
2058       * This implies we should not blend in that case.
2059       */
2060      wm_prog_key.blend = true;
2061   }
2062
2063   params.wm_inputs.rect_grid.x1 =
2064      minify(params.src.surf.logical_level0_px.width, src_level) *
2065      wm_prog_key.x_scale - 1.0f;
2066   params.wm_inputs.rect_grid.y1 =
2067      minify(params.src.surf.logical_level0_px.height, src_level) *
2068      wm_prog_key.y_scale - 1.0f;
2069
2070   struct blt_coords coords = {
2071      .x = {
2072         .src0 = src_x0,
2073         .src1 = src_x1,
2074         .dst0 = dst_x0,
2075         .dst1 = dst_x1,
2076         .mirror = mirror_x
2077      },
2078      .y = {
2079         .src0 = src_y0,
2080         .src1 = src_y1,
2081         .dst0 = dst_y0,
2082         .dst1 = dst_y1,
2083         .mirror = mirror_y
2084      }
2085   };
2086
2087   do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2088}
2089
2090static enum isl_format
2091get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
2092{
2093   /* The choice of UNORM and UINT formats is very intentional here.  Most
2094    * of the time, we want to use a UINT format to avoid any rounding error
2095    * in the blit.  For stencil blits, R8_UINT is required by the hardware.
2096    * (It's the only format allowed in conjunction with W-tiling.)  Also we
2097    * intentionally use the 4-channel formats whenever we can.  This is so
2098    * that, when we do a RGB <-> RGBX copy, the two formats will line up
2099    * even though one of them is 3/4 the size of the other.  The choice of
2100    * UNORM vs. UINT is also very intentional because we don't have 8 or
2101    * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
2102    * Fortunately, the only time we should ever use two different formats in
2103    * the table below is for RGB -> RGBA blits and so we will never have any
2104    * UNORM/UINT mismatch.
2105    */
2106   if (ISL_DEV_GEN(isl_dev) >= 9) {
2107      switch (bpb) {
2108      case 8:  return ISL_FORMAT_R8_UINT;
2109      case 16: return ISL_FORMAT_R8G8_UINT;
2110      case 24: return ISL_FORMAT_R8G8B8_UINT;
2111      case 32: return ISL_FORMAT_R8G8B8A8_UINT;
2112      case 48: return ISL_FORMAT_R16G16B16_UINT;
2113      case 64: return ISL_FORMAT_R16G16B16A16_UINT;
2114      case 96: return ISL_FORMAT_R32G32B32_UINT;
2115      case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2116      default:
2117         unreachable("Unknown format bpb");
2118      }
2119   } else {
2120      switch (bpb) {
2121      case 8:  return ISL_FORMAT_R8_UINT;
2122      case 16: return ISL_FORMAT_R8G8_UINT;
2123      case 24: return ISL_FORMAT_R8G8B8_UNORM;
2124      case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
2125      case 48: return ISL_FORMAT_R16G16B16_UNORM;
2126      case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
2127      case 96: return ISL_FORMAT_R32G32B32_UINT;
2128      case 128:return ISL_FORMAT_R32G32B32A32_UINT;
2129      default:
2130         unreachable("Unknown format bpb");
2131      }
2132   }
2133}
2134
2135/** Returns a UINT format that is CCS-compatible with the given format
2136 *
2137 * The PRM's say absolutely nothing about how render compression works.  The
2138 * only thing they provide is a list of formats on which it is and is not
2139 * supported.  Empirical testing indicates that the compression is only based
2140 * on the bit-layout of the format and the channel encoding doesn't matter.
2141 * So, while texture views don't work in general, you can create a view as
2142 * long as the bit-layout of the formats are the same.
2143 *
2144 * Fortunately, for every render compression capable format, the UINT format
2145 * with the same bit layout also supports render compression.  This means that
2146 * we only need to handle UINT formats for copy operations.  In order to do
2147 * copies between formats with different bit layouts, we attach both with a
2148 * UINT format and use bit_cast_color() to generate code to do the bit-cast
2149 * operation between the two bit layouts.
2150 */
2151static enum isl_format
2152get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
2153{
2154   switch (fmtl->format) {
2155   case ISL_FORMAT_R32G32B32A32_FLOAT:
2156   case ISL_FORMAT_R32G32B32A32_SINT:
2157   case ISL_FORMAT_R32G32B32A32_UINT:
2158   case ISL_FORMAT_R32G32B32A32_UNORM:
2159   case ISL_FORMAT_R32G32B32A32_SNORM:
2160      return ISL_FORMAT_R32G32B32A32_UINT;
2161
2162   case ISL_FORMAT_R16G16B16A16_UNORM:
2163   case ISL_FORMAT_R16G16B16A16_SNORM:
2164   case ISL_FORMAT_R16G16B16A16_SINT:
2165   case ISL_FORMAT_R16G16B16A16_UINT:
2166   case ISL_FORMAT_R16G16B16A16_FLOAT:
2167   case ISL_FORMAT_R16G16B16X16_UNORM:
2168   case ISL_FORMAT_R16G16B16X16_FLOAT:
2169      return ISL_FORMAT_R16G16B16A16_UINT;
2170
2171   case ISL_FORMAT_R32G32_FLOAT:
2172   case ISL_FORMAT_R32G32_SINT:
2173   case ISL_FORMAT_R32G32_UINT:
2174   case ISL_FORMAT_R32G32_UNORM:
2175   case ISL_FORMAT_R32G32_SNORM:
2176      return ISL_FORMAT_R32G32_UINT;
2177
2178   case ISL_FORMAT_B8G8R8A8_UNORM:
2179   case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2180   case ISL_FORMAT_R8G8B8A8_UNORM:
2181   case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
2182   case ISL_FORMAT_R8G8B8A8_SNORM:
2183   case ISL_FORMAT_R8G8B8A8_SINT:
2184   case ISL_FORMAT_R8G8B8A8_UINT:
2185   case ISL_FORMAT_B8G8R8X8_UNORM:
2186   case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
2187   case ISL_FORMAT_R8G8B8X8_UNORM:
2188   case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
2189      return ISL_FORMAT_R8G8B8A8_UINT;
2190
2191   case ISL_FORMAT_R16G16_UNORM:
2192   case ISL_FORMAT_R16G16_SNORM:
2193   case ISL_FORMAT_R16G16_SINT:
2194   case ISL_FORMAT_R16G16_UINT:
2195   case ISL_FORMAT_R16G16_FLOAT:
2196      return ISL_FORMAT_R16G16_UINT;
2197
2198   case ISL_FORMAT_R32_SINT:
2199   case ISL_FORMAT_R32_UINT:
2200   case ISL_FORMAT_R32_FLOAT:
2201   case ISL_FORMAT_R32_UNORM:
2202   case ISL_FORMAT_R32_SNORM:
2203      return ISL_FORMAT_R32_UINT;
2204
2205   default:
2206      unreachable("Not a compressible format");
2207   }
2208}
2209
2210/* Takes an isl_color_value and returns a color value that is the original
2211 * color value only bit-casted to a UINT format.  This value, together with
2212 * the format from get_ccs_compatible_uint_format, will yield the same bit
2213 * value as the original color and format.
2214 */
2215static union isl_color_value
2216bitcast_color_value_to_uint(union isl_color_value color,
2217                            const struct isl_format_layout *fmtl)
2218{
2219   /* All CCS formats have the same number of bits in each channel */
2220   const struct isl_channel_layout *chan = &fmtl->channels.r;
2221
2222   union isl_color_value bits;
2223   switch (chan->type) {
2224   case ISL_UINT:
2225   case ISL_SINT:
2226      /* Hardware will ignore the high bits so there's no need to cast */
2227      bits = color;
2228      break;
2229
2230   case ISL_UNORM:
2231      for (unsigned i = 0; i < 4; i++)
2232         bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
2233      break;
2234
2235   case ISL_SNORM:
2236      for (unsigned i = 0; i < 4; i++)
2237         bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
2238      break;
2239
2240   case ISL_SFLOAT:
2241      switch (chan->bits) {
2242      case 16:
2243         for (unsigned i = 0; i < 4; i++)
2244            bits.u32[i] = _mesa_float_to_half(color.f32[i]);
2245         break;
2246
2247      case 32:
2248         bits = color;
2249         break;
2250
2251      default:
2252         unreachable("Invalid float format size");
2253      }
2254      break;
2255
2256   default:
2257      unreachable("Invalid channel type");
2258   }
2259
2260   switch (fmtl->format) {
2261   case ISL_FORMAT_B8G8R8A8_UNORM:
2262   case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
2263   case ISL_FORMAT_B8G8R8X8_UNORM:
2264   case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
2265      /* If it's a BGRA format, we need to swap blue and red */
2266      uint32_t tmp = bits.u32[0];
2267      bits.u32[0] = bits.u32[2];
2268      bits.u32[2] = tmp;
2269      break;
2270   }
2271
2272   default:
2273      break; /* Nothing to do */
2274   }
2275
2276   return bits;
2277}
2278
2279static void
2280surf_convert_to_uncompressed(const struct isl_device *isl_dev,
2281                             struct brw_blorp_surface_info *info,
2282                             uint32_t *x, uint32_t *y,
2283                             uint32_t *width, uint32_t *height)
2284{
2285   const struct isl_format_layout *fmtl =
2286      isl_format_get_layout(info->surf.format);
2287
2288   assert(fmtl->bw > 1 || fmtl->bh > 1);
2289
2290   /* This is a compressed surface.  We need to convert it to a single
2291    * slice (because compressed layouts don't perfectly match uncompressed
2292    * ones with the same bpb) and divide x, y, width, and height by the
2293    * block size.
2294    */
2295   surf_convert_to_single_slice(isl_dev, info);
2296
2297   if (width || height) {
2298#ifndef NDEBUG
2299      uint32_t right_edge_px = info->tile_x_sa + *x + *width;
2300      uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
2301      assert(*width % fmtl->bw == 0 ||
2302             right_edge_px == info->surf.logical_level0_px.width);
2303      assert(*height % fmtl->bh == 0 ||
2304             bottom_edge_px == info->surf.logical_level0_px.height);
2305#endif
2306      *width = DIV_ROUND_UP(*width, fmtl->bw);
2307      *height = DIV_ROUND_UP(*height, fmtl->bh);
2308   }
2309
2310   assert(*x % fmtl->bw == 0);
2311   assert(*y % fmtl->bh == 0);
2312   *x /= fmtl->bw;
2313   *y /= fmtl->bh;
2314
2315   info->surf.logical_level0_px.width =
2316      DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
2317   info->surf.logical_level0_px.height =
2318      DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
2319
2320   assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
2321   assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
2322   info->surf.phys_level0_sa.width /= fmtl->bw;
2323   info->surf.phys_level0_sa.height /= fmtl->bh;
2324
2325   assert(info->tile_x_sa % fmtl->bw == 0);
2326   assert(info->tile_y_sa % fmtl->bh == 0);
2327   info->tile_x_sa /= fmtl->bw;
2328   info->tile_y_sa /= fmtl->bh;
2329
2330   /* It's now an uncompressed surface so we need an uncompressed format */
2331   info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
2332}
2333
2334void
2335blorp_copy(struct blorp_batch *batch,
2336           const struct blorp_surf *src_surf,
2337           unsigned src_level, unsigned src_layer,
2338           const struct blorp_surf *dst_surf,
2339           unsigned dst_level, unsigned dst_layer,
2340           uint32_t src_x, uint32_t src_y,
2341           uint32_t dst_x, uint32_t dst_y,
2342           uint32_t src_width, uint32_t src_height)
2343{
2344   const struct isl_device *isl_dev = batch->blorp->isl_dev;
2345   struct blorp_params params;
2346
2347   if (src_width == 0 || src_height == 0)
2348      return;
2349
2350   blorp_params_init(&params);
2351   brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
2352                               src_layer, ISL_FORMAT_UNSUPPORTED, false);
2353   brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
2354                               dst_layer, ISL_FORMAT_UNSUPPORTED, true);
2355
2356   struct brw_blorp_blit_prog_key wm_prog_key = {
2357      .shader_type = BLORP_SHADER_TYPE_BLIT
2358   };
2359
2360   const struct isl_format_layout *src_fmtl =
2361      isl_format_get_layout(params.src.surf.format);
2362   const struct isl_format_layout *dst_fmtl =
2363      isl_format_get_layout(params.dst.surf.format);
2364
2365   assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
2366          params.src.aux_usage == ISL_AUX_USAGE_MCS ||
2367          params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
2368   assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
2369          params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
2370          params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
2371
2372   if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2373      params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
2374      if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2375         params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2376      } else if (src_fmtl->bpb == dst_fmtl->bpb) {
2377         params.src.view.format = params.dst.view.format;
2378      } else {
2379         params.src.view.format =
2380            get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2381      }
2382   } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2383      params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
2384      if (src_fmtl->bpb == dst_fmtl->bpb) {
2385         params.dst.view.format = params.src.view.format;
2386      } else {
2387         params.dst.view.format =
2388            get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2389      }
2390   } else {
2391      params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
2392      params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
2393   }
2394
2395   if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
2396      params.src.clear_color =
2397         bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
2398   }
2399
2400   if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
2401      params.dst.clear_color =
2402         bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
2403   }
2404
2405   wm_prog_key.src_bpc =
2406      isl_format_get_layout(params.src.view.format)->channels.r.bits;
2407   wm_prog_key.dst_bpc =
2408      isl_format_get_layout(params.dst.view.format)->channels.r.bits;
2409
2410   if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
2411      surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
2412                                   &src_x, &src_y, &src_width, &src_height);
2413      wm_prog_key.need_src_offset = true;
2414   }
2415
2416   if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
2417      surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
2418                                   &dst_x, &dst_y, NULL, NULL);
2419      wm_prog_key.need_dst_offset = true;
2420   }
2421
2422   /* Once both surfaces are stompped to uncompressed as needed, the
2423    * destination size is the same as the source size.
2424    */
2425   uint32_t dst_width = src_width;
2426   uint32_t dst_height = src_height;
2427
2428   struct blt_coords coords = {
2429      .x = {
2430         .src0 = src_x,
2431         .src1 = src_x + src_width,
2432         .dst0 = dst_x,
2433         .dst1 = dst_x + dst_width,
2434         .mirror = false
2435      },
2436      .y = {
2437         .src0 = src_y,
2438         .src1 = src_y + src_height,
2439         .dst0 = dst_y,
2440         .dst1 = dst_y + dst_height,
2441         .mirror = false
2442      }
2443   };
2444
2445   do_blorp_blit(batch, &params, &wm_prog_key, &coords);
2446}
2447