1/*
2 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28  * Authors:
29  *   Keith Whitwell <keithw@vmware.com>
30  */
31
32
33#include "main/macros.h"
34#include "main/enums.h"
35
36#include "program/program.h"
37#include "intel_batchbuffer.h"
38
39#include "brw_defines.h"
40#include "brw_context.h"
41#include "brw_eu.h"
42#include "brw_ff_gs.h"
43
44/**
45 * Allocate registers for GS.
46 *
47 * If sol_program is true, then:
48 *
49 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
50 *   1 needs to be set aside to hold the streamed vertex buffer indices.
51 *
52 * - The thread will need to use the destination_indices register.
53 */
54static void brw_ff_gs_alloc_regs(struct brw_ff_gs_compile *c,
55                                 GLuint nr_verts,
56                                 bool sol_program)
57{
58   GLuint i = 0,j;
59
60   /* Register usage is static, precompute here:
61    */
62   c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
63
64   /* Streamed vertex buffer indices */
65   if (sol_program)
66      c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
67
68   /* Payload vertices plus space for more generated vertices:
69    */
70   for (j = 0; j < nr_verts; j++) {
71      c->reg.vertex[j] = brw_vec4_grf(i, 0);
72      i += c->nr_regs;
73   }
74
75   c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
76   c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
77
78   if (sol_program) {
79      c->reg.destination_indices =
80         retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
81   }
82
83   c->prog_data.urb_read_length = c->nr_regs;
84   c->prog_data.total_grf = i;
85}
86
87
88/**
89 * Set up the initial value of c->reg.header register based on c->reg.R0.
90 *
91 * The following information is passed to the GS thread in R0, and needs to be
92 * included in the first URB_WRITE or FF_SYNC message sent by the GS:
93 *
94 * - DWORD 0 [31:0] handle info (Gen4 only)
95 * - DWORD 5 [7:0] FFTID
96 * - DWORD 6 [31:0] Debug info
97 * - DWORD 7 [31:0] Debug info
98 *
99 * This function sets up the above data by copying by copying the contents of
100 * R0 to the header register.
101 */
102static void brw_ff_gs_initialize_header(struct brw_ff_gs_compile *c)
103{
104   struct brw_codegen *p = &c->func;
105   brw_MOV(p, c->reg.header, c->reg.R0);
106}
107
108/**
109 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
110 *
111 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
112 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
113 * need to be able to update on a per-vertex basis.
114 */
115static void brw_ff_gs_overwrite_header_dw2(struct brw_ff_gs_compile *c,
116                                           unsigned dw2)
117{
118   struct brw_codegen *p = &c->func;
119   brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
120}
121
122/**
123 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
124 *
125 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
126 * of DWORD 2.  URB_WRITE messages need the primitive type in bits 6:2 of
127 * DWORD 2.  So this function extracts the primitive type field, bitshifts it
128 * appropriately, and stores it in c->reg.header.
129 */
130static void brw_ff_gs_overwrite_header_dw2_from_r0(struct brw_ff_gs_compile *c)
131{
132   struct brw_codegen *p = &c->func;
133   brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
134           brw_imm_ud(0x1f));
135   brw_SHL(p, get_element_ud(c->reg.header, 2),
136           get_element_ud(c->reg.header, 2), brw_imm_ud(2));
137}
138
139/**
140 * Apply an additive offset to DWORD 2 of c->reg.header.
141 *
142 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
143 * for each vertex.
144 */
145static void brw_ff_gs_offset_header_dw2(struct brw_ff_gs_compile *c,
146                                        int offset)
147{
148   struct brw_codegen *p = &c->func;
149   brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
150           brw_imm_d(offset));
151}
152
153
154/**
155 * Emit a vertex using the URB_WRITE message.  Use the contents of
156 * c->reg.header for the message header, and the registers starting at \c vert
157 * for the vertex data.
158 *
159 * If \c last is true, then this is the last vertex, so no further URB space
160 * should be allocated, and this message should end the thread.
161 *
162 * If \c last is false, then a new URB entry will be allocated, and its handle
163 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
164 * message.
165 */
166static void brw_ff_gs_emit_vue(struct brw_ff_gs_compile *c,
167                               struct brw_reg vert,
168                               bool last)
169{
170   struct brw_codegen *p = &c->func;
171   int write_offset = 0;
172   bool complete = false;
173
174   do {
175      /* We can't write more than 14 registers at a time to the URB */
176      int write_len = MIN2(c->nr_regs - write_offset, 14);
177      if (write_len == c->nr_regs - write_offset)
178         complete = true;
179
180      /* Copy the vertex from vertn into m1..mN+1:
181       */
182      brw_copy8(p, brw_message_reg(1), offset(vert, write_offset), write_len);
183
184      /* Send the vertex data to the URB.  If this is the last write for this
185       * vertex, then we mark it as complete, and either end the thread or
186       * allocate another vertex URB entry (depending whether this is the last
187       * vertex).
188       */
189      enum brw_urb_write_flags flags;
190      if (!complete)
191         flags = BRW_URB_WRITE_NO_FLAGS;
192      else if (last)
193         flags = BRW_URB_WRITE_EOT_COMPLETE;
194      else
195         flags = BRW_URB_WRITE_ALLOCATE_COMPLETE;
196      brw_urb_WRITE(p,
197                    (flags & BRW_URB_WRITE_ALLOCATE) ? c->reg.temp
198                    : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
199                    0,
200                    c->reg.header,
201                    flags,
202                    write_len + 1, /* msg length */
203                    (flags & BRW_URB_WRITE_ALLOCATE) ? 1
204                    : 0, /* response length */
205                    write_offset,  /* urb offset */
206                    BRW_URB_SWIZZLE_NONE);
207      write_offset += write_len;
208   } while (!complete);
209
210   if (!last) {
211      brw_MOV(p, get_element_ud(c->reg.header, 0),
212              get_element_ud(c->reg.temp, 0));
213   }
214}
215
216/**
217 * Send an FF_SYNC message to ensure that all previously spawned GS threads
218 * have finished sending primitives down the pipeline, and to allocate a URB
219 * entry for the first output vertex.  Only needed on Ironlake+.
220 *
221 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
222 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
223 * the allocated URB entry (which will be needed by the URB_WRITE meesage that
224 * follows).
225 */
226static void brw_ff_gs_ff_sync(struct brw_ff_gs_compile *c, int num_prim)
227{
228   struct brw_codegen *p = &c->func;
229
230   brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
231   brw_ff_sync(p,
232               c->reg.temp,
233               0,
234               c->reg.header,
235               1, /* allocate */
236               1, /* response length */
237               0 /* eot */);
238   brw_MOV(p, get_element_ud(c->reg.header, 0),
239           get_element_ud(c->reg.temp, 0));
240}
241
242
243void
244brw_ff_gs_quads(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key)
245{
246   brw_ff_gs_alloc_regs(c, 4, false);
247   brw_ff_gs_initialize_header(c);
248   /* Use polygons for correct edgeflag behaviour. Note that vertex 3
249    * is the PV for quads, but vertex 0 for polygons:
250    */
251   if (c->func.devinfo->gen == 5)
252      brw_ff_gs_ff_sync(c, 1);
253   brw_ff_gs_overwrite_header_dw2(
254      c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
255          | URB_WRITE_PRIM_START));
256   if (key->pv_first) {
257      brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
258      brw_ff_gs_overwrite_header_dw2(
259         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
260      brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
261      brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
262      brw_ff_gs_overwrite_header_dw2(
263         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
264             | URB_WRITE_PRIM_END));
265      brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
266   }
267   else {
268      brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
269      brw_ff_gs_overwrite_header_dw2(
270         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
271      brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
272      brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
273      brw_ff_gs_overwrite_header_dw2(
274         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
275             | URB_WRITE_PRIM_END));
276      brw_ff_gs_emit_vue(c, c->reg.vertex[2], 1);
277   }
278}
279
280void
281brw_ff_gs_quad_strip(struct brw_ff_gs_compile *c,
282                     struct brw_ff_gs_prog_key *key)
283{
284   brw_ff_gs_alloc_regs(c, 4, false);
285   brw_ff_gs_initialize_header(c);
286
287   if (c->func.devinfo->gen == 5)
288      brw_ff_gs_ff_sync(c, 1);
289   brw_ff_gs_overwrite_header_dw2(
290      c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
291          | URB_WRITE_PRIM_START));
292   if (key->pv_first) {
293      brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
294      brw_ff_gs_overwrite_header_dw2(
295         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
296      brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
297      brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
298      brw_ff_gs_overwrite_header_dw2(
299         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
300             | URB_WRITE_PRIM_END));
301      brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
302   }
303   else {
304      brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
305      brw_ff_gs_overwrite_header_dw2(
306         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
307      brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
308      brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
309      brw_ff_gs_overwrite_header_dw2(
310         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
311             | URB_WRITE_PRIM_END));
312      brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
313   }
314}
315
316void brw_ff_gs_lines(struct brw_ff_gs_compile *c)
317{
318   brw_ff_gs_alloc_regs(c, 2, false);
319   brw_ff_gs_initialize_header(c);
320
321   if (c->func.devinfo->gen == 5)
322      brw_ff_gs_ff_sync(c, 1);
323   brw_ff_gs_overwrite_header_dw2(
324      c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
325          | URB_WRITE_PRIM_START));
326   brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
327   brw_ff_gs_overwrite_header_dw2(
328      c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
329          | URB_WRITE_PRIM_END));
330   brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
331}
332
333/**
334 * Generate the geometry shader program used on Gen6 to perform stream output
335 * (transform feedback).
336 */
337void
338gen6_sol_program(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key,
339	         unsigned num_verts, bool check_edge_flags)
340{
341   struct brw_codegen *p = &c->func;
342   brw_inst *inst;
343   c->prog_data.svbi_postincrement_value = num_verts;
344
345   brw_ff_gs_alloc_regs(c, num_verts, true);
346   brw_ff_gs_initialize_header(c);
347
348   if (key->num_transform_feedback_bindings > 0) {
349      unsigned vertex, binding;
350      struct brw_reg destination_indices_uw =
351         vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
352
353      /* Note: since we use the binding table to keep track of buffer offsets
354       * and stride, the GS doesn't need to keep track of a separate pointer
355       * into each buffer; it uses a single pointer which increments by 1 for
356       * each vertex.  So we use SVBI0 for this pointer, regardless of whether
357       * transform feedback is in interleaved or separate attribs mode.
358       *
359       * Make sure that the buffers have enough room for all the vertices.
360       */
361      brw_ADD(p, get_element_ud(c->reg.temp, 0),
362	         get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
363      brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
364	         get_element_ud(c->reg.temp, 0),
365	         get_element_ud(c->reg.SVBI, 4));
366      brw_IF(p, BRW_EXECUTE_1);
367
368      /* Compute the destination indices to write to.  Usually we use SVBI[0]
369       * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
370       * vertices come down the pipeline in reversed winding order, so we need
371       * to flip the order when writing to the transform feedback buffer.  To
372       * ensure that flatshading accuracy is preserved, we need to write them
373       * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
374       * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
375       * the last provoking vertex convention.
376       *
377       * Note: since brw_imm_v can only be used in instructions in
378       * packed-word execution mode, and SVBI is a double-word, we need to
379       * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
380       * or (1, 0, 2)) to the destination_indices register, and then add SVBI
381       * using a separate instruction.  Also, since the immediate constant is
382       * expressed as packed words, and we need to load double-words into
383       * destination_indices, we need to intersperse zeros to fill the upper
384       * halves of each double-word.
385       */
386      brw_MOV(p, destination_indices_uw,
387              brw_imm_v(0x00020100)); /* (0, 1, 2) */
388      if (num_verts == 3) {
389         /* Get primitive type into temp register. */
390         brw_AND(p, get_element_ud(c->reg.temp, 0),
391                 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
392
393         /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
394          * an 8-wide comparison so that the conditional MOV that follows
395          * moves all 8 words correctly.
396          */
397         brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
398                 get_element_ud(c->reg.temp, 0),
399                 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
400
401         /* If so, then overwrite destination_indices_uw with the appropriate
402          * reordering.
403          */
404         inst = brw_MOV(p, destination_indices_uw,
405                        brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
406                                                : 0x00020001)); /* (1, 0, 2) */
407         brw_inst_set_pred_control(p->devinfo, inst, BRW_PREDICATE_NORMAL);
408      }
409
410      assert(c->reg.destination_indices.width == BRW_EXECUTE_4);
411      brw_push_insn_state(p);
412      brw_set_default_exec_size(p, BRW_EXECUTE_4);
413      brw_ADD(p, c->reg.destination_indices,
414              c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
415      brw_pop_insn_state(p);
416      /* For each vertex, generate code to output each varying using the
417       * appropriate binding table entry.
418       */
419      for (vertex = 0; vertex < num_verts; ++vertex) {
420         /* Set up the correct destination index for this vertex */
421         brw_MOV(p, get_element_ud(c->reg.header, 5),
422                 get_element_ud(c->reg.destination_indices, vertex));
423
424         for (binding = 0; binding < key->num_transform_feedback_bindings;
425              ++binding) {
426            unsigned char varying =
427               key->transform_feedback_bindings[binding];
428            unsigned char slot = c->vue_map.varying_to_slot[varying];
429            /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
430             *
431             *   "Prior to End of Thread with a URB_WRITE, the kernel must
432             *   ensure that all writes are complete by sending the final
433             *   write as a committed write."
434             */
435            bool final_write =
436               binding == key->num_transform_feedback_bindings - 1 &&
437               vertex == num_verts - 1;
438            struct brw_reg vertex_slot = c->reg.vertex[vertex];
439            vertex_slot.nr += slot / 2;
440            vertex_slot.subnr = (slot % 2) * 16;
441            /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
442            vertex_slot.swizzle = varying == VARYING_SLOT_PSIZ
443               ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
444            brw_set_default_access_mode(p, BRW_ALIGN_16);
445            brw_push_insn_state(p);
446            brw_set_default_exec_size(p, BRW_EXECUTE_4);
447
448            brw_MOV(p, stride(c->reg.header, 4, 4, 1),
449                    retype(vertex_slot, BRW_REGISTER_TYPE_UD));
450            brw_pop_insn_state(p);
451
452            brw_set_default_access_mode(p, BRW_ALIGN_1);
453            brw_svb_write(p,
454                          final_write ? c->reg.temp : brw_null_reg(), /* dest */
455                          1, /* msg_reg_nr */
456                          c->reg.header, /* src0 */
457                          SURF_INDEX_GEN6_SOL_BINDING(binding), /* binding_table_index */
458                          final_write); /* send_commit_msg */
459         }
460      }
461      brw_ENDIF(p);
462
463      /* Now, reinitialize the header register from R0 to restore the parts of
464       * the register that we overwrote while streaming out transform feedback
465       * data.
466       */
467      brw_ff_gs_initialize_header(c);
468
469      /* Finally, wait for the write commit to occur so that we can proceed to
470       * other things safely.
471       *
472       * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
473       *
474       *   The write commit does not modify the destination register, but
475       *   merely clears the dependency associated with the destination
476       *   register. Thus, a simple “mov” instruction using the register as a
477       *   source is sufficient to wait for the write commit to occur.
478       */
479      brw_MOV(p, c->reg.temp, c->reg.temp);
480   }
481
482   brw_ff_gs_ff_sync(c, 1);
483
484   brw_ff_gs_overwrite_header_dw2_from_r0(c);
485   switch (num_verts) {
486   case 1:
487      brw_ff_gs_offset_header_dw2(c,
488                                  URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
489      brw_ff_gs_emit_vue(c, c->reg.vertex[0], true);
490      break;
491   case 2:
492      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
493      brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
494      brw_ff_gs_offset_header_dw2(c,
495                                  URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
496      brw_ff_gs_emit_vue(c, c->reg.vertex[1], true);
497      break;
498   case 3:
499      if (check_edge_flags) {
500         /* Only emit vertices 0 and 1 if this is the first triangle of the
501          * polygon.  Otherwise they are redundant.
502          */
503         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
504                 get_element_ud(c->reg.R0, 2),
505                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
506         brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
507         brw_IF(p, BRW_EXECUTE_1);
508      }
509      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
510      brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
511      brw_ff_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
512      brw_ff_gs_emit_vue(c, c->reg.vertex[1], false);
513      if (check_edge_flags) {
514         brw_ENDIF(p);
515         /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
516          * of the polygon.  Otherwise leave the primitive incomplete because
517          * there are more polygon vertices coming.
518          */
519         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
520                 get_element_ud(c->reg.R0, 2),
521                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
522         brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
523         brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
524      }
525      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
526      brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
527      brw_ff_gs_emit_vue(c, c->reg.vertex[2], true);
528      break;
529   }
530}
531