1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "compiler/glsl/ir.h"
25#include "brw_fs.h"
26#include "brw_fs_surface_builder.h"
27#include "brw_nir.h"
28#include "brw_program.h"
29
30using namespace brw;
31using namespace brw::surface_access;
32
33void
34fs_visitor::emit_nir_code()
35{
36   /* emit the arrays used for inputs and outputs - load/store intrinsics will
37    * be converted to reads/writes of these arrays
38    */
39   nir_setup_outputs();
40   nir_setup_uniforms();
41   nir_emit_system_values();
42
43   /* get the main function and emit it */
44   nir_foreach_function(function, nir) {
45      assert(strcmp(function->name, "main") == 0);
46      assert(function->impl);
47      nir_emit_impl(function->impl);
48   }
49}
50
51void
52fs_visitor::nir_setup_outputs()
53{
54   if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
55      return;
56
57   nir_foreach_variable(var, &nir->outputs) {
58      const unsigned vec4s =
59         var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
60                           : type_size_vec4(var->type);
61      fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s);
62      for (unsigned i = 0; i < vec4s; i++) {
63         if (outputs[var->data.driver_location + i].file == BAD_FILE)
64            outputs[var->data.driver_location + i] = offset(reg, bld, 4 * i);
65      }
66   }
67}
68
69void
70fs_visitor::nir_setup_uniforms()
71{
72   if (dispatch_width != min_dispatch_width)
73      return;
74
75   uniforms = nir->num_uniforms / 4;
76}
77
78static bool
79emit_system_values_block(nir_block *block, fs_visitor *v)
80{
81   fs_reg *reg;
82
83   nir_foreach_instr(instr, block) {
84      if (instr->type != nir_instr_type_intrinsic)
85         continue;
86
87      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
88      switch (intrin->intrinsic) {
89      case nir_intrinsic_load_vertex_id:
90         unreachable("should be lowered by lower_vertex_id().");
91
92      case nir_intrinsic_load_vertex_id_zero_base:
93         assert(v->stage == MESA_SHADER_VERTEX);
94         reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
95         if (reg->file == BAD_FILE)
96            *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
97         break;
98
99      case nir_intrinsic_load_base_vertex:
100         assert(v->stage == MESA_SHADER_VERTEX);
101         reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
102         if (reg->file == BAD_FILE)
103            *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
104         break;
105
106      case nir_intrinsic_load_instance_id:
107         assert(v->stage == MESA_SHADER_VERTEX);
108         reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
109         if (reg->file == BAD_FILE)
110            *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
111         break;
112
113      case nir_intrinsic_load_base_instance:
114         assert(v->stage == MESA_SHADER_VERTEX);
115         reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
116         if (reg->file == BAD_FILE)
117            *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
118         break;
119
120      case nir_intrinsic_load_draw_id:
121         assert(v->stage == MESA_SHADER_VERTEX);
122         reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
123         if (reg->file == BAD_FILE)
124            *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
125         break;
126
127      case nir_intrinsic_load_invocation_id:
128         if (v->stage == MESA_SHADER_TESS_CTRL)
129            break;
130         assert(v->stage == MESA_SHADER_GEOMETRY);
131         reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
132         if (reg->file == BAD_FILE) {
133            const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
134            fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
135            fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
136            abld.SHR(iid, g1, brw_imm_ud(27u));
137            *reg = iid;
138         }
139         break;
140
141      case nir_intrinsic_load_sample_pos:
142         assert(v->stage == MESA_SHADER_FRAGMENT);
143         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
144         if (reg->file == BAD_FILE)
145            *reg = *v->emit_samplepos_setup();
146         break;
147
148      case nir_intrinsic_load_sample_id:
149         assert(v->stage == MESA_SHADER_FRAGMENT);
150         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
151         if (reg->file == BAD_FILE)
152            *reg = *v->emit_sampleid_setup();
153         break;
154
155      case nir_intrinsic_load_sample_mask_in:
156         assert(v->stage == MESA_SHADER_FRAGMENT);
157         assert(v->devinfo->gen >= 7);
158         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
159         if (reg->file == BAD_FILE)
160            *reg = *v->emit_samplemaskin_setup();
161         break;
162
163      case nir_intrinsic_load_work_group_id:
164         assert(v->stage == MESA_SHADER_COMPUTE);
165         reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
166         if (reg->file == BAD_FILE)
167            *reg = *v->emit_cs_work_group_id_setup();
168         break;
169
170      case nir_intrinsic_load_helper_invocation:
171         assert(v->stage == MESA_SHADER_FRAGMENT);
172         reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
173         if (reg->file == BAD_FILE) {
174            const fs_builder abld =
175               v->bld.annotate("gl_HelperInvocation", NULL);
176
177            /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
178             * pixel mask is in g1.7 of the thread payload.
179             *
180             * We move the per-channel pixel enable bit to the low bit of each
181             * channel by shifting the byte containing the pixel mask by the
182             * vector immediate 0x76543210UV.
183             *
184             * The region of <1,8,0> reads only 1 byte (the pixel masks for
185             * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
186             * masks for 2 and 3) in SIMD16.
187             */
188            fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
189            abld.SHR(shifted,
190                     stride(byte_offset(retype(brw_vec1_grf(1, 0),
191                                               BRW_REGISTER_TYPE_UB), 28),
192                            1, 8, 0),
193                     brw_imm_v(0x76543210));
194
195            /* A set bit in the pixel mask means the channel is enabled, but
196             * that is the opposite of gl_HelperInvocation so we need to invert
197             * the mask.
198             *
199             * The negate source-modifier bit of logical instructions on Gen8+
200             * performs 1's complement negation, so we can use that instead of
201             * a NOT instruction.
202             */
203            fs_reg inverted = negate(shifted);
204            if (v->devinfo->gen < 8) {
205               inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
206               abld.NOT(inverted, shifted);
207            }
208
209            /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
210             * with 1 and negating.
211             */
212            fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
213            abld.AND(anded, inverted, brw_imm_uw(1));
214
215            fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
216            abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
217            *reg = dst;
218         }
219         break;
220
221      default:
222         break;
223      }
224   }
225
226   return true;
227}
228
229void
230fs_visitor::nir_emit_system_values()
231{
232   nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
233   for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
234      nir_system_values[i] = fs_reg();
235   }
236
237   nir_foreach_function(function, nir) {
238      assert(strcmp(function->name, "main") == 0);
239      assert(function->impl);
240      nir_foreach_block(block, function->impl) {
241         emit_system_values_block(block, this);
242      }
243   }
244}
245
246void
247fs_visitor::nir_emit_impl(nir_function_impl *impl)
248{
249   nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
250   for (unsigned i = 0; i < impl->reg_alloc; i++) {
251      nir_locals[i] = fs_reg();
252   }
253
254   foreach_list_typed(nir_register, reg, node, &impl->registers) {
255      unsigned array_elems =
256         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
257      unsigned size = array_elems * reg->num_components;
258      const brw_reg_type reg_type =
259         reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
260      nir_locals[reg->index] = bld.vgrf(reg_type, size);
261   }
262
263   nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
264                             impl->ssa_alloc);
265
266   nir_emit_cf_list(&impl->body);
267}
268
269void
270fs_visitor::nir_emit_cf_list(exec_list *list)
271{
272   exec_list_validate(list);
273   foreach_list_typed(nir_cf_node, node, node, list) {
274      switch (node->type) {
275      case nir_cf_node_if:
276         nir_emit_if(nir_cf_node_as_if(node));
277         break;
278
279      case nir_cf_node_loop:
280         nir_emit_loop(nir_cf_node_as_loop(node));
281         break;
282
283      case nir_cf_node_block:
284         nir_emit_block(nir_cf_node_as_block(node));
285         break;
286
287      default:
288         unreachable("Invalid CFG node block");
289      }
290   }
291}
292
293void
294fs_visitor::nir_emit_if(nir_if *if_stmt)
295{
296   /* first, put the condition into f0 */
297   fs_inst *inst = bld.MOV(bld.null_reg_d(),
298                            retype(get_nir_src(if_stmt->condition),
299                                   BRW_REGISTER_TYPE_D));
300   inst->conditional_mod = BRW_CONDITIONAL_NZ;
301
302   bld.IF(BRW_PREDICATE_NORMAL);
303
304   nir_emit_cf_list(&if_stmt->then_list);
305
306   /* note: if the else is empty, dead CF elimination will remove it */
307   bld.emit(BRW_OPCODE_ELSE);
308
309   nir_emit_cf_list(&if_stmt->else_list);
310
311   bld.emit(BRW_OPCODE_ENDIF);
312}
313
314void
315fs_visitor::nir_emit_loop(nir_loop *loop)
316{
317   bld.emit(BRW_OPCODE_DO);
318
319   nir_emit_cf_list(&loop->body);
320
321   bld.emit(BRW_OPCODE_WHILE);
322}
323
324void
325fs_visitor::nir_emit_block(nir_block *block)
326{
327   nir_foreach_instr(instr, block) {
328      nir_emit_instr(instr);
329   }
330}
331
332void
333fs_visitor::nir_emit_instr(nir_instr *instr)
334{
335   const fs_builder abld = bld.annotate(NULL, instr);
336
337   switch (instr->type) {
338   case nir_instr_type_alu:
339      nir_emit_alu(abld, nir_instr_as_alu(instr));
340      break;
341
342   case nir_instr_type_intrinsic:
343      switch (stage) {
344      case MESA_SHADER_VERTEX:
345         nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
346         break;
347      case MESA_SHADER_TESS_CTRL:
348         nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
349         break;
350      case MESA_SHADER_TESS_EVAL:
351         nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
352         break;
353      case MESA_SHADER_GEOMETRY:
354         nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
355         break;
356      case MESA_SHADER_FRAGMENT:
357         nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
358         break;
359      case MESA_SHADER_COMPUTE:
360         nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
361         break;
362      default:
363         unreachable("unsupported shader stage");
364      }
365      break;
366
367   case nir_instr_type_tex:
368      nir_emit_texture(abld, nir_instr_as_tex(instr));
369      break;
370
371   case nir_instr_type_load_const:
372      nir_emit_load_const(abld, nir_instr_as_load_const(instr));
373      break;
374
375   case nir_instr_type_ssa_undef:
376      /* We create a new VGRF for undefs on every use (by handling
377       * them in get_nir_src()), rather than for each definition.
378       * This helps register coalescing eliminate MOVs from undef.
379       */
380      break;
381
382   case nir_instr_type_jump:
383      nir_emit_jump(abld, nir_instr_as_jump(instr));
384      break;
385
386   default:
387      unreachable("unknown instruction type");
388   }
389}
390
391/**
392 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
393 * match instr.
394 */
395bool
396fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
397                                      const fs_reg &result)
398{
399   if (!instr->src[0].src.is_ssa ||
400       !instr->src[0].src.ssa->parent_instr)
401      return false;
402
403   if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
404      return false;
405
406   nir_alu_instr *src0 =
407      nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
408
409   if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
410       src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
411      return false;
412
413   nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
414   assert(element != NULL);
415
416   /* Element type to extract.*/
417   const brw_reg_type type = brw_int_type(
418      src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
419      src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
420
421   fs_reg op0 = get_nir_src(src0->src[0].src);
422   op0.type = brw_type_for_nir_type(
423      (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
424                     nir_src_bit_size(src0->src[0].src)));
425   op0 = offset(op0, bld, src0->src[0].swizzle[0]);
426
427   set_saturate(instr->dest.saturate,
428                bld.MOV(result, subscript(op0, type, element->u32[0])));
429   return true;
430}
431
432bool
433fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
434                                         const fs_reg &result)
435{
436   if (!instr->src[0].src.is_ssa ||
437       instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
438      return false;
439
440   nir_intrinsic_instr *src0 =
441      nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
442
443   if (src0->intrinsic != nir_intrinsic_load_front_face)
444      return false;
445
446   nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
447   if (!value1 || fabsf(value1->f32[0]) != 1.0f)
448      return false;
449
450   nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
451   if (!value2 || fabsf(value2->f32[0]) != 1.0f)
452      return false;
453
454   fs_reg tmp = vgrf(glsl_type::int_type);
455
456   if (devinfo->gen >= 6) {
457      /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
458      fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
459
460      /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
461       *
462       *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
463       *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
464       *
465       * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
466       *
467       * This negation looks like it's safe in practice, because bits 0:4 will
468       * surely be TRIANGLES
469       */
470
471      if (value1->f32[0] == -1.0f) {
472         g0.negate = true;
473      }
474
475      bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
476             g0, brw_imm_uw(0x3f80));
477   } else {
478      /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
479      fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
480
481      /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
482       *
483       *    or(8)  tmp<1>D  g1.6<0,1,0>D  0x3f800000D
484       *    and(8) dst<1>D  tmp<8,8,1>D   0xbf800000D
485       *
486       * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
487       *
488       * This negation looks like it's safe in practice, because bits 0:4 will
489       * surely be TRIANGLES
490       */
491
492      if (value1->f32[0] == -1.0f) {
493         g1_6.negate = true;
494      }
495
496      bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
497   }
498   bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
499
500   return true;
501}
502
503static void
504emit_find_msb_using_lzd(const fs_builder &bld,
505                        const fs_reg &result,
506                        const fs_reg &src,
507                        bool is_signed)
508{
509   fs_inst *inst;
510   fs_reg temp = src;
511
512   if (is_signed) {
513      /* LZD of an absolute value source almost always does the right
514       * thing.  There are two problem values:
515       *
516       * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
517       *   0.  However, findMSB(int(0x80000000)) == 30.
518       *
519       * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
520       *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
521       *
522       *    For a value of zero or negative one, -1 will be returned.
523       *
524       * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
525       *   findMSB(-(1<<x)) should return x-1.
526       *
527       * For all negative number cases, including 0x80000000 and
528       * 0xffffffff, the correct value is obtained from LZD if instead of
529       * negating the (already negative) value the logical-not is used.  A
530       * conditonal logical-not can be achieved in two instructions.
531       */
532      temp = bld.vgrf(BRW_REGISTER_TYPE_D);
533
534      bld.ASR(temp, src, brw_imm_d(31));
535      bld.XOR(temp, temp, src);
536   }
537
538   bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
539           retype(temp, BRW_REGISTER_TYPE_UD));
540
541   /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
542    * from the LSB side. Subtract the result from 31 to convert the MSB
543    * count into an LSB count.  If no bits are set, LZD will return 32.
544    * 31-32 = -1, which is exactly what findMSB() is supposed to return.
545    */
546   inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
547   inst->src[0].negate = true;
548}
549
550void
551fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
552{
553   struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
554   fs_inst *inst;
555
556   fs_reg result = get_nir_dest(instr->dest.dest);
557   result.type = brw_type_for_nir_type(
558      (nir_alu_type)(nir_op_infos[instr->op].output_type |
559                     nir_dest_bit_size(instr->dest.dest)));
560
561   fs_reg op[4];
562   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
563      op[i] = get_nir_src(instr->src[i].src);
564      op[i].type = brw_type_for_nir_type(
565         (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
566                        nir_src_bit_size(instr->src[i].src)));
567      op[i].abs = instr->src[i].abs;
568      op[i].negate = instr->src[i].negate;
569   }
570
571   /* We get a bunch of mov's out of the from_ssa pass and they may still
572    * be vectorized.  We'll handle them as a special-case.  We'll also
573    * handle vecN here because it's basically the same thing.
574    */
575   switch (instr->op) {
576   case nir_op_imov:
577   case nir_op_fmov:
578   case nir_op_vec2:
579   case nir_op_vec3:
580   case nir_op_vec4: {
581      fs_reg temp = result;
582      bool need_extra_copy = false;
583      for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
584         if (!instr->src[i].src.is_ssa &&
585             instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
586            need_extra_copy = true;
587            temp = bld.vgrf(result.type, 4);
588            break;
589         }
590      }
591
592      for (unsigned i = 0; i < 4; i++) {
593         if (!(instr->dest.write_mask & (1 << i)))
594            continue;
595
596         if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
597            inst = bld.MOV(offset(temp, bld, i),
598                           offset(op[0], bld, instr->src[0].swizzle[i]));
599         } else {
600            inst = bld.MOV(offset(temp, bld, i),
601                           offset(op[i], bld, instr->src[i].swizzle[0]));
602         }
603         inst->saturate = instr->dest.saturate;
604      }
605
606      /* In this case the source and destination registers were the same,
607       * so we need to insert an extra set of moves in order to deal with
608       * any swizzling.
609       */
610      if (need_extra_copy) {
611         for (unsigned i = 0; i < 4; i++) {
612            if (!(instr->dest.write_mask & (1 << i)))
613               continue;
614
615            bld.MOV(offset(result, bld, i), offset(temp, bld, i));
616         }
617      }
618      return;
619   }
620   default:
621      break;
622   }
623
624   /* At this point, we have dealt with any instruction that operates on
625    * more than a single channel.  Therefore, we can just adjust the source
626    * and destination registers for that channel and emit the instruction.
627    */
628   unsigned channel = 0;
629   if (nir_op_infos[instr->op].output_size == 0) {
630      /* Since NIR is doing the scalarizing for us, we should only ever see
631       * vectorized operations with a single channel.
632       */
633      assert(_mesa_bitcount(instr->dest.write_mask) == 1);
634      channel = ffs(instr->dest.write_mask) - 1;
635
636      result = offset(result, bld, channel);
637   }
638
639   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
640      assert(nir_op_infos[instr->op].input_sizes[i] < 2);
641      op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
642   }
643
644   switch (instr->op) {
645   case nir_op_i2f:
646   case nir_op_u2f:
647      if (optimize_extract_to_float(instr, result))
648         return;
649      inst = bld.MOV(result, op[0]);
650      inst->saturate = instr->dest.saturate;
651      break;
652
653   case nir_op_f2d:
654   case nir_op_i2d:
655   case nir_op_u2d:
656      /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
657       *
658       *    "When source or destination is 64b (...), regioning in Align1
659       *     must follow these rules:
660       *
661       *     1. Source and destination horizontal stride must be aligned to
662       *        the same qword.
663       *     (...)"
664       *
665       * This means that 32-bit to 64-bit conversions need to have the 32-bit
666       * data elements aligned to 64-bit. This restriction does not apply to
667       * BDW and later.
668       */
669      if (devinfo->is_cherryview || devinfo->is_broxton) {
670         fs_reg tmp = bld.vgrf(result.type, 1);
671         tmp = subscript(tmp, op[0].type, 0);
672         inst = bld.MOV(tmp, op[0]);
673         inst = bld.MOV(result, tmp);
674         inst->saturate = instr->dest.saturate;
675         break;
676      }
677      /* fallthrough */
678   case nir_op_d2f:
679   case nir_op_d2i:
680   case nir_op_d2u:
681      inst = bld.MOV(result, op[0]);
682      inst->saturate = instr->dest.saturate;
683      break;
684
685   case nir_op_f2i:
686   case nir_op_f2u:
687      bld.MOV(result, op[0]);
688      break;
689
690   case nir_op_fsign: {
691      if (type_sz(op[0].type) < 8) {
692         /* AND(val, 0x80000000) gives the sign bit.
693          *
694          * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
695          * zero.
696          */
697         bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
698
699         fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
700         op[0].type = BRW_REGISTER_TYPE_UD;
701         result.type = BRW_REGISTER_TYPE_UD;
702         bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
703
704         inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
705         inst->predicate = BRW_PREDICATE_NORMAL;
706         if (instr->dest.saturate) {
707            inst = bld.MOV(result, result);
708            inst->saturate = true;
709         }
710      } else {
711         /* For doubles we do the same but we need to consider:
712          *
713          * - 2-src instructions can't operate with 64-bit immediates
714          * - The sign is encoded in the high 32-bit of each DF
715          * - CMP with DF requires special handling in SIMD16
716          * - We need to produce a DF result.
717          */
718
719         /* 2-src instructions can't have 64-bit immediates, so put 0.0 in
720          * a register and compare with that.
721          */
722         fs_reg tmp = vgrf(glsl_type::double_type);
723         bld.MOV(tmp, setup_imm_df(bld, 0.0));
724
725         /* A direct DF CMP using the flag register (null dst) won't work in
726          * SIMD16 because the CMP will be split in two by lower_simd_width,
727          * resulting in two CMP instructions with the same dst (NULL),
728          * leading to dead code elimination of the first one. In SIMD8,
729          * however, there is no need to split the CMP and we can save some
730          * work.
731          */
732         fs_reg dst_tmp = vgrf(glsl_type::double_type);
733         bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ);
734
735         /* In SIMD16 we want to avoid using a NULL dst register with DF CMP,
736          * so we store the result of the comparison in a vgrf instead and
737          * then we generate a UD comparison from that that won't have to
738          * be split by lower_simd_width. This is what NIR does to handle
739          * double comparisons in the general case.
740          */
741         if (bld.dispatch_width() == 16 ) {
742            fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD);
743            bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0));
744            bld.CMP(bld.null_reg_ud(),
745                    dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
746         }
747
748         /* Get the high 32-bit of each double component where the sign is */
749         fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
750         bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
751
752         /* Get the sign bit */
753         bld.AND(result_int, result_int, brw_imm_ud(0x80000000u));
754
755         /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */
756         inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
757         inst->predicate = BRW_PREDICATE_NORMAL;
758
759         /* Convert from 32-bit float to 64-bit double */
760         result.type = BRW_REGISTER_TYPE_DF;
761         inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F));
762
763         if (instr->dest.saturate) {
764            inst = bld.MOV(result, result);
765            inst->saturate = true;
766         }
767      }
768      break;
769   }
770
771   case nir_op_isign:
772      /*  ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
773       *               -> non-negative val generates 0x00000000.
774       *  Predicated OR sets 1 if val is positive.
775       */
776      assert(nir_dest_bit_size(instr->dest.dest) < 64);
777      bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
778      bld.ASR(result, op[0], brw_imm_d(31));
779      inst = bld.OR(result, result, brw_imm_d(1));
780      inst->predicate = BRW_PREDICATE_NORMAL;
781      break;
782
783   case nir_op_frcp:
784      inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
785      inst->saturate = instr->dest.saturate;
786      break;
787
788   case nir_op_fexp2:
789      inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
790      inst->saturate = instr->dest.saturate;
791      break;
792
793   case nir_op_flog2:
794      inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
795      inst->saturate = instr->dest.saturate;
796      break;
797
798   case nir_op_fsin:
799      inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
800      inst->saturate = instr->dest.saturate;
801      break;
802
803   case nir_op_fcos:
804      inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
805      inst->saturate = instr->dest.saturate;
806      break;
807
808   case nir_op_fddx:
809      if (fs_key->high_quality_derivatives) {
810         inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
811      } else {
812         inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
813      }
814      inst->saturate = instr->dest.saturate;
815      break;
816   case nir_op_fddx_fine:
817      inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
818      inst->saturate = instr->dest.saturate;
819      break;
820   case nir_op_fddx_coarse:
821      inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
822      inst->saturate = instr->dest.saturate;
823      break;
824   case nir_op_fddy:
825      if (fs_key->high_quality_derivatives) {
826         inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
827      } else {
828         inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
829      }
830      inst->saturate = instr->dest.saturate;
831      break;
832   case nir_op_fddy_fine:
833      inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
834      inst->saturate = instr->dest.saturate;
835      break;
836   case nir_op_fddy_coarse:
837      inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
838      inst->saturate = instr->dest.saturate;
839      break;
840
841   case nir_op_iadd:
842      assert(nir_dest_bit_size(instr->dest.dest) < 64);
843   case nir_op_fadd:
844      inst = bld.ADD(result, op[0], op[1]);
845      inst->saturate = instr->dest.saturate;
846      break;
847
848   case nir_op_fmul:
849      inst = bld.MUL(result, op[0], op[1]);
850      inst->saturate = instr->dest.saturate;
851      break;
852
853   case nir_op_imul:
854      assert(nir_dest_bit_size(instr->dest.dest) < 64);
855      bld.MUL(result, op[0], op[1]);
856      break;
857
858   case nir_op_imul_high:
859   case nir_op_umul_high:
860      assert(nir_dest_bit_size(instr->dest.dest) < 64);
861      bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
862      break;
863
864   case nir_op_idiv:
865   case nir_op_udiv:
866      assert(nir_dest_bit_size(instr->dest.dest) < 64);
867      bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
868      break;
869
870   case nir_op_uadd_carry:
871      unreachable("Should have been lowered by carry_to_arith().");
872
873   case nir_op_usub_borrow:
874      unreachable("Should have been lowered by borrow_to_arith().");
875
876   case nir_op_umod:
877   case nir_op_irem:
878      /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
879       * appears that our hardware just does the right thing for signed
880       * remainder.
881       */
882      assert(nir_dest_bit_size(instr->dest.dest) < 64);
883      bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
884      break;
885
886   case nir_op_imod: {
887      /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
888      bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
889
890      /* Math instructions don't support conditional mod */
891      inst = bld.MOV(bld.null_reg_d(), result);
892      inst->conditional_mod = BRW_CONDITIONAL_NZ;
893
894      /* Now, we need to determine if signs of the sources are different.
895       * When we XOR the sources, the top bit is 0 if they are the same and 1
896       * if they are different.  We can then use a conditional modifier to
897       * turn that into a predicate.  This leads us to an XOR.l instruction.
898       *
899       * Technically, according to the PRM, you're not allowed to use .l on a
900       * XOR instruction.  However, emperical experiments and Curro's reading
901       * of the simulator source both indicate that it's safe.
902       */
903      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
904      inst = bld.XOR(tmp, op[0], op[1]);
905      inst->predicate = BRW_PREDICATE_NORMAL;
906      inst->conditional_mod = BRW_CONDITIONAL_L;
907
908      /* If the result of the initial remainder operation is non-zero and the
909       * two sources have different signs, add in a copy of op[1] to get the
910       * final integer modulus value.
911       */
912      inst = bld.ADD(result, result, op[1]);
913      inst->predicate = BRW_PREDICATE_NORMAL;
914      break;
915   }
916
917   case nir_op_flt:
918   case nir_op_fge:
919   case nir_op_feq:
920   case nir_op_fne: {
921      fs_reg dest = result;
922      if (nir_src_bit_size(instr->src[0].src) > 32) {
923         dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
924      }
925      brw_conditional_mod cond;
926      switch (instr->op) {
927      case nir_op_flt:
928         cond = BRW_CONDITIONAL_L;
929         break;
930      case nir_op_fge:
931         cond = BRW_CONDITIONAL_GE;
932         break;
933      case nir_op_feq:
934         cond = BRW_CONDITIONAL_Z;
935         break;
936      case nir_op_fne:
937         cond = BRW_CONDITIONAL_NZ;
938         break;
939      default:
940         unreachable("bad opcode");
941      }
942      bld.CMP(dest, op[0], op[1], cond);
943      if (nir_src_bit_size(instr->src[0].src) > 32) {
944         bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
945      }
946      break;
947   }
948
949   case nir_op_ilt:
950   case nir_op_ult:
951      assert(nir_dest_bit_size(instr->dest.dest) < 64);
952      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
953      break;
954
955   case nir_op_ige:
956   case nir_op_uge:
957      assert(nir_dest_bit_size(instr->dest.dest) < 64);
958      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
959      break;
960
961   case nir_op_ieq:
962      assert(nir_dest_bit_size(instr->dest.dest) < 64);
963      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
964      break;
965
966   case nir_op_ine:
967      assert(nir_dest_bit_size(instr->dest.dest) < 64);
968      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
969      break;
970
971   case nir_op_inot:
972      assert(nir_dest_bit_size(instr->dest.dest) < 64);
973      if (devinfo->gen >= 8) {
974         op[0] = resolve_source_modifiers(op[0]);
975      }
976      bld.NOT(result, op[0]);
977      break;
978   case nir_op_ixor:
979      assert(nir_dest_bit_size(instr->dest.dest) < 64);
980      if (devinfo->gen >= 8) {
981         op[0] = resolve_source_modifiers(op[0]);
982         op[1] = resolve_source_modifiers(op[1]);
983      }
984      bld.XOR(result, op[0], op[1]);
985      break;
986   case nir_op_ior:
987      assert(nir_dest_bit_size(instr->dest.dest) < 64);
988      if (devinfo->gen >= 8) {
989         op[0] = resolve_source_modifiers(op[0]);
990         op[1] = resolve_source_modifiers(op[1]);
991      }
992      bld.OR(result, op[0], op[1]);
993      break;
994   case nir_op_iand:
995      assert(nir_dest_bit_size(instr->dest.dest) < 64);
996      if (devinfo->gen >= 8) {
997         op[0] = resolve_source_modifiers(op[0]);
998         op[1] = resolve_source_modifiers(op[1]);
999      }
1000      bld.AND(result, op[0], op[1]);
1001      break;
1002
1003   case nir_op_fdot2:
1004   case nir_op_fdot3:
1005   case nir_op_fdot4:
1006   case nir_op_ball_fequal2:
1007   case nir_op_ball_iequal2:
1008   case nir_op_ball_fequal3:
1009   case nir_op_ball_iequal3:
1010   case nir_op_ball_fequal4:
1011   case nir_op_ball_iequal4:
1012   case nir_op_bany_fnequal2:
1013   case nir_op_bany_inequal2:
1014   case nir_op_bany_fnequal3:
1015   case nir_op_bany_inequal3:
1016   case nir_op_bany_fnequal4:
1017   case nir_op_bany_inequal4:
1018      unreachable("Lowered by nir_lower_alu_reductions");
1019
1020   case nir_op_fnoise1_1:
1021   case nir_op_fnoise1_2:
1022   case nir_op_fnoise1_3:
1023   case nir_op_fnoise1_4:
1024   case nir_op_fnoise2_1:
1025   case nir_op_fnoise2_2:
1026   case nir_op_fnoise2_3:
1027   case nir_op_fnoise2_4:
1028   case nir_op_fnoise3_1:
1029   case nir_op_fnoise3_2:
1030   case nir_op_fnoise3_3:
1031   case nir_op_fnoise3_4:
1032   case nir_op_fnoise4_1:
1033   case nir_op_fnoise4_2:
1034   case nir_op_fnoise4_3:
1035   case nir_op_fnoise4_4:
1036      unreachable("not reached: should be handled by lower_noise");
1037
1038   case nir_op_ldexp:
1039      unreachable("not reached: should be handled by ldexp_to_arith()");
1040
1041   case nir_op_fsqrt:
1042      inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1043      inst->saturate = instr->dest.saturate;
1044      break;
1045
1046   case nir_op_frsq:
1047      inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1048      inst->saturate = instr->dest.saturate;
1049      break;
1050
1051   case nir_op_b2i:
1052   case nir_op_b2f:
1053      bld.MOV(result, negate(op[0]));
1054      break;
1055
1056   case nir_op_f2b:
1057      bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1058      break;
1059   case nir_op_d2b: {
1060      /* two-argument instructions can't take 64-bit immediates */
1061      fs_reg zero = vgrf(glsl_type::double_type);
1062      bld.MOV(zero, setup_imm_df(bld, 0.0));
1063      /* A SIMD16 execution needs to be split in two instructions, so use
1064       * a vgrf instead of the flag register as dst so instruction splitting
1065       * works
1066       */
1067      fs_reg tmp = vgrf(glsl_type::double_type);
1068      bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1069      bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1070      break;
1071   }
1072   case nir_op_i2b:
1073      bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1074      break;
1075
1076   case nir_op_ftrunc:
1077      inst = bld.RNDZ(result, op[0]);
1078      inst->saturate = instr->dest.saturate;
1079      break;
1080
1081   case nir_op_fceil: {
1082      op[0].negate = !op[0].negate;
1083      fs_reg temp = vgrf(glsl_type::float_type);
1084      bld.RNDD(temp, op[0]);
1085      temp.negate = true;
1086      inst = bld.MOV(result, temp);
1087      inst->saturate = instr->dest.saturate;
1088      break;
1089   }
1090   case nir_op_ffloor:
1091      inst = bld.RNDD(result, op[0]);
1092      inst->saturate = instr->dest.saturate;
1093      break;
1094   case nir_op_ffract:
1095      inst = bld.FRC(result, op[0]);
1096      inst->saturate = instr->dest.saturate;
1097      break;
1098   case nir_op_fround_even:
1099      inst = bld.RNDE(result, op[0]);
1100      inst->saturate = instr->dest.saturate;
1101      break;
1102
1103   case nir_op_fquantize2f16: {
1104      fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1105      fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1106      fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1107
1108      /* The destination stride must be at least as big as the source stride. */
1109      tmp16.type = BRW_REGISTER_TYPE_W;
1110      tmp16.stride = 2;
1111
1112      /* Check for denormal */
1113      fs_reg abs_src0 = op[0];
1114      abs_src0.abs = true;
1115      bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1116              BRW_CONDITIONAL_L);
1117      /* Get the appropriately signed zero */
1118      bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1119              retype(op[0], BRW_REGISTER_TYPE_UD),
1120              brw_imm_ud(0x80000000));
1121      /* Do the actual F32 -> F16 -> F32 conversion */
1122      bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1123      bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1124      /* Select that or zero based on normal status */
1125      inst = bld.SEL(result, zero, tmp32);
1126      inst->predicate = BRW_PREDICATE_NORMAL;
1127      inst->saturate = instr->dest.saturate;
1128      break;
1129   }
1130
1131   case nir_op_imin:
1132   case nir_op_umin:
1133      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1134   case nir_op_fmin:
1135      inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1136      inst->saturate = instr->dest.saturate;
1137      break;
1138
1139   case nir_op_imax:
1140   case nir_op_umax:
1141      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1142   case nir_op_fmax:
1143      inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1144      inst->saturate = instr->dest.saturate;
1145      break;
1146
1147   case nir_op_pack_snorm_2x16:
1148   case nir_op_pack_snorm_4x8:
1149   case nir_op_pack_unorm_2x16:
1150   case nir_op_pack_unorm_4x8:
1151   case nir_op_unpack_snorm_2x16:
1152   case nir_op_unpack_snorm_4x8:
1153   case nir_op_unpack_unorm_2x16:
1154   case nir_op_unpack_unorm_4x8:
1155   case nir_op_unpack_half_2x16:
1156   case nir_op_pack_half_2x16:
1157      unreachable("not reached: should be handled by lower_packing_builtins");
1158
1159   case nir_op_unpack_half_2x16_split_x:
1160      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1161      inst->saturate = instr->dest.saturate;
1162      break;
1163   case nir_op_unpack_half_2x16_split_y:
1164      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1165      inst->saturate = instr->dest.saturate;
1166      break;
1167
1168   case nir_op_pack_double_2x32_split:
1169      bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1170      break;
1171
1172   case nir_op_unpack_double_2x32_split_x:
1173   case nir_op_unpack_double_2x32_split_y: {
1174      /* Optimize the common case where we are unpacking from a double we have
1175       * previously packed. In this case we can just bypass the pack operation
1176       * and source directly from its arguments.
1177       */
1178      unsigned index = (instr->op == nir_op_unpack_double_2x32_split_x) ? 0 : 1;
1179      if (instr->src[0].src.is_ssa) {
1180         nir_instr *parent_instr = instr->src[0].src.ssa->parent_instr;
1181         if (parent_instr->type == nir_instr_type_alu) {
1182            nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr);
1183            if (alu_parent->op == nir_op_pack_double_2x32_split &&
1184                alu_parent->src[index].src.is_ssa) {
1185               op[0] = retype(get_nir_src(alu_parent->src[index].src),
1186                              BRW_REGISTER_TYPE_UD);
1187               op[0] =
1188                  offset(op[0], bld, alu_parent->src[index].swizzle[channel]);
1189               bld.MOV(result, op[0]);
1190               break;
1191            }
1192         }
1193      }
1194
1195      if (instr->op == nir_op_unpack_double_2x32_split_x)
1196         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1197      else
1198         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1199      break;
1200   }
1201
1202   case nir_op_fpow:
1203      inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1204      inst->saturate = instr->dest.saturate;
1205      break;
1206
1207   case nir_op_bitfield_reverse:
1208      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1209      bld.BFREV(result, op[0]);
1210      break;
1211
1212   case nir_op_bit_count:
1213      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1214      bld.CBIT(result, op[0]);
1215      break;
1216
1217   case nir_op_ufind_msb: {
1218      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1219      emit_find_msb_using_lzd(bld, result, op[0], false);
1220      break;
1221   }
1222
1223   case nir_op_ifind_msb: {
1224      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1225
1226      if (devinfo->gen < 7) {
1227         emit_find_msb_using_lzd(bld, result, op[0], true);
1228      } else {
1229         bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1230
1231         /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1232          * count from the LSB side. If FBH didn't return an error
1233          * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1234          * count into an LSB count.
1235          */
1236         bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1237
1238         inst = bld.ADD(result, result, brw_imm_d(31));
1239         inst->predicate = BRW_PREDICATE_NORMAL;
1240         inst->src[0].negate = true;
1241      }
1242      break;
1243   }
1244
1245   case nir_op_find_lsb:
1246      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1247
1248      if (devinfo->gen < 7) {
1249         fs_reg temp = vgrf(glsl_type::int_type);
1250
1251         /* (x & -x) generates a value that consists of only the LSB of x.
1252          * For all powers of 2, findMSB(y) == findLSB(y).
1253          */
1254         fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1255         fs_reg negated_src = src;
1256
1257         /* One must be negated, and the other must be non-negated.  It
1258          * doesn't matter which is which.
1259          */
1260         negated_src.negate = true;
1261         src.negate = false;
1262
1263         bld.AND(temp, src, negated_src);
1264         emit_find_msb_using_lzd(bld, result, temp, false);
1265      } else {
1266         bld.FBL(result, op[0]);
1267      }
1268      break;
1269
1270   case nir_op_ubitfield_extract:
1271   case nir_op_ibitfield_extract:
1272      unreachable("should have been lowered");
1273   case nir_op_ubfe:
1274   case nir_op_ibfe:
1275      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1276      bld.BFE(result, op[2], op[1], op[0]);
1277      break;
1278   case nir_op_bfm:
1279      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1280      bld.BFI1(result, op[0], op[1]);
1281      break;
1282   case nir_op_bfi:
1283      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1284      bld.BFI2(result, op[0], op[1], op[2]);
1285      break;
1286
1287   case nir_op_bitfield_insert:
1288      unreachable("not reached: should have been lowered");
1289
1290   case nir_op_ishl:
1291      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1292      bld.SHL(result, op[0], op[1]);
1293      break;
1294   case nir_op_ishr:
1295      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1296      bld.ASR(result, op[0], op[1]);
1297      break;
1298   case nir_op_ushr:
1299      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1300      bld.SHR(result, op[0], op[1]);
1301      break;
1302
1303   case nir_op_pack_half_2x16_split:
1304      bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1305      break;
1306
1307   case nir_op_ffma:
1308      inst = bld.MAD(result, op[2], op[1], op[0]);
1309      inst->saturate = instr->dest.saturate;
1310      break;
1311
1312   case nir_op_flrp:
1313      inst = bld.LRP(result, op[0], op[1], op[2]);
1314      inst->saturate = instr->dest.saturate;
1315      break;
1316
1317   case nir_op_bcsel:
1318      if (optimize_frontfacing_ternary(instr, result))
1319         return;
1320
1321      bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1322      inst = bld.SEL(result, op[1], op[2]);
1323      inst->predicate = BRW_PREDICATE_NORMAL;
1324      break;
1325
1326   case nir_op_extract_u8:
1327   case nir_op_extract_i8: {
1328      const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1329      nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1330      assert(byte != NULL);
1331      bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1332      break;
1333   }
1334
1335   case nir_op_extract_u16:
1336   case nir_op_extract_i16: {
1337      const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1338      nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1339      assert(word != NULL);
1340      bld.MOV(result, subscript(op[0], type, word->u32[0]));
1341      break;
1342   }
1343
1344   default:
1345      unreachable("unhandled instruction");
1346   }
1347
1348   /* If we need to do a boolean resolve, replace the result with -(x & 1)
1349    * to sign extend the low bit to 0/~0
1350    */
1351   if (devinfo->gen <= 5 &&
1352       (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1353      fs_reg masked = vgrf(glsl_type::int_type);
1354      bld.AND(masked, result, brw_imm_d(1));
1355      masked.negate = true;
1356      bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1357   }
1358}
1359
1360void
1361fs_visitor::nir_emit_load_const(const fs_builder &bld,
1362                                nir_load_const_instr *instr)
1363{
1364   const brw_reg_type reg_type =
1365      instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1366   fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1367
1368   switch (instr->def.bit_size) {
1369   case 32:
1370      for (unsigned i = 0; i < instr->def.num_components; i++)
1371         bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1372      break;
1373
1374   case 64:
1375      for (unsigned i = 0; i < instr->def.num_components; i++)
1376         bld.MOV(offset(reg, bld, i),
1377                 setup_imm_df(bld, instr->value.f64[i]));
1378      break;
1379
1380   default:
1381      unreachable("Invalid bit size");
1382   }
1383
1384   nir_ssa_values[instr->def.index] = reg;
1385}
1386
1387fs_reg
1388fs_visitor::get_nir_src(const nir_src &src)
1389{
1390   fs_reg reg;
1391   if (src.is_ssa) {
1392      if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1393         const brw_reg_type reg_type = src.ssa->bit_size == 32 ?
1394            BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1395         reg = bld.vgrf(reg_type, src.ssa->num_components);
1396      } else {
1397         reg = nir_ssa_values[src.ssa->index];
1398      }
1399   } else {
1400      /* We don't handle indirects on locals */
1401      assert(src.reg.indirect == NULL);
1402      reg = offset(nir_locals[src.reg.reg->index], bld,
1403                   src.reg.base_offset * src.reg.reg->num_components);
1404   }
1405
1406   /* to avoid floating-point denorm flushing problems, set the type by
1407    * default to D - instructions that need floating point semantics will set
1408    * this to F if they need to
1409    */
1410   return retype(reg, BRW_REGISTER_TYPE_D);
1411}
1412
1413/**
1414 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1415 */
1416fs_reg
1417fs_visitor::get_nir_src_imm(const nir_src &src)
1418{
1419   nir_const_value *val = nir_src_as_const_value(src);
1420   return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1421}
1422
1423fs_reg
1424fs_visitor::get_nir_dest(const nir_dest &dest)
1425{
1426   if (dest.is_ssa) {
1427      const brw_reg_type reg_type =
1428         dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
1429      nir_ssa_values[dest.ssa.index] =
1430         bld.vgrf(reg_type, dest.ssa.num_components);
1431      return nir_ssa_values[dest.ssa.index];
1432   } else {
1433      /* We don't handle indirects on locals */
1434      assert(dest.reg.indirect == NULL);
1435      return offset(nir_locals[dest.reg.reg->index], bld,
1436                    dest.reg.base_offset * dest.reg.reg->num_components);
1437   }
1438}
1439
1440fs_reg
1441fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1442{
1443   fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1444                BRW_REGISTER_TYPE_UD);
1445   fs_reg indirect;
1446   unsigned indirect_max = 0;
1447
1448   for (const nir_deref *tail = &deref->deref; tail->child;
1449        tail = tail->child) {
1450      const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1451      assert(tail->child->deref_type == nir_deref_type_array);
1452      const unsigned size = glsl_get_length(tail->type);
1453      const unsigned element_size = type_size_scalar(deref_array->deref.type);
1454      const unsigned base = MIN2(deref_array->base_offset, size - 1);
1455      image = offset(image, bld, base * element_size);
1456
1457      if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1458         fs_reg tmp = vgrf(glsl_type::uint_type);
1459
1460         /* Accessing an invalid surface index with the dataport can result
1461          * in a hang.  According to the spec "if the index used to
1462          * select an individual element is negative or greater than or
1463          * equal to the size of the array, the results of the operation
1464          * are undefined but may not lead to termination" -- which is one
1465          * of the possible outcomes of the hang.  Clamp the index to
1466          * prevent access outside of the array bounds.
1467          */
1468         bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1469                                     BRW_REGISTER_TYPE_UD),
1470                         brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1471
1472         indirect_max += element_size * (tail->type->length - 1);
1473
1474         bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1475         if (indirect.file == BAD_FILE) {
1476            indirect = tmp;
1477         } else {
1478            bld.ADD(indirect, indirect, tmp);
1479         }
1480      }
1481   }
1482
1483   if (indirect.file == BAD_FILE) {
1484      return image;
1485   } else {
1486      /* Emit a pile of MOVs to load the uniform into a temporary.  The
1487       * dead-code elimination pass will get rid of what we don't use.
1488       */
1489      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1490      for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1491         bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1492                  offset(tmp, bld, j), offset(image, bld, j),
1493                  indirect, brw_imm_ud((indirect_max + 1) * 4));
1494      }
1495      return tmp;
1496   }
1497}
1498
1499void
1500fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1501                         unsigned wr_mask)
1502{
1503   for (unsigned i = 0; i < 4; i++) {
1504      if (!((wr_mask >> i) & 1))
1505         continue;
1506
1507      fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1508      new_inst->dst = offset(new_inst->dst, bld, i);
1509      for (unsigned j = 0; j < new_inst->sources; j++)
1510         if (new_inst->src[j].file == VGRF)
1511            new_inst->src[j] = offset(new_inst->src[j], bld, i);
1512
1513      bld.emit(new_inst);
1514   }
1515}
1516
1517/**
1518 * Get the matching channel register datatype for an image intrinsic of the
1519 * specified GLSL image type.
1520 */
1521static brw_reg_type
1522get_image_base_type(const glsl_type *type)
1523{
1524   switch ((glsl_base_type)type->sampled_type) {
1525   case GLSL_TYPE_UINT:
1526      return BRW_REGISTER_TYPE_UD;
1527   case GLSL_TYPE_INT:
1528      return BRW_REGISTER_TYPE_D;
1529   case GLSL_TYPE_FLOAT:
1530      return BRW_REGISTER_TYPE_F;
1531   default:
1532      unreachable("Not reached.");
1533   }
1534}
1535
1536/**
1537 * Get the appropriate atomic op for an image atomic intrinsic.
1538 */
1539static unsigned
1540get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1541{
1542   switch (op) {
1543   case nir_intrinsic_image_atomic_add:
1544      return BRW_AOP_ADD;
1545   case nir_intrinsic_image_atomic_min:
1546      return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1547              BRW_AOP_IMIN : BRW_AOP_UMIN);
1548   case nir_intrinsic_image_atomic_max:
1549      return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1550              BRW_AOP_IMAX : BRW_AOP_UMAX);
1551   case nir_intrinsic_image_atomic_and:
1552      return BRW_AOP_AND;
1553   case nir_intrinsic_image_atomic_or:
1554      return BRW_AOP_OR;
1555   case nir_intrinsic_image_atomic_xor:
1556      return BRW_AOP_XOR;
1557   case nir_intrinsic_image_atomic_exchange:
1558      return BRW_AOP_MOV;
1559   case nir_intrinsic_image_atomic_comp_swap:
1560      return BRW_AOP_CMPWR;
1561   default:
1562      unreachable("Not reachable.");
1563   }
1564}
1565
1566static fs_inst *
1567emit_pixel_interpolater_send(const fs_builder &bld,
1568                             enum opcode opcode,
1569                             const fs_reg &dst,
1570                             const fs_reg &src,
1571                             const fs_reg &desc,
1572                             glsl_interp_mode interpolation)
1573{
1574   struct brw_wm_prog_data *wm_prog_data =
1575      brw_wm_prog_data(bld.shader->stage_prog_data);
1576   fs_inst *inst;
1577   fs_reg payload;
1578   int mlen;
1579
1580   if (src.file == BAD_FILE) {
1581      /* Dummy payload */
1582      payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1583      mlen = 1;
1584   } else {
1585      payload = src;
1586      mlen = 2 * bld.dispatch_width() / 8;
1587   }
1588
1589   inst = bld.emit(opcode, dst, payload, desc);
1590   inst->mlen = mlen;
1591   /* 2 floats per slot returned */
1592   inst->size_written = 2 * dst.component_size(inst->exec_size);
1593   inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1594
1595   wm_prog_data->pulls_bary = true;
1596
1597   return inst;
1598}
1599
1600/**
1601 * Computes 1 << x, given a D/UD register containing some value x.
1602 */
1603static fs_reg
1604intexp2(const fs_builder &bld, const fs_reg &x)
1605{
1606   assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1607
1608   fs_reg result = bld.vgrf(x.type, 1);
1609   fs_reg one = bld.vgrf(x.type, 1);
1610
1611   bld.MOV(one, retype(brw_imm_d(1), one.type));
1612   bld.SHL(result, one, x);
1613   return result;
1614}
1615
1616void
1617fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1618{
1619   assert(stage == MESA_SHADER_GEOMETRY);
1620
1621   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1622
1623   if (gs_compile->control_data_header_size_bits == 0)
1624      return;
1625
1626   /* We can only do EndPrimitive() functionality when the control data
1627    * consists of cut bits.  Fortunately, the only time it isn't is when the
1628    * output type is points, in which case EndPrimitive() is a no-op.
1629    */
1630   if (gs_prog_data->control_data_format !=
1631       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1632      return;
1633   }
1634
1635   /* Cut bits use one bit per vertex. */
1636   assert(gs_compile->control_data_bits_per_vertex == 1);
1637
1638   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1639   vertex_count.type = BRW_REGISTER_TYPE_UD;
1640
1641   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1642    * vertex n, 0 otherwise.  So all we need to do here is mark bit
1643    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1644    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1645    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1646    *
1647    * Note that if EndPrimitive() is called before emitting any vertices, this
1648    * will cause us to set bit 31 of the control_data_bits register to 1.
1649    * That's fine because:
1650    *
1651    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1652    *   output, so the hardware will ignore cut bit 31.
1653    *
1654    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1655    *   last vertex, so setting cut bit 31 has no effect (since the primitive
1656    *   is automatically ended when the GS terminates).
1657    *
1658    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1659    *   control_data_bits register to 0 when the first vertex is emitted.
1660    */
1661
1662   const fs_builder abld = bld.annotate("end primitive");
1663
1664   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1665   fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1666   abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1667   fs_reg mask = intexp2(abld, prev_count);
1668   /* Note: we're relying on the fact that the GEN SHL instruction only pays
1669    * attention to the lower 5 bits of its second source argument, so on this
1670    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1671    * ((vertex_count - 1) % 32).
1672    */
1673   abld.OR(this->control_data_bits, this->control_data_bits, mask);
1674}
1675
1676void
1677fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1678{
1679   assert(stage == MESA_SHADER_GEOMETRY);
1680   assert(gs_compile->control_data_bits_per_vertex != 0);
1681
1682   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1683
1684   const fs_builder abld = bld.annotate("emit control data bits");
1685   const fs_builder fwa_bld = bld.exec_all();
1686
1687   /* We use a single UD register to accumulate control data bits (32 bits
1688    * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
1689    * at a time.
1690    *
1691    * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1692    * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1693    * use the Channel Mask phase to enable/disable which DWord within that
1694    * group to write.  (Remember, different SIMD8 channels may have emitted
1695    * different numbers of vertices, so we may need per-slot offsets.)
1696    *
1697    * Channel masking presents an annoying problem: we may have to replicate
1698    * the data up to 4 times:
1699    *
1700    * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1701    *
1702    * To avoid penalizing shaders that emit a small number of vertices, we
1703    * can avoid these sometimes: if the size of the control data header is
1704    * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
1705    * land in the same 128-bit group, so we can skip per-slot offsets.
1706    *
1707    * Similarly, if the control data header is <= 32 bits, there is only one
1708    * DWord, so we can skip channel masks.
1709    */
1710   enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1711
1712   fs_reg channel_mask, per_slot_offset;
1713
1714   if (gs_compile->control_data_header_size_bits > 32) {
1715      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1716      channel_mask = vgrf(glsl_type::uint_type);
1717   }
1718
1719   if (gs_compile->control_data_header_size_bits > 128) {
1720      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1721      per_slot_offset = vgrf(glsl_type::uint_type);
1722   }
1723
1724   /* Figure out which DWord we're trying to write to using the formula:
1725    *
1726    *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
1727    *
1728    * Since bits_per_vertex is a power of two, and is known at compile
1729    * time, this can be optimized to:
1730    *
1731    *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1732    */
1733   if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1734      fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1735      fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1736      abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1737      unsigned log2_bits_per_vertex =
1738         util_last_bit(gs_compile->control_data_bits_per_vertex);
1739      abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1740
1741      if (per_slot_offset.file != BAD_FILE) {
1742         /* Set the per-slot offset to dword_index / 4, so that we'll write to
1743          * the appropriate OWord within the control data header.
1744          */
1745         abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1746      }
1747
1748      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1749       * write to the appropriate DWORD within the OWORD.
1750       */
1751      fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1752      fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1753      channel_mask = intexp2(fwa_bld, channel);
1754      /* Then the channel masks need to be in bits 23:16. */
1755      fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1756   }
1757
1758   /* Store the control data bits in the message payload and send it. */
1759   int mlen = 2;
1760   if (channel_mask.file != BAD_FILE)
1761      mlen += 4; /* channel masks, plus 3 extra copies of the data */
1762   if (per_slot_offset.file != BAD_FILE)
1763      mlen++;
1764
1765   fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1766   fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1767   int i = 0;
1768   sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1769   if (per_slot_offset.file != BAD_FILE)
1770      sources[i++] = per_slot_offset;
1771   if (channel_mask.file != BAD_FILE)
1772      sources[i++] = channel_mask;
1773   while (i < mlen) {
1774      sources[i++] = this->control_data_bits;
1775   }
1776
1777   abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1778   fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1779   inst->mlen = mlen;
1780   /* We need to increment Global Offset by 256-bits to make room for
1781    * Broadwell's extra "Vertex Count" payload at the beginning of the
1782    * URB entry.  Since this is an OWord message, Global Offset is counted
1783    * in 128-bit units, so we must set it to 2.
1784    */
1785   if (gs_prog_data->static_vertex_count == -1)
1786      inst->offset = 2;
1787}
1788
1789void
1790fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1791                                            unsigned stream_id)
1792{
1793   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1794
1795   /* Note: we are calling this *before* increasing vertex_count, so
1796    * this->vertex_count == vertex_count - 1 in the formula above.
1797    */
1798
1799   /* Stream mode uses 2 bits per vertex */
1800   assert(gs_compile->control_data_bits_per_vertex == 2);
1801
1802   /* Must be a valid stream */
1803   assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1804
1805   /* Control data bits are initialized to 0 so we don't have to set any
1806    * bits when sending vertices to stream 0.
1807    */
1808   if (stream_id == 0)
1809      return;
1810
1811   const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1812
1813   /* reg::sid = stream_id */
1814   fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1815   abld.MOV(sid, brw_imm_ud(stream_id));
1816
1817   /* reg:shift_count = 2 * (vertex_count - 1) */
1818   fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1819   abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1820
1821   /* Note: we're relying on the fact that the GEN SHL instruction only pays
1822    * attention to the lower 5 bits of its second source argument, so on this
1823    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1824    * stream_id << ((2 * (vertex_count - 1)) % 32).
1825    */
1826   fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1827   abld.SHL(mask, sid, shift_count);
1828   abld.OR(this->control_data_bits, this->control_data_bits, mask);
1829}
1830
1831void
1832fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1833                           unsigned stream_id)
1834{
1835   assert(stage == MESA_SHADER_GEOMETRY);
1836
1837   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1838
1839   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1840   vertex_count.type = BRW_REGISTER_TYPE_UD;
1841
1842   /* Haswell and later hardware ignores the "Render Stream Select" bits
1843    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1844    * and instead sends all primitives down the pipeline for rasterization.
1845    * If the SOL stage is enabled, "Render Stream Select" is honored and
1846    * primitives bound to non-zero streams are discarded after stream output.
1847    *
1848    * Since the only purpose of primives sent to non-zero streams is to
1849    * be recorded by transform feedback, we can simply discard all geometry
1850    * bound to these streams when transform feedback is disabled.
1851    */
1852   if (stream_id > 0 && !nir->info->has_transform_feedback_varyings)
1853      return;
1854
1855   /* If we're outputting 32 control data bits or less, then we can wait
1856    * until the shader is over to output them all.  Otherwise we need to
1857    * output them as we go.  Now is the time to do it, since we're about to
1858    * output the vertex_count'th vertex, so it's guaranteed that the
1859    * control data bits associated with the (vertex_count - 1)th vertex are
1860    * correct.
1861    */
1862   if (gs_compile->control_data_header_size_bits > 32) {
1863      const fs_builder abld =
1864         bld.annotate("emit vertex: emit control data bits");
1865
1866      /* Only emit control data bits if we've finished accumulating a batch
1867       * of 32 bits.  This is the case when:
1868       *
1869       *     (vertex_count * bits_per_vertex) % 32 == 0
1870       *
1871       * (in other words, when the last 5 bits of vertex_count *
1872       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
1873       * integer n (which is always the case, since bits_per_vertex is
1874       * always 1 or 2), this is equivalent to requiring that the last 5-n
1875       * bits of vertex_count are 0:
1876       *
1877       *     vertex_count & (2^(5-n) - 1) == 0
1878       *
1879       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1880       * equivalent to:
1881       *
1882       *     vertex_count & (32 / bits_per_vertex - 1) == 0
1883       *
1884       * TODO: If vertex_count is an immediate, we could do some of this math
1885       *       at compile time...
1886       */
1887      fs_inst *inst =
1888         abld.AND(bld.null_reg_d(), vertex_count,
1889                  brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1890      inst->conditional_mod = BRW_CONDITIONAL_Z;
1891
1892      abld.IF(BRW_PREDICATE_NORMAL);
1893      /* If vertex_count is 0, then no control data bits have been
1894       * accumulated yet, so we can skip emitting them.
1895       */
1896      abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1897               BRW_CONDITIONAL_NEQ);
1898      abld.IF(BRW_PREDICATE_NORMAL);
1899      emit_gs_control_data_bits(vertex_count);
1900      abld.emit(BRW_OPCODE_ENDIF);
1901
1902      /* Reset control_data_bits to 0 so we can start accumulating a new
1903       * batch.
1904       *
1905       * Note: in the case where vertex_count == 0, this neutralizes the
1906       * effect of any call to EndPrimitive() that the shader may have
1907       * made before outputting its first vertex.
1908       */
1909      inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1910      inst->force_writemask_all = true;
1911      abld.emit(BRW_OPCODE_ENDIF);
1912   }
1913
1914   emit_urb_writes(vertex_count);
1915
1916   /* In stream mode we have to set control data bits for all vertices
1917    * unless we have disabled control data bits completely (which we do
1918    * do for GL_POINTS outputs that don't use streams).
1919    */
1920   if (gs_compile->control_data_header_size_bits > 0 &&
1921       gs_prog_data->control_data_format ==
1922          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1923      set_gs_stream_control_data_bits(vertex_count, stream_id);
1924   }
1925}
1926
1927void
1928fs_visitor::emit_gs_input_load(const fs_reg &dst,
1929                               const nir_src &vertex_src,
1930                               unsigned base_offset,
1931                               const nir_src &offset_src,
1932                               unsigned num_components,
1933                               unsigned first_component)
1934{
1935   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1936
1937   nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1938   nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1939   const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1940
1941   /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1942    * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w].  Only
1943    * gl_PointSize is available as a GS input, however, so it must be that.
1944    */
1945   const bool is_point_size = (base_offset == 0);
1946
1947   /* TODO: figure out push input layout for invocations == 1 */
1948   if (gs_prog_data->invocations == 1 &&
1949       offset_const != NULL && vertex_const != NULL &&
1950       4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
1951      int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
1952                       vertex_const->u32[0] * push_reg_count;
1953      /* This input was pushed into registers. */
1954      if (is_point_size) {
1955         /* gl_PointSize comes in .w */
1956         bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1957      } else {
1958         for (unsigned i = 0; i < num_components; i++) {
1959            bld.MOV(offset(dst, bld, i),
1960                    fs_reg(ATTR, imm_offset + i + first_component, dst.type));
1961         }
1962      }
1963      return;
1964   }
1965
1966   /* Resort to the pull model.  Ensure the VUE handles are provided. */
1967   gs_prog_data->base.include_vue_handles = true;
1968
1969   unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1970   fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1971
1972   if (gs_prog_data->invocations == 1) {
1973      if (vertex_const) {
1974         /* The vertex index is constant; just select the proper URB handle. */
1975         icp_handle =
1976            retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
1977                   BRW_REGISTER_TYPE_UD);
1978      } else {
1979         /* The vertex index is non-constant.  We need to use indirect
1980          * addressing to fetch the proper URB handle.
1981          *
1982          * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1983          * indicating that channel <n> should read the handle from
1984          * DWord <n>.  We convert that to bytes by multiplying by 4.
1985          *
1986          * Next, we convert the vertex index to bytes by multiplying
1987          * by 32 (shifting by 5), and add the two together.  This is
1988          * the final indirect byte offset.
1989          */
1990         fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1991         fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1992         fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1993         fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1994
1995         /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1996         bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1997         /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1998         bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1999         /* Convert vertex_index to bytes (multiply by 32) */
2000         bld.SHL(vertex_offset_bytes,
2001                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2002                 brw_imm_ud(5u));
2003         bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2004
2005         /* Use first_icp_handle as the base offset.  There is one register
2006          * of URB handles per vertex, so inform the register allocator that
2007          * we might read up to nir->info->gs.vertices_in registers.
2008          */
2009         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2010                  retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2011                  fs_reg(icp_offset_bytes),
2012                  brw_imm_ud(nir->info->gs.vertices_in * REG_SIZE));
2013      }
2014   } else {
2015      assert(gs_prog_data->invocations > 1);
2016
2017      if (vertex_const) {
2018         assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2019         bld.MOV(icp_handle,
2020                 retype(brw_vec1_grf(first_icp_handle +
2021                                     vertex_const->i32[0] / 8,
2022                                     vertex_const->i32[0] % 8),
2023                        BRW_REGISTER_TYPE_UD));
2024      } else {
2025         /* The vertex index is non-constant.  We need to use indirect
2026          * addressing to fetch the proper URB handle.
2027          *
2028          */
2029         fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2030
2031         /* Convert vertex_index to bytes (multiply by 4) */
2032         bld.SHL(icp_offset_bytes,
2033                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2034                 brw_imm_ud(2u));
2035
2036         /* Use first_icp_handle as the base offset.  There is one DWord
2037          * of URB handles per vertex, so inform the register allocator that
2038          * we might read up to ceil(nir->info->gs.vertices_in / 8) registers.
2039          */
2040         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2041                  retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2042                  fs_reg(icp_offset_bytes),
2043                  brw_imm_ud(DIV_ROUND_UP(nir->info->gs.vertices_in, 8) *
2044                             REG_SIZE));
2045      }
2046   }
2047
2048   fs_inst *inst;
2049
2050   fs_reg tmp_dst = dst;
2051   fs_reg indirect_offset = get_nir_src(offset_src);
2052   unsigned num_iterations = 1;
2053   unsigned orig_num_components = num_components;
2054
2055   if (type_sz(dst.type) == 8) {
2056      if (num_components > 2) {
2057         num_iterations = 2;
2058         num_components = 2;
2059      }
2060      fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2061      tmp_dst = tmp;
2062      first_component = first_component / 2;
2063   }
2064
2065   for (unsigned iter = 0; iter < num_iterations; iter++) {
2066      if (offset_const) {
2067         /* Constant indexing - use global offset. */
2068         if (first_component != 0) {
2069            unsigned read_components = num_components + first_component;
2070            fs_reg tmp = bld.vgrf(dst.type, read_components);
2071            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2072            inst->size_written = read_components *
2073                                 tmp.component_size(inst->exec_size);
2074            for (unsigned i = 0; i < num_components; i++) {
2075               bld.MOV(offset(tmp_dst, bld, i),
2076                       offset(tmp, bld, i + first_component));
2077            }
2078         } else {
2079            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2080                            icp_handle);
2081            inst->size_written = num_components *
2082                                 tmp_dst.component_size(inst->exec_size);
2083         }
2084         inst->offset = base_offset + offset_const->u32[0];
2085         inst->mlen = 1;
2086      } else {
2087         /* Indirect indexing - use per-slot offsets as well. */
2088         const fs_reg srcs[] = { icp_handle, indirect_offset };
2089         unsigned read_components = num_components + first_component;
2090         fs_reg tmp = bld.vgrf(dst.type, read_components);
2091         fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2092         bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2093         if (first_component != 0) {
2094            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2095                            payload);
2096            inst->size_written = read_components *
2097                                 tmp.component_size(inst->exec_size);
2098            for (unsigned i = 0; i < num_components; i++) {
2099               bld.MOV(offset(tmp_dst, bld, i),
2100                       offset(tmp, bld, i + first_component));
2101            }
2102         } else {
2103            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2104                         payload);
2105            inst->size_written = num_components *
2106                                 tmp_dst.component_size(inst->exec_size);
2107         }
2108         inst->offset = base_offset;
2109         inst->mlen = 2;
2110      }
2111
2112      if (type_sz(dst.type) == 8) {
2113         shuffle_32bit_load_result_to_64bit_data(
2114            bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2115
2116         for (unsigned c = 0; c < num_components; c++)
2117            bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2118      }
2119
2120      if (num_iterations > 1) {
2121         num_components = orig_num_components - 2;
2122         if(offset_const) {
2123            base_offset++;
2124         } else {
2125            fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2126            bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2127            indirect_offset = new_indirect;
2128         }
2129      }
2130   }
2131
2132   if (is_point_size) {
2133      /* Read the whole VUE header (because of alignment) and read .w. */
2134      fs_reg tmp = bld.vgrf(dst.type, 4);
2135      inst->dst = tmp;
2136      inst->size_written = 4 * REG_SIZE;
2137      bld.MOV(dst, offset(tmp, bld, 3));
2138   }
2139}
2140
2141fs_reg
2142fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2143{
2144   nir_src *offset_src = nir_get_io_offset_src(instr);
2145   nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2146
2147   if (const_value) {
2148      /* The only constant offset we should find is 0.  brw_nir.c's
2149       * add_const_offset_to_base() will fold other constant offsets
2150       * into instr->const_index[0].
2151       */
2152      assert(const_value->u32[0] == 0);
2153      return fs_reg();
2154   }
2155
2156   return get_nir_src(*offset_src);
2157}
2158
2159static void
2160do_untyped_vector_read(const fs_builder &bld,
2161                       const fs_reg dest,
2162                       const fs_reg surf_index,
2163                       const fs_reg offset_reg,
2164                       unsigned num_components)
2165{
2166   if (type_sz(dest.type) == 4) {
2167      fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2168                                             1 /* dims */,
2169                                             num_components,
2170                                             BRW_PREDICATE_NONE);
2171      read_result.type = dest.type;
2172      for (unsigned i = 0; i < num_components; i++)
2173         bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2174   } else if (type_sz(dest.type) == 8) {
2175      /* Reading a dvec, so we need to:
2176       *
2177       * 1. Multiply num_components by 2, to account for the fact that we
2178       *    need to read 64-bit components.
2179       * 2. Shuffle the result of the load to form valid 64-bit elements
2180       * 3. Emit a second load (for components z/w) if needed.
2181       */
2182      fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2183      bld.MOV(read_offset, offset_reg);
2184
2185      int iters = num_components <= 2 ? 1 : 2;
2186
2187      /* Load the dvec, the first iteration loads components x/y, the second
2188       * iteration, if needed, loads components z/w
2189       */
2190      for (int it = 0; it < iters; it++) {
2191         /* Compute number of components to read in this iteration */
2192         int iter_components = MIN2(2, num_components);
2193         num_components -= iter_components;
2194
2195         /* Read. Since this message reads 32-bit components, we need to
2196          * read twice as many components.
2197          */
2198         fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2199                                                1 /* dims */,
2200                                                iter_components * 2,
2201                                                BRW_PREDICATE_NONE);
2202
2203         /* Shuffle the 32-bit load result into valid 64-bit data */
2204         const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2205         shuffle_32bit_load_result_to_64bit_data(
2206            bld, packed_result, read_result, iter_components);
2207
2208         /* Move each component to its destination */
2209         read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2210         for (int c = 0; c < iter_components; c++) {
2211            bld.MOV(offset(dest, bld, it * 2 + c),
2212                    offset(packed_result, bld, c));
2213         }
2214
2215         bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2216      }
2217   } else {
2218      unreachable("Unsupported type");
2219   }
2220}
2221
2222void
2223fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2224                                  nir_intrinsic_instr *instr)
2225{
2226   assert(stage == MESA_SHADER_VERTEX);
2227
2228   fs_reg dest;
2229   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2230      dest = get_nir_dest(instr->dest);
2231
2232   switch (instr->intrinsic) {
2233   case nir_intrinsic_load_vertex_id:
2234      unreachable("should be lowered by lower_vertex_id()");
2235
2236   case nir_intrinsic_load_vertex_id_zero_base:
2237   case nir_intrinsic_load_base_vertex:
2238   case nir_intrinsic_load_instance_id:
2239   case nir_intrinsic_load_base_instance:
2240   case nir_intrinsic_load_draw_id: {
2241      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2242      fs_reg val = nir_system_values[sv];
2243      assert(val.file != BAD_FILE);
2244      dest.type = val.type;
2245      bld.MOV(dest, val);
2246      break;
2247   }
2248
2249   case nir_intrinsic_load_input: {
2250      fs_reg src = fs_reg(ATTR, instr->const_index[0], dest.type);
2251      unsigned first_component = nir_intrinsic_component(instr);
2252      unsigned num_components = instr->num_components;
2253      enum brw_reg_type type = dest.type;
2254
2255      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2256      assert(const_offset && "Indirect input loads not allowed");
2257      src = offset(src, bld, const_offset->u32[0]);
2258
2259      for (unsigned j = 0; j < num_components; j++) {
2260         bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2261      }
2262
2263      if (type == BRW_REGISTER_TYPE_DF) {
2264         /* Once the double vector is read, set again its original register
2265          * type to continue with normal execution.
2266          */
2267         src = retype(src, type);
2268         dest = retype(dest, type);
2269      }
2270
2271      if (type_sz(src.type) == 8) {
2272         shuffle_32bit_load_result_to_64bit_data(bld,
2273                                                 dest,
2274                                                 retype(dest, BRW_REGISTER_TYPE_F),
2275                                                 instr->num_components);
2276      }
2277      break;
2278   }
2279
2280   default:
2281      nir_emit_intrinsic(bld, instr);
2282      break;
2283   }
2284}
2285
2286void
2287fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2288                                   nir_intrinsic_instr *instr)
2289{
2290   assert(stage == MESA_SHADER_TESS_CTRL);
2291   struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2292   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2293
2294   fs_reg dst;
2295   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2296      dst = get_nir_dest(instr->dest);
2297
2298   switch (instr->intrinsic) {
2299   case nir_intrinsic_load_primitive_id:
2300      bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2301      break;
2302   case nir_intrinsic_load_invocation_id:
2303      bld.MOV(retype(dst, invocation_id.type), invocation_id);
2304      break;
2305   case nir_intrinsic_load_patch_vertices_in:
2306      bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2307              brw_imm_d(tcs_key->input_vertices));
2308      break;
2309
2310   case nir_intrinsic_barrier: {
2311      if (tcs_prog_data->instances == 1)
2312         break;
2313
2314      fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2315      fs_reg m0_2 = component(m0, 2);
2316
2317      const fs_builder chanbld = bld.exec_all().group(1, 0);
2318
2319      /* Zero the message header */
2320      bld.exec_all().MOV(m0, brw_imm_ud(0u));
2321
2322      /* Copy "Barrier ID" from r0.2, bits 16:13 */
2323      chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2324                  brw_imm_ud(INTEL_MASK(16, 13)));
2325
2326      /* Shift it up to bits 27:24. */
2327      chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2328
2329      /* Set the Barrier Count and the enable bit */
2330      chanbld.OR(m0_2, m0_2,
2331                 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2332
2333      bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2334      break;
2335   }
2336
2337   case nir_intrinsic_load_input:
2338      unreachable("nir_lower_io should never give us these.");
2339      break;
2340
2341   case nir_intrinsic_load_per_vertex_input: {
2342      fs_reg indirect_offset = get_indirect_offset(instr);
2343      unsigned imm_offset = instr->const_index[0];
2344
2345      const nir_src &vertex_src = instr->src[0];
2346      nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2347
2348      fs_inst *inst;
2349
2350      fs_reg icp_handle;
2351
2352      if (vertex_const) {
2353         /* Emit a MOV to resolve <0,1,0> regioning. */
2354         icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2355         bld.MOV(icp_handle,
2356                 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2357                                     vertex_const->i32[0] & 7),
2358                        BRW_REGISTER_TYPE_UD));
2359      } else if (tcs_prog_data->instances == 1 &&
2360                 vertex_src.is_ssa &&
2361                 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2362                 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2363         /* For the common case of only 1 instance, an array index of
2364          * gl_InvocationID means reading g1.  Skip all the indirect work.
2365          */
2366         icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2367      } else {
2368         /* The vertex index is non-constant.  We need to use indirect
2369          * addressing to fetch the proper URB handle.
2370          */
2371         icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2372
2373         /* Each ICP handle is a single DWord (4 bytes) */
2374         fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2375         bld.SHL(vertex_offset_bytes,
2376                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2377                 brw_imm_ud(2u));
2378
2379         /* Start at g1.  We might read up to 4 registers. */
2380         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2381                  retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2382                  brw_imm_ud(4 * REG_SIZE));
2383      }
2384
2385      /* We can only read two double components with each URB read, so
2386       * we send two read messages in that case, each one loading up to
2387       * two double components.
2388       */
2389      unsigned num_iterations = 1;
2390      unsigned num_components = instr->num_components;
2391      unsigned first_component = nir_intrinsic_component(instr);
2392      fs_reg orig_dst = dst;
2393      if (type_sz(dst.type) == 8) {
2394         first_component = first_component / 2;
2395         if (instr->num_components > 2) {
2396            num_iterations = 2;
2397            num_components = 2;
2398         }
2399
2400         fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2401         dst = tmp;
2402      }
2403
2404      for (unsigned iter = 0; iter < num_iterations; iter++) {
2405         if (indirect_offset.file == BAD_FILE) {
2406            /* Constant indexing - use global offset. */
2407            if (first_component != 0) {
2408               unsigned read_components = num_components + first_component;
2409               fs_reg tmp = bld.vgrf(dst.type, read_components);
2410               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2411               for (unsigned i = 0; i < num_components; i++) {
2412                  bld.MOV(offset(dst, bld, i),
2413                          offset(tmp, bld, i + first_component));
2414               }
2415            } else {
2416               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2417            }
2418            inst->offset = imm_offset;
2419            inst->mlen = 1;
2420         } else {
2421            /* Indirect indexing - use per-slot offsets as well. */
2422            const fs_reg srcs[] = { icp_handle, indirect_offset };
2423            fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2424            bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2425            if (first_component != 0) {
2426               unsigned read_components = num_components + first_component;
2427               fs_reg tmp = bld.vgrf(dst.type, read_components);
2428               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2429                               payload);
2430               for (unsigned i = 0; i < num_components; i++) {
2431                  bld.MOV(offset(dst, bld, i),
2432                          offset(tmp, bld, i + first_component));
2433               }
2434            } else {
2435               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2436                               payload);
2437            }
2438            inst->offset = imm_offset;
2439            inst->mlen = 2;
2440         }
2441         inst->size_written = (num_components + first_component) *
2442                              inst->dst.component_size(inst->exec_size);
2443
2444         /* If we are reading 64-bit data using 32-bit read messages we need
2445          * build proper 64-bit data elements by shuffling the low and high
2446          * 32-bit components around like we do for other things like UBOs
2447          * or SSBOs.
2448          */
2449         if (type_sz(dst.type) == 8) {
2450            shuffle_32bit_load_result_to_64bit_data(
2451               bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2452
2453            for (unsigned c = 0; c < num_components; c++) {
2454               bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2455                       offset(dst, bld, c));
2456            }
2457         }
2458
2459         /* Copy the temporary to the destination to deal with writemasking.
2460          *
2461          * Also attempt to deal with gl_PointSize being in the .w component.
2462          */
2463         if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2464            assert(type_sz(dst.type) < 8);
2465            inst->dst = bld.vgrf(dst.type, 4);
2466            inst->size_written = 4 * REG_SIZE;
2467            bld.MOV(dst, offset(inst->dst, bld, 3));
2468         }
2469
2470         /* If we are loading double data and we need a second read message
2471          * adjust the write offset
2472          */
2473         if (num_iterations > 1) {
2474            num_components = instr->num_components - 2;
2475            imm_offset++;
2476         }
2477      }
2478      break;
2479   }
2480
2481   case nir_intrinsic_load_output:
2482   case nir_intrinsic_load_per_vertex_output: {
2483      fs_reg indirect_offset = get_indirect_offset(instr);
2484      unsigned imm_offset = instr->const_index[0];
2485      unsigned first_component = nir_intrinsic_component(instr);
2486
2487      fs_inst *inst;
2488      if (indirect_offset.file == BAD_FILE) {
2489         /* Replicate the patch handle to all enabled channels */
2490         fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2491         bld.MOV(patch_handle,
2492                 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2493
2494         {
2495            if (first_component != 0) {
2496               unsigned read_components =
2497                  instr->num_components + first_component;
2498               fs_reg tmp = bld.vgrf(dst.type, read_components);
2499               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2500                               patch_handle);
2501               inst->size_written = read_components * REG_SIZE;
2502               for (unsigned i = 0; i < instr->num_components; i++) {
2503                  bld.MOV(offset(dst, bld, i),
2504                          offset(tmp, bld, i + first_component));
2505               }
2506            } else {
2507               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2508                               patch_handle);
2509               inst->size_written = instr->num_components * REG_SIZE;
2510            }
2511            inst->offset = imm_offset;
2512            inst->mlen = 1;
2513         }
2514      } else {
2515         /* Indirect indexing - use per-slot offsets as well. */
2516         const fs_reg srcs[] = {
2517            retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2518            indirect_offset
2519         };
2520         fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2521         bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2522         if (first_component != 0) {
2523            unsigned read_components =
2524               instr->num_components + first_component;
2525            fs_reg tmp = bld.vgrf(dst.type, read_components);
2526            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2527                            payload);
2528            inst->size_written = read_components * REG_SIZE;
2529            for (unsigned i = 0; i < instr->num_components; i++) {
2530               bld.MOV(offset(dst, bld, i),
2531                       offset(tmp, bld, i + first_component));
2532            }
2533         } else {
2534            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2535                            payload);
2536            inst->size_written = instr->num_components * REG_SIZE;
2537         }
2538         inst->offset = imm_offset;
2539         inst->mlen = 2;
2540      }
2541      break;
2542   }
2543
2544   case nir_intrinsic_store_output:
2545   case nir_intrinsic_store_per_vertex_output: {
2546      fs_reg value = get_nir_src(instr->src[0]);
2547      bool is_64bit = (instr->src[0].is_ssa ?
2548         instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2549      fs_reg indirect_offset = get_indirect_offset(instr);
2550      unsigned imm_offset = instr->const_index[0];
2551      unsigned swiz = BRW_SWIZZLE_XYZW;
2552      unsigned mask = instr->const_index[1];
2553      unsigned header_regs = 0;
2554      fs_reg srcs[7];
2555      srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2556
2557      if (indirect_offset.file != BAD_FILE) {
2558         srcs[header_regs++] = indirect_offset;
2559      }
2560
2561      if (mask == 0)
2562         break;
2563
2564      unsigned num_components = util_last_bit(mask);
2565      enum opcode opcode;
2566
2567      /* We can only pack two 64-bit components in a single message, so send
2568       * 2 messages if we have more components
2569       */
2570      unsigned num_iterations = 1;
2571      unsigned iter_components = num_components;
2572      unsigned first_component = nir_intrinsic_component(instr);
2573      if (is_64bit) {
2574         first_component = first_component / 2;
2575         if (instr->num_components > 2) {
2576            num_iterations = 2;
2577            iter_components = 2;
2578         }
2579      }
2580
2581      /* 64-bit data needs to me shuffled before we can write it to the URB.
2582       * We will use this temporary to shuffle the components in each
2583       * iteration.
2584       */
2585      fs_reg tmp =
2586         fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type);
2587
2588      mask = mask << first_component;
2589
2590      for (unsigned iter = 0; iter < num_iterations; iter++) {
2591         if (!is_64bit && mask != WRITEMASK_XYZW) {
2592            srcs[header_regs++] = brw_imm_ud(mask << 16);
2593            opcode = indirect_offset.file != BAD_FILE ?
2594               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2595               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2596         } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2597            /* Expand the 64-bit mask to 32-bit channels. We only handle
2598             * two channels in each iteration, so we only care about X/Y.
2599             */
2600            unsigned mask32 = 0;
2601            if (mask & WRITEMASK_X)
2602               mask32 |= WRITEMASK_XY;
2603            if (mask & WRITEMASK_Y)
2604               mask32 |= WRITEMASK_ZW;
2605
2606            /* If the mask does not include any of the channels X or Y there
2607             * is nothing to do in this iteration. Move on to the next couple
2608             * of 64-bit channels.
2609             */
2610            if (!mask32) {
2611               mask >>= 2;
2612               imm_offset++;
2613               continue;
2614            }
2615
2616            srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2617            opcode = indirect_offset.file != BAD_FILE ?
2618               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2619               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2620         } else {
2621            opcode = indirect_offset.file != BAD_FILE ?
2622               SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2623               SHADER_OPCODE_URB_WRITE_SIMD8;
2624         }
2625
2626         for (unsigned i = 0; i < iter_components; i++) {
2627            if (!(mask & (1 << (i + first_component))))
2628               continue;
2629
2630            if (!is_64bit) {
2631               srcs[header_regs + i + first_component] =
2632                  offset(value, bld, BRW_GET_SWZ(swiz, i));
2633            } else {
2634               /* We need to shuffle the 64-bit data to match the layout
2635                * expected by our 32-bit URB write messages. We use a temporary
2636                * for that.
2637                */
2638               unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i);
2639               shuffle_64bit_data_for_32bit_write(bld,
2640                  retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F),
2641                  retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF),
2642                  1);
2643
2644               /* Now copy the data to the destination */
2645               fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type);
2646               unsigned idx = 2 * i;
2647               bld.MOV(dest, offset(tmp, bld, idx));
2648               bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1));
2649               srcs[header_regs + idx + first_component * 2] = dest;
2650               srcs[header_regs + idx + 1 + first_component * 2] =
2651                  offset(dest, bld, 1);
2652            }
2653         }
2654
2655         unsigned mlen =
2656            header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2657            (is_64bit ? 2 * first_component : first_component);
2658         fs_reg payload =
2659            bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2660         bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2661
2662         fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2663         inst->offset = imm_offset;
2664         inst->mlen = mlen;
2665
2666         /* If this is a 64-bit attribute, select the next two 64-bit channels
2667          * to be handled in the next iteration.
2668          */
2669         if (is_64bit) {
2670            mask >>= 2;
2671            imm_offset++;
2672         }
2673      }
2674      break;
2675   }
2676
2677   default:
2678      nir_emit_intrinsic(bld, instr);
2679      break;
2680   }
2681}
2682
2683void
2684fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2685                                   nir_intrinsic_instr *instr)
2686{
2687   assert(stage == MESA_SHADER_TESS_EVAL);
2688   struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2689
2690   fs_reg dest;
2691   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2692      dest = get_nir_dest(instr->dest);
2693
2694   switch (instr->intrinsic) {
2695   case nir_intrinsic_load_primitive_id:
2696      bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2697      break;
2698   case nir_intrinsic_load_tess_coord:
2699      /* gl_TessCoord is part of the payload in g1-3 */
2700      for (unsigned i = 0; i < 3; i++) {
2701         bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2702      }
2703      break;
2704
2705   case nir_intrinsic_load_input:
2706   case nir_intrinsic_load_per_vertex_input: {
2707      fs_reg indirect_offset = get_indirect_offset(instr);
2708      unsigned imm_offset = instr->const_index[0];
2709      unsigned first_component = nir_intrinsic_component(instr);
2710
2711      if (type_sz(dest.type) == 8) {
2712         first_component = first_component / 2;
2713      }
2714
2715      fs_inst *inst;
2716      if (indirect_offset.file == BAD_FILE) {
2717         /* Arbitrarily only push up to 32 vec4 slots worth of data,
2718          * which is 16 registers (since each holds 2 vec4 slots).
2719          */
2720         const unsigned max_push_slots = 32;
2721         if (imm_offset < max_push_slots) {
2722            fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2723            for (int i = 0; i < instr->num_components; i++) {
2724               unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2725                  i + first_component;
2726               bld.MOV(offset(dest, bld, i), component(src, comp));
2727            }
2728            tes_prog_data->base.urb_read_length =
2729               MAX2(tes_prog_data->base.urb_read_length,
2730                    DIV_ROUND_UP(imm_offset + 1, 2));
2731         } else {
2732            /* Replicate the patch handle to all enabled channels */
2733            const fs_reg srcs[] = {
2734               retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2735            };
2736            fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2737            bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2738
2739            if (first_component != 0) {
2740               unsigned read_components =
2741                  instr->num_components + first_component;
2742               fs_reg tmp = bld.vgrf(dest.type, read_components);
2743               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2744                               patch_handle);
2745               inst->size_written = read_components * REG_SIZE;
2746               for (unsigned i = 0; i < instr->num_components; i++) {
2747                  bld.MOV(offset(dest, bld, i),
2748                          offset(tmp, bld, i + first_component));
2749               }
2750            } else {
2751               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2752                               patch_handle);
2753               inst->size_written = instr->num_components * REG_SIZE;
2754            }
2755            inst->mlen = 1;
2756            inst->offset = imm_offset;
2757         }
2758      } else {
2759         /* Indirect indexing - use per-slot offsets as well. */
2760
2761         /* We can only read two double components with each URB read, so
2762          * we send two read messages in that case, each one loading up to
2763          * two double components.
2764          */
2765         unsigned num_iterations = 1;
2766         unsigned num_components = instr->num_components;
2767         fs_reg orig_dest = dest;
2768         if (type_sz(dest.type) == 8) {
2769            if (instr->num_components > 2) {
2770               num_iterations = 2;
2771               num_components = 2;
2772            }
2773            fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2774            dest = tmp;
2775         }
2776
2777         for (unsigned iter = 0; iter < num_iterations; iter++) {
2778            const fs_reg srcs[] = {
2779               retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2780               indirect_offset
2781            };
2782            fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2783            bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2784
2785            if (first_component != 0) {
2786               unsigned read_components =
2787                   num_components + first_component;
2788               fs_reg tmp = bld.vgrf(dest.type, read_components);
2789               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2790                               payload);
2791               for (unsigned i = 0; i < num_components; i++) {
2792                  bld.MOV(offset(dest, bld, i),
2793                          offset(tmp, bld, i + first_component));
2794               }
2795            } else {
2796               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2797                               payload);
2798            }
2799            inst->mlen = 2;
2800            inst->offset = imm_offset;
2801            inst->size_written = (num_components + first_component) *
2802                                 inst->dst.component_size(inst->exec_size);
2803
2804            /* If we are reading 64-bit data using 32-bit read messages we need
2805             * build proper 64-bit data elements by shuffling the low and high
2806             * 32-bit components around like we do for other things like UBOs
2807             * or SSBOs.
2808             */
2809            if (type_sz(dest.type) == 8) {
2810               shuffle_32bit_load_result_to_64bit_data(
2811                  bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
2812
2813               for (unsigned c = 0; c < num_components; c++) {
2814                  bld.MOV(offset(orig_dest, bld, iter * 2 + c),
2815                          offset(dest, bld, c));
2816               }
2817            }
2818
2819            /* If we are loading double data and we need a second read message
2820             * adjust the offset
2821             */
2822            if (num_iterations > 1) {
2823               num_components = instr->num_components - 2;
2824               imm_offset++;
2825            }
2826         }
2827      }
2828      break;
2829   }
2830   default:
2831      nir_emit_intrinsic(bld, instr);
2832      break;
2833   }
2834}
2835
2836void
2837fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2838                                  nir_intrinsic_instr *instr)
2839{
2840   assert(stage == MESA_SHADER_GEOMETRY);
2841   fs_reg indirect_offset;
2842
2843   fs_reg dest;
2844   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2845      dest = get_nir_dest(instr->dest);
2846
2847   switch (instr->intrinsic) {
2848   case nir_intrinsic_load_primitive_id:
2849      assert(stage == MESA_SHADER_GEOMETRY);
2850      assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2851      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2852              retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2853      break;
2854
2855   case nir_intrinsic_load_input:
2856      unreachable("load_input intrinsics are invalid for the GS stage");
2857
2858   case nir_intrinsic_load_per_vertex_input:
2859      emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2860                         instr->src[1], instr->num_components,
2861                         nir_intrinsic_component(instr));
2862      break;
2863
2864   case nir_intrinsic_emit_vertex_with_counter:
2865      emit_gs_vertex(instr->src[0], instr->const_index[0]);
2866      break;
2867
2868   case nir_intrinsic_end_primitive_with_counter:
2869      emit_gs_end_primitive(instr->src[0]);
2870      break;
2871
2872   case nir_intrinsic_set_vertex_count:
2873      bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2874      break;
2875
2876   case nir_intrinsic_load_invocation_id: {
2877      fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2878      assert(val.file != BAD_FILE);
2879      dest.type = val.type;
2880      bld.MOV(dest, val);
2881      break;
2882   }
2883
2884   default:
2885      nir_emit_intrinsic(bld, instr);
2886      break;
2887   }
2888}
2889
2890/**
2891 * Fetch the current render target layer index.
2892 */
2893static fs_reg
2894fetch_render_target_array_index(const fs_builder &bld)
2895{
2896   if (bld.shader->devinfo->gen >= 6) {
2897      /* The render target array index is provided in the thread payload as
2898       * bits 26:16 of r0.0.
2899       */
2900      const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
2901      bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
2902              brw_imm_uw(0x7ff));
2903      return idx;
2904   } else {
2905      /* Pre-SNB we only ever render into the first layer of the framebuffer
2906       * since layered rendering is not implemented.
2907       */
2908      return brw_imm_ud(0);
2909   }
2910}
2911
2912/**
2913 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
2914 * framebuffer at the current fragment coordinates and sample index.
2915 */
2916fs_inst *
2917fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
2918                                      unsigned target)
2919{
2920   const struct gen_device_info *devinfo = bld.shader->devinfo;
2921
2922   assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
2923   const brw_wm_prog_key *wm_key =
2924      reinterpret_cast<const brw_wm_prog_key *>(key);
2925   assert(!wm_key->coherent_fb_fetch);
2926   const struct brw_wm_prog_data *wm_prog_data =
2927      brw_wm_prog_data(stage_prog_data);
2928
2929   /* Calculate the surface index relative to the start of the texture binding
2930    * table block, since that's what the texturing messages expect.
2931    */
2932   const unsigned surface = target +
2933      wm_prog_data->binding_table.render_target_read_start -
2934      wm_prog_data->base.binding_table.texture_start;
2935
2936   brw_mark_surface_used(
2937      bld.shader->stage_prog_data,
2938      wm_prog_data->binding_table.render_target_read_start + target);
2939
2940   /* Calculate the fragment coordinates. */
2941   const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
2942   bld.MOV(offset(coords, bld, 0), pixel_x);
2943   bld.MOV(offset(coords, bld, 1), pixel_y);
2944   bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
2945
2946   /* Calculate the sample index and MCS payload when multisampling.  Luckily
2947    * the MCS fetch message behaves deterministically for UMS surfaces, so it
2948    * shouldn't be necessary to recompile based on whether the framebuffer is
2949    * CMS or UMS.
2950    */
2951   if (wm_key->multisample_fbo &&
2952       nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
2953      nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
2954
2955   const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
2956   const fs_reg mcs = wm_key->multisample_fbo ?
2957      emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
2958
2959   /* Use either a normal or a CMS texel fetch message depending on whether
2960    * the framebuffer is single or multisample.  On SKL+ use the wide CMS
2961    * message just in case the framebuffer uses 16x multisampling, it should
2962    * be equivalent to the normal CMS fetch for lower multisampling modes.
2963    */
2964   const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
2965                     devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
2966                     SHADER_OPCODE_TXF_CMS_LOGICAL;
2967
2968   /* Emit the instruction. */
2969   const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
2970                           sample, mcs,
2971                           brw_imm_ud(surface), brw_imm_ud(0),
2972                           fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
2973   STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
2974
2975   fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
2976   inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2977
2978   return inst;
2979}
2980
2981/**
2982 * Actual coherent framebuffer read implemented using the native render target
2983 * read message.  Requires SKL+.
2984 */
2985static fs_inst *
2986emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
2987{
2988   assert(bld.shader->devinfo->gen >= 9);
2989   fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
2990   inst->target = target;
2991   inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
2992
2993   return inst;
2994}
2995
2996static fs_reg
2997alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
2998{
2999   if (n && regs[0].file != BAD_FILE) {
3000      return regs[0];
3001
3002   } else {
3003      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3004
3005      for (unsigned i = 0; i < n; i++)
3006         regs[i] = tmp;
3007
3008      return tmp;
3009   }
3010}
3011
3012static fs_reg
3013alloc_frag_output(fs_visitor *v, unsigned location)
3014{
3015   assert(v->stage == MESA_SHADER_FRAGMENT);
3016   const brw_wm_prog_key *const key =
3017      reinterpret_cast<const brw_wm_prog_key *>(v->key);
3018   const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3019   const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3020
3021   if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3022      return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3023
3024   else if (l == FRAG_RESULT_COLOR)
3025      return alloc_temporary(v->bld, 4, v->outputs,
3026                             MAX2(key->nr_color_regions, 1));
3027
3028   else if (l == FRAG_RESULT_DEPTH)
3029      return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3030
3031   else if (l == FRAG_RESULT_STENCIL)
3032      return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3033
3034   else if (l == FRAG_RESULT_SAMPLE_MASK)
3035      return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3036
3037   else if (l >= FRAG_RESULT_DATA0 &&
3038            l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3039      return alloc_temporary(v->bld, 4,
3040                             &v->outputs[l - FRAG_RESULT_DATA0], 1);
3041
3042   else
3043      unreachable("Invalid location");
3044}
3045
3046void
3047fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3048                                  nir_intrinsic_instr *instr)
3049{
3050   assert(stage == MESA_SHADER_FRAGMENT);
3051
3052   fs_reg dest;
3053   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3054      dest = get_nir_dest(instr->dest);
3055
3056   switch (instr->intrinsic) {
3057   case nir_intrinsic_load_front_face:
3058      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3059              *emit_frontfacing_interpolation());
3060      break;
3061
3062   case nir_intrinsic_load_sample_pos: {
3063      fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3064      assert(sample_pos.file != BAD_FILE);
3065      dest.type = sample_pos.type;
3066      bld.MOV(dest, sample_pos);
3067      bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3068      break;
3069   }
3070
3071   case nir_intrinsic_load_layer_id:
3072      dest.type = BRW_REGISTER_TYPE_UD;
3073      bld.MOV(dest, fetch_render_target_array_index(bld));
3074      break;
3075
3076   case nir_intrinsic_load_helper_invocation:
3077   case nir_intrinsic_load_sample_mask_in:
3078   case nir_intrinsic_load_sample_id: {
3079      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3080      fs_reg val = nir_system_values[sv];
3081      assert(val.file != BAD_FILE);
3082      dest.type = val.type;
3083      bld.MOV(dest, val);
3084      break;
3085   }
3086
3087   case nir_intrinsic_store_output: {
3088      const fs_reg src = get_nir_src(instr->src[0]);
3089      const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3090      assert(const_offset && "Indirect output stores not allowed");
3091      const unsigned location = nir_intrinsic_base(instr) +
3092         SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3093      const fs_reg new_dest = retype(alloc_frag_output(this, location),
3094                                     src.type);
3095
3096      for (unsigned j = 0; j < instr->num_components; j++)
3097         bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3098                 offset(src, bld, j));
3099
3100      break;
3101   }
3102
3103   case nir_intrinsic_load_output: {
3104      const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3105                                   BRW_NIR_FRAG_OUTPUT_LOCATION);
3106      assert(l >= FRAG_RESULT_DATA0);
3107      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3108      assert(const_offset && "Indirect output loads not allowed");
3109      const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3110      const fs_reg tmp = bld.vgrf(dest.type, 4);
3111
3112      if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3113         emit_coherent_fb_read(bld, tmp, target);
3114      else
3115         emit_non_coherent_fb_read(bld, tmp, target);
3116
3117      for (unsigned j = 0; j < instr->num_components; j++) {
3118         bld.MOV(offset(dest, bld, j),
3119                 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3120      }
3121
3122      break;
3123   }
3124
3125   case nir_intrinsic_discard:
3126   case nir_intrinsic_discard_if: {
3127      /* We track our discarded pixels in f0.1.  By predicating on it, we can
3128       * update just the flag bits that aren't yet discarded.  If there's no
3129       * condition, we emit a CMP of g0 != g0, so all currently executing
3130       * channels will get turned off.
3131       */
3132      fs_inst *cmp;
3133      if (instr->intrinsic == nir_intrinsic_discard_if) {
3134         cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3135                       brw_imm_d(0), BRW_CONDITIONAL_Z);
3136      } else {
3137         fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3138                                       BRW_REGISTER_TYPE_UW));
3139         cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3140      }
3141      cmp->predicate = BRW_PREDICATE_NORMAL;
3142      cmp->flag_subreg = 1;
3143
3144      if (devinfo->gen >= 6) {
3145         emit_discard_jump();
3146      }
3147      break;
3148   }
3149
3150   case nir_intrinsic_load_input: {
3151      /* load_input is only used for flat inputs */
3152      unsigned base = nir_intrinsic_base(instr);
3153      unsigned component = nir_intrinsic_component(instr);
3154      unsigned num_components = instr->num_components;
3155      enum brw_reg_type type = dest.type;
3156
3157      /* Special case fields in the VUE header */
3158      if (base == VARYING_SLOT_LAYER)
3159         component = 1;
3160      else if (base == VARYING_SLOT_VIEWPORT)
3161         component = 2;
3162
3163      if (nir_dest_bit_size(instr->dest) == 64) {
3164         /* const_index is in 32-bit type size units that could not be aligned
3165          * with DF. We need to read the double vector as if it was a float
3166          * vector of twice the number of components to fetch the right data.
3167          */
3168         type = BRW_REGISTER_TYPE_F;
3169         num_components *= 2;
3170      }
3171
3172      for (unsigned int i = 0; i < num_components; i++) {
3173         struct brw_reg interp = interp_reg(base, component + i);
3174         interp = suboffset(interp, 3);
3175         bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
3176                  retype(fs_reg(interp), type));
3177      }
3178
3179      if (nir_dest_bit_size(instr->dest) == 64) {
3180         shuffle_32bit_load_result_to_64bit_data(bld,
3181                                                 dest,
3182                                                 retype(dest, type),
3183                                                 instr->num_components);
3184      }
3185      break;
3186   }
3187
3188   case nir_intrinsic_load_barycentric_pixel:
3189   case nir_intrinsic_load_barycentric_centroid:
3190   case nir_intrinsic_load_barycentric_sample:
3191      /* Do nothing - load_interpolated_input handling will handle it later. */
3192      break;
3193
3194   case nir_intrinsic_load_barycentric_at_sample: {
3195      const glsl_interp_mode interpolation =
3196         (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3197
3198      nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3199
3200      if (const_sample) {
3201         unsigned msg_data = const_sample->i32[0] << 4;
3202
3203         emit_pixel_interpolater_send(bld,
3204                                      FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3205                                      dest,
3206                                      fs_reg(), /* src */
3207                                      brw_imm_ud(msg_data),
3208                                      interpolation);
3209      } else {
3210         const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3211                                          BRW_REGISTER_TYPE_UD);
3212
3213         if (nir_src_is_dynamically_uniform(instr->src[0])) {
3214            const fs_reg sample_id = bld.emit_uniformize(sample_src);
3215            const fs_reg msg_data = vgrf(glsl_type::uint_type);
3216            bld.exec_all().group(1, 0)
3217               .SHL(msg_data, sample_id, brw_imm_ud(4u));
3218            emit_pixel_interpolater_send(bld,
3219                                         FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3220                                         dest,
3221                                         fs_reg(), /* src */
3222                                         msg_data,
3223                                         interpolation);
3224         } else {
3225            /* Make a loop that sends a message to the pixel interpolater
3226             * for the sample number in each live channel. If there are
3227             * multiple channels with the same sample number then these
3228             * will be handled simultaneously with a single interation of
3229             * the loop.
3230             */
3231            bld.emit(BRW_OPCODE_DO);
3232
3233            /* Get the next live sample number into sample_id_reg */
3234            const fs_reg sample_id = bld.emit_uniformize(sample_src);
3235
3236            /* Set the flag register so that we can perform the send
3237             * message on all channels that have the same sample number
3238             */
3239            bld.CMP(bld.null_reg_ud(),
3240                    sample_src, sample_id,
3241                    BRW_CONDITIONAL_EQ);
3242            const fs_reg msg_data = vgrf(glsl_type::uint_type);
3243            bld.exec_all().group(1, 0)
3244               .SHL(msg_data, sample_id, brw_imm_ud(4u));
3245            fs_inst *inst =
3246               emit_pixel_interpolater_send(bld,
3247                                            FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3248                                            dest,
3249                                            fs_reg(), /* src */
3250                                            msg_data,
3251                                            interpolation);
3252            set_predicate(BRW_PREDICATE_NORMAL, inst);
3253
3254            /* Continue the loop if there are any live channels left */
3255            set_predicate_inv(BRW_PREDICATE_NORMAL,
3256                              true, /* inverse */
3257                              bld.emit(BRW_OPCODE_WHILE));
3258         }
3259      }
3260      break;
3261   }
3262
3263   case nir_intrinsic_load_barycentric_at_offset: {
3264      const glsl_interp_mode interpolation =
3265         (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3266
3267      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3268
3269      if (const_offset) {
3270         unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3271         unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3272
3273         emit_pixel_interpolater_send(bld,
3274                                      FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3275                                      dest,
3276                                      fs_reg(), /* src */
3277                                      brw_imm_ud(off_x | (off_y << 4)),
3278                                      interpolation);
3279      } else {
3280         fs_reg src = vgrf(glsl_type::ivec2_type);
3281         fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3282                                    BRW_REGISTER_TYPE_F);
3283         for (int i = 0; i < 2; i++) {
3284            fs_reg temp = vgrf(glsl_type::float_type);
3285            bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3286            fs_reg itemp = vgrf(glsl_type::int_type);
3287            /* float to int */
3288            bld.MOV(itemp, temp);
3289
3290            /* Clamp the upper end of the range to +7/16.
3291             * ARB_gpu_shader5 requires that we support a maximum offset
3292             * of +0.5, which isn't representable in a S0.4 value -- if
3293             * we didn't clamp it, we'd end up with -8/16, which is the
3294             * opposite of what the shader author wanted.
3295             *
3296             * This is legal due to ARB_gpu_shader5's quantization
3297             * rules:
3298             *
3299             * "Not all values of <offset> may be supported; x and y
3300             * offsets may be rounded to fixed-point values with the
3301             * number of fraction bits given by the
3302             * implementation-dependent constant
3303             * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3304             */
3305            set_condmod(BRW_CONDITIONAL_L,
3306                        bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3307         }
3308
3309         const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3310         emit_pixel_interpolater_send(bld,
3311                                      opcode,
3312                                      dest,
3313                                      src,
3314                                      brw_imm_ud(0u),
3315                                      interpolation);
3316      }
3317      break;
3318   }
3319
3320   case nir_intrinsic_load_interpolated_input: {
3321      if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3322         emit_fragcoord_interpolation(dest);
3323         break;
3324      }
3325
3326      assert(instr->src[0].ssa &&
3327             instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3328      nir_intrinsic_instr *bary_intrinsic =
3329         nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3330      nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3331      enum glsl_interp_mode interp_mode =
3332         (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3333      fs_reg dst_xy;
3334
3335      if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3336          bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3337         /* Use the result of the PI message */
3338         dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3339      } else {
3340         /* Use the delta_xy values computed from the payload */
3341         enum brw_barycentric_mode bary =
3342            brw_barycentric_mode(interp_mode, bary_intrin);
3343
3344         dst_xy = this->delta_xy[bary];
3345      }
3346
3347      for (unsigned int i = 0; i < instr->num_components; i++) {
3348         fs_reg interp =
3349            fs_reg(interp_reg(nir_intrinsic_base(instr),
3350                              nir_intrinsic_component(instr) + i));
3351         interp.type = BRW_REGISTER_TYPE_F;
3352         dest.type = BRW_REGISTER_TYPE_F;
3353
3354         if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3355            fs_reg tmp = vgrf(glsl_type::float_type);
3356            bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3357            bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3358         } else {
3359            bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3360         }
3361      }
3362      break;
3363   }
3364
3365   default:
3366      nir_emit_intrinsic(bld, instr);
3367      break;
3368   }
3369}
3370
3371void
3372fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3373                                  nir_intrinsic_instr *instr)
3374{
3375   assert(stage == MESA_SHADER_COMPUTE);
3376   struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3377
3378   fs_reg dest;
3379   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3380      dest = get_nir_dest(instr->dest);
3381
3382   switch (instr->intrinsic) {
3383   case nir_intrinsic_barrier:
3384      emit_barrier();
3385      cs_prog_data->uses_barrier = true;
3386      break;
3387
3388   case nir_intrinsic_load_local_invocation_id:
3389   case nir_intrinsic_load_work_group_id: {
3390      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3391      fs_reg val = nir_system_values[sv];
3392      assert(val.file != BAD_FILE);
3393      dest.type = val.type;
3394      for (unsigned i = 0; i < 3; i++)
3395         bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3396      break;
3397   }
3398
3399   case nir_intrinsic_load_num_work_groups: {
3400      const unsigned surface =
3401         cs_prog_data->binding_table.work_groups_start;
3402
3403      cs_prog_data->uses_num_work_groups = true;
3404
3405      fs_reg surf_index = brw_imm_ud(surface);
3406      brw_mark_surface_used(prog_data, surface);
3407
3408      /* Read the 3 GLuint components of gl_NumWorkGroups */
3409      for (unsigned i = 0; i < 3; i++) {
3410         fs_reg read_result =
3411            emit_untyped_read(bld, surf_index,
3412                              brw_imm_ud(i << 2),
3413                              1 /* dims */, 1 /* size */,
3414                              BRW_PREDICATE_NONE);
3415         read_result.type = dest.type;
3416         bld.MOV(dest, read_result);
3417         dest = offset(dest, bld, 1);
3418      }
3419      break;
3420   }
3421
3422   case nir_intrinsic_shared_atomic_add:
3423      nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3424      break;
3425   case nir_intrinsic_shared_atomic_imin:
3426      nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3427      break;
3428   case nir_intrinsic_shared_atomic_umin:
3429      nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3430      break;
3431   case nir_intrinsic_shared_atomic_imax:
3432      nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3433      break;
3434   case nir_intrinsic_shared_atomic_umax:
3435      nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3436      break;
3437   case nir_intrinsic_shared_atomic_and:
3438      nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3439      break;
3440   case nir_intrinsic_shared_atomic_or:
3441      nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3442      break;
3443   case nir_intrinsic_shared_atomic_xor:
3444      nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3445      break;
3446   case nir_intrinsic_shared_atomic_exchange:
3447      nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3448      break;
3449   case nir_intrinsic_shared_atomic_comp_swap:
3450      nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3451      break;
3452
3453   case nir_intrinsic_load_shared: {
3454      assert(devinfo->gen >= 7);
3455
3456      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3457
3458      /* Get the offset to read from */
3459      fs_reg offset_reg;
3460      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3461      if (const_offset) {
3462         offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3463      } else {
3464         offset_reg = vgrf(glsl_type::uint_type);
3465         bld.ADD(offset_reg,
3466                 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3467                 brw_imm_ud(instr->const_index[0]));
3468      }
3469
3470      /* Read the vector */
3471      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3472                             instr->num_components);
3473      break;
3474   }
3475
3476   case nir_intrinsic_store_shared: {
3477      assert(devinfo->gen >= 7);
3478
3479      /* Block index */
3480      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3481
3482      /* Value */
3483      fs_reg val_reg = get_nir_src(instr->src[0]);
3484
3485      /* Writemask */
3486      unsigned writemask = instr->const_index[1];
3487
3488      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3489       * since the untyped writes below operate in units of 32-bits, which
3490       * means that we need to write twice as many components each time.
3491       * Also, we have to suffle 64-bit data to be in the appropriate layout
3492       * expected by our 32-bit write messages.
3493       */
3494      unsigned type_size = 4;
3495      unsigned bit_size = instr->src[0].is_ssa ?
3496         instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3497      if (bit_size == 64) {
3498         type_size = 8;
3499         fs_reg tmp =
3500           fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3501         shuffle_64bit_data_for_32bit_write(
3502            bld,
3503            retype(tmp, BRW_REGISTER_TYPE_F),
3504            retype(val_reg, BRW_REGISTER_TYPE_DF),
3505            instr->num_components);
3506         val_reg = tmp;
3507      }
3508
3509      unsigned type_slots = type_size / 4;
3510
3511      /* Combine groups of consecutive enabled channels in one write
3512       * message. We use ffs to find the first enabled channel and then ffs on
3513       * the bit-inverse, down-shifted writemask to determine the length of
3514       * the block of enabled bits.
3515       */
3516      while (writemask) {
3517         unsigned first_component = ffs(writemask) - 1;
3518         unsigned length = ffs(~(writemask >> first_component)) - 1;
3519
3520         /* We can't write more than 2 64-bit components at once. Limit the
3521          * length of the write to what we can do and let the next iteration
3522          * handle the rest
3523          */
3524         if (type_size > 4)
3525            length = MIN2(2, length);
3526
3527         fs_reg offset_reg;
3528         nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3529         if (const_offset) {
3530            offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3531                                    type_size * first_component);
3532         } else {
3533            offset_reg = vgrf(glsl_type::uint_type);
3534            bld.ADD(offset_reg,
3535                    retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3536                    brw_imm_ud(instr->const_index[0] + type_size * first_component));
3537         }
3538
3539         emit_untyped_write(bld, surf_index, offset_reg,
3540                            offset(val_reg, bld, first_component * type_slots),
3541                            1 /* dims */, length * type_slots,
3542                            BRW_PREDICATE_NONE);
3543
3544         /* Clear the bits in the writemask that we just wrote, then try
3545          * again to see if more channels are left.
3546          */
3547         writemask &= (15 << (first_component + length));
3548      }
3549
3550      break;
3551   }
3552
3553   default:
3554      nir_emit_intrinsic(bld, instr);
3555      break;
3556   }
3557}
3558
3559void
3560fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3561{
3562   fs_reg dest;
3563   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3564      dest = get_nir_dest(instr->dest);
3565
3566   switch (instr->intrinsic) {
3567   case nir_intrinsic_atomic_counter_inc:
3568   case nir_intrinsic_atomic_counter_dec:
3569   case nir_intrinsic_atomic_counter_read:
3570   case nir_intrinsic_atomic_counter_add:
3571   case nir_intrinsic_atomic_counter_min:
3572   case nir_intrinsic_atomic_counter_max:
3573   case nir_intrinsic_atomic_counter_and:
3574   case nir_intrinsic_atomic_counter_or:
3575   case nir_intrinsic_atomic_counter_xor:
3576   case nir_intrinsic_atomic_counter_exchange:
3577   case nir_intrinsic_atomic_counter_comp_swap: {
3578      if (stage == MESA_SHADER_FRAGMENT &&
3579          instr->intrinsic != nir_intrinsic_atomic_counter_read)
3580         brw_wm_prog_data(prog_data)->has_side_effects = true;
3581
3582      /* Get some metadata from the image intrinsic. */
3583      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3584
3585      /* Get the arguments of the atomic intrinsic. */
3586      const fs_reg offset = get_nir_src(instr->src[0]);
3587      const unsigned surface = (stage_prog_data->binding_table.abo_start +
3588                                instr->const_index[0]);
3589      const fs_reg src0 = (info->num_srcs >= 2
3590                           ? get_nir_src(instr->src[1]) : fs_reg());
3591      const fs_reg src1 = (info->num_srcs >= 3
3592                           ? get_nir_src(instr->src[2]) : fs_reg());
3593      fs_reg tmp;
3594
3595      assert(info->num_srcs <= 3);
3596
3597      /* Emit a surface read or atomic op. */
3598      if (instr->intrinsic == nir_intrinsic_atomic_counter_read) {
3599         tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
3600      } else {
3601         tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, src0,
3602                                   src1, 1, 1,
3603                                   get_atomic_counter_op(instr->intrinsic));
3604      }
3605
3606      /* Assign the result. */
3607      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
3608
3609      /* Mark the surface as used. */
3610      brw_mark_surface_used(stage_prog_data, surface);
3611      break;
3612   }
3613
3614   case nir_intrinsic_image_load:
3615   case nir_intrinsic_image_store:
3616   case nir_intrinsic_image_atomic_add:
3617   case nir_intrinsic_image_atomic_min:
3618   case nir_intrinsic_image_atomic_max:
3619   case nir_intrinsic_image_atomic_and:
3620   case nir_intrinsic_image_atomic_or:
3621   case nir_intrinsic_image_atomic_xor:
3622   case nir_intrinsic_image_atomic_exchange:
3623   case nir_intrinsic_image_atomic_comp_swap: {
3624      using namespace image_access;
3625
3626      if (stage == MESA_SHADER_FRAGMENT &&
3627          instr->intrinsic != nir_intrinsic_image_load)
3628         brw_wm_prog_data(prog_data)->has_side_effects = true;
3629
3630      /* Get the referenced image variable and type. */
3631      const nir_variable *var = instr->variables[0]->var;
3632      const glsl_type *type = var->type->without_array();
3633      const brw_reg_type base_type = get_image_base_type(type);
3634
3635      /* Get some metadata from the image intrinsic. */
3636      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3637      const unsigned arr_dims = type->sampler_array ? 1 : 0;
3638      const unsigned surf_dims = type->coordinate_components() - arr_dims;
3639      const unsigned format = var->data.image.format;
3640
3641      /* Get the arguments of the image intrinsic. */
3642      const fs_reg image = get_nir_image_deref(instr->variables[0]);
3643      const fs_reg addr = retype(get_nir_src(instr->src[0]),
3644                                 BRW_REGISTER_TYPE_UD);
3645      const fs_reg src0 = (info->num_srcs >= 3 ?
3646                           retype(get_nir_src(instr->src[2]), base_type) :
3647                           fs_reg());
3648      const fs_reg src1 = (info->num_srcs >= 4 ?
3649                           retype(get_nir_src(instr->src[3]), base_type) :
3650                           fs_reg());
3651      fs_reg tmp;
3652
3653      /* Emit an image load, store or atomic op. */
3654      if (instr->intrinsic == nir_intrinsic_image_load)
3655         tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3656
3657      else if (instr->intrinsic == nir_intrinsic_image_store)
3658         emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3659                          var->data.image.write_only ? GL_NONE : format);
3660
3661      else
3662         tmp = emit_image_atomic(bld, image, addr, src0, src1,
3663                                 surf_dims, arr_dims, info->dest_components,
3664                                 get_image_atomic_op(instr->intrinsic, type));
3665
3666      /* Assign the result. */
3667      for (unsigned c = 0; c < info->dest_components; ++c)
3668         bld.MOV(offset(retype(dest, base_type), bld, c),
3669                 offset(tmp, bld, c));
3670      break;
3671   }
3672
3673   case nir_intrinsic_memory_barrier_atomic_counter:
3674   case nir_intrinsic_memory_barrier_buffer:
3675   case nir_intrinsic_memory_barrier_image:
3676   case nir_intrinsic_memory_barrier: {
3677      const fs_builder ubld = bld.group(8, 0);
3678      const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3679      ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3680         ->size_written = 2 * REG_SIZE;
3681      break;
3682   }
3683
3684   case nir_intrinsic_group_memory_barrier:
3685   case nir_intrinsic_memory_barrier_shared:
3686      /* We treat these workgroup-level barriers as no-ops.  This should be
3687       * safe at present and as long as:
3688       *
3689       *  - Memory access instructions are not subsequently reordered by the
3690       *    compiler back-end.
3691       *
3692       *  - All threads from a given compute shader workgroup fit within a
3693       *    single subslice and therefore talk to the same HDC shared unit
3694       *    what supposedly guarantees ordering and coherency between threads
3695       *    from the same workgroup.  This may change in the future when we
3696       *    start splitting workgroups across multiple subslices.
3697       *
3698       *  - The context is not in fault-and-stream mode, which could cause
3699       *    memory transactions (including to SLM) prior to the barrier to be
3700       *    replayed after the barrier if a pagefault occurs.  This shouldn't
3701       *    be a problem up to and including SKL because fault-and-stream is
3702       *    not usable due to hardware issues, but that's likely to change in
3703       *    the future.
3704       */
3705      break;
3706
3707   case nir_intrinsic_shader_clock: {
3708      /* We cannot do anything if there is an event, so ignore it for now */
3709      const fs_reg shader_clock = get_timestamp(bld);
3710      const fs_reg srcs[] = { component(shader_clock, 0),
3711                              component(shader_clock, 1) };
3712      bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3713      break;
3714   }
3715
3716   case nir_intrinsic_image_size: {
3717      /* Get the referenced image variable and type. */
3718      const nir_variable *var = instr->variables[0]->var;
3719      const glsl_type *type = var->type->without_array();
3720
3721      /* Get the size of the image. */
3722      const fs_reg image = get_nir_image_deref(instr->variables[0]);
3723      const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3724
3725      /* For 1DArray image types, the array index is stored in the Z component.
3726       * Fix this by swizzling the Z component to the Y component.
3727       */
3728      const bool is_1d_array_image =
3729                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3730                  type->sampler_array;
3731
3732      /* For CubeArray images, we should count the number of cubes instead
3733       * of the number of faces. Fix it by dividing the (Z component) by 6.
3734       */
3735      const bool is_cube_array_image =
3736                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3737                  type->sampler_array;
3738
3739      /* Copy all the components. */
3740      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3741      for (unsigned c = 0; c < info->dest_components; ++c) {
3742         if ((int)c >= type->coordinate_components()) {
3743             bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3744                     brw_imm_d(1));
3745         } else if (c == 1 && is_1d_array_image) {
3746            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3747                    offset(size, bld, 2));
3748         } else if (c == 2 && is_cube_array_image) {
3749            bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3750                     offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3751                     offset(size, bld, c), brw_imm_d(6));
3752         } else {
3753            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3754                    offset(size, bld, c));
3755         }
3756       }
3757
3758      break;
3759   }
3760
3761   case nir_intrinsic_image_samples:
3762      /* The driver does not support multi-sampled images. */
3763      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3764      break;
3765
3766   case nir_intrinsic_load_uniform: {
3767      /* Offsets are in bytes but they should always be multiples of 4 */
3768      assert(instr->const_index[0] % 4 == 0);
3769
3770      fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3771
3772      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3773      if (const_offset) {
3774         /* Offsets are in bytes but they should always be multiples of 4 */
3775         assert(const_offset->u32[0] % 4 == 0);
3776         src.offset = const_offset->u32[0];
3777
3778         for (unsigned j = 0; j < instr->num_components; j++) {
3779            bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3780         }
3781      } else {
3782         fs_reg indirect = retype(get_nir_src(instr->src[0]),
3783                                  BRW_REGISTER_TYPE_UD);
3784
3785         /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3786          * go past the end of the uniform.  In order to keep the n'th
3787          * component from running past, we subtract off the size of all but
3788          * one component of the vector.
3789          */
3790         assert(instr->const_index[1] >=
3791                instr->num_components * (int) type_sz(dest.type));
3792         unsigned read_size = instr->const_index[1] -
3793            (instr->num_components - 1) * type_sz(dest.type);
3794
3795         bool supports_64bit_indirects =
3796            !devinfo->is_cherryview && !devinfo->is_broxton;
3797
3798         if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
3799            for (unsigned j = 0; j < instr->num_components; j++) {
3800               bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3801                        offset(dest, bld, j), offset(src, bld, j),
3802                        indirect, brw_imm_ud(read_size));
3803            }
3804         } else {
3805            const unsigned num_mov_indirects =
3806               type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
3807            /* We read a little bit less per MOV INDIRECT, as they are now
3808             * 32-bits ones instead of 64-bit. Fix read_size then.
3809             */
3810            const unsigned read_size_32bit = read_size -
3811                (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
3812            for (unsigned j = 0; j < instr->num_components; j++) {
3813               for (unsigned i = 0; i < num_mov_indirects; i++) {
3814                  bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3815                           subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
3816                           subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
3817                           indirect, brw_imm_ud(read_size_32bit));
3818               }
3819            }
3820         }
3821      }
3822      break;
3823   }
3824
3825   case nir_intrinsic_load_ubo: {
3826      nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3827      fs_reg surf_index;
3828
3829      if (const_index) {
3830         const unsigned index = stage_prog_data->binding_table.ubo_start +
3831                                const_index->u32[0];
3832         surf_index = brw_imm_ud(index);
3833         brw_mark_surface_used(prog_data, index);
3834      } else {
3835         /* The block index is not a constant. Evaluate the index expression
3836          * per-channel and add the base UBO index; we have to select a value
3837          * from any live channel.
3838          */
3839         surf_index = vgrf(glsl_type::uint_type);
3840         bld.ADD(surf_index, get_nir_src(instr->src[0]),
3841                 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3842         surf_index = bld.emit_uniformize(surf_index);
3843
3844         /* Assume this may touch any UBO. It would be nice to provide
3845          * a tighter bound, but the array information is already lowered away.
3846          */
3847         brw_mark_surface_used(prog_data,
3848                               stage_prog_data->binding_table.ubo_start +
3849                               nir->info->num_ubos - 1);
3850      }
3851
3852      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3853      if (const_offset == NULL) {
3854         fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3855                                     BRW_REGISTER_TYPE_UD);
3856
3857         for (int i = 0; i < instr->num_components; i++)
3858            VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3859                                       base_offset, i * type_sz(dest.type));
3860      } else {
3861         /* Even if we are loading doubles, a pull constant load will load
3862          * a 32-bit vec4, so should only reserve vgrf space for that. If we
3863          * need to load a full dvec4 we will have to emit 2 loads. This is
3864          * similar to demote_pull_constants(), except that in that case we
3865          * see individual accesses to each component of the vector and then
3866          * we let CSE deal with duplicate loads. Here we see a vector access
3867          * and we have to split it if necessary.
3868          */
3869         const unsigned type_size = type_sz(dest.type);
3870         const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
3871         const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
3872         const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3873
3874         for (unsigned c = 0; c < instr->num_components;) {
3875            const unsigned base = const_offset->u32[0] + c * type_size;
3876            /* Number of usable components in the next block-aligned load. */
3877            const unsigned count = MIN2(instr->num_components - c,
3878                                        (block_sz - base % block_sz) / type_size);
3879
3880            ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3881                      packed_consts, surf_index,
3882                      brw_imm_ud(base & ~(block_sz - 1)));
3883
3884            const fs_reg consts =
3885               retype(byte_offset(packed_consts, base & (block_sz - 1)),
3886                      dest.type);
3887
3888            for (unsigned d = 0; d < count; d++)
3889               bld.MOV(offset(dest, bld, c + d), component(consts, d));
3890
3891            c += count;
3892         }
3893      }
3894      break;
3895   }
3896
3897   case nir_intrinsic_load_ssbo: {
3898      assert(devinfo->gen >= 7);
3899
3900      nir_const_value *const_uniform_block =
3901         nir_src_as_const_value(instr->src[0]);
3902
3903      fs_reg surf_index;
3904      if (const_uniform_block) {
3905         unsigned index = stage_prog_data->binding_table.ssbo_start +
3906                          const_uniform_block->u32[0];
3907         surf_index = brw_imm_ud(index);
3908         brw_mark_surface_used(prog_data, index);
3909      } else {
3910         surf_index = vgrf(glsl_type::uint_type);
3911         bld.ADD(surf_index, get_nir_src(instr->src[0]),
3912                 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3913
3914         /* Assume this may touch any UBO. It would be nice to provide
3915          * a tighter bound, but the array information is already lowered away.
3916          */
3917         brw_mark_surface_used(prog_data,
3918                               stage_prog_data->binding_table.ssbo_start +
3919                               nir->info->num_ssbos - 1);
3920      }
3921
3922      fs_reg offset_reg;
3923      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3924      if (const_offset) {
3925         offset_reg = brw_imm_ud(const_offset->u32[0]);
3926      } else {
3927         offset_reg = get_nir_src(instr->src[1]);
3928      }
3929
3930      /* Read the vector */
3931      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3932                             instr->num_components);
3933
3934      break;
3935   }
3936
3937   case nir_intrinsic_store_ssbo: {
3938      assert(devinfo->gen >= 7);
3939
3940      if (stage == MESA_SHADER_FRAGMENT)
3941         brw_wm_prog_data(prog_data)->has_side_effects = true;
3942
3943      /* Block index */
3944      fs_reg surf_index;
3945      nir_const_value *const_uniform_block =
3946         nir_src_as_const_value(instr->src[1]);
3947      if (const_uniform_block) {
3948         unsigned index = stage_prog_data->binding_table.ssbo_start +
3949                          const_uniform_block->u32[0];
3950         surf_index = brw_imm_ud(index);
3951         brw_mark_surface_used(prog_data, index);
3952      } else {
3953         surf_index = vgrf(glsl_type::uint_type);
3954         bld.ADD(surf_index, get_nir_src(instr->src[1]),
3955                  brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3956
3957         brw_mark_surface_used(prog_data,
3958                               stage_prog_data->binding_table.ssbo_start +
3959                               nir->info->num_ssbos - 1);
3960      }
3961
3962      /* Value */
3963      fs_reg val_reg = get_nir_src(instr->src[0]);
3964
3965      /* Writemask */
3966      unsigned writemask = instr->const_index[0];
3967
3968      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3969       * since the untyped writes below operate in units of 32-bits, which
3970       * means that we need to write twice as many components each time.
3971       * Also, we have to suffle 64-bit data to be in the appropriate layout
3972       * expected by our 32-bit write messages.
3973       */
3974      unsigned type_size = 4;
3975      unsigned bit_size = instr->src[0].is_ssa ?
3976         instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3977      if (bit_size == 64) {
3978         type_size = 8;
3979         fs_reg tmp =
3980           fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3981         shuffle_64bit_data_for_32bit_write(bld,
3982            retype(tmp, BRW_REGISTER_TYPE_F),
3983            retype(val_reg, BRW_REGISTER_TYPE_DF),
3984            instr->num_components);
3985         val_reg = tmp;
3986      }
3987
3988      unsigned type_slots = type_size / 4;
3989
3990      /* Combine groups of consecutive enabled channels in one write
3991       * message. We use ffs to find the first enabled channel and then ffs on
3992       * the bit-inverse, down-shifted writemask to determine the length of
3993       * the block of enabled bits.
3994       */
3995      while (writemask) {
3996         unsigned first_component = ffs(writemask) - 1;
3997         unsigned length = ffs(~(writemask >> first_component)) - 1;
3998
3999         /* We can't write more than 2 64-bit components at once. Limit the
4000          * length of the write to what we can do and let the next iteration
4001          * handle the rest
4002          */
4003         if (type_size > 4)
4004            length = MIN2(2, length);
4005
4006         fs_reg offset_reg;
4007         nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4008         if (const_offset) {
4009            offset_reg = brw_imm_ud(const_offset->u32[0] +
4010                                    type_size * first_component);
4011         } else {
4012            offset_reg = vgrf(glsl_type::uint_type);
4013            bld.ADD(offset_reg,
4014                    retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4015                    brw_imm_ud(type_size * first_component));
4016         }
4017
4018
4019         emit_untyped_write(bld, surf_index, offset_reg,
4020                            offset(val_reg, bld, first_component * type_slots),
4021                            1 /* dims */, length * type_slots,
4022                            BRW_PREDICATE_NONE);
4023
4024         /* Clear the bits in the writemask that we just wrote, then try
4025          * again to see if more channels are left.
4026          */
4027         writemask &= (15 << (first_component + length));
4028      }
4029      break;
4030   }
4031
4032   case nir_intrinsic_store_output: {
4033      fs_reg src = get_nir_src(instr->src[0]);
4034
4035      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4036      assert(const_offset && "Indirect output stores not allowed");
4037      fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4038                                      4 * const_offset->u32[0]), src.type);
4039
4040      unsigned num_components = instr->num_components;
4041      unsigned first_component = nir_intrinsic_component(instr);
4042      unsigned bit_size = instr->src[0].is_ssa ?
4043         instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
4044      if (bit_size == 64) {
4045         fs_reg tmp =
4046            fs_reg(VGRF, alloc.allocate(2 * num_components),
4047                   BRW_REGISTER_TYPE_F);
4048         shuffle_64bit_data_for_32bit_write(
4049            bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components);
4050         src = retype(tmp, src.type);
4051         num_components *= 2;
4052      }
4053
4054      for (unsigned j = 0; j < num_components; j++) {
4055         bld.MOV(offset(new_dest, bld, j + first_component),
4056                 offset(src, bld, j));
4057      }
4058      break;
4059   }
4060
4061   case nir_intrinsic_ssbo_atomic_add:
4062      nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4063      break;
4064   case nir_intrinsic_ssbo_atomic_imin:
4065      nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4066      break;
4067   case nir_intrinsic_ssbo_atomic_umin:
4068      nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4069      break;
4070   case nir_intrinsic_ssbo_atomic_imax:
4071      nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4072      break;
4073   case nir_intrinsic_ssbo_atomic_umax:
4074      nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4075      break;
4076   case nir_intrinsic_ssbo_atomic_and:
4077      nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4078      break;
4079   case nir_intrinsic_ssbo_atomic_or:
4080      nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4081      break;
4082   case nir_intrinsic_ssbo_atomic_xor:
4083      nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4084      break;
4085   case nir_intrinsic_ssbo_atomic_exchange:
4086      nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4087      break;
4088   case nir_intrinsic_ssbo_atomic_comp_swap:
4089      nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4090      break;
4091
4092   case nir_intrinsic_get_buffer_size: {
4093      nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4094      unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4095
4096      /* A resinfo's sampler message is used to get the buffer size.  The
4097       * SIMD8's writeback message consists of four registers and SIMD16's
4098       * writeback message consists of 8 destination registers (two per each
4099       * component).  Because we are only interested on the first channel of
4100       * the first returned component, where resinfo returns the buffer size
4101       * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4102       * the dispatch width.
4103       */
4104      const fs_builder ubld = bld.exec_all().group(8, 0);
4105      fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4106      fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4107
4108      /* Set LOD = 0 */
4109      ubld.MOV(src_payload, brw_imm_d(0));
4110
4111      const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4112      fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload,
4113                                src_payload, brw_imm_ud(index));
4114      inst->header_size = 0;
4115      inst->mlen = 1;
4116      inst->size_written = 4 * REG_SIZE;
4117
4118      bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
4119      brw_mark_surface_used(prog_data, index);
4120      break;
4121   }
4122
4123   case nir_intrinsic_load_channel_num: {
4124      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UW);
4125      dest = retype(dest, BRW_REGISTER_TYPE_UD);
4126      const fs_builder allbld8 = bld.group(8, 0).exec_all();
4127      allbld8.MOV(tmp, brw_imm_v(0x76543210));
4128      if (dispatch_width > 8)
4129         allbld8.ADD(byte_offset(tmp, 16), tmp, brw_imm_uw(8u));
4130      if (dispatch_width > 16) {
4131         const fs_builder allbld16 = bld.group(16, 0).exec_all();
4132         allbld16.ADD(byte_offset(tmp, 32), tmp, brw_imm_uw(16u));
4133      }
4134      bld.MOV(dest, tmp);
4135      break;
4136   }
4137
4138   default:
4139      unreachable("unknown intrinsic");
4140   }
4141}
4142
4143void
4144fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4145                                 int op, nir_intrinsic_instr *instr)
4146{
4147   if (stage == MESA_SHADER_FRAGMENT)
4148      brw_wm_prog_data(prog_data)->has_side_effects = true;
4149
4150   fs_reg dest;
4151   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4152      dest = get_nir_dest(instr->dest);
4153
4154   fs_reg surface;
4155   nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4156   if (const_surface) {
4157      unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4158                            const_surface->u32[0];
4159      surface = brw_imm_ud(surf_index);
4160      brw_mark_surface_used(prog_data, surf_index);
4161   } else {
4162      surface = vgrf(glsl_type::uint_type);
4163      bld.ADD(surface, get_nir_src(instr->src[0]),
4164              brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4165
4166      /* Assume this may touch any SSBO. This is the same we do for other
4167       * UBO/SSBO accesses with non-constant surface.
4168       */
4169      brw_mark_surface_used(prog_data,
4170                            stage_prog_data->binding_table.ssbo_start +
4171                            nir->info->num_ssbos - 1);
4172   }
4173
4174   fs_reg offset = get_nir_src(instr->src[1]);
4175   fs_reg data1 = get_nir_src(instr->src[2]);
4176   fs_reg data2;
4177   if (op == BRW_AOP_CMPWR)
4178      data2 = get_nir_src(instr->src[3]);
4179
4180   /* Emit the actual atomic operation */
4181
4182   fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4183                                              data1, data2,
4184                                              1 /* dims */, 1 /* rsize */,
4185                                              op,
4186                                              BRW_PREDICATE_NONE);
4187   dest.type = atomic_result.type;
4188   bld.MOV(dest, atomic_result);
4189}
4190
4191void
4192fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4193                                   int op, nir_intrinsic_instr *instr)
4194{
4195   fs_reg dest;
4196   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4197      dest = get_nir_dest(instr->dest);
4198
4199   fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4200   fs_reg offset;
4201   fs_reg data1 = get_nir_src(instr->src[1]);
4202   fs_reg data2;
4203   if (op == BRW_AOP_CMPWR)
4204      data2 = get_nir_src(instr->src[2]);
4205
4206   /* Get the offset */
4207   nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4208   if (const_offset) {
4209      offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4210   } else {
4211      offset = vgrf(glsl_type::uint_type);
4212      bld.ADD(offset,
4213	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4214	      brw_imm_ud(instr->const_index[0]));
4215   }
4216
4217   /* Emit the actual atomic operation operation */
4218
4219   fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4220                                              data1, data2,
4221                                              1 /* dims */, 1 /* rsize */,
4222                                              op,
4223                                              BRW_PREDICATE_NONE);
4224   dest.type = atomic_result.type;
4225   bld.MOV(dest, atomic_result);
4226}
4227
4228void
4229fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4230{
4231   unsigned texture = instr->texture_index;
4232   unsigned sampler = instr->sampler_index;
4233
4234   fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4235
4236   srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4237   srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4238
4239   int lod_components = 0;
4240
4241   /* The hardware requires a LOD for buffer textures */
4242   if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4243      srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4244
4245   uint32_t header_bits = 0;
4246   for (unsigned i = 0; i < instr->num_srcs; i++) {
4247      fs_reg src = get_nir_src(instr->src[i].src);
4248      switch (instr->src[i].src_type) {
4249      case nir_tex_src_bias:
4250         srcs[TEX_LOGICAL_SRC_LOD] =
4251            retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4252         break;
4253      case nir_tex_src_comparator:
4254         srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4255         break;
4256      case nir_tex_src_coord:
4257         switch (instr->op) {
4258         case nir_texop_txf:
4259         case nir_texop_txf_ms:
4260         case nir_texop_txf_ms_mcs:
4261         case nir_texop_samples_identical:
4262            srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4263            break;
4264         default:
4265            srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4266            break;
4267         }
4268         break;
4269      case nir_tex_src_ddx:
4270         srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4271         lod_components = nir_tex_instr_src_size(instr, i);
4272         break;
4273      case nir_tex_src_ddy:
4274         srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4275         break;
4276      case nir_tex_src_lod:
4277         switch (instr->op) {
4278         case nir_texop_txs:
4279            srcs[TEX_LOGICAL_SRC_LOD] =
4280               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4281            break;
4282         case nir_texop_txf:
4283            srcs[TEX_LOGICAL_SRC_LOD] =
4284               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4285            break;
4286         default:
4287            srcs[TEX_LOGICAL_SRC_LOD] =
4288               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4289            break;
4290         }
4291         break;
4292      case nir_tex_src_ms_index:
4293         srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4294         break;
4295
4296      case nir_tex_src_offset: {
4297         nir_const_value *const_offset =
4298            nir_src_as_const_value(instr->src[i].src);
4299         unsigned offset_bits = 0;
4300         if (const_offset &&
4301             brw_texture_offset(const_offset->i32,
4302                                nir_tex_instr_src_size(instr, i),
4303                                &offset_bits)) {
4304            header_bits |= offset_bits;
4305         } else {
4306            srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
4307               retype(src, BRW_REGISTER_TYPE_D);
4308         }
4309         break;
4310      }
4311
4312      case nir_tex_src_projector:
4313         unreachable("should be lowered");
4314
4315      case nir_tex_src_texture_offset: {
4316         /* Figure out the highest possible texture index and mark it as used */
4317         uint32_t max_used = texture + instr->texture_array_size - 1;
4318         if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4319            max_used += stage_prog_data->binding_table.gather_texture_start;
4320         } else {
4321            max_used += stage_prog_data->binding_table.texture_start;
4322         }
4323         brw_mark_surface_used(prog_data, max_used);
4324
4325         /* Emit code to evaluate the actual indexing expression */
4326         fs_reg tmp = vgrf(glsl_type::uint_type);
4327         bld.ADD(tmp, src, brw_imm_ud(texture));
4328         srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4329         break;
4330      }
4331
4332      case nir_tex_src_sampler_offset: {
4333         /* Emit code to evaluate the actual indexing expression */
4334         fs_reg tmp = vgrf(glsl_type::uint_type);
4335         bld.ADD(tmp, src, brw_imm_ud(sampler));
4336         srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4337         break;
4338      }
4339
4340      case nir_tex_src_ms_mcs:
4341         assert(instr->op == nir_texop_txf_ms);
4342         srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4343         break;
4344
4345      case nir_tex_src_plane: {
4346         nir_const_value *const_plane =
4347            nir_src_as_const_value(instr->src[i].src);
4348         const uint32_t plane = const_plane->u32[0];
4349         const uint32_t texture_index =
4350            instr->texture_index +
4351            stage_prog_data->binding_table.plane_start[plane] -
4352            stage_prog_data->binding_table.texture_start;
4353
4354         srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4355         break;
4356      }
4357
4358      default:
4359         unreachable("unknown texture source");
4360      }
4361   }
4362
4363   if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4364       (instr->op == nir_texop_txf_ms ||
4365        instr->op == nir_texop_samples_identical)) {
4366      if (devinfo->gen >= 7 &&
4367          key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4368         srcs[TEX_LOGICAL_SRC_MCS] =
4369            emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4370                           instr->coord_components,
4371                           srcs[TEX_LOGICAL_SRC_SURFACE]);
4372      } else {
4373         srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4374      }
4375   }
4376
4377   srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4378   srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4379
4380   enum opcode opcode;
4381   switch (instr->op) {
4382   case nir_texop_tex:
4383      opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
4384                SHADER_OPCODE_TXL_LOGICAL);
4385      break;
4386   case nir_texop_txb:
4387      opcode = FS_OPCODE_TXB_LOGICAL;
4388      break;
4389   case nir_texop_txl:
4390      opcode = SHADER_OPCODE_TXL_LOGICAL;
4391      break;
4392   case nir_texop_txd:
4393      opcode = SHADER_OPCODE_TXD_LOGICAL;
4394      break;
4395   case nir_texop_txf:
4396      opcode = SHADER_OPCODE_TXF_LOGICAL;
4397      break;
4398   case nir_texop_txf_ms:
4399      if ((key_tex->msaa_16 & (1 << sampler)))
4400         opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4401      else
4402         opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4403      break;
4404   case nir_texop_txf_ms_mcs:
4405      opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4406      break;
4407   case nir_texop_query_levels:
4408   case nir_texop_txs:
4409      opcode = SHADER_OPCODE_TXS_LOGICAL;
4410      break;
4411   case nir_texop_lod:
4412      opcode = SHADER_OPCODE_LOD_LOGICAL;
4413      break;
4414   case nir_texop_tg4:
4415      if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
4416         opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4417      else
4418         opcode = SHADER_OPCODE_TG4_LOGICAL;
4419      break;
4420   case nir_texop_texture_samples:
4421      opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
4422      break;
4423   case nir_texop_samples_identical: {
4424      fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4425
4426      /* If mcs is an immediate value, it means there is no MCS.  In that case
4427       * just return false.
4428       */
4429      if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4430         bld.MOV(dst, brw_imm_ud(0u));
4431      } else if ((key_tex->msaa_16 & (1 << sampler))) {
4432         fs_reg tmp = vgrf(glsl_type::uint_type);
4433         bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4434                offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4435         bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4436      } else {
4437         bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4438                 BRW_CONDITIONAL_EQ);
4439      }
4440      return;
4441   }
4442   default:
4443      unreachable("unknown texture opcode");
4444   }
4445
4446   /* TXS and TXL require a LOD but not everything we implement using those
4447    * two opcodes provides one.  Provide a default LOD of 0.
4448    */
4449   if ((opcode == SHADER_OPCODE_TXS_LOGICAL ||
4450        opcode == SHADER_OPCODE_TXL_LOGICAL) &&
4451       srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE) {
4452      srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u);
4453   }
4454
4455   if (instr->op == nir_texop_tg4) {
4456      if (instr->component == 1 &&
4457          key_tex->gather_channel_quirk_mask & (1 << texture)) {
4458         /* gather4 sampler is broken for green channel on RG32F --
4459          * we must ask for blue instead.
4460          */
4461         header_bits |= 2 << 16;
4462      } else {
4463         header_bits |= instr->component << 16;
4464      }
4465   }
4466
4467   fs_reg dst = bld.vgrf(brw_type_for_nir_type(instr->dest_type), 4);
4468   fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4469   inst->offset = header_bits;
4470
4471   const unsigned dest_size = nir_tex_instr_dest_size(instr);
4472   if (devinfo->gen >= 9 &&
4473       instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4474      unsigned write_mask = instr->dest.is_ssa ?
4475                            nir_ssa_def_components_read(&instr->dest.ssa):
4476                            (1 << dest_size) - 1;
4477      assert(write_mask != 0); /* dead code should have been eliminated */
4478      inst->size_written = util_last_bit(write_mask) *
4479                           inst->dst.component_size(inst->exec_size);
4480   } else {
4481      inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
4482   }
4483
4484   if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4485      inst->shadow_compare = true;
4486
4487   if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
4488      emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4489
4490   fs_reg nir_dest[4];
4491   for (unsigned i = 0; i < dest_size; i++)
4492      nir_dest[i] = offset(dst, bld, i);
4493
4494   if (instr->op == nir_texop_query_levels) {
4495      /* # levels is in .w */
4496      nir_dest[0] = offset(dst, bld, 3);
4497   } else if (instr->op == nir_texop_txs &&
4498              dest_size >= 3 && devinfo->gen < 7) {
4499      /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4500      fs_reg depth = offset(dst, bld, 2);
4501      nir_dest[2] = vgrf(glsl_type::int_type);
4502      bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4503   }
4504
4505   bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4506}
4507
4508void
4509fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4510{
4511   switch (instr->type) {
4512   case nir_jump_break:
4513      bld.emit(BRW_OPCODE_BREAK);
4514      break;
4515   case nir_jump_continue:
4516      bld.emit(BRW_OPCODE_CONTINUE);
4517      break;
4518   case nir_jump_return:
4519   default:
4520      unreachable("unknown jump");
4521   }
4522}
4523
4524/**
4525 * This helper takes the result of a load operation that reads 32-bit elements
4526 * in this format:
4527 *
4528 * x x x x x x x x
4529 * y y y y y y y y
4530 * z z z z z z z z
4531 * w w w w w w w w
4532 *
4533 * and shuffles the data to get this:
4534 *
4535 * x y x y x y x y
4536 * x y x y x y x y
4537 * z w z w z w z w
4538 * z w z w z w z w
4539 *
4540 * Which is exactly what we want if the load is reading 64-bit components
4541 * like doubles, where x represents the low 32-bit of the x double component
4542 * and y represents the high 32-bit of the x double component (likewise with
4543 * z and w for double component y). The parameter @components represents
4544 * the number of 64-bit components present in @src. This would typically be
4545 * 2 at most, since we can only fit 2 double elements in the result of a
4546 * vec4 load.
4547 *
4548 * Notice that @dst and @src can be the same register.
4549 */
4550void
4551shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4552                                        const fs_reg &dst,
4553                                        const fs_reg &src,
4554                                        uint32_t components)
4555{
4556   assert(type_sz(src.type) == 4);
4557   assert(type_sz(dst.type) == 8);
4558
4559   /* A temporary that we will use to shuffle the 32-bit data of each
4560    * component in the vector into valid 64-bit data. We can't write directly
4561    * to dst because dst can be (and would usually be) the same as src
4562    * and in that case the first MOV in the loop below would overwrite the
4563    * data read in the second MOV.
4564    */
4565   fs_reg tmp = bld.vgrf(dst.type);
4566
4567   for (unsigned i = 0; i < components; i++) {
4568      const fs_reg component_i = offset(src, bld, 2 * i);
4569
4570      bld.MOV(subscript(tmp, src.type, 0), component_i);
4571      bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4572
4573      bld.MOV(offset(dst, bld, i), tmp);
4574   }
4575}
4576
4577/**
4578 * This helper does the inverse operation of
4579 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4580 *
4581 * We need to do this when we are going to use untyped write messsages that
4582 * operate with 32-bit components in order to arrange our 64-bit data to be
4583 * in the expected layout.
4584 *
4585 * Notice that callers of this function, unlike in the case of the inverse
4586 * operation, would typically need to call this with dst and src being
4587 * different registers, since they would otherwise corrupt the original
4588 * 64-bit data they are about to write. Because of this the function checks
4589 * that the src and dst regions involved in the operation do not overlap.
4590 */
4591void
4592shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4593                                   const fs_reg &dst,
4594                                   const fs_reg &src,
4595                                   uint32_t components)
4596{
4597   assert(type_sz(src.type) == 8);
4598   assert(type_sz(dst.type) == 4);
4599
4600   assert(!regions_overlap(
4601             dst, 2 * components * dst.component_size(bld.dispatch_width()),
4602             src, components * src.component_size(bld.dispatch_width())));
4603
4604   for (unsigned i = 0; i < components; i++) {
4605      const fs_reg component_i = offset(src, bld, i);
4606      bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4607      bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4608   }
4609}
4610
4611fs_reg
4612setup_imm_df(const fs_builder &bld, double v)
4613{
4614   const struct gen_device_info *devinfo = bld.shader->devinfo;
4615   assert(devinfo->gen >= 7);
4616
4617   if (devinfo->gen >= 8)
4618      return brw_imm_df(v);
4619
4620   /* gen7.5 does not support DF immediates straighforward but the DIM
4621    * instruction allows to set the 64-bit immediate value.
4622    */
4623   if (devinfo->is_haswell) {
4624      const fs_builder ubld = bld.exec_all().group(1, 0);
4625      fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
4626      ubld.DIM(dst, brw_imm_df(v));
4627      return component(dst, 0);
4628   }
4629
4630   /* gen7 does not support DF immediates, so we generate a 64-bit constant by
4631    * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
4632    * the high 32-bit to suboffset 4 and then applying a stride of 0.
4633    *
4634    * Alternatively, we could also produce a normal VGRF (without stride 0)
4635    * by writing to all the channels in the VGRF, however, that would hit the
4636    * gen7 bug where we have to split writes that span more than 1 register
4637    * into instructions with a width of 4 (otherwise the write to the second
4638    * register written runs into an execmask hardware bug) which isn't very
4639    * nice.
4640    */
4641   union {
4642      double d;
4643      struct {
4644         uint32_t i1;
4645         uint32_t i2;
4646      };
4647   } di;
4648
4649   di.d = v;
4650
4651   const fs_builder ubld = bld.exec_all().group(1, 0);
4652   const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4653   ubld.MOV(tmp, brw_imm_ud(di.i1));
4654   ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
4655
4656   return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
4657}
4658