1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36#include "main/glheader.h"
37#include "main/mtypes.h"
38#include "main/macros.h"
39#include "main/enums.h"
40#include "main/ffvertex_prog.h"
41#include "program/program.h"
42#include "program/prog_cache.h"
43#include "program/prog_instruction.h"
44#include "program/prog_parameter.h"
45#include "program/prog_print.h"
46#include "program/prog_statevars.h"
47#include "util/bitscan.h"
48
49
50/** Max of number of lights and texture coord units */
51#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
52
53struct state_key {
54   unsigned light_color_material_mask:12;
55   unsigned light_global_enabled:1;
56   unsigned light_local_viewer:1;
57   unsigned light_twoside:1;
58   unsigned material_shininess_is_zero:1;
59   unsigned need_eye_coords:1;
60   unsigned normalize:1;
61   unsigned rescale_normals:1;
62
63   unsigned fog_source_is_depth:1;
64   unsigned fog_distance_mode:2;
65   unsigned separate_specular:1;
66   unsigned point_attenuated:1;
67   unsigned point_array:1;
68   unsigned texture_enabled_global:1;
69   unsigned fragprog_inputs_read:12;
70
71   GLbitfield64 varying_vp_inputs;
72
73   struct {
74      unsigned light_enabled:1;
75      unsigned light_eyepos3_is_zero:1;
76      unsigned light_spotcutoff_is_180:1;
77      unsigned light_attenuated:1;
78      unsigned texunit_really_enabled:1;
79      unsigned texmat_enabled:1;
80      unsigned coord_replace:1;
81      unsigned texgen_enabled:4;
82      unsigned texgen_mode0:4;
83      unsigned texgen_mode1:4;
84      unsigned texgen_mode2:4;
85      unsigned texgen_mode3:4;
86   } unit[NUM_UNITS];
87};
88
89
90#define TXG_NONE           0
91#define TXG_OBJ_LINEAR     1
92#define TXG_EYE_LINEAR     2
93#define TXG_SPHERE_MAP     3
94#define TXG_REFLECTION_MAP 4
95#define TXG_NORMAL_MAP     5
96
97static GLuint translate_texgen( GLboolean enabled, GLenum mode )
98{
99   if (!enabled)
100      return TXG_NONE;
101
102   switch (mode) {
103   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
104   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
105   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
106   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
107   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
108   default: return TXG_NONE;
109   }
110}
111
112#define FDM_EYE_RADIAL    0
113#define FDM_EYE_PLANE     1
114#define FDM_EYE_PLANE_ABS 2
115
116static GLuint translate_fog_distance_mode( GLenum mode )
117{
118   switch (mode) {
119   case GL_EYE_RADIAL_NV:
120      return FDM_EYE_RADIAL;
121   case GL_EYE_PLANE:
122      return FDM_EYE_PLANE;
123   default: /* shouldn't happen; fall through to a sensible default */
124   case GL_EYE_PLANE_ABSOLUTE_NV:
125      return FDM_EYE_PLANE_ABS;
126   }
127}
128
129static GLboolean check_active_shininess( struct gl_context *ctx,
130                                         const struct state_key *key,
131                                         GLuint side )
132{
133   GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
134
135   if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
136       (key->light_color_material_mask & (1 << attr)))
137      return GL_TRUE;
138
139   if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr))
140      return GL_TRUE;
141
142   if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
143      return GL_TRUE;
144
145   return GL_FALSE;
146}
147
148
149static void make_state_key( struct gl_context *ctx, struct state_key *key )
150{
151   const struct gl_program *fp = ctx->FragmentProgram._Current;
152   GLbitfield mask;
153
154   memset(key, 0, sizeof(struct state_key));
155
156   /* This now relies on texenvprogram.c being active:
157    */
158   assert(fp);
159
160   key->need_eye_coords = ctx->_NeedEyeCoords;
161
162   key->fragprog_inputs_read = fp->info.inputs_read;
163   key->varying_vp_inputs = ctx->varying_vp_inputs;
164
165   if (ctx->RenderMode == GL_FEEDBACK) {
166      /* make sure the vertprog emits color and tex0 */
167      key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
168   }
169
170   key->separate_specular = (ctx->Light.Model.ColorControl ==
171			     GL_SEPARATE_SPECULAR_COLOR);
172
173   if (ctx->Light.Enabled) {
174      key->light_global_enabled = 1;
175
176      if (ctx->Light.Model.LocalViewer)
177	 key->light_local_viewer = 1;
178
179      if (ctx->Light.Model.TwoSide)
180	 key->light_twoside = 1;
181
182      if (ctx->Light.ColorMaterialEnabled) {
183	 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
184      }
185
186      mask = ctx->Light._EnabledLights;
187      while (mask) {
188         const int i = u_bit_scan(&mask);
189         struct gl_light *light = &ctx->Light.Light[i];
190
191         key->unit[i].light_enabled = 1;
192
193         if (light->EyePosition[3] == 0.0F)
194            key->unit[i].light_eyepos3_is_zero = 1;
195
196         if (light->SpotCutoff == 180.0F)
197            key->unit[i].light_spotcutoff_is_180 = 1;
198
199         if (light->ConstantAttenuation != 1.0F ||
200             light->LinearAttenuation != 0.0F ||
201             light->QuadraticAttenuation != 0.0F)
202            key->unit[i].light_attenuated = 1;
203      }
204
205      if (check_active_shininess(ctx, key, 0)) {
206         key->material_shininess_is_zero = 0;
207      }
208      else if (key->light_twoside &&
209               check_active_shininess(ctx, key, 1)) {
210         key->material_shininess_is_zero = 0;
211      }
212      else {
213         key->material_shininess_is_zero = 1;
214      }
215   }
216
217   if (ctx->Transform.Normalize)
218      key->normalize = 1;
219
220   if (ctx->Transform.RescaleNormals)
221      key->rescale_normals = 1;
222
223   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
224      key->fog_source_is_depth = 1;
225      key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
226   }
227
228   if (ctx->Point._Attenuated)
229      key->point_attenuated = 1;
230
231   if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
232      key->point_array = 1;
233
234   if (ctx->Texture._TexGenEnabled ||
235       ctx->Texture._TexMatEnabled ||
236       ctx->Texture._MaxEnabledTexImageUnit != -1)
237      key->texture_enabled_global = 1;
238
239   mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled
240      | ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace;
241   while (mask) {
242      const int i = u_bit_scan(&mask);
243      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
244
245      if (texUnit->_Current)
246	 key->unit[i].texunit_really_enabled = 1;
247
248      if (ctx->Point.PointSprite)
249	 if (ctx->Point.CoordReplace & (1u << i))
250	    key->unit[i].coord_replace = 1;
251
252      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
253	 key->unit[i].texmat_enabled = 1;
254
255      if (texUnit->TexGenEnabled) {
256	 key->unit[i].texgen_enabled = 1;
257
258	 key->unit[i].texgen_mode0 =
259	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
260			      texUnit->GenS.Mode );
261	 key->unit[i].texgen_mode1 =
262	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
263			      texUnit->GenT.Mode );
264	 key->unit[i].texgen_mode2 =
265	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
266			      texUnit->GenR.Mode );
267	 key->unit[i].texgen_mode3 =
268	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
269			      texUnit->GenQ.Mode );
270      }
271   }
272}
273
274
275
276/* Very useful debugging tool - produces annotated listing of
277 * generated program with line/function references for each
278 * instruction back into this file:
279 */
280#define DISASSEM 0
281
282
283/* Use uregs to represent registers internally, translate to Mesa's
284 * expected formats on emit.
285 *
286 * NOTE: These are passed by value extensively in this file rather
287 * than as usual by pointer reference.  If this disturbs you, try
288 * remembering they are just 32bits in size.
289 *
290 * GCC is smart enough to deal with these dword-sized structures in
291 * much the same way as if I had defined them as dwords and was using
292 * macros to access and set the fields.  This is much nicer and easier
293 * to evolve.
294 */
295struct ureg {
296   GLuint file:4;
297   GLint idx:9;      /* relative addressing may be negative */
298                     /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
299   GLuint negate:1;
300   GLuint swz:12;
301   GLuint pad:6;
302};
303
304
305struct tnl_program {
306   const struct state_key *state;
307   struct gl_program *program;
308   GLuint max_inst;  /** number of instructions allocated for program */
309   GLboolean mvp_with_dp4;
310
311   GLuint temp_in_use;
312   GLuint temp_reserved;
313
314   struct ureg eye_position;
315   struct ureg eye_position_z;
316   struct ureg eye_position_normalized;
317   struct ureg transformed_normal;
318   struct ureg identity;
319
320   GLuint materials;
321   GLuint color_materials;
322};
323
324
325static const struct ureg undef = {
326   PROGRAM_UNDEFINED,
327   0,
328   0,
329   0,
330   0
331};
332
333/* Local shorthand:
334 */
335#define X    SWIZZLE_X
336#define Y    SWIZZLE_Y
337#define Z    SWIZZLE_Z
338#define W    SWIZZLE_W
339
340
341/* Construct a ureg:
342 */
343static struct ureg make_ureg(GLuint file, GLint idx)
344{
345   struct ureg reg;
346   reg.file = file;
347   reg.idx = idx;
348   reg.negate = 0;
349   reg.swz = SWIZZLE_NOOP;
350   reg.pad = 0;
351   return reg;
352}
353
354
355static struct ureg negate( struct ureg reg )
356{
357   reg.negate ^= 1;
358   return reg;
359}
360
361
362static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
363{
364   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
365			   GET_SWZ(reg.swz, y),
366			   GET_SWZ(reg.swz, z),
367			   GET_SWZ(reg.swz, w));
368   return reg;
369}
370
371
372static struct ureg swizzle1( struct ureg reg, int x )
373{
374   return swizzle(reg, x, x, x, x);
375}
376
377
378static struct ureg get_temp( struct tnl_program *p )
379{
380   int bit = ffs( ~p->temp_in_use );
381   if (!bit) {
382      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
383      exit(1);
384   }
385
386   if ((GLuint) bit > p->program->arb.NumTemporaries)
387      p->program->arb.NumTemporaries = bit;
388
389   p->temp_in_use |= 1<<(bit-1);
390   return make_ureg(PROGRAM_TEMPORARY, bit-1);
391}
392
393
394static struct ureg reserve_temp( struct tnl_program *p )
395{
396   struct ureg temp = get_temp( p );
397   p->temp_reserved |= 1<<temp.idx;
398   return temp;
399}
400
401
402static void release_temp( struct tnl_program *p, struct ureg reg )
403{
404   if (reg.file == PROGRAM_TEMPORARY) {
405      p->temp_in_use &= ~(1<<reg.idx);
406      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
407   }
408}
409
410static void release_temps( struct tnl_program *p )
411{
412   p->temp_in_use = p->temp_reserved;
413}
414
415
416static struct ureg register_param5(struct tnl_program *p,
417				   GLint s0,
418				   GLint s1,
419				   GLint s2,
420				   GLint s3,
421                                   GLint s4)
422{
423   gl_state_index tokens[STATE_LENGTH];
424   GLint idx;
425   tokens[0] = s0;
426   tokens[1] = s1;
427   tokens[2] = s2;
428   tokens[3] = s3;
429   tokens[4] = s4;
430   idx = _mesa_add_state_reference(p->program->Parameters, tokens );
431   return make_ureg(PROGRAM_STATE_VAR, idx);
432}
433
434
435#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
436#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
437#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
438#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
439
440
441
442/**
443 * \param input  one of VERT_ATTRIB_x tokens.
444 */
445static struct ureg register_input( struct tnl_program *p, GLuint input )
446{
447   assert(input < VERT_ATTRIB_MAX);
448
449   if (p->state->varying_vp_inputs & VERT_BIT(input)) {
450      p->program->info.inputs_read |= VERT_BIT(input);
451      return make_ureg(PROGRAM_INPUT, input);
452   }
453   else {
454      return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
455   }
456}
457
458
459/**
460 * \param input  one of VARYING_SLOT_x tokens.
461 */
462static struct ureg register_output( struct tnl_program *p, GLuint output )
463{
464   p->program->info.outputs_written |= BITFIELD64_BIT(output);
465   return make_ureg(PROGRAM_OUTPUT, output);
466}
467
468
469static struct ureg register_const4f( struct tnl_program *p,
470			      GLfloat s0,
471			      GLfloat s1,
472			      GLfloat s2,
473			      GLfloat s3)
474{
475   gl_constant_value values[4];
476   GLint idx;
477   GLuint swizzle;
478   values[0].f = s0;
479   values[1].f = s1;
480   values[2].f = s2;
481   values[3].f = s3;
482   idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4,
483                                    &swizzle );
484   assert(swizzle == SWIZZLE_NOOP);
485   return make_ureg(PROGRAM_CONSTANT, idx);
486}
487
488#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
489#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
490#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
491#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
492
493static GLboolean is_undef( struct ureg reg )
494{
495   return reg.file == PROGRAM_UNDEFINED;
496}
497
498
499static struct ureg get_identity_param( struct tnl_program *p )
500{
501   if (is_undef(p->identity))
502      p->identity = register_const4f(p, 0,0,0,1);
503
504   return p->identity;
505}
506
507static void register_matrix_param5( struct tnl_program *p,
508				    GLint s0, /* modelview, projection, etc */
509				    GLint s1, /* texture matrix number */
510				    GLint s2, /* first row */
511				    GLint s3, /* last row */
512				    GLint s4, /* inverse, transpose, etc */
513				    struct ureg *matrix )
514{
515   GLint i;
516
517   /* This is a bit sad as the support is there to pull the whole
518    * matrix out in one go:
519    */
520   for (i = 0; i <= s3 - s2; i++)
521      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
522}
523
524
525static void emit_arg( struct prog_src_register *src,
526		      struct ureg reg )
527{
528   src->File = reg.file;
529   src->Index = reg.idx;
530   src->Swizzle = reg.swz;
531   src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
532   src->RelAddr = 0;
533   /* Check that bitfield sizes aren't exceeded */
534   assert(src->Index == reg.idx);
535}
536
537
538static void emit_dst( struct prog_dst_register *dst,
539		      struct ureg reg, GLuint mask )
540{
541   dst->File = reg.file;
542   dst->Index = reg.idx;
543   /* allow zero as a shorthand for xyzw */
544   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
545   /* Check that bitfield sizes aren't exceeded */
546   assert(dst->Index == reg.idx);
547}
548
549
550static void debug_insn( struct prog_instruction *inst, const char *fn,
551			GLuint line )
552{
553   if (DISASSEM) {
554      static const char *last_fn;
555
556      if (fn != last_fn) {
557	 last_fn = fn;
558	 printf("%s:\n", fn);
559      }
560
561      printf("%d:\t", line);
562      _mesa_print_instruction(inst);
563   }
564}
565
566
567static void emit_op3fn(struct tnl_program *p,
568                       enum prog_opcode op,
569		       struct ureg dest,
570		       GLuint mask,
571		       struct ureg src0,
572		       struct ureg src1,
573		       struct ureg src2,
574		       const char *fn,
575		       GLuint line)
576{
577   GLuint nr;
578   struct prog_instruction *inst;
579
580   assert(p->program->arb.NumInstructions <= p->max_inst);
581
582   if (p->program->arb.NumInstructions == p->max_inst) {
583      /* need to extend the program's instruction array */
584      struct prog_instruction *newInst;
585
586      /* double the size */
587      p->max_inst *= 2;
588
589      newInst =
590         rzalloc_array(p->program, struct prog_instruction, p->max_inst);
591      if (!newInst) {
592         _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
593         return;
594      }
595
596      _mesa_copy_instructions(newInst, p->program->arb.Instructions,
597                              p->program->arb.NumInstructions);
598
599      ralloc_free(p->program->arb.Instructions);
600
601      p->program->arb.Instructions = newInst;
602   }
603
604   nr = p->program->arb.NumInstructions++;
605
606   inst = &p->program->arb.Instructions[nr];
607   inst->Opcode = (enum prog_opcode) op;
608
609   emit_arg( &inst->SrcReg[0], src0 );
610   emit_arg( &inst->SrcReg[1], src1 );
611   emit_arg( &inst->SrcReg[2], src2 );
612
613   emit_dst( &inst->DstReg, dest, mask );
614
615   debug_insn(inst, fn, line);
616}
617
618
619#define emit_op3(p, op, dst, mask, src0, src1, src2) \
620   emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
621
622#define emit_op2(p, op, dst, mask, src0, src1) \
623    emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
624
625#define emit_op1(p, op, dst, mask, src0) \
626    emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
627
628
629static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
630{
631   if (reg.file == PROGRAM_TEMPORARY &&
632       !(p->temp_reserved & (1<<reg.idx)))
633      return reg;
634   else {
635      struct ureg temp = get_temp(p);
636      emit_op1(p, OPCODE_MOV, temp, 0, reg);
637      return temp;
638   }
639}
640
641
642/* Currently no tracking performed of input/output/register size or
643 * active elements.  Could be used to reduce these operations, as
644 * could the matrix type.
645 */
646static void emit_matrix_transform_vec4( struct tnl_program *p,
647					struct ureg dest,
648					const struct ureg *mat,
649					struct ureg src)
650{
651   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
652   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
653   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
654   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
655}
656
657
658/* This version is much easier to implement if writemasks are not
659 * supported natively on the target or (like SSE), the target doesn't
660 * have a clean/obvious dotproduct implementation.
661 */
662static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
663						  struct ureg dest,
664						  const struct ureg *mat,
665						  struct ureg src)
666{
667   struct ureg tmp;
668
669   if (dest.file != PROGRAM_TEMPORARY)
670      tmp = get_temp(p);
671   else
672      tmp = dest;
673
674   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
675   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
676   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
677   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
678
679   if (dest.file != PROGRAM_TEMPORARY)
680      release_temp(p, tmp);
681}
682
683
684static void emit_matrix_transform_vec3( struct tnl_program *p,
685					struct ureg dest,
686					const struct ureg *mat,
687					struct ureg src)
688{
689   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
690   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
691   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
692}
693
694
695static void emit_normalize_vec3( struct tnl_program *p,
696				 struct ureg dest,
697				 struct ureg src )
698{
699   struct ureg tmp = get_temp(p);
700   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
701   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
702   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
703   release_temp(p, tmp);
704}
705
706
707static void emit_passthrough( struct tnl_program *p,
708			      GLuint input,
709			      GLuint output )
710{
711   struct ureg out = register_output(p, output);
712   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
713}
714
715
716static struct ureg get_eye_position( struct tnl_program *p )
717{
718   if (is_undef(p->eye_position)) {
719      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
720      struct ureg modelview[4];
721
722      p->eye_position = reserve_temp(p);
723
724      if (p->mvp_with_dp4) {
725	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
726                                 0, modelview );
727
728	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
729      }
730      else {
731	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
732				 STATE_MATRIX_TRANSPOSE, modelview );
733
734	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
735      }
736   }
737
738   return p->eye_position;
739}
740
741
742static struct ureg get_eye_position_z( struct tnl_program *p )
743{
744   if (!is_undef(p->eye_position))
745      return swizzle1(p->eye_position, Z);
746
747   if (is_undef(p->eye_position_z)) {
748      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
749      struct ureg modelview[4];
750
751      p->eye_position_z = reserve_temp(p);
752
753      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
754                              0, modelview );
755
756      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
757   }
758
759   return p->eye_position_z;
760}
761
762
763static struct ureg get_eye_position_normalized( struct tnl_program *p )
764{
765   if (is_undef(p->eye_position_normalized)) {
766      struct ureg eye = get_eye_position(p);
767      p->eye_position_normalized = reserve_temp(p);
768      emit_normalize_vec3(p, p->eye_position_normalized, eye);
769   }
770
771   return p->eye_position_normalized;
772}
773
774
775static struct ureg get_transformed_normal( struct tnl_program *p )
776{
777   if (is_undef(p->transformed_normal) &&
778       !p->state->need_eye_coords &&
779       !p->state->normalize &&
780       !(p->state->need_eye_coords == p->state->rescale_normals))
781   {
782      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
783   }
784   else if (is_undef(p->transformed_normal))
785   {
786      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
787      struct ureg mvinv[3];
788      struct ureg transformed_normal = reserve_temp(p);
789
790      if (p->state->need_eye_coords) {
791         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
792                                 STATE_MATRIX_INVTRANS, mvinv );
793
794         /* Transform to eye space:
795          */
796         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
797         normal = transformed_normal;
798      }
799
800      /* Normalize/Rescale:
801       */
802      if (p->state->normalize) {
803	 emit_normalize_vec3( p, transformed_normal, normal );
804         normal = transformed_normal;
805      }
806      else if (p->state->need_eye_coords == p->state->rescale_normals) {
807         /* This is already adjusted for eye/non-eye rendering:
808          */
809	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
810                                               STATE_NORMAL_SCALE);
811
812	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
813         normal = transformed_normal;
814      }
815
816      assert(normal.file == PROGRAM_TEMPORARY);
817      p->transformed_normal = normal;
818   }
819
820   return p->transformed_normal;
821}
822
823
824static void build_hpos( struct tnl_program *p )
825{
826   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
827   struct ureg hpos = register_output( p, VARYING_SLOT_POS );
828   struct ureg mvp[4];
829
830   if (p->mvp_with_dp4) {
831      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
832			      0, mvp );
833      emit_matrix_transform_vec4( p, hpos, mvp, pos );
834   }
835   else {
836      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
837			      STATE_MATRIX_TRANSPOSE, mvp );
838      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
839   }
840}
841
842
843static GLuint material_attrib( GLuint side, GLuint property )
844{
845   return (property - STATE_AMBIENT) * 2 + side;
846}
847
848
849/**
850 * Get a bitmask of which material values vary on a per-vertex basis.
851 */
852static void set_material_flags( struct tnl_program *p )
853{
854   p->color_materials = 0;
855   p->materials = 0;
856
857   if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
858      p->materials =
859	 p->color_materials = p->state->light_color_material_mask;
860   }
861
862   p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
863}
864
865
866static struct ureg get_material( struct tnl_program *p, GLuint side,
867				 GLuint property )
868{
869   GLuint attrib = material_attrib(side, property);
870
871   if (p->color_materials & (1<<attrib))
872      return register_input(p, VERT_ATTRIB_COLOR0);
873   else if (p->materials & (1<<attrib)) {
874      /* Put material values in the GENERIC slots -- they are not used
875       * for anything in fixed function mode.
876       */
877      return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
878   }
879   else
880      return register_param3( p, STATE_MATERIAL, side, property );
881}
882
883#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
884				   MAT_BIT_FRONT_AMBIENT | \
885				   MAT_BIT_FRONT_DIFFUSE) << (side))
886
887
888/**
889 * Either return a precalculated constant value or emit code to
890 * calculate these values dynamically in the case where material calls
891 * are present between begin/end pairs.
892 *
893 * Probably want to shift this to the program compilation phase - if
894 * we always emitted the calculation here, a smart compiler could
895 * detect that it was constant (given a certain set of inputs), and
896 * lift it out of the main loop.  That way the programs created here
897 * would be independent of the vertex_buffer details.
898 */
899static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
900{
901   if (p->materials & SCENE_COLOR_BITS(side)) {
902      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
903      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
904      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
905      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
906      struct ureg tmp = make_temp(p, material_diffuse);
907      emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
908	       material_ambient, material_emission);
909      return tmp;
910   }
911   else
912      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
913}
914
915
916static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
917				  GLuint side, GLuint property )
918{
919   GLuint attrib = material_attrib(side, property);
920   if (p->materials & (1<<attrib)) {
921      struct ureg light_value =
922	 register_param3(p, STATE_LIGHT, light, property);
923      struct ureg material_value = get_material(p, side, property);
924      struct ureg tmp = get_temp(p);
925      emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
926      return tmp;
927   }
928   else
929      return register_param4(p, STATE_LIGHTPROD, light, side, property);
930}
931
932
933static struct ureg calculate_light_attenuation( struct tnl_program *p,
934						GLuint i,
935						struct ureg VPpli,
936						struct ureg dist )
937{
938   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
939					     STATE_ATTENUATION);
940   struct ureg att = undef;
941
942   /* Calculate spot attenuation:
943    */
944   if (!p->state->unit[i].light_spotcutoff_is_180) {
945      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
946						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
947      struct ureg spot = get_temp(p);
948      struct ureg slt = get_temp(p);
949
950      att = get_temp(p);
951
952      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
953      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
954      emit_op1(p, OPCODE_ABS, spot, 0, spot);
955      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
956      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
957
958      release_temp(p, spot);
959      release_temp(p, slt);
960   }
961
962   /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
963    *
964    * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
965    */
966   if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
967      if (is_undef(att))
968         att = get_temp(p);
969      /* 1/d,d,d,1/d */
970      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
971      /* 1,d,d*d,1/d */
972      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
973      /* 1/dist-atten */
974      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
975
976      if (!p->state->unit[i].light_spotcutoff_is_180) {
977	 /* dist-atten */
978	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
979	 /* spot-atten * dist-atten */
980	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
981      }
982      else {
983	 /* dist-atten */
984	 emit_op1(p, OPCODE_RCP, att, 0, dist);
985      }
986   }
987
988   return att;
989}
990
991
992/**
993 * Compute:
994 *   lit.y = MAX(0, dots.x)
995 *   lit.z = SLT(0, dots.x)
996 */
997static void emit_degenerate_lit( struct tnl_program *p,
998                                 struct ureg lit,
999                                 struct ureg dots )
1000{
1001   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
1002
1003   /* Note that lit.x & lit.w will not be examined.  Note also that
1004    * dots.xyzw == dots.xxxx.
1005    */
1006
1007   /* MAX lit, id, dots;
1008    */
1009   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1010
1011   /* result[2] = (in > 0 ? 1 : 0)
1012    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1013    */
1014   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1015}
1016
1017
1018/* Need to add some addtional parameters to allow lighting in object
1019 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1020 * space lighting.
1021 */
1022static void build_lighting( struct tnl_program *p )
1023{
1024   const GLboolean twoside = p->state->light_twoside;
1025   const GLboolean separate = p->state->separate_specular;
1026   GLuint nr_lights = 0, count = 0;
1027   struct ureg normal = get_transformed_normal(p);
1028   struct ureg lit = get_temp(p);
1029   struct ureg dots = get_temp(p);
1030   struct ureg _col0 = undef, _col1 = undef;
1031   struct ureg _bfc0 = undef, _bfc1 = undef;
1032   GLuint i;
1033
1034   /*
1035    * NOTE:
1036    * dots.x = dot(normal, VPpli)
1037    * dots.y = dot(normal, halfAngle)
1038    * dots.z = back.shininess
1039    * dots.w = front.shininess
1040    */
1041
1042   for (i = 0; i < MAX_LIGHTS; i++)
1043      if (p->state->unit[i].light_enabled)
1044	 nr_lights++;
1045
1046   set_material_flags(p);
1047
1048   {
1049      if (!p->state->material_shininess_is_zero) {
1050         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1051         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1052         release_temp(p, shininess);
1053      }
1054
1055      _col0 = make_temp(p, get_scenecolor(p, 0));
1056      if (separate)
1057	 _col1 = make_temp(p, get_identity_param(p));
1058      else
1059	 _col1 = _col0;
1060   }
1061
1062   if (twoside) {
1063      if (!p->state->material_shininess_is_zero) {
1064         /* Note that we negate the back-face specular exponent here.
1065          * The negation will be un-done later in the back-face code below.
1066          */
1067         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1068         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1069                  negate(swizzle1(shininess,X)));
1070         release_temp(p, shininess);
1071      }
1072
1073      _bfc0 = make_temp(p, get_scenecolor(p, 1));
1074      if (separate)
1075	 _bfc1 = make_temp(p, get_identity_param(p));
1076      else
1077	 _bfc1 = _bfc0;
1078   }
1079
1080   /* If no lights, still need to emit the scenecolor.
1081    */
1082   {
1083      struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1084      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1085   }
1086
1087   if (separate) {
1088      struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1089      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1090   }
1091
1092   if (twoside) {
1093      struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1094      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1095   }
1096
1097   if (twoside && separate) {
1098      struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1099      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1100   }
1101
1102   if (nr_lights == 0) {
1103      release_temps(p);
1104      return;
1105   }
1106
1107   for (i = 0; i < MAX_LIGHTS; i++) {
1108      if (p->state->unit[i].light_enabled) {
1109	 struct ureg half = undef;
1110	 struct ureg att = undef, VPpli = undef;
1111	 struct ureg dist = undef;
1112
1113	 count++;
1114         if (p->state->unit[i].light_eyepos3_is_zero) {
1115             VPpli = register_param3(p, STATE_INTERNAL,
1116                                     STATE_LIGHT_POSITION_NORMALIZED, i);
1117         } else {
1118            struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1119                                               STATE_LIGHT_POSITION, i);
1120            struct ureg V = get_eye_position(p);
1121
1122            VPpli = get_temp(p);
1123            dist = get_temp(p);
1124
1125            /* Calculate VPpli vector
1126             */
1127            emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1128
1129            /* Normalize VPpli.  The dist value also used in
1130             * attenuation below.
1131             */
1132            emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1133            emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1134            emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1135         }
1136
1137         /* Calculate attenuation:
1138          */
1139         att = calculate_light_attenuation(p, i, VPpli, dist);
1140         release_temp(p, dist);
1141
1142	 /* Calculate viewer direction, or use infinite viewer:
1143	  */
1144         if (!p->state->material_shininess_is_zero) {
1145            if (p->state->light_local_viewer) {
1146               struct ureg eye_hat = get_eye_position_normalized(p);
1147               half = get_temp(p);
1148               emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1149               emit_normalize_vec3(p, half, half);
1150            } else if (p->state->unit[i].light_eyepos3_is_zero) {
1151               half = register_param3(p, STATE_INTERNAL,
1152                                      STATE_LIGHT_HALF_VECTOR, i);
1153            } else {
1154               struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1155               half = get_temp(p);
1156               emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1157               emit_normalize_vec3(p, half, half);
1158            }
1159	 }
1160
1161	 /* Calculate dot products:
1162	  */
1163         if (p->state->material_shininess_is_zero) {
1164            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1165         }
1166         else {
1167            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1168            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1169         }
1170
1171	 /* Front face lighting:
1172	  */
1173	 {
1174	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1175	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1176	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1177	    struct ureg res0, res1;
1178	    GLuint mask0, mask1;
1179
1180	    if (count == nr_lights) {
1181	       if (separate) {
1182		  mask0 = WRITEMASK_XYZ;
1183		  mask1 = WRITEMASK_XYZ;
1184		  res0 = register_output( p, VARYING_SLOT_COL0 );
1185		  res1 = register_output( p, VARYING_SLOT_COL1 );
1186	       }
1187	       else {
1188		  mask0 = 0;
1189		  mask1 = WRITEMASK_XYZ;
1190		  res0 = _col0;
1191		  res1 = register_output( p, VARYING_SLOT_COL0 );
1192	       }
1193	    }
1194            else {
1195	       mask0 = 0;
1196	       mask1 = 0;
1197	       res0 = _col0;
1198	       res1 = _col1;
1199	    }
1200
1201	    if (!is_undef(att)) {
1202               /* light is attenuated by distance */
1203               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1204               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1205               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1206            }
1207            else if (!p->state->material_shininess_is_zero) {
1208               /* there's a non-zero specular term */
1209               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1210               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1211            }
1212            else {
1213               /* no attenutation, no specular */
1214               emit_degenerate_lit(p, lit, dots);
1215               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1216            }
1217
1218	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1219	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1220
1221	    release_temp(p, ambient);
1222	    release_temp(p, diffuse);
1223	    release_temp(p, specular);
1224	 }
1225
1226	 /* Back face lighting:
1227	  */
1228	 if (twoside) {
1229	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1230	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1231	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1232	    struct ureg res0, res1;
1233	    GLuint mask0, mask1;
1234
1235	    if (count == nr_lights) {
1236	       if (separate) {
1237		  mask0 = WRITEMASK_XYZ;
1238		  mask1 = WRITEMASK_XYZ;
1239		  res0 = register_output( p, VARYING_SLOT_BFC0 );
1240		  res1 = register_output( p, VARYING_SLOT_BFC1 );
1241	       }
1242	       else {
1243		  mask0 = 0;
1244		  mask1 = WRITEMASK_XYZ;
1245		  res0 = _bfc0;
1246		  res1 = register_output( p, VARYING_SLOT_BFC0 );
1247	       }
1248	    }
1249            else {
1250	       res0 = _bfc0;
1251	       res1 = _bfc1;
1252	       mask0 = 0;
1253	       mask1 = 0;
1254	    }
1255
1256            /* For the back face we need to negate the X and Y component
1257             * dot products.  dots.Z has the negated back-face specular
1258             * exponent.  We swizzle that into the W position.  This
1259             * negation makes the back-face specular term positive again.
1260             */
1261            dots = negate(swizzle(dots,X,Y,W,Z));
1262
1263	    if (!is_undef(att)) {
1264               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1265	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1266               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1267            }
1268            else if (!p->state->material_shininess_is_zero) {
1269               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1270               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1271            }
1272            else {
1273               emit_degenerate_lit(p, lit, dots);
1274               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1275            }
1276
1277	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1278	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1279            /* restore dots to its original state for subsequent lights
1280             * by negating and swizzling again.
1281             */
1282            dots = negate(swizzle(dots,X,Y,W,Z));
1283
1284	    release_temp(p, ambient);
1285	    release_temp(p, diffuse);
1286	    release_temp(p, specular);
1287	 }
1288
1289	 release_temp(p, half);
1290	 release_temp(p, VPpli);
1291	 release_temp(p, att);
1292      }
1293   }
1294
1295   release_temps( p );
1296}
1297
1298
1299static void build_fog( struct tnl_program *p )
1300{
1301   struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1302   struct ureg input;
1303
1304   if (p->state->fog_source_is_depth) {
1305
1306      switch (p->state->fog_distance_mode) {
1307      case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1308         input = get_eye_position(p);
1309         emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1310         emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1311         emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1312         break;
1313      case FDM_EYE_PLANE: /* Z = Ze */
1314         input = get_eye_position_z(p);
1315         emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1316         break;
1317      case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1318         input = get_eye_position_z(p);
1319         emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1320         break;
1321      default:
1322         assert(!"Bad fog mode in build_fog()");
1323         break;
1324      }
1325
1326   }
1327   else {
1328      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1329      emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1330   }
1331
1332   emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1333}
1334
1335
1336static void build_reflect_texgen( struct tnl_program *p,
1337				  struct ureg dest,
1338				  GLuint writemask )
1339{
1340   struct ureg normal = get_transformed_normal(p);
1341   struct ureg eye_hat = get_eye_position_normalized(p);
1342   struct ureg tmp = get_temp(p);
1343
1344   /* n.u */
1345   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1346   /* 2n.u */
1347   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1348   /* (-2n.u)n + u */
1349   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1350
1351   release_temp(p, tmp);
1352}
1353
1354
1355static void build_sphere_texgen( struct tnl_program *p,
1356				 struct ureg dest,
1357				 GLuint writemask )
1358{
1359   struct ureg normal = get_transformed_normal(p);
1360   struct ureg eye_hat = get_eye_position_normalized(p);
1361   struct ureg tmp = get_temp(p);
1362   struct ureg half = register_scalar_const(p, .5);
1363   struct ureg r = get_temp(p);
1364   struct ureg inv_m = get_temp(p);
1365   struct ureg id = get_identity_param(p);
1366
1367   /* Could share the above calculations, but it would be
1368    * a fairly odd state for someone to set (both sphere and
1369    * reflection active for different texture coordinate
1370    * components.  Of course - if two texture units enable
1371    * reflect and/or sphere, things start to tilt in favour
1372    * of seperating this out:
1373    */
1374
1375   /* n.u */
1376   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1377   /* 2n.u */
1378   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1379   /* (-2n.u)n + u */
1380   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1381   /* r + 0,0,1 */
1382   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1383   /* rx^2 + ry^2 + (rz+1)^2 */
1384   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1385   /* 2/m */
1386   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1387   /* 1/m */
1388   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1389   /* r/m + 1/2 */
1390   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1391
1392   release_temp(p, tmp);
1393   release_temp(p, r);
1394   release_temp(p, inv_m);
1395}
1396
1397
1398static void build_texture_transform( struct tnl_program *p )
1399{
1400   GLuint i, j;
1401
1402   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1403
1404      if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1405	 continue;
1406
1407      if (p->state->unit[i].coord_replace)
1408  	 continue;
1409
1410      if (p->state->unit[i].texgen_enabled ||
1411	  p->state->unit[i].texmat_enabled) {
1412
1413	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1414	 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1415	 struct ureg out_texgen = undef;
1416
1417	 if (p->state->unit[i].texgen_enabled) {
1418	    GLuint copy_mask = 0;
1419	    GLuint sphere_mask = 0;
1420	    GLuint reflect_mask = 0;
1421	    GLuint normal_mask = 0;
1422	    GLuint modes[4];
1423
1424	    if (texmat_enabled)
1425	       out_texgen = get_temp(p);
1426	    else
1427	       out_texgen = out;
1428
1429	    modes[0] = p->state->unit[i].texgen_mode0;
1430	    modes[1] = p->state->unit[i].texgen_mode1;
1431	    modes[2] = p->state->unit[i].texgen_mode2;
1432	    modes[3] = p->state->unit[i].texgen_mode3;
1433
1434	    for (j = 0; j < 4; j++) {
1435	       switch (modes[j]) {
1436	       case TXG_OBJ_LINEAR: {
1437		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1438		  struct ureg plane =
1439		     register_param3(p, STATE_TEXGEN, i,
1440				     STATE_TEXGEN_OBJECT_S + j);
1441
1442		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1443			   obj, plane );
1444		  break;
1445	       }
1446	       case TXG_EYE_LINEAR: {
1447		  struct ureg eye = get_eye_position(p);
1448		  struct ureg plane =
1449		     register_param3(p, STATE_TEXGEN, i,
1450				     STATE_TEXGEN_EYE_S + j);
1451
1452		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1453			   eye, plane );
1454		  break;
1455	       }
1456	       case TXG_SPHERE_MAP:
1457		  sphere_mask |= WRITEMASK_X << j;
1458		  break;
1459	       case TXG_REFLECTION_MAP:
1460		  reflect_mask |= WRITEMASK_X << j;
1461		  break;
1462	       case TXG_NORMAL_MAP:
1463		  normal_mask |= WRITEMASK_X << j;
1464		  break;
1465	       case TXG_NONE:
1466		  copy_mask |= WRITEMASK_X << j;
1467	       }
1468	    }
1469
1470	    if (sphere_mask) {
1471	       build_sphere_texgen(p, out_texgen, sphere_mask);
1472	    }
1473
1474	    if (reflect_mask) {
1475	       build_reflect_texgen(p, out_texgen, reflect_mask);
1476	    }
1477
1478	    if (normal_mask) {
1479	       struct ureg normal = get_transformed_normal(p);
1480	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1481	    }
1482
1483	    if (copy_mask) {
1484	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1485	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1486	    }
1487	 }
1488
1489	 if (texmat_enabled) {
1490	    struct ureg texmat[4];
1491	    struct ureg in = (!is_undef(out_texgen) ?
1492			      out_texgen :
1493			      register_input(p, VERT_ATTRIB_TEX0+i));
1494	    if (p->mvp_with_dp4) {
1495	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1496				       0, texmat );
1497	       emit_matrix_transform_vec4( p, out, texmat, in );
1498	    }
1499	    else {
1500	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1501				       STATE_MATRIX_TRANSPOSE, texmat );
1502	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1503	    }
1504	 }
1505
1506	 release_temps(p);
1507      }
1508      else {
1509	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1510      }
1511   }
1512}
1513
1514
1515/**
1516 * Point size attenuation computation.
1517 */
1518static void build_atten_pointsize( struct tnl_program *p )
1519{
1520   struct ureg eye = get_eye_position_z(p);
1521   struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1522   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1523   struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1524   struct ureg ut = get_temp(p);
1525
1526   /* dist = |eyez| */
1527   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1528   /* p1 + dist * (p2 + dist * p3); */
1529   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1530		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1531   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1532		ut, swizzle1(state_attenuation, X));
1533
1534   /* 1 / sqrt(factor) */
1535   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1536
1537#if 0
1538   /* out = pointSize / sqrt(factor) */
1539   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1540#else
1541   /* this is a good place to clamp the point size since there's likely
1542    * no hardware registers to clamp point size at rasterization time.
1543    */
1544   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1545   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1546   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1547#endif
1548
1549   release_temp(p, ut);
1550}
1551
1552
1553/**
1554 * Pass-though per-vertex point size, from user's point size array.
1555 */
1556static void build_array_pointsize( struct tnl_program *p )
1557{
1558   struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1559   struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1560   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1561}
1562
1563
1564static void build_tnl_program( struct tnl_program *p )
1565{
1566   /* Emit the program, starting with the modelview, projection transforms:
1567    */
1568   build_hpos(p);
1569
1570   /* Lighting calculations:
1571    */
1572   if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1573      if (p->state->light_global_enabled)
1574	 build_lighting(p);
1575      else {
1576	 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1577	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1578
1579	 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1580	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1581      }
1582   }
1583
1584   if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1585      build_fog(p);
1586
1587   if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1588      build_texture_transform(p);
1589
1590   if (p->state->point_attenuated)
1591      build_atten_pointsize(p);
1592   else if (p->state->point_array)
1593      build_array_pointsize(p);
1594
1595   /* Finish up:
1596    */
1597   emit_op1(p, OPCODE_END, undef, 0, undef);
1598
1599   /* Disassemble:
1600    */
1601   if (DISASSEM) {
1602      printf ("\n");
1603   }
1604}
1605
1606
1607static void
1608create_new_program( const struct state_key *key,
1609                    struct gl_program *program,
1610                    GLboolean mvp_with_dp4,
1611                    GLuint max_temps)
1612{
1613   struct tnl_program p;
1614
1615   memset(&p, 0, sizeof(p));
1616   p.state = key;
1617   p.program = program;
1618   p.eye_position = undef;
1619   p.eye_position_z = undef;
1620   p.eye_position_normalized = undef;
1621   p.transformed_normal = undef;
1622   p.identity = undef;
1623   p.temp_in_use = 0;
1624   p.mvp_with_dp4 = mvp_with_dp4;
1625
1626   if (max_temps >= sizeof(int) * 8)
1627      p.temp_reserved = 0;
1628   else
1629      p.temp_reserved = ~((1<<max_temps)-1);
1630
1631   /* Start by allocating 32 instructions.
1632    * If we need more, we'll grow the instruction array as needed.
1633    */
1634   p.max_inst = 32;
1635   p.program->arb.Instructions =
1636      rzalloc_array(program, struct prog_instruction, p.max_inst);
1637   p.program->String = NULL;
1638   p.program->arb.NumInstructions =
1639   p.program->arb.NumTemporaries =
1640   p.program->arb.NumParameters =
1641   p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0;
1642   p.program->Parameters = _mesa_new_parameter_list();
1643   p.program->info.inputs_read = 0;
1644   p.program->info.outputs_written = 0;
1645
1646   build_tnl_program( &p );
1647}
1648
1649
1650/**
1651 * Return a vertex program which implements the current fixed-function
1652 * transform/lighting/texgen operations.
1653 */
1654struct gl_program *
1655_mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1656{
1657   struct gl_program *prog;
1658   struct state_key key;
1659
1660   /* Grab all the relevant state and put it in a single structure:
1661    */
1662   make_state_key(ctx, &key);
1663
1664   /* Look for an already-prepared program for this state:
1665    */
1666   prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key,
1667                                     sizeof(key));
1668
1669   if (!prog) {
1670      /* OK, we'll have to build a new one */
1671      if (0)
1672         printf("Build new TNL program\n");
1673
1674      prog = ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0, true);
1675      if (!prog)
1676         return NULL;
1677
1678      create_new_program( &key, prog,
1679                          ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1680                          ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1681
1682      if (ctx->Driver.ProgramStringNotify)
1683         ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, prog);
1684
1685      _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key,
1686                                 sizeof(key), prog);
1687   }
1688
1689   return prog;
1690}
1691