1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file rastpos.c
28 * Raster position operations.
29 */
30
31#include "glheader.h"
32#include "context.h"
33#include "feedback.h"
34#include "macros.h"
35#include "mtypes.h"
36#include "rastpos.h"
37#include "state.h"
38#include "main/dispatch.h"
39#include "main/viewport.h"
40#include "util/bitscan.h"
41
42
43
44/**
45 * Clip a point against the view volume.
46 *
47 * \param v vertex vector describing the point to clip.
48 *
49 * \return zero if outside view volume, or one if inside.
50 */
51static GLuint
52viewclip_point_xy( const GLfloat v[] )
53{
54   if (   v[0] > v[3] || v[0] < -v[3]
55       || v[1] > v[3] || v[1] < -v[3] ) {
56      return 0;
57   }
58   else {
59      return 1;
60   }
61}
62
63
64/**
65 * Clip a point against the far/near Z clipping planes.
66 *
67 * \param v vertex vector describing the point to clip.
68 *
69 * \return zero if outside view volume, or one if inside.
70 */
71static GLuint
72viewclip_point_z( const GLfloat v[] )
73{
74   if (v[2] > v[3] || v[2] < -v[3] ) {
75      return 0;
76   }
77   else {
78      return 1;
79   }
80}
81
82
83/**
84 * Clip a point against the user clipping planes.
85 *
86 * \param ctx GL context.
87 * \param v vertex vector describing the point to clip.
88 *
89 * \return zero if the point was clipped, or one otherwise.
90 */
91static GLuint
92userclip_point( struct gl_context *ctx, const GLfloat v[] )
93{
94   GLbitfield mask = ctx->Transform.ClipPlanesEnabled;
95   while (mask) {
96      const int p = u_bit_scan(&mask);
97      GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
98         + v[1] * ctx->Transform._ClipUserPlane[p][1]
99         + v[2] * ctx->Transform._ClipUserPlane[p][2]
100         + v[3] * ctx->Transform._ClipUserPlane[p][3];
101
102      if (dot < 0.0F) {
103         return 0;
104      }
105   }
106
107   return 1;
108}
109
110
111/**
112 * Compute lighting for the raster position.  RGB modes computed.
113 * \param ctx the context
114 * \param vertex vertex location
115 * \param normal normal vector
116 * \param Rcolor returned color
117 * \param Rspec returned specular color (if separate specular enabled)
118 */
119static void
120shade_rastpos(struct gl_context *ctx,
121              const GLfloat vertex[4],
122              const GLfloat normal[3],
123              GLfloat Rcolor[4],
124              GLfloat Rspec[4])
125{
126   /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
127   GLbitfield mask;
128   GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
129
130   COPY_3V(diffuseColor, base[0]);
131   diffuseColor[3] = CLAMP(
132      ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
133   ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
134
135   mask = ctx->Light._EnabledLights;
136   while (mask) {
137      const int i = u_bit_scan(&mask);
138      struct gl_light *light = &ctx->Light.Light[i];
139      GLfloat attenuation = 1.0;
140      GLfloat VP[3]; /* vector from vertex to light pos */
141      GLfloat n_dot_VP;
142      GLfloat diffuseContrib[3], specularContrib[3];
143
144      if (!(light->_Flags & LIGHT_POSITIONAL)) {
145         /* light at infinity */
146	 COPY_3V(VP, light->_VP_inf_norm);
147	 attenuation = light->_VP_inf_spot_attenuation;
148      }
149      else {
150         /* local/positional light */
151	 GLfloat d;
152
153         /* VP = vector from vertex pos to light[i].pos */
154	 SUB_3V(VP, light->_Position, vertex);
155         /* d = length(VP) */
156	 d = (GLfloat) LEN_3FV( VP );
157	 if (d > 1.0e-6F) {
158            /* normalize VP */
159	    GLfloat invd = 1.0F / d;
160	    SELF_SCALE_SCALAR_3V(VP, invd);
161	 }
162
163         /* atti */
164	 attenuation = 1.0F / (light->ConstantAttenuation + d *
165			       (light->LinearAttenuation + d *
166				light->QuadraticAttenuation));
167
168	 if (light->_Flags & LIGHT_SPOT) {
169	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
170
171	    if (PV_dot_dir<light->_CosCutoff) {
172	       continue;
173	    }
174	    else {
175               GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
176	       attenuation *= spot;
177	    }
178	 }
179      }
180
181      if (attenuation < 1e-3F)
182	 continue;
183
184      n_dot_VP = DOT3( normal, VP );
185
186      if (n_dot_VP < 0.0F) {
187	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
188	 continue;
189      }
190
191      /* Ambient + diffuse */
192      COPY_3V(diffuseContrib, light->_MatAmbient[0]);
193      ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
194
195      /* Specular */
196      {
197         const GLfloat *h;
198         GLfloat n_dot_h;
199
200         ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
201
202	 if (ctx->Light.Model.LocalViewer) {
203	    GLfloat v[3];
204	    COPY_3V(v, vertex);
205	    NORMALIZE_3FV(v);
206	    SUB_3V(VP, VP, v);
207            NORMALIZE_3FV(VP);
208	    h = VP;
209	 }
210	 else if (light->_Flags & LIGHT_POSITIONAL) {
211	    ACC_3V(VP, ctx->_EyeZDir);
212            NORMALIZE_3FV(VP);
213	    h = VP;
214	 }
215         else {
216	    h = light->_h_inf_norm;
217	 }
218
219	 n_dot_h = DOT3(normal, h);
220
221	 if (n_dot_h > 0.0F) {
222	    GLfloat shine;
223	    GLfloat spec_coef;
224
225	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
226	    spec_coef = powf(n_dot_h, shine);
227
228	    if (spec_coef > 1.0e-10F) {
229               if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
230                  ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
231                                       light->_MatSpecular[0]);
232               }
233               else {
234                  ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
235                                       light->_MatSpecular[0]);
236               }
237	    }
238	 }
239      }
240
241      ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
242      ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
243   }
244
245   Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
246   Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
247   Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
248   Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
249   Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
250   Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
251   Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
252   Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
253}
254
255
256/**
257 * Do texgen needed for glRasterPos.
258 * \param ctx  rendering context
259 * \param vObj  object-space vertex coordinate
260 * \param vEye  eye-space vertex coordinate
261 * \param normal  vertex normal
262 * \param unit  texture unit number
263 * \param texcoord  incoming texcoord and resulting texcoord
264 */
265static void
266compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
267               const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
268{
269   const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
270
271   /* always compute sphere map terms, just in case */
272   GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
273   COPY_3V(u, vEye);
274   NORMALIZE_3FV(u);
275   two_nu = 2.0F * DOT3(normal, u);
276   rx = u[0] - normal[0] * two_nu;
277   ry = u[1] - normal[1] * two_nu;
278   rz = u[2] - normal[2] * two_nu;
279   m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
280   if (m > 0.0F)
281      mInv = 0.5F * (1.0f / sqrtf(m));
282   else
283      mInv = 0.0F;
284
285   if (texUnit->TexGenEnabled & S_BIT) {
286      switch (texUnit->GenS.Mode) {
287         case GL_OBJECT_LINEAR:
288            texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
289            break;
290         case GL_EYE_LINEAR:
291            texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
292            break;
293         case GL_SPHERE_MAP:
294            texcoord[0] = rx * mInv + 0.5F;
295            break;
296         case GL_REFLECTION_MAP:
297            texcoord[0] = rx;
298            break;
299         case GL_NORMAL_MAP:
300            texcoord[0] = normal[0];
301            break;
302         default:
303            _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
304            return;
305      }
306   }
307
308   if (texUnit->TexGenEnabled & T_BIT) {
309      switch (texUnit->GenT.Mode) {
310         case GL_OBJECT_LINEAR:
311            texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
312            break;
313         case GL_EYE_LINEAR:
314            texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
315            break;
316         case GL_SPHERE_MAP:
317            texcoord[1] = ry * mInv + 0.5F;
318            break;
319         case GL_REFLECTION_MAP:
320            texcoord[1] = ry;
321            break;
322         case GL_NORMAL_MAP:
323            texcoord[1] = normal[1];
324            break;
325         default:
326            _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
327            return;
328      }
329   }
330
331   if (texUnit->TexGenEnabled & R_BIT) {
332      switch (texUnit->GenR.Mode) {
333         case GL_OBJECT_LINEAR:
334            texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
335            break;
336         case GL_EYE_LINEAR:
337            texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
338            break;
339         case GL_REFLECTION_MAP:
340            texcoord[2] = rz;
341            break;
342         case GL_NORMAL_MAP:
343            texcoord[2] = normal[2];
344            break;
345         default:
346            _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
347            return;
348      }
349   }
350
351   if (texUnit->TexGenEnabled & Q_BIT) {
352      switch (texUnit->GenQ.Mode) {
353         case GL_OBJECT_LINEAR:
354            texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
355            break;
356         case GL_EYE_LINEAR:
357            texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
358            break;
359         default:
360            _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
361            return;
362      }
363   }
364}
365
366
367/**
368 * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
369 *
370 * \param vObj  vertex position in object space
371 */
372void
373_mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
374{
375   if (ctx->VertexProgram._Enabled) {
376      /* XXX implement this */
377      _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
378      return;
379   }
380   else {
381      GLfloat eye[4], clip[4], ndc[3], d;
382      GLfloat *norm, eyenorm[3];
383      GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
384      float scale[3], translate[3];
385
386      /* apply modelview matrix:  eye = MV * obj */
387      TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
388      /* apply projection matrix:  clip = Proj * eye */
389      TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
390
391      /* clip to view volume. */
392      if (!ctx->Transform.DepthClamp) {
393         if (viewclip_point_z(clip) == 0) {
394            ctx->Current.RasterPosValid = GL_FALSE;
395            return;
396         }
397      }
398      if (!ctx->Transform.RasterPositionUnclipped) {
399         if (viewclip_point_xy(clip) == 0) {
400            ctx->Current.RasterPosValid = GL_FALSE;
401            return;
402         }
403      }
404
405      /* clip to user clipping planes */
406      if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
407         ctx->Current.RasterPosValid = GL_FALSE;
408         return;
409      }
410
411      /* ndc = clip / W */
412      d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
413      ndc[0] = clip[0] * d;
414      ndc[1] = clip[1] * d;
415      ndc[2] = clip[2] * d;
416      /* wincoord = viewport_mapping(ndc) */
417      _mesa_get_viewport_xform(ctx, 0, scale, translate);
418      ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
419      ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
420      ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
421      ctx->Current.RasterPos[3] = clip[3];
422
423      if (ctx->Transform.DepthClamp) {
424	 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
425					   ctx->ViewportArray[0].Near,
426					   ctx->ViewportArray[0].Far);
427      }
428
429      /* compute raster distance */
430      if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
431         ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
432      else
433         ctx->Current.RasterDistance =
434                        sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
435
436      /* compute transformed normal vector (for lighting or texgen) */
437      if (ctx->_NeedEyeCoords) {
438         const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
439         TRANSFORM_NORMAL( eyenorm, objnorm, inv );
440         norm = eyenorm;
441      }
442      else {
443         norm = objnorm;
444      }
445
446      /* update raster color */
447      if (ctx->Light.Enabled) {
448         /* lighting */
449         shade_rastpos( ctx, vObj, norm,
450                        ctx->Current.RasterColor,
451                        ctx->Current.RasterSecondaryColor );
452      }
453      else {
454         /* use current color */
455	 COPY_4FV(ctx->Current.RasterColor,
456		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
457	 COPY_4FV(ctx->Current.RasterSecondaryColor,
458		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
459      }
460
461      /* texture coords */
462      {
463         GLuint u;
464         for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
465            GLfloat tc[4];
466            COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
467            if (ctx->Texture.Unit[u].TexGenEnabled) {
468               compute_texgen(ctx, vObj, eye, norm, u, tc);
469            }
470            TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
471                            ctx->TextureMatrixStack[u].Top->m, tc);
472         }
473      }
474
475      ctx->Current.RasterPosValid = GL_TRUE;
476   }
477
478   if (ctx->RenderMode == GL_SELECT) {
479      _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
480   }
481}
482
483
484/**
485 * Helper function for all the RasterPos functions.
486 */
487static void
488rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
489{
490   GET_CURRENT_CONTEXT(ctx);
491   GLfloat p[4];
492
493   p[0] = x;
494   p[1] = y;
495   p[2] = z;
496   p[3] = w;
497
498   FLUSH_VERTICES(ctx, 0);
499   FLUSH_CURRENT(ctx, 0);
500
501   if (ctx->NewState)
502      _mesa_update_state( ctx );
503
504   ctx->Driver.RasterPos(ctx, p);
505}
506
507
508void GLAPIENTRY
509_mesa_RasterPos2d(GLdouble x, GLdouble y)
510{
511   rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
512}
513
514void GLAPIENTRY
515_mesa_RasterPos2f(GLfloat x, GLfloat y)
516{
517   rasterpos(x, y, 0.0F, 1.0F);
518}
519
520void GLAPIENTRY
521_mesa_RasterPos2i(GLint x, GLint y)
522{
523   rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
524}
525
526void GLAPIENTRY
527_mesa_RasterPos2s(GLshort x, GLshort y)
528{
529   rasterpos(x, y, 0.0F, 1.0F);
530}
531
532void GLAPIENTRY
533_mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
534{
535   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
536}
537
538void GLAPIENTRY
539_mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
540{
541   rasterpos(x, y, z, 1.0F);
542}
543
544void GLAPIENTRY
545_mesa_RasterPos3i(GLint x, GLint y, GLint z)
546{
547   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
548}
549
550void GLAPIENTRY
551_mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
552{
553   rasterpos(x, y, z, 1.0F);
554}
555
556void GLAPIENTRY
557_mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
558{
559   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
560}
561
562void GLAPIENTRY
563_mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
564{
565   rasterpos(x, y, z, w);
566}
567
568void GLAPIENTRY
569_mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
570{
571   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
572}
573
574void GLAPIENTRY
575_mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
576{
577   rasterpos(x, y, z, w);
578}
579
580void GLAPIENTRY
581_mesa_RasterPos2dv(const GLdouble *v)
582{
583   rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
584}
585
586void GLAPIENTRY
587_mesa_RasterPos2fv(const GLfloat *v)
588{
589   rasterpos(v[0], v[1], 0.0F, 1.0F);
590}
591
592void GLAPIENTRY
593_mesa_RasterPos2iv(const GLint *v)
594{
595   rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
596}
597
598void GLAPIENTRY
599_mesa_RasterPos2sv(const GLshort *v)
600{
601   rasterpos(v[0], v[1], 0.0F, 1.0F);
602}
603
604void GLAPIENTRY
605_mesa_RasterPos3dv(const GLdouble *v)
606{
607   rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
608}
609
610void GLAPIENTRY
611_mesa_RasterPos3fv(const GLfloat *v)
612{
613   rasterpos(v[0], v[1], v[2], 1.0F);
614}
615
616void GLAPIENTRY
617_mesa_RasterPos3iv(const GLint *v)
618{
619   rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
620}
621
622void GLAPIENTRY
623_mesa_RasterPos3sv(const GLshort *v)
624{
625   rasterpos(v[0], v[1], v[2], 1.0F);
626}
627
628void GLAPIENTRY
629_mesa_RasterPos4dv(const GLdouble *v)
630{
631   rasterpos((GLfloat) v[0], (GLfloat) v[1],
632		     (GLfloat) v[2], (GLfloat) v[3]);
633}
634
635void GLAPIENTRY
636_mesa_RasterPos4fv(const GLfloat *v)
637{
638   rasterpos(v[0], v[1], v[2], v[3]);
639}
640
641void GLAPIENTRY
642_mesa_RasterPos4iv(const GLint *v)
643{
644   rasterpos((GLfloat) v[0], (GLfloat) v[1],
645		     (GLfloat) v[2], (GLfloat) v[3]);
646}
647
648void GLAPIENTRY
649_mesa_RasterPos4sv(const GLshort *v)
650{
651   rasterpos(v[0], v[1], v[2], v[3]);
652}
653
654
655/**********************************************************************/
656/***           GL_ARB_window_pos / GL_MESA_window_pos               ***/
657/**********************************************************************/
658
659
660/**
661 * All glWindowPosMESA and glWindowPosARB commands call this function to
662 * update the current raster position.
663 */
664static void
665window_pos3f(GLfloat x, GLfloat y, GLfloat z)
666{
667   GET_CURRENT_CONTEXT(ctx);
668   GLfloat z2;
669
670   FLUSH_VERTICES(ctx, 0);
671   FLUSH_CURRENT(ctx, 0);
672
673   z2 = CLAMP(z, 0.0F, 1.0F)
674      * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
675      + ctx->ViewportArray[0].Near;
676
677   /* set raster position */
678   ctx->Current.RasterPos[0] = x;
679   ctx->Current.RasterPos[1] = y;
680   ctx->Current.RasterPos[2] = z2;
681   ctx->Current.RasterPos[3] = 1.0F;
682
683   ctx->Current.RasterPosValid = GL_TRUE;
684
685   if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
686      ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
687   else
688      ctx->Current.RasterDistance = 0.0;
689
690   /* raster color = current color or index */
691   ctx->Current.RasterColor[0]
692      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
693   ctx->Current.RasterColor[1]
694      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
695   ctx->Current.RasterColor[2]
696      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
697   ctx->Current.RasterColor[3]
698      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
699   ctx->Current.RasterSecondaryColor[0]
700      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
701   ctx->Current.RasterSecondaryColor[1]
702      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
703   ctx->Current.RasterSecondaryColor[2]
704      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
705   ctx->Current.RasterSecondaryColor[3]
706      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
707
708   /* raster texcoord = current texcoord */
709   {
710      GLuint texSet;
711      for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
712         assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
713         COPY_4FV( ctx->Current.RasterTexCoords[texSet],
714                  ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
715      }
716   }
717
718   if (ctx->RenderMode==GL_SELECT) {
719      _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
720   }
721}
722
723
724/* This is just to support the GL_MESA_window_pos version */
725static void
726window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
727{
728   GET_CURRENT_CONTEXT(ctx);
729   window_pos3f(x, y, z);
730   ctx->Current.RasterPos[3] = w;
731}
732
733
734void GLAPIENTRY
735_mesa_WindowPos2d(GLdouble x, GLdouble y)
736{
737   window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
738}
739
740void GLAPIENTRY
741_mesa_WindowPos2f(GLfloat x, GLfloat y)
742{
743   window_pos4f(x, y, 0.0F, 1.0F);
744}
745
746void GLAPIENTRY
747_mesa_WindowPos2i(GLint x, GLint y)
748{
749   window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
750}
751
752void GLAPIENTRY
753_mesa_WindowPos2s(GLshort x, GLshort y)
754{
755   window_pos4f(x, y, 0.0F, 1.0F);
756}
757
758void GLAPIENTRY
759_mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
760{
761   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
762}
763
764void GLAPIENTRY
765_mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
766{
767   window_pos4f(x, y, z, 1.0F);
768}
769
770void GLAPIENTRY
771_mesa_WindowPos3i(GLint x, GLint y, GLint z)
772{
773   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
774}
775
776void GLAPIENTRY
777_mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
778{
779   window_pos4f(x, y, z, 1.0F);
780}
781
782void GLAPIENTRY
783_mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
784{
785   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
786}
787
788void GLAPIENTRY
789_mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
790{
791   window_pos4f(x, y, z, w);
792}
793
794void GLAPIENTRY
795_mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
796{
797   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
798}
799
800void GLAPIENTRY
801_mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
802{
803   window_pos4f(x, y, z, w);
804}
805
806void GLAPIENTRY
807_mesa_WindowPos2dv(const GLdouble *v)
808{
809   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
810}
811
812void GLAPIENTRY
813_mesa_WindowPos2fv(const GLfloat *v)
814{
815   window_pos4f(v[0], v[1], 0.0F, 1.0F);
816}
817
818void GLAPIENTRY
819_mesa_WindowPos2iv(const GLint *v)
820{
821   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
822}
823
824void GLAPIENTRY
825_mesa_WindowPos2sv(const GLshort *v)
826{
827   window_pos4f(v[0], v[1], 0.0F, 1.0F);
828}
829
830void GLAPIENTRY
831_mesa_WindowPos3dv(const GLdouble *v)
832{
833   window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
834}
835
836void GLAPIENTRY
837_mesa_WindowPos3fv(const GLfloat *v)
838{
839   window_pos4f(v[0], v[1], v[2], 1.0);
840}
841
842void GLAPIENTRY
843_mesa_WindowPos3iv(const GLint *v)
844{
845   window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
846}
847
848void GLAPIENTRY
849_mesa_WindowPos3sv(const GLshort *v)
850{
851   window_pos4f(v[0], v[1], v[2], 1.0F);
852}
853
854void GLAPIENTRY
855_mesa_WindowPos4dvMESA(const GLdouble *v)
856{
857   window_pos4f((GLfloat) v[0], (GLfloat) v[1],
858			 (GLfloat) v[2], (GLfloat) v[3]);
859}
860
861void GLAPIENTRY
862_mesa_WindowPos4fvMESA(const GLfloat *v)
863{
864   window_pos4f(v[0], v[1], v[2], v[3]);
865}
866
867void GLAPIENTRY
868_mesa_WindowPos4ivMESA(const GLint *v)
869{
870   window_pos4f((GLfloat) v[0], (GLfloat) v[1],
871			 (GLfloat) v[2], (GLfloat) v[3]);
872}
873
874void GLAPIENTRY
875_mesa_WindowPos4svMESA(const GLshort *v)
876{
877   window_pos4f(v[0], v[1], v[2], v[3]);
878}
879
880
881#if 0
882
883/*
884 * OpenGL implementation of glWindowPos*MESA()
885 */
886void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
887{
888   GLfloat fx, fy;
889
890   /* Push current matrix mode and viewport attributes */
891   glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
892
893   /* Setup projection parameters */
894   glMatrixMode( GL_PROJECTION );
895   glPushMatrix();
896   glLoadIdentity();
897   glMatrixMode( GL_MODELVIEW );
898   glPushMatrix();
899   glLoadIdentity();
900
901   glDepthRange( z, z );
902   glViewport( (int) x - 1, (int) y - 1, 2, 2 );
903
904   /* set the raster (window) position */
905   fx = x - (int) x;
906   fy = y - (int) y;
907   glRasterPos4f( fx, fy, 0.0, w );
908
909   /* restore matrices, viewport and matrix mode */
910   glPopMatrix();
911   glMatrixMode( GL_PROJECTION );
912   glPopMatrix();
913
914   glPopAttrib();
915}
916
917#endif
918
919
920/**********************************************************************/
921/** \name Initialization                                              */
922/**********************************************************************/
923/*@{*/
924
925/**
926 * Initialize the context current raster position information.
927 *
928 * \param ctx GL context.
929 *
930 * Initialize the current raster position information in
931 * __struct gl_contextRec::Current, and adds the extension entry points to the
932 * dispatcher.
933 */
934void _mesa_init_rastpos( struct gl_context * ctx )
935{
936   unsigned i;
937
938   ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
939   ctx->Current.RasterDistance = 0.0;
940   ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
941   ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
942   for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
943      ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
944   ctx->Current.RasterPosValid = GL_TRUE;
945}
946
947/*@}*/
948