swrast.h revision 2ef866d1fc0a5cc5ef8543d65744dfd4da4dbbaf
1/* $Id: swrast.h,v 1.15 2002/01/21 18:12:34 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  4.1
6 *
7 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 *    Keith Whitwell <keithw@valinux.com>
28 */
29
30#ifndef SWRAST_H
31#define SWRAST_H
32
33#include "mtypes.h"
34
35
36/* The software rasterizer now uses this format for vertices.  Thus a
37 * 'RasterSetup' stage or other translation is required between the
38 * tnl module and the swrast rasterization functions.  This serves to
39 * isolate the swrast module from the internals of the tnl module, and
40 * improve its usefulness as a fallback mechanism for hardware
41 * drivers.
42 *
43 * Full software drivers:
44 *   - Register the rastersetup and triangle functions from
45 *     utils/software_helper.
46 *   - On statechange, update the rasterization pointers in that module.
47 *
48 * Rasterization hardware drivers:
49 *   - Keep native rastersetup.
50 *   - Implement native twoside,offset and unfilled triangle setup.
51 *   - Implement a translator from native vertices to swrast vertices.
52 *   - On partial fallback (mix of accelerated and unaccelerated
53 *   prims), call a pass-through function which translates native
54 *   vertices to SWvertices and calls the appropriate swrast function.
55 *   - On total fallback (vertex format insufficient for state or all
56 *     primitives unaccelerated), hook in swrast_setup instead.
57 */
58typedef struct {
59   GLfloat win[4];
60   GLfloat texcoord[MAX_TEXTURE_UNITS][4];
61   GLchan color[4];
62   GLchan specular[4];
63   GLfloat fog;
64   GLuint index;
65   GLfloat pointSize;
66} SWvertex;
67
68
69/*
70 * The sw_span structure is used by the triangle template code in
71 * s_tritemp.h.  It describes how colors, Z, texcoords, etc are to be
72 * interpolated across each scanline of triangle.
73 * With this structure it's easy to hand-off span rasterization to a
74 * subroutine instead of doing it all inline like we used to do.
75 * It also cleans up the local variable namespace a great deal.
76 *
77 * It would be interesting to experiment with multiprocessor rasterization
78 * with this structure.  The triangle rasterizer could simply emit a
79 * stream of these structures which would be consumed by one or more
80 * span-processing threads which could run in parallel.
81 */
82
83
84/* When the sw_span struct is initialized, these flags indicates
85 * which values are needed for rendering the triangle.
86 */
87#define SPAN_RGBA         0x001
88#define SPAN_SPEC         0x002
89#define SPAN_INDEX        0x004
90#define SPAN_Z            0x008
91#define SPAN_FOG          0x010
92#define SPAN_TEXTURE      0x020
93#define SPAN_INT_TEXTURE  0x040
94#define SPAN_LAMBDA       0x080
95#define SPAN_FLAT         0x100  /* flat shading? */
96
97
98struct sw_span {
99   GLint x, y;
100
101   /* only need to process pixels between start <= i < end */
102   GLuint start, end;
103
104   /* This flag indicates that only a part of the span is visible */
105   GLboolean writeAll;
106
107   GLuint activeMask;  /* OR of the SPAN_* flags */
108
109#if CHAN_TYPE == GL_FLOAT
110   GLfloat red, redStep;
111   GLfloat green, greenStep;
112   GLfloat blue, blueStep;
113   GLfloat alpha, alphaStep;
114   GLfloat specRed, specRedStep;
115   GLfloat specGreen, specGreenStep;
116   GLfloat specBlue, specBlueStep;
117#else /* CHAN_TYPE == */
118   GLfixed red, redStep;
119   GLfixed green, greenStep;
120   GLfixed blue, blueStep;
121   GLfixed alpha, alphaStep;
122   GLfixed specRed, specRedStep;
123   GLfixed specGreen, specGreenStep;
124   GLfixed specBlue, specBlueStep;
125#endif
126   GLfixed index, indexStep;
127   GLfixed z, zStep;
128   GLfloat fog, fogStep;
129   GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4];
130   GLfixed intTex[2], intTexStep[2];
131   /* Needed for texture lambda (LOD) computation */
132   GLfloat rho[MAX_TEXTURE_UNITS];
133   GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
134
135   /**
136    * Arrays of fragment values.  These will either be computed from the
137    * x/xStep values above or loadd from glDrawPixels, etc.
138    */
139   GLdepth depth[MAX_WIDTH];
140   union {
141      GLchan rgb[MAX_WIDTH][3];
142      GLchan rgba[MAX_WIDTH][4];
143      GLuint index[MAX_WIDTH];
144   } color;
145   GLchan  specular[MAX_WIDTH][4];
146   GLint   itexcoords[MAX_WIDTH][2];           /* Integer texture (s, t) */
147   /* Texture (s,t,r).  4th component only used for pixel texture */
148   GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4];
149   GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
150   GLfloat coverage[MAX_WIDTH];
151   GLubyte mask[MAX_WIDTH];
152
153#ifdef DEBUG
154   GLboolean filledDepth, filledMask, filledAlpha;
155   GLboolean filledColor, filledSpecular;
156   GLboolean filledLambda[MAX_TEXTURE_UNITS], filledTex[MAX_TEXTURE_UNITS];
157   GLboolean testedDepth, testedAlpha;
158#endif
159};
160
161
162#ifdef DEBUG
163#define SW_SPAN_SET_FLAG(flag) {ASSERT((flag) == GL_FALSE);(flag) = GL_TRUE;}
164#define SW_SPAN_RESET(span) {                                        \
165         (span).filledDepth = (span).filledMask = (span).filledAlpha \
166         = (span).filledColor = (span).filledSpecular                \
167         = (span).testedDepth = (span).testedAlpha = GL_FALSE;       \
168         MEMSET((span).filledTex, GL_FALSE,                          \
169		MAX_TEXTURE_UNITS*sizeof(GLboolean));                \
170         MEMSET((span).filledLambda, GL_FALSE,                       \
171		MAX_TEXTURE_UNITS*sizeof(GLboolean));                \
172         (span).start = 0; (span).writeAll = GL_TRUE;}
173#else
174#define SW_SPAN_SET_FLAG(flag) ;
175#define SW_SPAN_RESET(span) {(span).start = 0;(span).writeAll = GL_TRUE;}
176#endif
177
178struct swrast_device_driver;
179
180
181/* These are the public-access functions exported from swrast.
182 */
183extern void
184_swrast_alloc_buffers( GLcontext *ctx );
185
186extern GLboolean
187_swrast_CreateContext( GLcontext *ctx );
188
189extern void
190_swrast_DestroyContext( GLcontext *ctx );
191
192/* Get a (non-const) reference to the device driver struct for swrast.
193 */
194extern struct swrast_device_driver *
195_swrast_GetDeviceDriverReference( GLcontext *ctx );
196
197extern void
198_swrast_Bitmap( GLcontext *ctx,
199		GLint px, GLint py,
200		GLsizei width, GLsizei height,
201		const struct gl_pixelstore_attrib *unpack,
202		const GLubyte *bitmap );
203
204extern void
205_swrast_CopyPixels( GLcontext *ctx,
206		    GLint srcx, GLint srcy,
207		    GLint destx, GLint desty,
208		    GLsizei width, GLsizei height,
209		    GLenum type );
210
211extern void
212_swrast_DrawPixels( GLcontext *ctx,
213		    GLint x, GLint y,
214		    GLsizei width, GLsizei height,
215		    GLenum format, GLenum type,
216		    const struct gl_pixelstore_attrib *unpack,
217		    const GLvoid *pixels );
218
219extern void
220_swrast_ReadPixels( GLcontext *ctx,
221		    GLint x, GLint y, GLsizei width, GLsizei height,
222		    GLenum format, GLenum type,
223		    const struct gl_pixelstore_attrib *unpack,
224		    GLvoid *pixels );
225
226extern void
227_swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
228	       GLint x, GLint y, GLint width, GLint height );
229
230extern void
231_swrast_Accum( GLcontext *ctx, GLenum op,
232	       GLfloat value, GLint xpos, GLint ypos,
233	       GLint width, GLint height );
234
235
236/* Reset the stipple counter
237 */
238extern void
239_swrast_ResetLineStipple( GLcontext *ctx );
240
241/* These will always render the correct point/line/triangle for the
242 * current state.
243 *
244 * For flatshaded primitives, the provoking vertex is the final one.
245 */
246extern void
247_swrast_Point( GLcontext *ctx, const SWvertex *v );
248
249extern void
250_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
251
252extern void
253_swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
254                  const SWvertex *v1, const SWvertex *v2 );
255
256extern void
257_swrast_Quad( GLcontext *ctx,
258              const SWvertex *v0, const SWvertex *v1,
259	      const SWvertex *v2,  const SWvertex *v3);
260
261extern void
262_swrast_flush( GLcontext *ctx );
263
264
265/* Tell the software rasterizer about core state changes.
266 */
267extern void
268_swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
269
270/* Configure software rasterizer to match hardware rasterizer characteristics:
271 */
272extern void
273_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
274
275extern void
276_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
277
278/* Debug:
279 */
280extern void
281_swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
282
283
284/*
285 * Imaging fallbacks (a better solution should be found, perhaps
286 * moving all the imaging fallback code to a new module)
287 */
288void
289_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
290				GLenum internalFormat,
291				GLint x, GLint y, GLsizei width,
292				GLsizei height);
293void
294_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
295				GLenum internalFormat,
296				GLint x, GLint y, GLsizei width);
297void
298_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
299			   GLint x, GLint y, GLsizei width);
300void
301_swrast_CopyColorTable( GLcontext *ctx,
302			GLenum target, GLenum internalformat,
303			GLint x, GLint y, GLsizei width);
304
305
306/*
307 * Texture fallbacks, Brian Paul.  Could also live in a new module
308 * with the rest of the texture store fallbacks?
309 */
310extern void
311_swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
312                      GLenum internalFormat,
313                      GLint x, GLint y, GLsizei width, GLint border);
314
315extern void
316_swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
317                      GLenum internalFormat,
318                      GLint x, GLint y, GLsizei width, GLsizei height,
319                      GLint border);
320
321
322extern void
323_swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
324                         GLint xoffset, GLint x, GLint y, GLsizei width);
325
326extern void
327_swrast_copy_texsubimage2d(GLcontext *ctx,
328                         GLenum target, GLint level,
329                         GLint xoffset, GLint yoffset,
330                         GLint x, GLint y, GLsizei width, GLsizei height);
331
332extern void
333_swrast_copy_texsubimage3d(GLcontext *ctx,
334                         GLenum target, GLint level,
335                         GLint xoffset, GLint yoffset, GLint zoffset,
336                         GLint x, GLint y, GLsizei width, GLsizei height);
337
338
339
340/* The driver interface for the software rasterizer.  Unless otherwise
341 * noted, all functions are mandatory.
342 */
343struct swrast_device_driver {
344
345   void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
346                          GLenum buffer );
347   /*
348    * Specifies the current buffer for span/pixel reading.
349    * colorBuffer will be one of:
350    *    GL_FRONT_LEFT - this buffer always exists
351    *    GL_BACK_LEFT - when double buffering
352    *    GL_FRONT_RIGHT - when using stereo
353    *    GL_BACK_RIGHT - when using stereo and double buffering
354    */
355
356
357   /***
358    *** Functions for synchronizing access to the framebuffer:
359    ***/
360
361   void (*SpanRenderStart)(GLcontext *ctx);
362   void (*SpanRenderFinish)(GLcontext *ctx);
363   /* OPTIONAL.
364    *
365    * Called before and after all rendering operations, including DrawPixels,
366    * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
367    * These are a suitable place for grabbing/releasing hardware locks.
368    *
369    * NOTE: The swrast triangle/line/point routines *DO NOT* call
370    * these functions.  Locking in that case must be organized by the
371    * driver by other mechanisms.
372    */
373
374   /***
375    *** Functions for writing pixels to the frame buffer:
376    ***/
377
378   void (*WriteRGBASpan)( const GLcontext *ctx,
379                          GLuint n, GLint x, GLint y,
380                          CONST GLchan rgba[][4], const GLubyte mask[] );
381   void (*WriteRGBSpan)( const GLcontext *ctx,
382                         GLuint n, GLint x, GLint y,
383                         CONST GLchan rgb[][3], const GLubyte mask[] );
384   /* Write a horizontal run of RGBA or RGB pixels.
385    * If mask is NULL, draw all pixels.
386    * If mask is not null, only draw pixel [i] when mask [i] is true.
387    */
388
389   void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
390                              const GLchan color[4], const GLubyte mask[] );
391   /* Write a horizontal run of RGBA pixels all with the same color.
392    */
393
394   void (*WriteRGBAPixels)( const GLcontext *ctx,
395                            GLuint n, const GLint x[], const GLint y[],
396                            CONST GLchan rgba[][4], const GLubyte mask[] );
397   /* Write array of RGBA pixels at random locations.
398    */
399
400   void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
401                                GLuint n, const GLint x[], const GLint y[],
402                                const GLchan color[4], const GLubyte mask[] );
403   /* Write an array of mono-RGBA pixels at random locations.
404    */
405
406   void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
407                          const GLuint index[], const GLubyte mask[] );
408   void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
409                         const GLubyte index[], const GLubyte mask[] );
410   /* Write a horizontal run of CI pixels.  One function is for 32bpp
411    * indexes and the other for 8bpp pixels (the common case).  You mus
412    * implement both for color index mode.
413    */
414
415   void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
416                            GLuint colorIndex, const GLubyte mask[] );
417   /* Write a horizontal run of color index pixels using the color index
418    * last specified by the Index() function.
419    */
420
421   void (*WriteCI32Pixels)( const GLcontext *ctx,
422                            GLuint n, const GLint x[], const GLint y[],
423                            const GLuint index[], const GLubyte mask[] );
424   /*
425    * Write a random array of CI pixels.
426    */
427
428   void (*WriteMonoCIPixels)( const GLcontext *ctx,
429                              GLuint n, const GLint x[], const GLint y[],
430                              GLuint colorIndex, const GLubyte mask[] );
431   /* Write a random array of color index pixels using the color index
432    * last specified by the Index() function.
433    */
434
435
436   /***
437    *** Functions to read pixels from frame buffer:
438    ***/
439
440   void (*ReadCI32Span)( const GLcontext *ctx,
441                         GLuint n, GLint x, GLint y, GLuint index[] );
442   /* Read a horizontal run of color index pixels.
443    */
444
445   void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
446                         GLchan rgba[][4] );
447   /* Read a horizontal run of RGBA pixels.
448    */
449
450   void (*ReadCI32Pixels)( const GLcontext *ctx,
451                           GLuint n, const GLint x[], const GLint y[],
452                           GLuint indx[], const GLubyte mask[] );
453   /* Read a random array of CI pixels.
454    */
455
456   void (*ReadRGBAPixels)( const GLcontext *ctx,
457                           GLuint n, const GLint x[], const GLint y[],
458                           GLchan rgba[][4], const GLubyte mask[] );
459   /* Read a random array of RGBA pixels.
460    */
461
462
463
464   /***
465    *** For supporting hardware Z buffers:
466    *** Either ALL or NONE of these functions must be implemented!
467    *** NOTE that Each depth value is a 32-bit GLuint.  If the depth
468    *** buffer is less than 32 bits deep then the extra upperbits are zero.
469    ***/
470
471   void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
472                           const GLdepth depth[], const GLubyte mask[] );
473   /* Write a horizontal span of values into the depth buffer.  Only write
474    * depth[i] value if mask[i] is nonzero.
475    */
476
477   void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
478                          GLdepth depth[] );
479   /* Read a horizontal span of values from the depth buffer.
480    */
481
482
483   void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
484                             const GLint x[], const GLint y[],
485                             const GLdepth depth[], const GLubyte mask[] );
486   /* Write an array of randomly positioned depth values into the
487    * depth buffer.  Only write depth[i] value if mask[i] is nonzero.
488    */
489
490   void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
491                            const GLint x[], const GLint y[],
492                            GLdepth depth[] );
493   /* Read an array of randomly positioned depth values from the depth buffer.
494    */
495
496
497
498   /***
499    *** For supporting hardware stencil buffers:
500    *** Either ALL or NONE of these functions must be implemented!
501    ***/
502
503   void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
504                             const GLstencil stencil[], const GLubyte mask[] );
505   /* Write a horizontal span of stencil values into the stencil buffer.
506    * If mask is NULL, write all stencil values.
507    * Else, only write stencil[i] if mask[i] is non-zero.
508    */
509
510   void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
511                            GLstencil stencil[] );
512   /* Read a horizontal span of stencil values from the stencil buffer.
513    */
514
515   void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
516                               const GLint x[], const GLint y[],
517                               const GLstencil stencil[],
518                               const GLubyte mask[] );
519   /* Write an array of stencil values into the stencil buffer.
520    * If mask is NULL, write all stencil values.
521    * Else, only write stencil[i] if mask[i] is non-zero.
522    */
523
524   void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
525                              const GLint x[], const GLint y[],
526                              GLstencil stencil[] );
527   /* Read an array of stencil values from the stencil buffer.
528    */
529};
530
531
532
533#endif
534