1
2/*
3 * Author : Stephen Smalley, <sds@tycho.nsa.gov>
4 */
5/*
6 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7 *
8 *	Support for enhanced MLS infrastructure.
9 *
10 * Updated: Frank Mayer <mayerf@tresys.com>
11 *          and Karl MacMillan <kmacmillan@tresys.com>
12 *
13 * 	Added conditional policy language extensions
14 *
15 * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16 *
17 *      Fine-grained netlink support
18 *      IPv6 support
19 *      Code cleanup
20 *
21 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23 * Copyright (C) 2003 - 2004 Red Hat, Inc.
24 * Copyright (C) 2017 Mellanox Technologies Inc.
25 *
26 *  This library is free software; you can redistribute it and/or
27 *  modify it under the terms of the GNU Lesser General Public
28 *  License as published by the Free Software Foundation; either
29 *  version 2.1 of the License, or (at your option) any later version.
30 *
31 *  This library is distributed in the hope that it will be useful,
32 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
33 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34 *  Lesser General Public License for more details.
35 *
36 *  You should have received a copy of the GNU Lesser General Public
37 *  License along with this library; if not, write to the Free Software
38 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
39 */
40
41/* FLASK */
42
43/*
44 * Implementation of the security services.
45 */
46
47/* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
48#define REASON_BUF_SIZE 2048
49#define EXPR_BUF_SIZE 1024
50#define STACK_LEN 32
51
52#include <stdlib.h>
53#include <sys/types.h>
54#include <sys/socket.h>
55#include <netinet/in.h>
56#include <arpa/inet.h>
57
58#include <sepol/policydb/policydb.h>
59#include <sepol/policydb/sidtab.h>
60#include <sepol/policydb/services.h>
61#include <sepol/policydb/conditional.h>
62#include <sepol/policydb/flask.h>
63#include <sepol/policydb/util.h>
64
65#include "debug.h"
66#include "private.h"
67#include "context.h"
68#include "av_permissions.h"
69#include "dso.h"
70#include "mls.h"
71
72#define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73#define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
74
75static int selinux_enforcing = 1;
76
77static sidtab_t mysidtab, *sidtab = &mysidtab;
78static policydb_t mypolicydb, *policydb = &mypolicydb;
79
80/* Used by sepol_compute_av_reason_buffer() to keep track of entries */
81static int reason_buf_used;
82static int reason_buf_len;
83
84/* Stack services for RPN to infix conversion. */
85static char **stack;
86static int stack_len;
87static int next_stack_entry;
88
89static void push(char *expr_ptr)
90{
91	if (next_stack_entry >= stack_len) {
92		char **new_stack = stack;
93		int new_stack_len;
94
95		if (stack_len == 0)
96			new_stack_len = STACK_LEN;
97		else
98			new_stack_len = stack_len * 2;
99
100		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
101		if (!new_stack) {
102			ERR(NULL, "unable to allocate stack space");
103			return;
104		}
105		stack_len = new_stack_len;
106		stack = new_stack;
107	}
108	stack[next_stack_entry] = expr_ptr;
109	next_stack_entry++;
110}
111
112static char *pop(void)
113{
114	next_stack_entry--;
115	if (next_stack_entry < 0) {
116		next_stack_entry = 0;
117		ERR(NULL, "pop called with no stack entries");
118		return NULL;
119	}
120	return stack[next_stack_entry];
121}
122/* End Stack services */
123
124int hidden sepol_set_sidtab(sidtab_t * s)
125{
126	sidtab = s;
127	return 0;
128}
129
130int hidden sepol_set_policydb(policydb_t * p)
131{
132	policydb = p;
133	return 0;
134}
135
136int sepol_set_policydb_from_file(FILE * fp)
137{
138	struct policy_file pf;
139
140	policy_file_init(&pf);
141	pf.fp = fp;
142	pf.type = PF_USE_STDIO;
143	if (mypolicydb.policy_type)
144		policydb_destroy(&mypolicydb);
145	if (policydb_init(&mypolicydb)) {
146		ERR(NULL, "Out of memory!");
147		return -1;
148	}
149	if (policydb_read(&mypolicydb, &pf, 0)) {
150		policydb_destroy(&mypolicydb);
151		ERR(NULL, "can't read binary policy: %s", strerror(errno));
152		return -1;
153	}
154	policydb = &mypolicydb;
155	return sepol_sidtab_init(sidtab);
156}
157
158/*
159 * The largest sequence number that has been used when
160 * providing an access decision to the access vector cache.
161 * The sequence number only changes when a policy change
162 * occurs.
163 */
164static uint32_t latest_granting = 0;
165
166/*
167 * cat_expr_buf adds a string to an expression buffer and handles
168 * realloc's if buffer is too small. The array of expression text
169 * buffer pointers and its counter are globally defined here as
170 * constraint_expr_eval_reason() sets them up and cat_expr_buf
171 * updates the e_buf pointer.
172 */
173static int expr_counter;
174static char **expr_list;
175static int expr_buf_used;
176static int expr_buf_len;
177
178static void cat_expr_buf(char *e_buf, const char *string)
179{
180	int len, new_buf_len;
181	char *p, *new_buf = e_buf;
182
183	while (1) {
184		p = e_buf + expr_buf_used;
185		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
186		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
187			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
188			new_buf = realloc(e_buf, new_buf_len);
189			if (!new_buf) {
190				ERR(NULL, "failed to realloc expr buffer");
191				return;
192			}
193			/* Update new ptr in expr list and locally + new len */
194			expr_list[expr_counter] = new_buf;
195			e_buf = new_buf;
196			expr_buf_len = new_buf_len;
197		} else {
198			expr_buf_used += len;
199			return;
200		}
201	}
202}
203
204/*
205 * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
206 * then for 'types' only, read the types_names->types list as it will
207 * contain a list of types and attributes that were defined in the
208 * policy source.
209 * For user and role plus types (for policy vers <
210 * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
211 */
212static void get_name_list(constraint_expr_t *e, int type,
213							const char *src, const char *op, int failed)
214{
215	ebitmap_t *types;
216	int rc = 0;
217	unsigned int i;
218	char tmp_buf[128];
219	int counter = 0;
220
221	if (policydb->policy_type == POLICY_KERN &&
222			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
223			type == CEXPR_TYPE)
224		types = &e->type_names->types;
225	else
226		types = &e->names;
227
228	/* Find out how many entries */
229	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
230		rc = ebitmap_get_bit(types, i);
231		if (rc == 0)
232			continue;
233		else
234			counter++;
235	}
236	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
237	cat_expr_buf(expr_list[expr_counter], tmp_buf);
238
239	if (counter == 0)
240		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
241	if (counter > 1)
242		cat_expr_buf(expr_list[expr_counter], " {");
243	if (counter >= 1) {
244		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
245			rc = ebitmap_get_bit(types, i);
246			if (rc == 0)
247				continue;
248
249			/* Collect entries */
250			switch (type) {
251			case CEXPR_USER:
252				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
253							policydb->p_user_val_to_name[i]);
254				break;
255			case CEXPR_ROLE:
256				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
257							policydb->p_role_val_to_name[i]);
258				break;
259			case CEXPR_TYPE:
260				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
261							policydb->p_type_val_to_name[i]);
262				break;
263			}
264			cat_expr_buf(expr_list[expr_counter], tmp_buf);
265		}
266	}
267	if (counter > 1)
268		cat_expr_buf(expr_list[expr_counter], " }");
269	if (failed)
270		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
271	else
272		cat_expr_buf(expr_list[expr_counter], ") ");
273
274	return;
275}
276
277static void msgcat(const char *src, const char *tgt, const char *op, int failed)
278{
279	char tmp_buf[128];
280	if (failed)
281		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
282				src, op, tgt);
283	else
284		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
285				src, op, tgt);
286	cat_expr_buf(expr_list[expr_counter], tmp_buf);
287}
288
289/* Returns a buffer with class, statement type and permissions */
290static char *get_class_info(sepol_security_class_t tclass,
291							constraint_node_t *constraint,
292							context_struct_t *xcontext)
293{
294	constraint_expr_t *e;
295	int mls, state_num;
296
297	/* Find if MLS statement or not */
298	mls = 0;
299	for (e = constraint->expr; e; e = e->next) {
300		if (e->attr >= CEXPR_L1L2) {
301			mls = 1;
302			break;
303		}
304	}
305
306	/* Determine statement type */
307	const char *statements[] = {
308		"constrain ",			/* 0 */
309		"mlsconstrain ",		/* 1 */
310		"validatetrans ",		/* 2 */
311		"mlsvalidatetrans ",	/* 3 */
312		0 };
313
314	if (xcontext == NULL)
315		state_num = mls + 0;
316	else
317		state_num = mls + 2;
318
319	int class_buf_len = 0;
320	int new_class_buf_len;
321	int len, buf_used;
322	char *class_buf = NULL, *p;
323	char *new_class_buf = NULL;
324
325	while (1) {
326		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
327		new_class_buf = realloc(class_buf, new_class_buf_len);
328			if (!new_class_buf)
329				return NULL;
330		class_buf_len = new_class_buf_len;
331		class_buf = new_class_buf;
332		buf_used = 0;
333		p = class_buf;
334
335		/* Add statement type */
336		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
337		if (len < 0 || len >= class_buf_len - buf_used)
338			continue;
339
340		/* Add class entry */
341		p += len;
342		buf_used += len;
343		len = snprintf(p, class_buf_len - buf_used, "%s ",
344				policydb->p_class_val_to_name[tclass - 1]);
345		if (len < 0 || len >= class_buf_len - buf_used)
346			continue;
347
348		/* Add permission entries (validatetrans does not have perms) */
349		p += len;
350		buf_used += len;
351		if (state_num < 2) {
352			len = snprintf(p, class_buf_len - buf_used, "{%s } (",
353			sepol_av_to_string(policydb, tclass,
354				constraint->permissions));
355		} else {
356			len = snprintf(p, class_buf_len - buf_used, "(");
357		}
358		if (len < 0 || len >= class_buf_len - buf_used)
359			continue;
360		break;
361	}
362	return class_buf;
363}
364
365/*
366 * Modified version of constraint_expr_eval that will process each
367 * constraint as before but adds the information to text buffers that
368 * will hold various components. The expression will be in RPN format,
369 * therefore there is a stack based RPN to infix converter to produce
370 * the final readable constraint.
371 *
372 * Return the boolean value of a constraint expression
373 * when it is applied to the specified source and target
374 * security contexts.
375 *
376 * xcontext is a special beast...  It is used by the validatetrans rules
377 * only.  For these rules, scontext is the context before the transition,
378 * tcontext is the context after the transition, and xcontext is the
379 * context of the process performing the transition.  All other callers
380 * of constraint_expr_eval_reason should pass in NULL for xcontext.
381 *
382 * This function will also build a buffer as the constraint is processed
383 * for analysis. If this option is not required, then:
384 *      'tclass' should be '0' and r_buf MUST be NULL.
385 */
386static int constraint_expr_eval_reason(context_struct_t *scontext,
387				context_struct_t *tcontext,
388				context_struct_t *xcontext,
389				sepol_security_class_t tclass,
390				constraint_node_t *constraint,
391				char **r_buf,
392				unsigned int flags)
393{
394	uint32_t val1, val2;
395	context_struct_t *c;
396	role_datum_t *r1, *r2;
397	mls_level_t *l1, *l2;
398	constraint_expr_t *e;
399	int s[CEXPR_MAXDEPTH];
400	int sp = -1;
401	char tmp_buf[128];
402
403/*
404 * Define the s_t_x_num values that make up r1, t2 etc. in text strings
405 * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
406 */
407#define SOURCE  1
408#define TARGET  2
409#define XTARGET 3
410
411	int s_t_x_num = SOURCE;
412
413	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
414	int u_r_t = 0;
415
416	char *src = NULL;
417	char *tgt = NULL;
418	int rc = 0, x;
419	char *class_buf = NULL;
420
421	/*
422	 * The array of expression answer buffer pointers and counter.
423	 */
424	char **answer_list = NULL;
425	int answer_counter = 0;
426
427	class_buf = get_class_info(tclass, constraint, xcontext);
428	if (!class_buf) {
429		ERR(NULL, "failed to allocate class buffer");
430		return -ENOMEM;
431	}
432
433	/* Original function but with buffer support */
434	int expr_list_len = 0;
435	expr_counter = 0;
436	expr_list = NULL;
437	for (e = constraint->expr; e; e = e->next) {
438		/* Allocate a stack to hold expression buffer entries */
439		if (expr_counter >= expr_list_len) {
440			char **new_expr_list = expr_list;
441			int new_expr_list_len;
442
443			if (expr_list_len == 0)
444				new_expr_list_len = STACK_LEN;
445			else
446				new_expr_list_len = expr_list_len * 2;
447
448			new_expr_list = realloc(expr_list,
449					new_expr_list_len * sizeof(*expr_list));
450			if (!new_expr_list) {
451				ERR(NULL, "failed to allocate expr buffer stack");
452				rc = -ENOMEM;
453				goto out;
454			}
455			expr_list_len = new_expr_list_len;
456			expr_list = new_expr_list;
457		}
458
459		/*
460		 * malloc a buffer to store each expression text component. If
461		 * buffer is too small cat_expr_buf() will realloc extra space.
462		 */
463		expr_buf_len = EXPR_BUF_SIZE;
464		expr_list[expr_counter] = malloc(expr_buf_len);
465		if (!expr_list[expr_counter]) {
466			ERR(NULL, "failed to allocate expr buffer");
467			rc = -ENOMEM;
468			goto out;
469		}
470		expr_buf_used = 0;
471
472		/* Now process each expression of the constraint */
473		switch (e->expr_type) {
474		case CEXPR_NOT:
475			BUG_ON(sp < 0);
476			s[sp] = !s[sp];
477			cat_expr_buf(expr_list[expr_counter], "not");
478			break;
479		case CEXPR_AND:
480			BUG_ON(sp < 1);
481			sp--;
482			s[sp] &= s[sp + 1];
483			cat_expr_buf(expr_list[expr_counter], "and");
484			break;
485		case CEXPR_OR:
486			BUG_ON(sp < 1);
487			sp--;
488			s[sp] |= s[sp + 1];
489			cat_expr_buf(expr_list[expr_counter], "or");
490			break;
491		case CEXPR_ATTR:
492			if (sp == (CEXPR_MAXDEPTH - 1))
493				goto out;
494
495			switch (e->attr) {
496			case CEXPR_USER:
497				val1 = scontext->user;
498				val2 = tcontext->user;
499				free(src); src = strdup("u1");
500				free(tgt); tgt = strdup("u2");
501				break;
502			case CEXPR_TYPE:
503				val1 = scontext->type;
504				val2 = tcontext->type;
505				free(src); src = strdup("t1");
506				free(tgt); tgt = strdup("t2");
507				break;
508			case CEXPR_ROLE:
509				val1 = scontext->role;
510				val2 = tcontext->role;
511				r1 = policydb->role_val_to_struct[val1 - 1];
512				r2 = policydb->role_val_to_struct[val2 - 1];
513				free(src); src = strdup("r1");
514				free(tgt); tgt = strdup("r2");
515
516				switch (e->op) {
517				case CEXPR_DOM:
518					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
519					msgcat(src, tgt, "dom", s[sp] == 0);
520					expr_counter++;
521					continue;
522				case CEXPR_DOMBY:
523					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
524					msgcat(src, tgt, "domby", s[sp] == 0);
525					expr_counter++;
526					continue;
527				case CEXPR_INCOMP:
528					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
529						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
530					msgcat(src, tgt, "incomp", s[sp] == 0);
531					expr_counter++;
532					continue;
533				default:
534					break;
535				}
536				break;
537			case CEXPR_L1L2:
538				l1 = &(scontext->range.level[0]);
539				l2 = &(tcontext->range.level[0]);
540				free(src); src = strdup("l1");
541				free(tgt); tgt = strdup("l2");
542				goto mls_ops;
543			case CEXPR_L1H2:
544				l1 = &(scontext->range.level[0]);
545				l2 = &(tcontext->range.level[1]);
546				free(src); src = strdup("l1");
547				free(tgt); tgt = strdup("h2");
548				goto mls_ops;
549			case CEXPR_H1L2:
550				l1 = &(scontext->range.level[1]);
551				l2 = &(tcontext->range.level[0]);
552				free(src); src = strdup("h1");
553				free(tgt); tgt = strdup("l2");
554				goto mls_ops;
555			case CEXPR_H1H2:
556				l1 = &(scontext->range.level[1]);
557				l2 = &(tcontext->range.level[1]);
558				free(src); src = strdup("h1");
559				free(tgt); tgt = strdup("h2");
560				goto mls_ops;
561			case CEXPR_L1H1:
562				l1 = &(scontext->range.level[0]);
563				l2 = &(scontext->range.level[1]);
564				free(src); src = strdup("l1");
565				free(tgt); tgt = strdup("h1");
566				goto mls_ops;
567			case CEXPR_L2H2:
568				l1 = &(tcontext->range.level[0]);
569				l2 = &(tcontext->range.level[1]);
570				free(src); src = strdup("l2");
571				free(tgt); tgt = strdup("h2");
572mls_ops:
573				switch (e->op) {
574				case CEXPR_EQ:
575					s[++sp] = mls_level_eq(l1, l2);
576					msgcat(src, tgt, "eq", s[sp] == 0);
577					expr_counter++;
578					continue;
579				case CEXPR_NEQ:
580					s[++sp] = !mls_level_eq(l1, l2);
581					msgcat(src, tgt, "!=", s[sp] == 0);
582					expr_counter++;
583					continue;
584				case CEXPR_DOM:
585					s[++sp] = mls_level_dom(l1, l2);
586					msgcat(src, tgt, "dom", s[sp] == 0);
587					expr_counter++;
588					continue;
589				case CEXPR_DOMBY:
590					s[++sp] = mls_level_dom(l2, l1);
591					msgcat(src, tgt, "domby", s[sp] == 0);
592					expr_counter++;
593					continue;
594				case CEXPR_INCOMP:
595					s[++sp] = mls_level_incomp(l2, l1);
596					msgcat(src, tgt, "incomp", s[sp] == 0);
597					expr_counter++;
598					continue;
599				default:
600					BUG();
601					goto out;
602				}
603				break;
604			default:
605				BUG();
606				goto out;
607			}
608
609			switch (e->op) {
610			case CEXPR_EQ:
611				s[++sp] = (val1 == val2);
612				msgcat(src, tgt, "==", s[sp] == 0);
613				break;
614			case CEXPR_NEQ:
615				s[++sp] = (val1 != val2);
616				msgcat(src, tgt, "!=", s[sp] == 0);
617				break;
618			default:
619				BUG();
620				goto out;
621			}
622			break;
623		case CEXPR_NAMES:
624			if (sp == (CEXPR_MAXDEPTH - 1))
625				goto out;
626			s_t_x_num = SOURCE;
627			c = scontext;
628			if (e->attr & CEXPR_TARGET) {
629				s_t_x_num = TARGET;
630				c = tcontext;
631			} else if (e->attr & CEXPR_XTARGET) {
632				s_t_x_num = XTARGET;
633				c = xcontext;
634			}
635			if (!c) {
636				BUG();
637				goto out;
638			}
639			if (e->attr & CEXPR_USER) {
640				u_r_t = CEXPR_USER;
641				val1 = c->user;
642				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
643				free(src); src = strdup(tmp_buf);
644			} else if (e->attr & CEXPR_ROLE) {
645				u_r_t = CEXPR_ROLE;
646				val1 = c->role;
647				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
648				free(src); src = strdup(tmp_buf);
649			} else if (e->attr & CEXPR_TYPE) {
650				u_r_t = CEXPR_TYPE;
651				val1 = c->type;
652				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
653				free(src); src = strdup(tmp_buf);
654			} else {
655				BUG();
656				goto out;
657			}
658
659			switch (e->op) {
660			case CEXPR_EQ:
661				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
662				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
663				break;
664
665			case CEXPR_NEQ:
666				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
667				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
668				break;
669			default:
670				BUG();
671				goto out;
672			}
673			break;
674		default:
675			BUG();
676			goto out;
677		}
678		expr_counter++;
679	}
680
681	/*
682	 * At this point each expression of the constraint is in
683	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
684	 */
685
686	/*
687	 * Save expr count but zero expr_counter to detect if
688	 * 'BUG(); goto out;' was called as we need to release any used
689	 * expr_list malloc's. Normally they are released by the RPN to
690	 * infix code.
691	 */
692	int expr_count = expr_counter;
693	expr_counter = 0;
694
695	/*
696	 * Generate the same number of answer buffer entries as expression
697	 * buffers (as there will never be more).
698	 */
699	answer_list = malloc(expr_count * sizeof(*answer_list));
700	if (!answer_list) {
701		ERR(NULL, "failed to allocate answer stack");
702		rc = -ENOMEM;
703		goto out;
704	}
705
706	/* The pop operands */
707	char *a;
708	char *b;
709	int a_len, b_len;
710
711	/* Convert constraint from RPN to infix notation. */
712	for (x = 0; x != expr_count; x++) {
713		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
714					"or", 2) == 0) {
715			b = pop();
716			b_len = strlen(b);
717			a = pop();
718			a_len = strlen(a);
719
720			/* get a buffer to hold the answer */
721			answer_list[answer_counter] = malloc(a_len + b_len + 8);
722			if (!answer_list[answer_counter]) {
723				ERR(NULL, "failed to allocate answer buffer");
724				rc = -ENOMEM;
725				goto out;
726			}
727			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
728
729			sprintf(answer_list[answer_counter], "%s %s %s", a,
730					expr_list[x], b);
731			push(answer_list[answer_counter++]);
732			free(a);
733			free(b);
734			free(expr_list[x]);
735		} else if (strncmp(expr_list[x], "not", 3) == 0) {
736			b = pop();
737			b_len = strlen(b);
738
739			answer_list[answer_counter] = malloc(b_len + 8);
740			if (!answer_list[answer_counter]) {
741				ERR(NULL, "failed to allocate answer buffer");
742				rc = -ENOMEM;
743				goto out;
744			}
745			memset(answer_list[answer_counter], '\0', b_len + 8);
746
747			if (strncmp(b, "not", 3) == 0)
748				sprintf(answer_list[answer_counter], "%s (%s)",
749						expr_list[x], b);
750			else
751				sprintf(answer_list[answer_counter], "%s%s",
752						expr_list[x], b);
753			push(answer_list[answer_counter++]);
754			free(b);
755			free(expr_list[x]);
756		} else {
757			push(expr_list[x]);
758		}
759	}
760	/* Get the final answer from tos and build constraint text */
761	a = pop();
762
763	/* validatetrans / constraint calculation:
764				rc = 0 is denied, rc = 1 is granted */
765	sprintf(tmp_buf, "%s %s\n",
766			xcontext ? "Validatetrans" : "Constraint",
767			s[0] ? "GRANTED" : "DENIED");
768
769	int len, new_buf_len;
770	char *p, **new_buf = r_buf;
771	/*
772	 * These contain the constraint components that are added to the
773	 * callers reason buffer.
774	 */
775	const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
776
777	/*
778	 * This will add the constraints to the callers reason buffer (who is
779	 * responsible for freeing the memory). It will handle any realloc's
780	 * should the buffer be too short.
781	 * The reason_buf_used and reason_buf_len counters are defined
782	 * globally as multiple constraints can be in the buffer.
783	 */
784
785	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
786				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
787		for (x = 0; buffers[x] != NULL; x++) {
788			while (1) {
789				p = *r_buf + reason_buf_used;
790				len = snprintf(p, reason_buf_len - reason_buf_used,
791						"%s", buffers[x]);
792				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
793					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
794					*new_buf = realloc(*r_buf, new_buf_len);
795					if (!new_buf) {
796						ERR(NULL, "failed to realloc reason buffer");
797						goto out1;
798					}
799					**r_buf = **new_buf;
800					reason_buf_len = new_buf_len;
801					continue;
802				} else {
803					reason_buf_used += len;
804					break;
805				}
806			}
807		}
808	}
809
810out1:
811	rc = s[0];
812	free(a);
813
814out:
815	free(class_buf);
816	free(src);
817	free(tgt);
818
819	if (expr_counter) {
820		for (x = 0; expr_list[x] != NULL; x++)
821			free(expr_list[x]);
822	}
823	free(answer_list);
824	free(expr_list);
825	return rc;
826}
827
828/* Forward declaration */
829static int context_struct_compute_av(context_struct_t * scontext,
830				     context_struct_t * tcontext,
831				     sepol_security_class_t tclass,
832				     sepol_access_vector_t requested,
833				     struct sepol_av_decision *avd,
834				     unsigned int *reason,
835				     char **r_buf,
836				     unsigned int flags);
837
838static void type_attribute_bounds_av(context_struct_t *scontext,
839				     context_struct_t *tcontext,
840				     sepol_security_class_t tclass,
841				     sepol_access_vector_t requested,
842				     struct sepol_av_decision *avd,
843				     unsigned int *reason)
844{
845	context_struct_t lo_scontext;
846	context_struct_t lo_tcontext, *tcontextp = tcontext;
847	struct sepol_av_decision lo_avd;
848	type_datum_t *source;
849	type_datum_t *target;
850	sepol_access_vector_t masked = 0;
851
852	source = policydb->type_val_to_struct[scontext->type - 1];
853	if (!source->bounds)
854		return;
855
856	target = policydb->type_val_to_struct[tcontext->type - 1];
857
858	memset(&lo_avd, 0, sizeof(lo_avd));
859
860	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
861	lo_scontext.type = source->bounds;
862
863	if (target->bounds) {
864		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
865		lo_tcontext.type = target->bounds;
866		tcontextp = &lo_tcontext;
867	}
868
869	context_struct_compute_av(&lo_scontext,
870				  tcontextp,
871				  tclass,
872				  requested,
873				  &lo_avd,
874				  NULL, /* reason intentionally omitted */
875				  NULL,
876				  0);
877
878	masked = ~lo_avd.allowed & avd->allowed;
879
880	if (!masked)
881		return;		/* no masked permission */
882
883	/* mask violated permissions */
884	avd->allowed &= ~masked;
885
886	*reason |= SEPOL_COMPUTEAV_BOUNDS;
887}
888
889/*
890 * Compute access vectors based on a context structure pair for
891 * the permissions in a particular class.
892 */
893static int context_struct_compute_av(context_struct_t * scontext,
894				     context_struct_t * tcontext,
895				     sepol_security_class_t tclass,
896				     sepol_access_vector_t requested,
897				     struct sepol_av_decision *avd,
898				     unsigned int *reason,
899				     char **r_buf,
900				     unsigned int flags)
901{
902	constraint_node_t *constraint;
903	struct role_allow *ra;
904	avtab_key_t avkey;
905	class_datum_t *tclass_datum;
906	avtab_ptr_t node;
907	ebitmap_t *sattr, *tattr;
908	ebitmap_node_t *snode, *tnode;
909	unsigned int i, j;
910
911	if (!tclass || tclass > policydb->p_classes.nprim) {
912		ERR(NULL, "unrecognized class %d", tclass);
913		return -EINVAL;
914	}
915	tclass_datum = policydb->class_val_to_struct[tclass - 1];
916
917	/*
918	 * Initialize the access vectors to the default values.
919	 */
920	avd->allowed = 0;
921	avd->decided = 0xffffffff;
922	avd->auditallow = 0;
923	avd->auditdeny = 0xffffffff;
924	avd->seqno = latest_granting;
925	if (reason)
926		*reason = 0;
927
928	/*
929	 * If a specific type enforcement rule was defined for
930	 * this permission check, then use it.
931	 */
932	avkey.target_class = tclass;
933	avkey.specified = AVTAB_AV;
934	sattr = &policydb->type_attr_map[scontext->type - 1];
935	tattr = &policydb->type_attr_map[tcontext->type - 1];
936	ebitmap_for_each_bit(sattr, snode, i) {
937		if (!ebitmap_node_get_bit(snode, i))
938			continue;
939		ebitmap_for_each_bit(tattr, tnode, j) {
940			if (!ebitmap_node_get_bit(tnode, j))
941				continue;
942			avkey.source_type = i + 1;
943			avkey.target_type = j + 1;
944			for (node =
945			     avtab_search_node(&policydb->te_avtab, &avkey);
946			     node != NULL;
947			     node =
948			     avtab_search_node_next(node, avkey.specified)) {
949				if (node->key.specified == AVTAB_ALLOWED)
950					avd->allowed |= node->datum.data;
951				else if (node->key.specified ==
952					 AVTAB_AUDITALLOW)
953					avd->auditallow |= node->datum.data;
954				else if (node->key.specified == AVTAB_AUDITDENY)
955					avd->auditdeny &= node->datum.data;
956			}
957
958			/* Check conditional av table for additional permissions */
959			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
960
961		}
962	}
963
964	if (requested & ~avd->allowed) {
965		if (reason)
966			*reason |= SEPOL_COMPUTEAV_TE;
967		requested &= avd->allowed;
968	}
969
970	/*
971	 * Remove any permissions prohibited by a constraint (this includes
972	 * the MLS policy).
973	 */
974	constraint = tclass_datum->constraints;
975	while (constraint) {
976		if ((constraint->permissions & (avd->allowed)) &&
977		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
978					  tclass, constraint, r_buf, flags)) {
979			avd->allowed =
980			    (avd->allowed) & ~(constraint->permissions);
981		}
982		constraint = constraint->next;
983	}
984
985	if (requested & ~avd->allowed) {
986		if (reason)
987			*reason |= SEPOL_COMPUTEAV_CONS;
988		requested &= avd->allowed;
989	}
990
991	/*
992	 * If checking process transition permission and the
993	 * role is changing, then check the (current_role, new_role)
994	 * pair.
995	 */
996	if (tclass == SECCLASS_PROCESS &&
997	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
998	    scontext->role != tcontext->role) {
999		for (ra = policydb->role_allow; ra; ra = ra->next) {
1000			if (scontext->role == ra->role &&
1001			    tcontext->role == ra->new_role)
1002				break;
1003		}
1004		if (!ra)
1005			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
1006							  PROCESS__DYNTRANSITION);
1007	}
1008
1009	if (requested & ~avd->allowed) {
1010		if (reason)
1011			*reason |= SEPOL_COMPUTEAV_RBAC;
1012		requested &= avd->allowed;
1013	}
1014
1015	type_attribute_bounds_av(scontext, tcontext, tclass, requested, avd,
1016				 reason);
1017	return 0;
1018}
1019
1020int hidden sepol_validate_transition(sepol_security_id_t oldsid,
1021				     sepol_security_id_t newsid,
1022				     sepol_security_id_t tasksid,
1023				     sepol_security_class_t tclass)
1024{
1025	context_struct_t *ocontext;
1026	context_struct_t *ncontext;
1027	context_struct_t *tcontext;
1028	class_datum_t *tclass_datum;
1029	constraint_node_t *constraint;
1030
1031	if (!tclass || tclass > policydb->p_classes.nprim) {
1032		ERR(NULL, "unrecognized class %d", tclass);
1033		return -EINVAL;
1034	}
1035	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1036
1037	ocontext = sepol_sidtab_search(sidtab, oldsid);
1038	if (!ocontext) {
1039		ERR(NULL, "unrecognized SID %d", oldsid);
1040		return -EINVAL;
1041	}
1042
1043	ncontext = sepol_sidtab_search(sidtab, newsid);
1044	if (!ncontext) {
1045		ERR(NULL, "unrecognized SID %d", newsid);
1046		return -EINVAL;
1047	}
1048
1049	tcontext = sepol_sidtab_search(sidtab, tasksid);
1050	if (!tcontext) {
1051		ERR(NULL, "unrecognized SID %d", tasksid);
1052		return -EINVAL;
1053	}
1054
1055	constraint = tclass_datum->validatetrans;
1056	while (constraint) {
1057		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1058					  0, constraint, NULL, 0)) {
1059			return -EPERM;
1060		}
1061		constraint = constraint->next;
1062	}
1063
1064	return 0;
1065}
1066
1067/*
1068 * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd
1069 * in the constraint_expr_eval_reason() function.
1070 */
1071int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,
1072				     sepol_security_id_t newsid,
1073				     sepol_security_id_t tasksid,
1074				     sepol_security_class_t tclass,
1075				     char **reason_buf,
1076				     unsigned int flags)
1077{
1078	context_struct_t *ocontext;
1079	context_struct_t *ncontext;
1080	context_struct_t *tcontext;
1081	class_datum_t *tclass_datum;
1082	constraint_node_t *constraint;
1083
1084	if (!tclass || tclass > policydb->p_classes.nprim) {
1085		ERR(NULL, "unrecognized class %d", tclass);
1086		return -EINVAL;
1087	}
1088	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1089
1090	ocontext = sepol_sidtab_search(sidtab, oldsid);
1091	if (!ocontext) {
1092		ERR(NULL, "unrecognized SID %d", oldsid);
1093		return -EINVAL;
1094	}
1095
1096	ncontext = sepol_sidtab_search(sidtab, newsid);
1097	if (!ncontext) {
1098		ERR(NULL, "unrecognized SID %d", newsid);
1099		return -EINVAL;
1100	}
1101
1102	tcontext = sepol_sidtab_search(sidtab, tasksid);
1103	if (!tcontext) {
1104		ERR(NULL, "unrecognized SID %d", tasksid);
1105		return -EINVAL;
1106	}
1107
1108	/*
1109	 * Set the buffer to NULL as mls/validatetrans may not be processed.
1110	 * If a buffer is required, then the routines in
1111	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1112	 * chunks (as it gets called for each mls/validatetrans processed).
1113	 * We just make sure these start from zero.
1114	 */
1115	*reason_buf = NULL;
1116	reason_buf_used = 0;
1117	reason_buf_len = 0;
1118	constraint = tclass_datum->validatetrans;
1119	while (constraint) {
1120		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1121				tclass, constraint, reason_buf, flags)) {
1122			return -EPERM;
1123		}
1124		constraint = constraint->next;
1125	}
1126	return 0;
1127}
1128
1129int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
1130				   sepol_security_id_t tsid,
1131				   sepol_security_class_t tclass,
1132				   sepol_access_vector_t requested,
1133				   struct sepol_av_decision *avd,
1134				   unsigned int *reason)
1135{
1136	context_struct_t *scontext = 0, *tcontext = 0;
1137	int rc = 0;
1138
1139	scontext = sepol_sidtab_search(sidtab, ssid);
1140	if (!scontext) {
1141		ERR(NULL, "unrecognized SID %d", ssid);
1142		rc = -EINVAL;
1143		goto out;
1144	}
1145	tcontext = sepol_sidtab_search(sidtab, tsid);
1146	if (!tcontext) {
1147		ERR(NULL, "unrecognized SID %d", tsid);
1148		rc = -EINVAL;
1149		goto out;
1150	}
1151
1152	rc = context_struct_compute_av(scontext, tcontext, tclass,
1153					requested, avd, reason, NULL, 0);
1154      out:
1155	return rc;
1156}
1157
1158/*
1159 * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1160 * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1161 * in the constraint_expr_eval_reason() function.
1162 */
1163int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1164				   sepol_security_id_t tsid,
1165				   sepol_security_class_t tclass,
1166				   sepol_access_vector_t requested,
1167				   struct sepol_av_decision *avd,
1168				   unsigned int *reason,
1169				   char **reason_buf,
1170				   unsigned int flags)
1171{
1172	context_struct_t *scontext = 0, *tcontext = 0;
1173	int rc = 0;
1174
1175	scontext = sepol_sidtab_search(sidtab, ssid);
1176	if (!scontext) {
1177		ERR(NULL, "unrecognized SID %d", ssid);
1178		rc = -EINVAL;
1179		goto out;
1180	}
1181	tcontext = sepol_sidtab_search(sidtab, tsid);
1182	if (!tcontext) {
1183		ERR(NULL, "unrecognized SID %d", tsid);
1184		rc = -EINVAL;
1185		goto out;
1186	}
1187
1188	/*
1189	 * Set the buffer to NULL as constraints may not be processed.
1190	 * If a buffer is required, then the routines in
1191	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1192	 * chunks (as it gets called for each constraint processed).
1193	 * We just make sure these start from zero.
1194	 */
1195	*reason_buf = NULL;
1196	reason_buf_used = 0;
1197	reason_buf_len = 0;
1198
1199	rc = context_struct_compute_av(scontext, tcontext, tclass,
1200					   requested, avd, reason, reason_buf, flags);
1201out:
1202	return rc;
1203}
1204
1205int hidden sepol_compute_av(sepol_security_id_t ssid,
1206			    sepol_security_id_t tsid,
1207			    sepol_security_class_t tclass,
1208			    sepol_access_vector_t requested,
1209			    struct sepol_av_decision *avd)
1210{
1211	unsigned int reason = 0;
1212	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1213				       &reason);
1214}
1215
1216/*
1217 * Return a class ID associated with the class string specified by
1218 * class_name.
1219 */
1220int hidden sepol_string_to_security_class(const char *class_name,
1221			sepol_security_class_t *tclass)
1222{
1223	class_datum_t *tclass_datum;
1224
1225	tclass_datum = hashtab_search(policydb->p_classes.table,
1226				      (hashtab_key_t) class_name);
1227	if (!tclass_datum) {
1228		ERR(NULL, "unrecognized class %s", class_name);
1229		return STATUS_ERR;
1230	}
1231	*tclass = tclass_datum->s.value;
1232	return STATUS_SUCCESS;
1233}
1234
1235/*
1236 * Return access vector bit associated with the class ID and permission
1237 * string.
1238 */
1239int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1240					const char *perm_name,
1241					sepol_access_vector_t *av)
1242{
1243	class_datum_t *tclass_datum;
1244	perm_datum_t *perm_datum;
1245
1246	if (!tclass || tclass > policydb->p_classes.nprim) {
1247		ERR(NULL, "unrecognized class %d", tclass);
1248		return -EINVAL;
1249	}
1250	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1251
1252	/* Check for unique perms then the common ones (if any) */
1253	perm_datum = (perm_datum_t *)
1254			hashtab_search(tclass_datum->permissions.table,
1255			(hashtab_key_t)perm_name);
1256	if (perm_datum != NULL) {
1257		*av = 0x1 << (perm_datum->s.value - 1);
1258		return STATUS_SUCCESS;
1259	}
1260
1261	if (tclass_datum->comdatum == NULL)
1262		goto out;
1263
1264	perm_datum = (perm_datum_t *)
1265			hashtab_search(tclass_datum->comdatum->permissions.table,
1266			(hashtab_key_t)perm_name);
1267
1268	if (perm_datum != NULL) {
1269		*av = 0x1 << (perm_datum->s.value - 1);
1270		return STATUS_SUCCESS;
1271	}
1272out:
1273	ERR(NULL, "could not convert %s to av bit", perm_name);
1274	return STATUS_ERR;
1275}
1276
1277/*
1278 * Write the security context string representation of
1279 * the context associated with `sid' into a dynamically
1280 * allocated string of the correct size.  Set `*scontext'
1281 * to point to this string and set `*scontext_len' to
1282 * the length of the string.
1283 */
1284int hidden sepol_sid_to_context(sepol_security_id_t sid,
1285				sepol_security_context_t * scontext,
1286				size_t * scontext_len)
1287{
1288	context_struct_t *context;
1289	int rc = 0;
1290
1291	context = sepol_sidtab_search(sidtab, sid);
1292	if (!context) {
1293		ERR(NULL, "unrecognized SID %d", sid);
1294		rc = -EINVAL;
1295		goto out;
1296	}
1297	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1298      out:
1299	return rc;
1300
1301}
1302
1303/*
1304 * Return a SID associated with the security context that
1305 * has the string representation specified by `scontext'.
1306 */
1307int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1308				size_t scontext_len, sepol_security_id_t * sid)
1309{
1310
1311	context_struct_t *context = NULL;
1312
1313	/* First, create the context */
1314	if (context_from_string(NULL, policydb, &context,
1315				scontext, scontext_len) < 0)
1316		goto err;
1317
1318	/* Obtain the new sid */
1319	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1320		goto err;
1321
1322	context_destroy(context);
1323	free(context);
1324	return STATUS_SUCCESS;
1325
1326      err:
1327	if (context) {
1328		context_destroy(context);
1329		free(context);
1330	}
1331	ERR(NULL, "could not convert %s to sid", scontext);
1332	return STATUS_ERR;
1333}
1334
1335static inline int compute_sid_handle_invalid_context(context_struct_t *
1336						     scontext,
1337						     context_struct_t *
1338						     tcontext,
1339						     sepol_security_class_t
1340						     tclass,
1341						     context_struct_t *
1342						     newcontext)
1343{
1344	if (selinux_enforcing) {
1345		return -EACCES;
1346	} else {
1347		sepol_security_context_t s, t, n;
1348		size_t slen, tlen, nlen;
1349
1350		context_to_string(NULL, policydb, scontext, &s, &slen);
1351		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1352		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1353		ERR(NULL, "invalid context %s for "
1354		    "scontext=%s tcontext=%s tclass=%s",
1355		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1356		free(s);
1357		free(t);
1358		free(n);
1359		return 0;
1360	}
1361}
1362
1363static int sepol_compute_sid(sepol_security_id_t ssid,
1364			     sepol_security_id_t tsid,
1365			     sepol_security_class_t tclass,
1366			     uint32_t specified, sepol_security_id_t * out_sid)
1367{
1368	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1369	struct role_trans *roletr = 0;
1370	avtab_key_t avkey;
1371	avtab_datum_t *avdatum;
1372	avtab_ptr_t node;
1373	int rc = 0;
1374
1375	scontext = sepol_sidtab_search(sidtab, ssid);
1376	if (!scontext) {
1377		ERR(NULL, "unrecognized SID %d", ssid);
1378		rc = -EINVAL;
1379		goto out;
1380	}
1381	tcontext = sepol_sidtab_search(sidtab, tsid);
1382	if (!tcontext) {
1383		ERR(NULL, "unrecognized SID %d", tsid);
1384		rc = -EINVAL;
1385		goto out;
1386	}
1387
1388	context_init(&newcontext);
1389
1390	/* Set the user identity. */
1391	switch (specified) {
1392	case AVTAB_TRANSITION:
1393	case AVTAB_CHANGE:
1394		/* Use the process user identity. */
1395		newcontext.user = scontext->user;
1396		break;
1397	case AVTAB_MEMBER:
1398		/* Use the related object owner. */
1399		newcontext.user = tcontext->user;
1400		break;
1401	}
1402
1403	/* Set the role and type to default values. */
1404	switch (tclass) {
1405	case SECCLASS_PROCESS:
1406		/* Use the current role and type of process. */
1407		newcontext.role = scontext->role;
1408		newcontext.type = scontext->type;
1409		break;
1410	default:
1411		/* Use the well-defined object role. */
1412		newcontext.role = OBJECT_R_VAL;
1413		/* Use the type of the related object. */
1414		newcontext.type = tcontext->type;
1415	}
1416
1417	/* Look for a type transition/member/change rule. */
1418	avkey.source_type = scontext->type;
1419	avkey.target_type = tcontext->type;
1420	avkey.target_class = tclass;
1421	avkey.specified = specified;
1422	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1423
1424	/* If no permanent rule, also check for enabled conditional rules */
1425	if (!avdatum) {
1426		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1427		for (; node != NULL;
1428		     node = avtab_search_node_next(node, specified)) {
1429			if (node->key.specified & AVTAB_ENABLED) {
1430				avdatum = &node->datum;
1431				break;
1432			}
1433		}
1434	}
1435
1436	if (avdatum) {
1437		/* Use the type from the type transition/member/change rule. */
1438		newcontext.type = avdatum->data;
1439	}
1440
1441	/* Check for class-specific changes. */
1442	switch (tclass) {
1443	case SECCLASS_PROCESS:
1444		if (specified & AVTAB_TRANSITION) {
1445			/* Look for a role transition rule. */
1446			for (roletr = policydb->role_tr; roletr;
1447			     roletr = roletr->next) {
1448				if (roletr->role == scontext->role &&
1449				    roletr->type == tcontext->type) {
1450					/* Use the role transition rule. */
1451					newcontext.role = roletr->new_role;
1452					break;
1453				}
1454			}
1455		}
1456		break;
1457	default:
1458		break;
1459	}
1460
1461	/* Set the MLS attributes.
1462	   This is done last because it may allocate memory. */
1463	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1464			     &newcontext);
1465	if (rc)
1466		goto out;
1467
1468	/* Check the validity of the context. */
1469	if (!policydb_context_isvalid(policydb, &newcontext)) {
1470		rc = compute_sid_handle_invalid_context(scontext,
1471							tcontext,
1472							tclass, &newcontext);
1473		if (rc)
1474			goto out;
1475	}
1476	/* Obtain the sid for the context. */
1477	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1478      out:
1479	context_destroy(&newcontext);
1480	return rc;
1481}
1482
1483/*
1484 * Compute a SID to use for labeling a new object in the
1485 * class `tclass' based on a SID pair.
1486 */
1487int hidden sepol_transition_sid(sepol_security_id_t ssid,
1488				sepol_security_id_t tsid,
1489				sepol_security_class_t tclass,
1490				sepol_security_id_t * out_sid)
1491{
1492	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1493}
1494
1495/*
1496 * Compute a SID to use when selecting a member of a
1497 * polyinstantiated object of class `tclass' based on
1498 * a SID pair.
1499 */
1500int hidden sepol_member_sid(sepol_security_id_t ssid,
1501			    sepol_security_id_t tsid,
1502			    sepol_security_class_t tclass,
1503			    sepol_security_id_t * out_sid)
1504{
1505	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1506}
1507
1508/*
1509 * Compute a SID to use for relabeling an object in the
1510 * class `tclass' based on a SID pair.
1511 */
1512int hidden sepol_change_sid(sepol_security_id_t ssid,
1513			    sepol_security_id_t tsid,
1514			    sepol_security_class_t tclass,
1515			    sepol_security_id_t * out_sid)
1516{
1517	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1518}
1519
1520/*
1521 * Verify that each permission that is defined under the
1522 * existing policy is still defined with the same value
1523 * in the new policy.
1524 */
1525static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1526{
1527	hashtab_t h;
1528	perm_datum_t *perdatum, *perdatum2;
1529
1530	h = (hashtab_t) p;
1531	perdatum = (perm_datum_t *) datum;
1532
1533	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1534	if (!perdatum2) {
1535		ERR(NULL, "permission %s disappeared", key);
1536		return -1;
1537	}
1538	if (perdatum->s.value != perdatum2->s.value) {
1539		ERR(NULL, "the value of permissions %s changed", key);
1540		return -1;
1541	}
1542	return 0;
1543}
1544
1545/*
1546 * Verify that each class that is defined under the
1547 * existing policy is still defined with the same
1548 * attributes in the new policy.
1549 */
1550static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1551{
1552	policydb_t *newp;
1553	class_datum_t *cladatum, *cladatum2;
1554
1555	newp = (policydb_t *) p;
1556	cladatum = (class_datum_t *) datum;
1557
1558	cladatum2 =
1559	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1560	if (!cladatum2) {
1561		ERR(NULL, "class %s disappeared", key);
1562		return -1;
1563	}
1564	if (cladatum->s.value != cladatum2->s.value) {
1565		ERR(NULL, "the value of class %s changed", key);
1566		return -1;
1567	}
1568	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1569	    (!cladatum->comdatum && cladatum2->comdatum)) {
1570		ERR(NULL, "the inherits clause for the access "
1571		    "vector definition for class %s changed", key);
1572		return -1;
1573	}
1574	if (cladatum->comdatum) {
1575		if (hashtab_map
1576		    (cladatum->comdatum->permissions.table, validate_perm,
1577		     cladatum2->comdatum->permissions.table)) {
1578			ERR(NULL,
1579			    " in the access vector definition "
1580			    "for class %s\n", key);
1581			return -1;
1582		}
1583	}
1584	if (hashtab_map(cladatum->permissions.table, validate_perm,
1585			cladatum2->permissions.table)) {
1586		ERR(NULL, " in access vector definition for class %s", key);
1587		return -1;
1588	}
1589	return 0;
1590}
1591
1592/* Clone the SID into the new SID table. */
1593static int clone_sid(sepol_security_id_t sid,
1594		     context_struct_t * context, void *arg)
1595{
1596	sidtab_t *s = arg;
1597
1598	return sepol_sidtab_insert(s, sid, context);
1599}
1600
1601static inline int convert_context_handle_invalid_context(context_struct_t *
1602							 context)
1603{
1604	if (selinux_enforcing) {
1605		return -EINVAL;
1606	} else {
1607		sepol_security_context_t s;
1608		size_t len;
1609
1610		context_to_string(NULL, policydb, context, &s, &len);
1611		ERR(NULL, "context %s is invalid", s);
1612		free(s);
1613		return 0;
1614	}
1615}
1616
1617typedef struct {
1618	policydb_t *oldp;
1619	policydb_t *newp;
1620} convert_context_args_t;
1621
1622/*
1623 * Convert the values in the security context
1624 * structure `c' from the values specified
1625 * in the policy `p->oldp' to the values specified
1626 * in the policy `p->newp'.  Verify that the
1627 * context is valid under the new policy.
1628 */
1629static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1630			   context_struct_t * c, void *p)
1631{
1632	convert_context_args_t *args;
1633	context_struct_t oldc;
1634	role_datum_t *role;
1635	type_datum_t *typdatum;
1636	user_datum_t *usrdatum;
1637	sepol_security_context_t s;
1638	size_t len;
1639	int rc = -EINVAL;
1640
1641	args = (convert_context_args_t *) p;
1642
1643	if (context_cpy(&oldc, c))
1644		return -ENOMEM;
1645
1646	/* Convert the user. */
1647	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1648						   args->oldp->
1649						   p_user_val_to_name[c->user -
1650								      1]);
1651
1652	if (!usrdatum) {
1653		goto bad;
1654	}
1655	c->user = usrdatum->s.value;
1656
1657	/* Convert the role. */
1658	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1659					       args->oldp->
1660					       p_role_val_to_name[c->role - 1]);
1661	if (!role) {
1662		goto bad;
1663	}
1664	c->role = role->s.value;
1665
1666	/* Convert the type. */
1667	typdatum = (type_datum_t *)
1668	    hashtab_search(args->newp->p_types.table,
1669			   args->oldp->p_type_val_to_name[c->type - 1]);
1670	if (!typdatum) {
1671		goto bad;
1672	}
1673	c->type = typdatum->s.value;
1674
1675	rc = mls_convert_context(args->oldp, args->newp, c);
1676	if (rc)
1677		goto bad;
1678
1679	/* Check the validity of the new context. */
1680	if (!policydb_context_isvalid(args->newp, c)) {
1681		rc = convert_context_handle_invalid_context(&oldc);
1682		if (rc)
1683			goto bad;
1684	}
1685
1686	context_destroy(&oldc);
1687	return 0;
1688
1689      bad:
1690	context_to_string(NULL, policydb, &oldc, &s, &len);
1691	context_destroy(&oldc);
1692	ERR(NULL, "invalidating context %s", s);
1693	free(s);
1694	return rc;
1695}
1696
1697/* Reading from a policy "file". */
1698int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1699{
1700	size_t nread;
1701
1702	switch (fp->type) {
1703	case PF_USE_STDIO:
1704		nread = fread(buf, bytes, 1, fp->fp);
1705
1706		if (nread != 1)
1707			return -1;
1708		break;
1709	case PF_USE_MEMORY:
1710		if (bytes > fp->len) {
1711			errno = EOVERFLOW;
1712			return -1;
1713		}
1714		memcpy(buf, fp->data, bytes);
1715		fp->data += bytes;
1716		fp->len -= bytes;
1717		break;
1718	default:
1719		errno = EINVAL;
1720		return -1;
1721	}
1722	return 0;
1723}
1724
1725size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1726			struct policy_file *fp)
1727{
1728	size_t bytes = size * n;
1729
1730	switch (fp->type) {
1731	case PF_USE_STDIO:
1732		return fwrite(ptr, size, n, fp->fp);
1733	case PF_USE_MEMORY:
1734		if (bytes > fp->len) {
1735			errno = ENOSPC;
1736			return 0;
1737		}
1738
1739		memcpy(fp->data, ptr, bytes);
1740		fp->data += bytes;
1741		fp->len -= bytes;
1742		return n;
1743	case PF_LEN:
1744		fp->len += bytes;
1745		return n;
1746	default:
1747		return 0;
1748	}
1749	return 0;
1750}
1751
1752/*
1753 * Reads a string and null terminates it from the policy file.
1754 * This is a port of str_read from the SE Linux kernel code.
1755 *
1756 * It returns:
1757 *   0 - Success
1758 *  -1 - Failure with errno set
1759 */
1760int hidden str_read(char **strp, struct policy_file *fp, size_t len)
1761{
1762	int rc;
1763	char *str;
1764
1765	if (zero_or_saturated(len)) {
1766		errno = EINVAL;
1767		return -1;
1768	}
1769
1770	str = malloc(len + 1);
1771	if (!str)
1772		return -1;
1773
1774	/* it's expected the caller should free the str */
1775	*strp = str;
1776
1777	/* next_entry sets errno */
1778	rc = next_entry(str, fp, len);
1779	if (rc)
1780		return rc;
1781
1782	str[len] = '\0';
1783	return 0;
1784}
1785
1786/*
1787 * Read a new set of configuration data from
1788 * a policy database binary representation file.
1789 *
1790 * Verify that each class that is defined under the
1791 * existing policy is still defined with the same
1792 * attributes in the new policy.
1793 *
1794 * Convert the context structures in the SID table to the
1795 * new representation and verify that all entries
1796 * in the SID table are valid under the new policy.
1797 *
1798 * Change the active policy database to use the new
1799 * configuration data.
1800 *
1801 * Reset the access vector cache.
1802 */
1803int hidden sepol_load_policy(void *data, size_t len)
1804{
1805	policydb_t oldpolicydb, newpolicydb;
1806	sidtab_t oldsidtab, newsidtab;
1807	convert_context_args_t args;
1808	int rc = 0;
1809	struct policy_file file, *fp;
1810
1811	policy_file_init(&file);
1812	file.type = PF_USE_MEMORY;
1813	file.data = data;
1814	file.len = len;
1815	fp = &file;
1816
1817	if (policydb_init(&newpolicydb))
1818		return -ENOMEM;
1819
1820	if (policydb_read(&newpolicydb, fp, 1)) {
1821		policydb_destroy(&mypolicydb);
1822		return -EINVAL;
1823	}
1824
1825	sepol_sidtab_init(&newsidtab);
1826
1827	/* Verify that the existing classes did not change. */
1828	if (hashtab_map
1829	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1830		ERR(NULL, "the definition of an existing class changed");
1831		rc = -EINVAL;
1832		goto err;
1833	}
1834
1835	/* Clone the SID table. */
1836	sepol_sidtab_shutdown(sidtab);
1837	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1838		rc = -ENOMEM;
1839		goto err;
1840	}
1841
1842	/* Convert the internal representations of contexts
1843	   in the new SID table and remove invalid SIDs. */
1844	args.oldp = policydb;
1845	args.newp = &newpolicydb;
1846	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1847
1848	/* Save the old policydb and SID table to free later. */
1849	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1850	sepol_sidtab_set(&oldsidtab, sidtab);
1851
1852	/* Install the new policydb and SID table. */
1853	memcpy(policydb, &newpolicydb, sizeof *policydb);
1854	sepol_sidtab_set(sidtab, &newsidtab);
1855
1856	/* Free the old policydb and SID table. */
1857	policydb_destroy(&oldpolicydb);
1858	sepol_sidtab_destroy(&oldsidtab);
1859
1860	return 0;
1861
1862      err:
1863	sepol_sidtab_destroy(&newsidtab);
1864	policydb_destroy(&newpolicydb);
1865	return rc;
1866
1867}
1868
1869/*
1870 * Return the SIDs to use for an unlabeled file system
1871 * that is being mounted from the device with the
1872 * the kdevname `name'.  The `fs_sid' SID is returned for
1873 * the file system and the `file_sid' SID is returned
1874 * for all files within that file system.
1875 */
1876int hidden sepol_fs_sid(char *name,
1877			sepol_security_id_t * fs_sid,
1878			sepol_security_id_t * file_sid)
1879{
1880	int rc = 0;
1881	ocontext_t *c;
1882
1883	c = policydb->ocontexts[OCON_FS];
1884	while (c) {
1885		if (strcmp(c->u.name, name) == 0)
1886			break;
1887		c = c->next;
1888	}
1889
1890	if (c) {
1891		if (!c->sid[0] || !c->sid[1]) {
1892			rc = sepol_sidtab_context_to_sid(sidtab,
1893							 &c->context[0],
1894							 &c->sid[0]);
1895			if (rc)
1896				goto out;
1897			rc = sepol_sidtab_context_to_sid(sidtab,
1898							 &c->context[1],
1899							 &c->sid[1]);
1900			if (rc)
1901				goto out;
1902		}
1903		*fs_sid = c->sid[0];
1904		*file_sid = c->sid[1];
1905	} else {
1906		*fs_sid = SECINITSID_FS;
1907		*file_sid = SECINITSID_FILE;
1908	}
1909
1910      out:
1911	return rc;
1912}
1913
1914/*
1915 * Return the SID of the ibpkey specified by
1916 * `subnet prefix', and `pkey number'.
1917 */
1918int hidden sepol_ibpkey_sid(uint64_t subnet_prefix,
1919			    uint16_t pkey, sepol_security_id_t *out_sid)
1920{
1921	ocontext_t *c;
1922	int rc = 0;
1923
1924	c = policydb->ocontexts[OCON_IBPKEY];
1925	while (c) {
1926		if (c->u.ibpkey.low_pkey <= pkey &&
1927		    c->u.ibpkey.high_pkey >= pkey &&
1928		    subnet_prefix == c->u.ibpkey.subnet_prefix)
1929			break;
1930		c = c->next;
1931	}
1932
1933	if (c) {
1934		if (!c->sid[0]) {
1935			rc = sepol_sidtab_context_to_sid(sidtab,
1936							 &c->context[0],
1937							 &c->sid[0]);
1938			if (rc)
1939				goto out;
1940		}
1941		*out_sid = c->sid[0];
1942	} else {
1943		*out_sid = SECINITSID_UNLABELED;
1944	}
1945
1946out:
1947	return rc;
1948}
1949
1950/*
1951 * Return the SID of the subnet management interface specified by
1952 * `device name', and `port'.
1953 */
1954int hidden sepol_ibendport_sid(char *dev_name,
1955			       uint8_t port,
1956			       sepol_security_id_t *out_sid)
1957{
1958	ocontext_t *c;
1959	int rc = 0;
1960
1961	c = policydb->ocontexts[OCON_IBENDPORT];
1962	while (c) {
1963		if (c->u.ibendport.port == port &&
1964		    !strcmp(dev_name, c->u.ibendport.dev_name))
1965			break;
1966		c = c->next;
1967	}
1968
1969	if (c) {
1970		if (!c->sid[0]) {
1971			rc = sepol_sidtab_context_to_sid(sidtab,
1972							 &c->context[0],
1973							 &c->sid[0]);
1974			if (rc)
1975				goto out;
1976		}
1977		*out_sid = c->sid[0];
1978	} else {
1979		*out_sid = SECINITSID_UNLABELED;
1980	}
1981
1982out:
1983	return rc;
1984}
1985
1986
1987/*
1988 * Return the SID of the port specified by
1989 * `domain', `type', `protocol', and `port'.
1990 */
1991int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1992			  uint16_t type __attribute__ ((unused)),
1993			  uint8_t protocol,
1994			  uint16_t port, sepol_security_id_t * out_sid)
1995{
1996	ocontext_t *c;
1997	int rc = 0;
1998
1999	c = policydb->ocontexts[OCON_PORT];
2000	while (c) {
2001		if (c->u.port.protocol == protocol &&
2002		    c->u.port.low_port <= port && c->u.port.high_port >= port)
2003			break;
2004		c = c->next;
2005	}
2006
2007	if (c) {
2008		if (!c->sid[0]) {
2009			rc = sepol_sidtab_context_to_sid(sidtab,
2010							 &c->context[0],
2011							 &c->sid[0]);
2012			if (rc)
2013				goto out;
2014		}
2015		*out_sid = c->sid[0];
2016	} else {
2017		*out_sid = SECINITSID_PORT;
2018	}
2019
2020      out:
2021	return rc;
2022}
2023
2024/*
2025 * Return the SIDs to use for a network interface
2026 * with the name `name'.  The `if_sid' SID is returned for
2027 * the interface and the `msg_sid' SID is returned as
2028 * the default SID for messages received on the
2029 * interface.
2030 */
2031int hidden sepol_netif_sid(char *name,
2032			   sepol_security_id_t * if_sid,
2033			   sepol_security_id_t * msg_sid)
2034{
2035	int rc = 0;
2036	ocontext_t *c;
2037
2038	c = policydb->ocontexts[OCON_NETIF];
2039	while (c) {
2040		if (strcmp(name, c->u.name) == 0)
2041			break;
2042		c = c->next;
2043	}
2044
2045	if (c) {
2046		if (!c->sid[0] || !c->sid[1]) {
2047			rc = sepol_sidtab_context_to_sid(sidtab,
2048							 &c->context[0],
2049							 &c->sid[0]);
2050			if (rc)
2051				goto out;
2052			rc = sepol_sidtab_context_to_sid(sidtab,
2053							 &c->context[1],
2054							 &c->sid[1]);
2055			if (rc)
2056				goto out;
2057		}
2058		*if_sid = c->sid[0];
2059		*msg_sid = c->sid[1];
2060	} else {
2061		*if_sid = SECINITSID_NETIF;
2062		*msg_sid = SECINITSID_NETMSG;
2063	}
2064
2065      out:
2066	return rc;
2067}
2068
2069static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
2070			       uint32_t * mask)
2071{
2072	int i, fail = 0;
2073
2074	for (i = 0; i < 4; i++)
2075		if (addr[i] != (input[i] & mask[i])) {
2076			fail = 1;
2077			break;
2078		}
2079
2080	return !fail;
2081}
2082
2083/*
2084 * Return the SID of the node specified by the address
2085 * `addrp' where `addrlen' is the length of the address
2086 * in bytes and `domain' is the communications domain or
2087 * address family in which the address should be interpreted.
2088 */
2089int hidden sepol_node_sid(uint16_t domain,
2090			  void *addrp,
2091			  size_t addrlen, sepol_security_id_t * out_sid)
2092{
2093	int rc = 0;
2094	ocontext_t *c;
2095
2096	switch (domain) {
2097	case AF_INET:{
2098			uint32_t addr;
2099
2100			if (addrlen != sizeof(uint32_t)) {
2101				rc = -EINVAL;
2102				goto out;
2103			}
2104
2105			addr = *((uint32_t *) addrp);
2106
2107			c = policydb->ocontexts[OCON_NODE];
2108			while (c) {
2109				if (c->u.node.addr == (addr & c->u.node.mask))
2110					break;
2111				c = c->next;
2112			}
2113			break;
2114		}
2115
2116	case AF_INET6:
2117		if (addrlen != sizeof(uint64_t) * 2) {
2118			rc = -EINVAL;
2119			goto out;
2120		}
2121
2122		c = policydb->ocontexts[OCON_NODE6];
2123		while (c) {
2124			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2125						c->u.node6.mask))
2126				break;
2127			c = c->next;
2128		}
2129		break;
2130
2131	default:
2132		*out_sid = SECINITSID_NODE;
2133		goto out;
2134	}
2135
2136	if (c) {
2137		if (!c->sid[0]) {
2138			rc = sepol_sidtab_context_to_sid(sidtab,
2139							 &c->context[0],
2140							 &c->sid[0]);
2141			if (rc)
2142				goto out;
2143		}
2144		*out_sid = c->sid[0];
2145	} else {
2146		*out_sid = SECINITSID_NODE;
2147	}
2148
2149      out:
2150	return rc;
2151}
2152
2153/*
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by `fromsid'.
2156 * Set `*sids' to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set `*nel' to the
2158 * number of elements in the array.
2159 */
2160#define SIDS_NEL 25
2161
2162int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
2163			       char *username,
2164			       sepol_security_id_t ** sids, uint32_t * nel)
2165{
2166	context_struct_t *fromcon, usercon;
2167	sepol_security_id_t *mysids, *mysids2, sid;
2168	uint32_t mynel = 0, maxnel = SIDS_NEL;
2169	user_datum_t *user;
2170	role_datum_t *role;
2171	struct sepol_av_decision avd;
2172	int rc = 0;
2173	unsigned int i, j, reason;
2174	ebitmap_node_t *rnode, *tnode;
2175
2176	fromcon = sepol_sidtab_search(sidtab, fromsid);
2177	if (!fromcon) {
2178		rc = -EINVAL;
2179		goto out;
2180	}
2181
2182	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
2183					       username);
2184	if (!user) {
2185		rc = -EINVAL;
2186		goto out;
2187	}
2188	usercon.user = user->s.value;
2189
2190	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
2191	if (!mysids) {
2192		rc = -ENOMEM;
2193		goto out;
2194	}
2195	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
2196
2197	ebitmap_for_each_bit(&user->roles.roles, rnode, i) {
2198		if (!ebitmap_node_get_bit(rnode, i))
2199			continue;
2200		role = policydb->role_val_to_struct[i];
2201		usercon.role = i + 1;
2202		ebitmap_for_each_bit(&role->types.types, tnode, j) {
2203			if (!ebitmap_node_get_bit(tnode, j))
2204				continue;
2205			usercon.type = j + 1;
2206			if (usercon.type == fromcon->type)
2207				continue;
2208
2209			if (mls_setup_user_range
2210			    (fromcon, user, &usercon, policydb->mls))
2211				continue;
2212
2213			rc = context_struct_compute_av(fromcon, &usercon,
2214						       SECCLASS_PROCESS,
2215						       PROCESS__TRANSITION,
2216						       &avd, &reason, NULL, 0);
2217			if (rc || !(avd.allowed & PROCESS__TRANSITION))
2218				continue;
2219			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
2220							 &sid);
2221			if (rc) {
2222				free(mysids);
2223				goto out;
2224			}
2225			if (mynel < maxnel) {
2226				mysids[mynel++] = sid;
2227			} else {
2228				maxnel += SIDS_NEL;
2229				mysids2 =
2230				    malloc(maxnel *
2231					   sizeof(sepol_security_id_t));
2232
2233				if (!mysids2) {
2234					rc = -ENOMEM;
2235					free(mysids);
2236					goto out;
2237				}
2238				memset(mysids2, 0,
2239				       maxnel * sizeof(sepol_security_id_t));
2240				memcpy(mysids2, mysids,
2241				       mynel * sizeof(sepol_security_id_t));
2242				free(mysids);
2243				mysids = mysids2;
2244				mysids[mynel++] = sid;
2245			}
2246		}
2247	}
2248
2249	*sids = mysids;
2250	*nel = mynel;
2251
2252      out:
2253	return rc;
2254}
2255
2256/*
2257 * Return the SID to use for a file in a filesystem
2258 * that cannot support a persistent label mapping or use another
2259 * fixed labeling behavior like transition SIDs or task SIDs.
2260 */
2261int hidden sepol_genfs_sid(const char *fstype,
2262			   const char *path,
2263			   sepol_security_class_t sclass,
2264			   sepol_security_id_t * sid)
2265{
2266	size_t len;
2267	genfs_t *genfs;
2268	ocontext_t *c;
2269	int rc = 0, cmp = 0;
2270
2271	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2272		cmp = strcmp(fstype, genfs->fstype);
2273		if (cmp <= 0)
2274			break;
2275	}
2276
2277	if (!genfs || cmp) {
2278		*sid = SECINITSID_UNLABELED;
2279		rc = -ENOENT;
2280		goto out;
2281	}
2282
2283	for (c = genfs->head; c; c = c->next) {
2284		len = strlen(c->u.name);
2285		if ((!c->v.sclass || sclass == c->v.sclass) &&
2286		    (strncmp(c->u.name, path, len) == 0))
2287			break;
2288	}
2289
2290	if (!c) {
2291		*sid = SECINITSID_UNLABELED;
2292		rc = -ENOENT;
2293		goto out;
2294	}
2295
2296	if (!c->sid[0]) {
2297		rc = sepol_sidtab_context_to_sid(sidtab,
2298						 &c->context[0], &c->sid[0]);
2299		if (rc)
2300			goto out;
2301	}
2302
2303	*sid = c->sid[0];
2304      out:
2305	return rc;
2306}
2307
2308int hidden sepol_fs_use(const char *fstype,
2309			unsigned int *behavior, sepol_security_id_t * sid)
2310{
2311	int rc = 0;
2312	ocontext_t *c;
2313
2314	c = policydb->ocontexts[OCON_FSUSE];
2315	while (c) {
2316		if (strcmp(fstype, c->u.name) == 0)
2317			break;
2318		c = c->next;
2319	}
2320
2321	if (c) {
2322		*behavior = c->v.behavior;
2323		if (!c->sid[0]) {
2324			rc = sepol_sidtab_context_to_sid(sidtab,
2325							 &c->context[0],
2326							 &c->sid[0]);
2327			if (rc)
2328				goto out;
2329		}
2330		*sid = c->sid[0];
2331	} else {
2332		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2333		if (rc) {
2334			*behavior = SECURITY_FS_USE_NONE;
2335			rc = 0;
2336		} else {
2337			*behavior = SECURITY_FS_USE_GENFS;
2338		}
2339	}
2340
2341      out:
2342	return rc;
2343}
2344
2345/* FLASK */
2346