1/*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "Resources.h"
9
10#include "SkBitmap.h"
11#include "SkCanvas.h"
12#include "SkCodec.h"
13#include "SkColorSpacePriv.h"
14#include "SkColorSpace_A2B.h"
15#include "SkColorSpace_XYZ.h"
16#include "SkCommandLineFlags.h"
17#include "SkICCPriv.h"
18#include "SkImageEncoder.h"
19#include "SkMatrix44.h"
20#include "SkOSFile.h"
21#include "SkRasterPipeline.h"
22#include "../src/jumper/SkJumper.h"
23
24#include "sk_tool_utils.h"
25
26#include <sstream>
27#include <string>
28#include <vector>
29
30DEFINE_string(input, "input.png", "A path to the input image (or icc profile with --icc).");
31DEFINE_string(output, ".", "A path to the output image directory.");
32DEFINE_bool(icc, false, "Indicates that the input is an icc profile.");
33DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization.");
34DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization.");
35DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images.");
36DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");
37
38
39//-------------------------------------------------------------------------------------------------
40//------------------------------------ Gamma visualizations ---------------------------------------
41
42static const char* kRGBChannelNames[3] = {
43    "Red  ",
44    "Green",
45    "Blue "
46};
47static const SkColor kRGBChannelColors[3] = {
48    SkColorSetARGB(128, 255, 0, 0),
49    SkColorSetARGB(128, 0, 255, 0),
50    SkColorSetARGB(128, 0, 0, 255)
51};
52
53static const char* kGrayChannelNames[1] = { "Gray"};
54static const SkColor kGrayChannelColors[1] = { SkColorSetRGB(128, 128, 128) };
55
56static const char* kCMYKChannelNames[4] = {
57    "Cyan   ",
58    "Magenta",
59    "Yellow ",
60    "Black  "
61};
62static const SkColor kCMYKChannelColors[4] = {
63    SkColorSetARGB(128, 0, 255, 255),
64    SkColorSetARGB(128, 255, 0, 255),
65    SkColorSetARGB(128, 255, 255, 0),
66    SkColorSetARGB(128, 16, 16, 16)
67};
68
69static const char*const*const kChannelNames[4] = {
70    kGrayChannelNames,
71    kRGBChannelNames,
72    kRGBChannelNames,
73    kCMYKChannelNames
74};
75static const SkColor*const kChannelColors[4] = {
76    kGrayChannelColors,
77    kRGBChannelColors,
78    kRGBChannelColors,
79    kCMYKChannelColors
80};
81
82static void dump_transfer_fn(SkGammaNamed gammaNamed) {
83    switch (gammaNamed) {
84        case kSRGB_SkGammaNamed:
85            SkDebugf("Transfer Function: sRGB\n");
86            return;
87        case k2Dot2Curve_SkGammaNamed:
88            SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
89            return;
90        case kLinear_SkGammaNamed:
91            SkDebugf("Transfer Function: Linear\n");
92            return;
93        default:
94            break;
95    }
96
97}
98
99static constexpr int kGammaImageWidth = 500;
100static constexpr int kGammaImageHeight = 500;
101
102static void dump_transfer_fn(const SkGammas& gammas) {
103    SkASSERT(gammas.channels() <= 4);
104    const char*const*const channels = kChannelNames[gammas.channels() - 1];
105    for (int i = 0; i < gammas.channels(); i++) {
106        if (gammas.isNamed(i)) {
107            switch (gammas.data(i).fNamed) {
108                case kSRGB_SkGammaNamed:
109                    SkDebugf("%s Transfer Function: sRGB\n", channels[i]);
110                    return;
111                case k2Dot2Curve_SkGammaNamed:
112                    SkDebugf("%s Transfer Function: Exponent 2.2\n", channels[i]);
113                    return;
114                case kLinear_SkGammaNamed:
115                    SkDebugf("%s Transfer Function: Linear\n", channels[i]);
116                    return;
117                default:
118                    SkASSERT(false);
119                    continue;
120            }
121        } else if (gammas.isValue(i)) {
122            SkDebugf("%s Transfer Function: Exponent %.3f\n", channels[i], gammas.data(i).fValue);
123        } else if (gammas.isParametric(i)) {
124            const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas);
125            SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
126                     "E = %.3f, F = %.3f, G = %.3f\n", channels[i], fn.fA, fn.fB, fn.fC, fn.fD,
127                     fn.fE, fn.fF, fn.fG);
128        } else {
129            SkASSERT(gammas.isTable(i));
130            SkDebugf("%s Transfer Function: Table (%d entries)\n", channels[i],
131                    gammas.data(i).fTable.fSize);
132        }
133    }
134}
135
136static inline float parametric(const SkColorSpaceTransferFn& fn, float x) {
137    return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE
138                      : fn.fC*x + fn.fF;
139}
140
141static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas,
142                             SkColor color) {
143    SkColorSpaceTransferFn fn[4];
144    struct TableInfo {
145        const float* fTable;
146        int          fSize;
147    };
148    TableInfo table[4];
149    bool isTable[4] = {false, false, false, false};
150    const int channels = gammas ? gammas->channels() : 1;
151    SkASSERT(channels <= 4);
152    if (kNonStandard_SkGammaNamed != gammaNamed) {
153        dump_transfer_fn(gammaNamed);
154        for (int i = 0; i < channels; ++i) {
155            named_to_parametric(&fn[i], gammaNamed);
156        }
157    } else {
158        SkASSERT(gammas);
159        dump_transfer_fn(*gammas);
160        for (int i = 0; i < channels; ++i) {
161            if (gammas->isTable(i)) {
162                table[i].fTable = gammas->table(i);
163                table[i].fSize = gammas->data(i).fTable.fSize;
164                isTable[i] = true;
165            } else {
166                switch (gammas->type(i)) {
167                    case SkGammas::Type::kNamed_Type:
168                        named_to_parametric(&fn[i], gammas->data(i).fNamed);
169                        break;
170                    case SkGammas::Type::kValue_Type:
171                        value_to_parametric(&fn[i], gammas->data(i).fValue);
172                        break;
173                    case SkGammas::Type::kParam_Type:
174                        fn[i] = gammas->params(i);
175                        break;
176                    default:
177                        SkASSERT(false);
178                }
179            }
180        }
181    }
182    SkPaint paint;
183    paint.setStyle(SkPaint::kStroke_Style);
184    paint.setColor(color);
185    paint.setStrokeWidth(2.0f);
186    // note: gamma has positive values going up in this image so this origin is
187    //       the bottom left and we must subtract y instead of adding.
188    const float gap         = 16.0f;
189    const float gammaWidth  = kGammaImageWidth - 2 * gap;
190    const float gammaHeight = kGammaImageHeight - 2 * gap;
191    // gamma origin point
192    const float ox = gap;
193    const float oy = gap + gammaHeight;
194    for (int i = 0; i < channels; ++i) {
195        if (kNonStandard_SkGammaNamed == gammaNamed) {
196            paint.setColor(kChannelColors[channels - 1][i]);
197        } else {
198            paint.setColor(color);
199        }
200        if (isTable[i]) {
201            auto tx = [&table,i](int index) {
202                return index / (table[i].fSize - 1.0f);
203            };
204            for (int ti = 1; ti < table[i].fSize; ++ti) {
205                canvas->drawLine(ox + gammaWidth * tx(ti - 1),
206                                 oy - gammaHeight * table[i].fTable[ti - 1],
207                                 ox + gammaWidth * tx(ti),
208                                 oy - gammaHeight * table[i].fTable[ti],
209                                 paint);
210            }
211        } else {
212            const float step = 0.01f;
213            float yPrev = parametric(fn[i], 0.0f);
214            for (float x = step; x <= 1.0f; x += step) {
215                const float y = parametric(fn[i], x);
216                canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev,
217                                 ox + gammaWidth * x, oy - gammaHeight * y,
218                                 paint);
219                yPrev = y;
220            }
221        }
222    }
223    paint.setColor(0xFF000000);
224    paint.setStrokeWidth(3.0f);
225    canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint);
226}
227
228//-------------------------------------------------------------------------------------------------
229//------------------------------------ CLUT visualizations ----------------------------------------
230static void dump_clut(const SkColorLookUpTable& clut) {
231    SkDebugf("CLUT: ");
232    for (int i = 0; i < clut.inputChannels(); ++i) {
233        SkDebugf("[%d]", clut.gridPoints(i));
234    }
235    SkDebugf(" -> [%d]\n", clut.outputChannels());
236}
237
238constexpr int kClutGap = 8;
239constexpr float kClutCanvasSize = 2000;
240
241static inline int usedGridPoints(const SkColorLookUpTable& clut, int dimension) {
242    const int gp = clut.gridPoints(dimension);
243    return gp <= 16 ? gp : 16;
244}
245
246// how many rows of cross-section cuts to display
247static inline int cut_rows(const SkColorLookUpTable& clut, int dimOrder[4]) {
248    // and vertical ones for the 4th dimension (if applicable)
249    return clut.inputChannels() >= 4 ? usedGridPoints(clut, dimOrder[3]) : 1;
250}
251
252// how many columns of cross-section cuts to display
253static inline int cut_cols(const SkColorLookUpTable& clut, int dimOrder[4]) {
254    // do horizontal cuts for the 3rd dimension (if applicable)
255    return clut.inputChannels() >= 3 ? usedGridPoints(clut, dimOrder[2]) : 1;
256}
257
258// gets the width/height to use for cross-sections of a CLUT
259static int cut_size(const SkColorLookUpTable& clut, int dimOrder[4]) {
260    const int rows = cut_rows(clut, dimOrder);
261    const int cols = cut_cols(clut, dimOrder);
262    // make sure the cross-section CLUT cuts are square still by using the
263    // smallest of the width/height, then adjust the gaps between accordingly
264    const int cutWidth = (kClutCanvasSize - kClutGap * (1 + cols)) / cols;
265    const int cutHeight = (kClutCanvasSize - kClutGap * (1 + rows)) / rows;
266    return cutWidth < cutHeight ? cutWidth : cutHeight;
267}
268
269static void clut_interp(const SkColorLookUpTable& clut, float out[3], const float in[4]) {
270    // This is kind of a toy implementation.
271    // You generally wouldn't want to do this 1 pixel at a time.
272
273    SkJumper_ColorLookupTableCtx ctx;
274    ctx.table = clut.table();
275    for (int i = 0; i < clut.inputChannels(); i++) {
276        ctx.limits[i] = clut.gridPoints(i);
277    }
278
279    SkSTArenaAlloc<256> alloc;
280    SkRasterPipeline p(&alloc);
281    p.append_constant_color(&alloc, in);
282    p.append(clut.inputChannels() == 3 ? SkRasterPipeline::clut_3D
283                                       : SkRasterPipeline::clut_4D, &ctx);
284    p.append(SkRasterPipeline::clamp_0);
285    p.append(SkRasterPipeline::clamp_1);
286    p.append(SkRasterPipeline::store_f32, &out);
287    p.run(0,0, 1,1);
288}
289
290static void draw_clut(SkCanvas* canvas, const SkColorLookUpTable& clut, int dimOrder[4]) {
291    dump_clut(clut);
292
293    const int cutSize = cut_size(clut, dimOrder);
294    const int rows = cut_rows(clut, dimOrder);
295    const int cols = cut_cols(clut, dimOrder);
296    const int cutHorizGap = (kClutCanvasSize - cutSize * cols) / (1 + cols);
297    const int cutVertGap = (kClutCanvasSize - cutSize * rows) / (1 + rows);
298
299    SkPaint paint;
300    for (int row = 0; row < rows; ++row) {
301        for (int col = 0; col < cols; ++col) {
302            // make sure to move at least one pixel, but otherwise move per-gridpoint
303            const float xStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[0])) - 1);
304            const float yStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[1])) - 1);
305            const float ox = clut.inputChannels() >= 3 ? (1 + col) * cutHorizGap + col * cutSize
306                                                       : kClutGap;
307            const float oy = clut.inputChannels() >= 4 ? (1 + row) * cutVertGap + row * cutSize
308                                                       : kClutGap;
309            // for each cross-section cut, draw a bunch of squares whose colour is the top-left's
310            // colour in the CLUT (usually this will just draw the gridpoints)
311            for (float x = 0.0f; x < 1.0f; x += xStep) {
312                for (float y = 0.0f; y < 1.0f; y += yStep) {
313                    const float z = col / (cols - 1.0f);
314                    const float w = row / (rows - 1.0f);
315                    const float input[4] = {x, y, z, w};
316                    float output[3];
317                    clut_interp(clut, output, input);
318                    paint.setColor(SkColorSetRGB(255*output[0], 255*output[1], 255*output[2]));
319                    canvas->drawRect(SkRect::MakeLTRB(ox + cutSize * x, oy + cutSize * y,
320                                                      ox + cutSize * (x + xStep),
321                                                      oy + cutSize * (y + yStep)), paint);
322                }
323            }
324        }
325    }
326}
327
328
329//-------------------------------------------------------------------------------------------------
330//------------------------------------ Gamut visualizations ---------------------------------------
331static void dump_matrix(const SkMatrix44& m) {
332    for (int r = 0; r < 4; ++r) {
333        SkDebugf("|");
334        for (int c = 0; c < 4; ++c) {
335            SkDebugf(" %f ", m.get(r, c));
336        }
337        SkDebugf("|\n");
338    }
339}
340
341/**
342 *  Loads the triangular gamut as a set of three points.
343 */
344static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
345    // rx = rX / (rX + rY + rZ)
346    // ry = rX / (rX + rY + rZ)
347    // gx, gy, bx, and gy are calulcated similarly.
348    float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
349    float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
350    float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
351    rgb[0].fX = xyz.get(0, 0) / rSum;
352    rgb[0].fY = xyz.get(1, 0) / rSum;
353    rgb[1].fX = xyz.get(0, 1) / gSum;
354    rgb[1].fY = xyz.get(1, 1) / gSum;
355    rgb[2].fX = xyz.get(0, 2) / bSum;
356    rgb[2].fY = xyz.get(1, 2) / bSum;
357}
358
359/**
360 *  Calculates the area of the triangular gamut.
361 */
362static float calculate_area(SkPoint abc[]) {
363    SkPoint a = abc[0];
364    SkPoint b = abc[1];
365    SkPoint c = abc[2];
366    return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
367}
368
369static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
370                       bool label) {
371    // Report the XYZ values.
372    SkDebugf("%s\n", name);
373    SkDebugf("       R     G     B\n");
374    SkDebugf("X  %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
375    SkDebugf("Y  %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
376    SkDebugf("Z  %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
377
378    // Calculate the points in the gamut from the XYZ values.
379    SkPoint rgb[4];
380    load_gamut(rgb, xyz);
381
382    // Report the area of the gamut.
383    SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));
384
385    // Magic constants that help us place the gamut triangles in the appropriate position
386    // on the canvas.
387    const float xScale = 2071.25f;  // Num pixels from 0 to 1 in x
388    const float xOffset = 241.0f;   // Num pixels until start of x-axis
389    const float yScale = 2067.78f;  // Num pixels from 0 to 1 in y
390    const float yOffset = -144.78f; // Num pixels until start of y-axis
391                                    // (negative because y extends beyond image bounds)
392
393    // Now transform the points so they can be drawn on our canvas.
394    // Note that y increases as we move down the canvas.
395    rgb[0].fX = xOffset + xScale * rgb[0].fX;
396    rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
397    rgb[1].fX = xOffset + xScale * rgb[1].fX;
398    rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
399    rgb[2].fX = xOffset + xScale * rgb[2].fX;
400    rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);
401
402    // Repeat the first point to connect the polygon.
403    rgb[3] = rgb[0];
404    SkPaint paint;
405    paint.setColor(color);
406    paint.setStrokeWidth(6.0f);
407    paint.setTextSize(75.0f);
408    canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
409    if (label) {
410        canvas->drawString("R", rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
411        canvas->drawString("G", rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
412        canvas->drawString("B", rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
413    }
414}
415
416
417//-------------------------------------------------------------------------------------------------
418//----------------------------------------- Main code ---------------------------------------------
419static SkBitmap transparentBitmap(int width, int height) {
420    SkBitmap bitmap;
421    bitmap.allocN32Pixels(width, height);
422    bitmap.eraseColor(SkColorSetARGB(0, 0, 0, 0));
423    return bitmap;
424}
425
426class OutputCanvas {
427public:
428    OutputCanvas(SkBitmap&& bitmap)
429        :fBitmap(bitmap)
430        ,fCanvas(fBitmap)
431    {}
432
433    bool save(std::vector<std::string>* output, const std::string& filename) {
434        // Finally, encode the result to the output file.
435        sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(fBitmap, SkEncodedImageFormat::kPNG,
436                                                             100);
437        if (!out) {
438            SkDebugf("Failed to encode %s output.\n", filename.c_str());
439            return false;
440        }
441        SkFILEWStream stream(filename.c_str());
442        if (!stream.write(out->data(), out->size())) {
443            SkDebugf("Failed to write %s output.\n", filename.c_str());
444            return false;
445        }
446        // record name of canvas
447        output->push_back(filename);
448        return true;
449    }
450
451    SkCanvas* canvas() { return &fCanvas; }
452
453private:
454    SkBitmap fBitmap;
455    SkCanvas fCanvas;
456};
457
458int main(int argc, char** argv) {
459    SkCommandLineFlags::SetUsage(
460            "Usage: colorspaceinfo --input <path to input image (or icc profile with --icc)> "
461                                  "--output <directory to output images> "
462                                  "--icc <indicates that the input is an icc profile>"
463                                  "--sRGB_gamut <draw canonical sRGB gamut> "
464                                  "--adobeRGB <draw canonical Adobe RGB gamut> "
465                                  "--sRGB_gamma <draw sRGB gamma> "
466                                  "--uncorrected <path to reencoded, uncorrected input image>\n"
467            "Description: Writes visualizations of the color space to the output image(s)  ."
468                         "Also, if a path is provided, writes uncorrected bytes to an unmarked "
469                         "png, for comparison with the input image.\n");
470    SkCommandLineFlags::Parse(argc, argv);
471    const char* input = FLAGS_input[0];
472    const char* output = FLAGS_output[0];
473    if (!input || !output) {
474        SkCommandLineFlags::PrintUsage();
475        return -1;
476    }
477
478    sk_sp<SkData> data(SkData::MakeFromFileName(input));
479    if (!data) {
480        SkDebugf("Cannot find input image.\n");
481        return -1;
482    }
483
484    std::unique_ptr<SkCodec> codec = nullptr;
485    sk_sp<SkColorSpace> colorSpace = nullptr;
486    if (FLAGS_icc) {
487        colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
488    } else {
489        codec = SkCodec::MakeFromData(data);
490        colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
491        SkDebugf("SkCodec would naturally decode as colorType=%s\n",
492                 sk_tool_utils::colortype_name(codec->getInfo().colorType()));
493    }
494
495    if (!colorSpace) {
496        SkDebugf("Cannot create codec or icc profile from input file.\n");
497        return -1;
498    }
499
500    {
501        SkColorSpaceTransferFn colorSpaceTransferFn;
502        SkMatrix44 toXYZD50(SkMatrix44::kIdentity_Constructor);
503        if (colorSpace->isNumericalTransferFn(&colorSpaceTransferFn) &&
504            colorSpace->toXYZD50(&toXYZD50)) {
505            SkString description = SkICCGetColorProfileTag(colorSpaceTransferFn, toXYZD50);
506            SkDebugf("Color Profile Description: \"%s\"\n", description.c_str());
507        }
508    }
509
510    // TODO: command line tweaking of this order
511    int dimOrder[4] = {0, 1, 2, 3};
512
513    std::vector<std::string> outputFilenames;
514
515    auto createOutputFilename = [output](const char* category, int index) -> std::string {
516        std::stringstream ss;
517        ss << output << '/' << category << '_' << index << ".png";
518        return ss.str();
519    };
520
521    if (colorSpace->toXYZD50()) {
522        SkDebugf("XYZ/TRC color space\n");
523
524        // Load a graph of the CIE XYZ color gamut.
525        SkBitmap gamutCanvasBitmap;
526        if (!GetResourceAsBitmap("images/gamut.png", &gamutCanvasBitmap)) {
527            SkDebugf("Program failure (could not load gamut.png).\n");
528            return -1;
529        }
530        OutputCanvas gamutCanvas(std::move(gamutCanvasBitmap));
531        // Draw the sRGB gamut if requested.
532        if (FLAGS_sRGB_gamut) {
533            sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB();
534            const SkMatrix44* mat = sRGBSpace->toXYZD50();
535            SkASSERT(mat);
536            draw_gamut(gamutCanvas.canvas(), *mat, "sRGB", 0xFFFF9394, false);
537        }
538
539        // Draw the Adobe RGB gamut if requested.
540        if (FLAGS_adobeRGB) {
541            sk_sp<SkColorSpace> adobeRGBSpace = SkColorSpace::MakeRGB(
542                    SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kAdobeRGB_Gamut);
543            const SkMatrix44* mat = adobeRGBSpace->toXYZD50();
544            SkASSERT(mat);
545            draw_gamut(gamutCanvas.canvas(), *mat, "Adobe RGB", 0xFF31a9e1, false);
546        }
547        const SkMatrix44* mat = colorSpace->toXYZD50();
548        SkASSERT(mat);
549        auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
550        draw_gamut(gamutCanvas.canvas(), *mat, input, 0xFF000000, true);
551        if (!gamutCanvas.save(&outputFilenames, createOutputFilename("gamut", 0))) {
552            return -1;
553        }
554
555        OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight));
556        if (FLAGS_sRGB_gamma) {
557            draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394);
558        }
559        draw_transfer_fn(gammaCanvas.canvas(), colorSpace->gammaNamed(), xyz->gammas(), 0xFF000000);
560        if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", 0))) {
561            return -1;
562        }
563    } else {
564        SkDebugf("A2B color space");
565        SkColorSpace_A2B* a2b = static_cast<SkColorSpace_A2B*>(colorSpace.get());
566        SkDebugf("Conversion type: ");
567        switch (a2b->iccType()) {
568            case SkColorSpace::kRGB_Type:
569                SkDebugf("RGB");
570                break;
571            case SkColorSpace::kCMYK_Type:
572                SkDebugf("CMYK");
573                break;
574            case SkColorSpace::kGray_Type:
575                SkDebugf("Gray");
576                break;
577            default:
578                SkASSERT(false);
579                break;
580
581        }
582        SkDebugf(" -> ");
583        switch (a2b->pcs()) {
584            case SkColorSpace_A2B::PCS::kXYZ:
585                SkDebugf("XYZ\n");
586                break;
587            case SkColorSpace_A2B::PCS::kLAB:
588                SkDebugf("LAB\n");
589                break;
590        }
591        int clutCount = 0;
592        int gammaCount = 0;
593        for (int i = 0; i < a2b->count(); ++i) {
594            const SkColorSpace_A2B::Element& e = a2b->element(i);
595            switch (e.type()) {
596                case SkColorSpace_A2B::Element::Type::kGammaNamed: {
597                    OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
598                                                               kGammaImageHeight));
599                    if (FLAGS_sRGB_gamma) {
600                        draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
601                                         0xFFFF9394);
602                    }
603                    draw_transfer_fn(gammaCanvas.canvas(), e.gammaNamed(), nullptr,
604                                     0xFF000000);
605                    if (!gammaCanvas.save(&outputFilenames,
606                                          createOutputFilename("gamma", gammaCount++))) {
607                        return -1;
608                    }
609                }
610                break;
611                case SkColorSpace_A2B::Element::Type::kGammas: {
612                    OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
613                                                               kGammaImageHeight));
614                    if (FLAGS_sRGB_gamma) {
615                        draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
616                                         0xFFFF9394);
617                    }
618                    draw_transfer_fn(gammaCanvas.canvas(), kNonStandard_SkGammaNamed,
619                                     &e.gammas(), 0xFF000000);
620                    if (!gammaCanvas.save(&outputFilenames,
621                                          createOutputFilename("gamma", gammaCount++))) {
622                        return -1;
623                    }
624                }
625                break;
626                case SkColorSpace_A2B::Element::Type::kCLUT: {
627                    const SkColorLookUpTable& clut = e.colorLUT();
628                    const int cutSize = cut_size(clut, dimOrder);
629                    const int clutWidth = clut.inputChannels() >= 3 ? kClutCanvasSize
630                                                                    : 2 * kClutGap + cutSize;
631                    const int clutHeight = clut.inputChannels() >= 4 ? kClutCanvasSize
632                                                                     : 2 * kClutGap + cutSize;
633                    OutputCanvas clutCanvas(transparentBitmap(clutWidth, clutHeight));
634                    draw_clut(clutCanvas.canvas(), e.colorLUT(), dimOrder);
635                    if (!clutCanvas.save(&outputFilenames,
636                                         createOutputFilename("clut", clutCount++))) {
637                        return -1;
638                    }
639                }
640                break;
641                case SkColorSpace_A2B::Element::Type::kMatrix:
642                    dump_matrix(e.matrix());
643                    break;
644            }
645        }
646    }
647
648    // marker to tell the web-tool the names of all images output
649    SkDebugf("=========\n");
650    for (const std::string& filename : outputFilenames) {
651        SkDebugf("%s\n", filename.c_str());
652    }
653    if (!FLAGS_icc) {
654        SkDebugf("%s\n", input);
655    }
656    // Also, if requested, decode and reencode the uncorrected input image.
657    if (!FLAGS_uncorrected.isEmpty() && !FLAGS_icc) {
658        SkBitmap bitmap;
659        int width = codec->getInfo().width();
660        int height = codec->getInfo().height();
661        bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
662        SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
663        if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
664                                                  bitmap.rowBytes())) {
665            SkDebugf("Could not decode input image.\n");
666            return -1;
667        }
668        sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
669                                                             100);
670        if (!out) {
671            SkDebugf("Failed to encode uncorrected image.\n");
672            return -1;
673        }
674        SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
675        if (!bitmapStream.write(out->data(), out->size())) {
676            SkDebugf("Failed to write uncorrected image output.\n");
677            return -1;
678        }
679        SkDebugf("%s\n", FLAGS_uncorrected[0]);
680    }
681
682    return 0;
683}
684