1/*
2* Copyright 2017 Google Inc.
3*
4* Use of this source code is governed by a BSD-style license that can be
5* found in the LICENSE file.
6*/
7
8#include "SkShadowUtils.h"
9#include "SkCanvas.h"
10#include "SkColorFilter.h"
11#include "SkColorData.h"
12#include "SkDevice.h"
13#include "SkDrawShadowInfo.h"
14#include "SkPath.h"
15#include "SkPM4f.h"
16#include "SkRandom.h"
17#include "SkRasterPipeline.h"
18#include "SkResourceCache.h"
19#include "SkShadowTessellator.h"
20#include "SkString.h"
21#include "SkTLazy.h"
22#include "SkVertices.h"
23#if SK_SUPPORT_GPU
24#include "GrShape.h"
25#include "effects/GrBlurredEdgeFragmentProcessor.h"
26#endif
27
28/**
29*  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
30*                           then blends with the color's G value.
31*                           Final result is black with alpha of Gaussian(B)*G.
32*                           The assumption is that the original color's alpha is 1.
33*/
34class SkGaussianColorFilter : public SkColorFilter {
35public:
36    static sk_sp<SkColorFilter> Make() {
37        return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
38    }
39
40#if SK_SUPPORT_GPU
41    std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
42            GrContext*, const GrColorSpaceInfo&) const override;
43#endif
44
45    SK_TO_STRING_OVERRIDE()
46    SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter)
47
48protected:
49    void flatten(SkWriteBuffer&) const override {}
50    void onAppendStages(SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc,
51                        bool shaderIsOpaque) const override {
52        pipeline->append(SkRasterPipeline::gauss_a_to_rgba);
53    }
54private:
55    SkGaussianColorFilter() : INHERITED() {}
56
57    typedef SkColorFilter INHERITED;
58};
59
60sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
61    return Make();
62}
63
64#ifndef SK_IGNORE_TO_STRING
65void SkGaussianColorFilter::toString(SkString* str) const {
66    str->append("SkGaussianColorFilter ");
67}
68#endif
69
70#if SK_SUPPORT_GPU
71
72std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(
73        GrContext*, const GrColorSpaceInfo&) const {
74    return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian);
75}
76#endif
77
78///////////////////////////////////////////////////////////////////////////////////////////////////
79
80namespace {
81
82uint64_t resource_cache_shared_id() {
83    return 0x2020776f64616873llu;  // 'shadow  '
84}
85
86/** Factory for an ambient shadow mesh with particular shadow properties. */
87struct AmbientVerticesFactory {
88    SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
89    bool fTransparent;
90    SkVector fOffset;
91
92    bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
93        if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
94            return false;
95        }
96        *translate = that.fOffset;
97        return true;
98    }
99
100    sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
101                                   SkVector* translate) const {
102        SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
103        // pick a canonical place to generate shadow
104        SkMatrix noTrans(ctm);
105        if (!ctm.hasPerspective()) {
106            noTrans[SkMatrix::kMTransX] = 0;
107            noTrans[SkMatrix::kMTransY] = 0;
108        }
109        *translate = fOffset;
110        return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
111    }
112};
113
114/** Factory for an spot shadow mesh with particular shadow properties. */
115struct SpotVerticesFactory {
116    enum class OccluderType {
117        // The umbra cannot be dropped out because either the occluder is not opaque,
118        // or the center of the umbra is visible.
119        kTransparent,
120        // The umbra can be dropped where it is occluded.
121        kOpaquePartialUmbra,
122        // It is known that the entire umbra is occluded.
123        kOpaqueNoUmbra
124    };
125
126    SkVector fOffset;
127    SkPoint  fLocalCenter;
128    SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
129    SkPoint3 fDevLightPos;
130    SkScalar fLightRadius;
131    OccluderType fOccluderType;
132
133    bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
134        if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
135            fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
136            return false;
137        }
138        switch (fOccluderType) {
139            case OccluderType::kTransparent:
140            case OccluderType::kOpaqueNoUmbra:
141                // 'this' and 'that' will either both have no umbra removed or both have all the
142                // umbra removed.
143                *translate = that.fOffset;
144                return true;
145            case OccluderType::kOpaquePartialUmbra:
146                // In this case we partially remove the umbra differently for 'this' and 'that'
147                // if the offsets don't match.
148                if (fOffset == that.fOffset) {
149                    translate->set(0, 0);
150                    return true;
151                }
152                return false;
153        }
154        SK_ABORT("Uninitialized occluder type?");
155        return false;
156    }
157
158    sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
159                                   SkVector* translate) const {
160        bool transparent = OccluderType::kTransparent == fOccluderType;
161        SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
162        if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
163            translate->set(0, 0);
164            return SkShadowTessellator::MakeSpot(path, ctm, zParams,
165                                                 fDevLightPos, fLightRadius, transparent);
166        } else {
167            // pick a canonical place to generate shadow, with light centered over path
168            SkMatrix noTrans(ctm);
169            noTrans[SkMatrix::kMTransX] = 0;
170            noTrans[SkMatrix::kMTransY] = 0;
171            SkPoint devCenter(fLocalCenter);
172            noTrans.mapPoints(&devCenter, 1);
173            SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
174            *translate = fOffset;
175            return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
176                                                 centerLightPos, fLightRadius, transparent);
177        }
178    }
179};
180
181/**
182 * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
183 * records are immutable this is not itself a Rec. When we need to update it we return this on
184 * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
185 * a new Rec with an adjusted size for any deletions/additions.
186 */
187class CachedTessellations : public SkRefCnt {
188public:
189    size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
190
191    sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
192                           SkVector* translate) const {
193        return fAmbientSet.find(ambient, matrix, translate);
194    }
195
196    sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
197                          const SkMatrix& matrix, SkVector* translate) {
198        return fAmbientSet.add(devPath, ambient, matrix, translate);
199    }
200
201    sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
202                           SkVector* translate) const {
203        return fSpotSet.find(spot, matrix, translate);
204    }
205
206    sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
207                          const SkMatrix& matrix, SkVector* translate) {
208        return fSpotSet.add(devPath, spot, matrix, translate);
209    }
210
211private:
212    template <typename FACTORY, int MAX_ENTRIES>
213    class Set {
214    public:
215        size_t size() const { return fSize; }
216
217        sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
218                               SkVector* translate) const {
219            for (int i = 0; i < MAX_ENTRIES; ++i) {
220                if (fEntries[i].fFactory.isCompatible(factory, translate)) {
221                    const SkMatrix& m = fEntries[i].fMatrix;
222                    if (matrix.hasPerspective() || m.hasPerspective()) {
223                        if (matrix != fEntries[i].fMatrix) {
224                            continue;
225                        }
226                    } else if (matrix.getScaleX() != m.getScaleX() ||
227                               matrix.getSkewX() != m.getSkewX() ||
228                               matrix.getScaleY() != m.getScaleY() ||
229                               matrix.getSkewY() != m.getSkewY()) {
230                        continue;
231                    }
232                    return fEntries[i].fVertices;
233                }
234            }
235            return nullptr;
236        }
237
238        sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
239                              SkVector* translate) {
240            sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
241            if (!vertices) {
242                return nullptr;
243            }
244            int i;
245            if (fCount < MAX_ENTRIES) {
246                i = fCount++;
247            } else {
248                i = fRandom.nextULessThan(MAX_ENTRIES);
249                fSize -= fEntries[i].fVertices->approximateSize();
250            }
251            fEntries[i].fFactory = factory;
252            fEntries[i].fVertices = vertices;
253            fEntries[i].fMatrix = matrix;
254            fSize += vertices->approximateSize();
255            return vertices;
256        }
257
258    private:
259        struct Entry {
260            FACTORY fFactory;
261            sk_sp<SkVertices> fVertices;
262            SkMatrix fMatrix;
263        };
264        Entry fEntries[MAX_ENTRIES];
265        int fCount = 0;
266        size_t fSize = 0;
267        SkRandom fRandom;
268    };
269
270    Set<AmbientVerticesFactory, 4> fAmbientSet;
271    Set<SpotVerticesFactory, 4> fSpotSet;
272};
273
274/**
275 * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
276 * path. The key represents the path's geometry and not any shadow params.
277 */
278class CachedTessellationsRec : public SkResourceCache::Rec {
279public:
280    CachedTessellationsRec(const SkResourceCache::Key& key,
281                           sk_sp<CachedTessellations> tessellations)
282            : fTessellations(std::move(tessellations)) {
283        fKey.reset(new uint8_t[key.size()]);
284        memcpy(fKey.get(), &key, key.size());
285    }
286
287    const Key& getKey() const override {
288        return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
289    }
290
291    size_t bytesUsed() const override { return fTessellations->size(); }
292
293    const char* getCategory() const override { return "tessellated shadow masks"; }
294
295    sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
296
297    template <typename FACTORY>
298    sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
299                           SkVector* translate) const {
300        return fTessellations->find(factory, matrix, translate);
301    }
302
303private:
304    std::unique_ptr<uint8_t[]> fKey;
305    sk_sp<CachedTessellations> fTessellations;
306};
307
308/**
309 * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
310 * vertices and a translation vector. If the CachedTessellations does not contain a suitable
311 * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
312 * to the caller. The caller will update it and reinsert it back into the cache.
313 */
314template <typename FACTORY>
315struct FindContext {
316    FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
317            : fViewMatrix(viewMatrix), fFactory(factory) {}
318    const SkMatrix* const fViewMatrix;
319    // If this is valid after Find is called then we found the vertices and they should be drawn
320    // with fTranslate applied.
321    sk_sp<SkVertices> fVertices;
322    SkVector fTranslate = {0, 0};
323
324    // If this is valid after Find then the caller should add the vertices to the tessellation set
325    // and create a new CachedTessellationsRec and insert it into SkResourceCache.
326    sk_sp<CachedTessellations> fTessellationsOnFailure;
327
328    const FACTORY* fFactory;
329};
330
331/**
332 * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
333 * the FindContext are used to determine if the vertices are reusable. If so the vertices and
334 * necessary translation vector are set on the FindContext.
335 */
336template <typename FACTORY>
337bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
338    FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
339    const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
340    findContext->fVertices =
341            rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
342    if (findContext->fVertices) {
343        return true;
344    }
345    // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
346    // manipulated we will add a new Rec.
347    findContext->fTessellationsOnFailure = rec.refTessellations();
348    return false;
349}
350
351class ShadowedPath {
352public:
353    ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
354            : fPath(path)
355            , fViewMatrix(viewMatrix)
356#if SK_SUPPORT_GPU
357            , fShapeForKey(*path, GrStyle::SimpleFill())
358#endif
359    {}
360
361    const SkPath& path() const { return *fPath; }
362    const SkMatrix& viewMatrix() const { return *fViewMatrix; }
363#if SK_SUPPORT_GPU
364    /** Negative means the vertices should not be cached for this path. */
365    int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
366    void writeKey(void* key) const {
367        fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
368    }
369    bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
370#else
371    int keyBytes() const { return -1; }
372    void writeKey(void* key) const { SK_ABORT("Should never be called"); }
373    bool isRRect(SkRRect* rrect) { return false; }
374#endif
375
376private:
377    const SkPath* fPath;
378    const SkMatrix* fViewMatrix;
379#if SK_SUPPORT_GPU
380    GrShape fShapeForKey;
381#endif
382};
383
384// This creates a domain of keys in SkResourceCache used by this file.
385static void* kNamespace;
386
387/**
388 * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
389 * they are first found in SkResourceCache.
390 */
391template <typename FACTORY>
392    void draw_shadow(const FACTORY& factory,
393                     std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
394                     SkScalar tx, SkScalar ty)> drawProc, ShadowedPath& path, SkColor color) {
395    FindContext<FACTORY> context(&path.viewMatrix(), &factory);
396
397    SkResourceCache::Key* key = nullptr;
398    SkAutoSTArray<32 * 4, uint8_t> keyStorage;
399    int keyDataBytes = path.keyBytes();
400    if (keyDataBytes >= 0) {
401        keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
402        key = new (keyStorage.begin()) SkResourceCache::Key();
403        path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
404        key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
405        SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
406    }
407
408    sk_sp<SkVertices> vertices;
409    bool foundInCache = SkToBool(context.fVertices);
410    if (foundInCache) {
411        vertices = std::move(context.fVertices);
412    } else {
413        // TODO: handle transforming the path as part of the tessellator
414        if (key) {
415            // Update or initialize a tessellation set and add it to the cache.
416            sk_sp<CachedTessellations> tessellations;
417            if (context.fTessellationsOnFailure) {
418                tessellations = std::move(context.fTessellationsOnFailure);
419            } else {
420                tessellations.reset(new CachedTessellations());
421            }
422            vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
423                                          &context.fTranslate);
424            if (!vertices) {
425                return;
426            }
427            auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
428            SkResourceCache::Add(rec);
429        } else {
430            vertices = factory.makeVertices(path.path(), path.viewMatrix(),
431                                            &context.fTranslate);
432            if (!vertices) {
433                return;
434            }
435        }
436    }
437
438    SkPaint paint;
439    // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
440    // that against our 'color' param.
441    paint.setColorFilter(SkColorFilter::MakeComposeFilter(
442            SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
443            SkGaussianColorFilter::Make()));
444
445    drawProc(vertices.get(), SkBlendMode::kModulate, paint,
446             context.fTranslate.fX, context.fTranslate.fY);
447}
448}
449
450static bool tilted(const SkPoint3& zPlaneParams) {
451    return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
452}
453
454static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
455    SkPoint3 result;
456    m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
457    result.fZ = pt.fZ;
458    return result;
459}
460
461void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
462                                       SkColor* outAmbientColor, SkColor* outSpotColor) {
463    // For tonal color we only compute color values for the spot shadow.
464    // The ambient shadow is greyscale only.
465
466    // Ambient
467    *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
468
469    // Spot
470    int spotR = SkColorGetR(inSpotColor);
471    int spotG = SkColorGetG(inSpotColor);
472    int spotB = SkColorGetB(inSpotColor);
473    int max = SkTMax(SkTMax(spotR, spotG), spotB);
474    int min = SkTMin(SkTMin(spotR, spotG), spotB);
475    SkScalar luminance = 0.5f*(max + min)/255.f;
476    SkScalar origA = SkColorGetA(inSpotColor)/255.f;
477
478    // We compute a color alpha value based on the luminance of the color, scaled by an
479    // adjusted alpha value. We want the following properties to match the UX examples
480    // (assuming a = 0.25) and to ensure that we have reasonable results when the color
481    // is black and/or the alpha is 0:
482    //     f(0, a) = 0
483    //     f(luminance, 0) = 0
484    //     f(1, 0.25) = .5
485    //     f(0.5, 0.25) = .4
486    //     f(1, 1) = 1
487    // The following functions match this as closely as possible.
488    SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
489    SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
490    colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
491
492    // Similarly, we set the greyscale alpha based on luminance and alpha so that
493    //     f(0, a) = a
494    //     f(luminance, 0) = 0
495    //     f(1, 0.25) = 0.15
496    SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
497
498    // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
499    // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
500    // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
501    // ignoring edge falloff, this becomes
502    //
503    //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
504    //
505    // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
506    // set the alpha to (S_a + C_a - S_a*C_a).
507    SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
508    SkScalar tonalAlpha = colorScale + greyscaleAlpha;
509    SkScalar unPremulScale = colorScale / tonalAlpha;
510    *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
511                                   unPremulScale*spotR,
512                                   unPremulScale*spotG,
513                                   unPremulScale*spotB);
514}
515
516// Draw an offset spot shadow and outlining ambient shadow for the given path.
517void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
518                               const SkPoint3& devLightPos, SkScalar lightRadius,
519                               SkColor ambientColor, SkColor spotColor,
520                               uint32_t flags) {
521    SkMatrix inverse;
522    if (!canvas->getTotalMatrix().invert(&inverse)) {
523        return;
524    }
525    SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);
526
527    SkDrawShadowRec rec;
528    rec.fZPlaneParams   = zPlaneParams;
529    rec.fLightPos       = { pt.fX, pt.fY, devLightPos.fZ };
530    rec.fLightRadius    = lightRadius;
531    rec.fAmbientColor   = ambientColor;
532    rec.fSpotColor      = spotColor;
533    rec.fFlags          = flags;
534
535    canvas->private_draw_shadow_rec(path, rec);
536}
537
538void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
539    auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
540                                SkScalar tx, SkScalar ty) {
541        SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(),
542                                                          SkMatrix::MakeTrans(tx, ty)));
543        this->drawVertices(vertices, mode, paint);
544    };
545
546    SkMatrix viewMatrix = this->ctm();
547    SkAutoDeviceCTMRestore adr(this, SkMatrix::I());
548
549    ShadowedPath shadowedPath(&path, &viewMatrix);
550
551    bool tiltZPlane = tilted(rec.fZPlaneParams);
552    bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
553    bool uncached = tiltZPlane || path.isVolatile();
554
555    SkPoint3 zPlaneParams = rec.fZPlaneParams;
556    SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
557    float lightRadius = rec.fLightRadius;
558
559    if (SkColorGetA(rec.fAmbientColor) > 0) {
560        if (uncached) {
561            sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
562                                                                          zPlaneParams,
563                                                                          transparent);
564            if (vertices) {
565                SkPaint paint;
566                // Run the vertex color through a GaussianColorFilter and then modulate the
567                // grayscale result of that against our 'color' param.
568                paint.setColorFilter(SkColorFilter::MakeComposeFilter(
569                    SkColorFilter::MakeModeFilter(rec.fAmbientColor, SkBlendMode::kModulate),
570                    SkGaussianColorFilter::Make()));
571                this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
572            }
573        } else {
574            AmbientVerticesFactory factory;
575            factory.fOccluderHeight = zPlaneParams.fZ;
576            factory.fTransparent = transparent;
577            if (viewMatrix.hasPerspective()) {
578                factory.fOffset.set(0, 0);
579            } else {
580                factory.fOffset.fX = viewMatrix.getTranslateX();
581                factory.fOffset.fY = viewMatrix.getTranslateY();
582            }
583
584            draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor);
585        }
586    }
587
588    if (SkColorGetA(rec.fSpotColor) > 0) {
589        if (uncached) {
590            sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
591                                                                       zPlaneParams,
592                                                                       devLightPos, lightRadius,
593                                                                       transparent);
594            if (vertices) {
595                SkPaint paint;
596                // Run the vertex color through a GaussianColorFilter and then modulate the
597                // grayscale result of that against our 'color' param.
598                paint.setColorFilter(SkColorFilter::MakeComposeFilter(
599                    SkColorFilter::MakeModeFilter(rec.fSpotColor, SkBlendMode::kModulate),
600                    SkGaussianColorFilter::Make()));
601                this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
602            }
603        } else {
604            SpotVerticesFactory factory;
605            SkScalar occluderHeight = zPlaneParams.fZ;
606            float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f);
607            SkScalar radius = lightRadius * zRatio;
608
609            // Compute the scale and translation for the spot shadow.
610            SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight);
611            SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
612            factory.fLocalCenter = center;
613            viewMatrix.mapPoints(&center, 1);
614            factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX),
615                                             zRatio * (center.fY - devLightPos.fY));
616            factory.fOccluderHeight = occluderHeight;
617            factory.fDevLightPos = devLightPos;
618            factory.fLightRadius = lightRadius;
619            SkRect devBounds;
620            viewMatrix.mapRect(&devBounds, path.getBounds());
621            if (transparent ||
622                SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
623                SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
624                // if the translation of the shadow is big enough we're going to end up
625                // filling the entire umbra, so we can treat these as all the same
626                factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
627            } else if (factory.fOffset.length()*scale + scale < radius) {
628                // if we don't translate more than the blur distance, can assume umbra is covered
629                factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
630            } else {
631                factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
632            }
633            // need to add this after we classify the shadow
634            factory.fOffset.fX += viewMatrix.getTranslateX();
635            factory.fOffset.fY += viewMatrix.getTranslateY();
636#ifdef DEBUG_SHADOW_CHECKS
637            switch (factory.fOccluderType) {
638                case SpotVerticesFactory::OccluderType::kTransparent:
639                    color = 0xFFD2B48C;  // tan for transparent
640                    break;
641                case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
642                    color = 0xFFFFA500;   // orange for opaque
643                    break;
644                case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
645                    color = 0xFFE5E500;  // corn yellow for covered
646                    break;
647            }
648#endif
649            draw_shadow(factory, drawVertsProc, shadowedPath, rec.fSpotColor);
650        }
651    }
652}
653