Context.cpp revision 22be88e5d0cde4ffbcc076cbfcd57aa629ebb9cc
1// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//    http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// Context.cpp: Implements the es2::Context class, managing all GL state and performing
16// rendering operations. It is the GLES2 specific implementation of EGLContext.
17
18#include "Context.h"
19
20#include "main.h"
21#include "mathutil.h"
22#include "utilities.h"
23#include "ResourceManager.h"
24#include "Buffer.h"
25#include "Fence.h"
26#include "Framebuffer.h"
27#include "Program.h"
28#include "Query.h"
29#include "Renderbuffer.h"
30#include "Sampler.h"
31#include "Shader.h"
32#include "Texture.h"
33#include "TransformFeedback.h"
34#include "VertexArray.h"
35#include "VertexDataManager.h"
36#include "IndexDataManager.h"
37#include "libEGL/Display.h"
38#include "libEGL/EGLSurface.h"
39#include "Common/Half.hpp"
40
41#include <EGL/eglext.h>
42
43#include <algorithm>
44
45namespace es2
46{
47Context::Context(egl::Display *display, const Context *shareContext, EGLint clientVersion)
48	: egl::Context(display), clientVersion(clientVersion)
49{
50	sw::Context *context = new sw::Context();
51	device = new es2::Device(context);
52
53	setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
54
55	mState.depthClearValue = 1.0f;
56	mState.stencilClearValue = 0;
57
58	mState.cullFaceEnabled = false;
59	mState.cullMode = GL_BACK;
60	mState.frontFace = GL_CCW;
61	mState.depthTestEnabled = false;
62	mState.depthFunc = GL_LESS;
63	mState.blendEnabled = false;
64	mState.sourceBlendRGB = GL_ONE;
65	mState.sourceBlendAlpha = GL_ONE;
66	mState.destBlendRGB = GL_ZERO;
67	mState.destBlendAlpha = GL_ZERO;
68	mState.blendEquationRGB = GL_FUNC_ADD;
69	mState.blendEquationAlpha = GL_FUNC_ADD;
70	mState.blendColor.red = 0;
71	mState.blendColor.green = 0;
72	mState.blendColor.blue = 0;
73	mState.blendColor.alpha = 0;
74	mState.stencilTestEnabled = false;
75	mState.stencilFunc = GL_ALWAYS;
76	mState.stencilRef = 0;
77	mState.stencilMask = 0xFFFFFFFFu;
78	mState.stencilWritemask = 0xFFFFFFFFu;
79	mState.stencilBackFunc = GL_ALWAYS;
80	mState.stencilBackRef = 0;
81	mState.stencilBackMask = 0xFFFFFFFFu;
82	mState.stencilBackWritemask = 0xFFFFFFFFu;
83	mState.stencilFail = GL_KEEP;
84	mState.stencilPassDepthFail = GL_KEEP;
85	mState.stencilPassDepthPass = GL_KEEP;
86	mState.stencilBackFail = GL_KEEP;
87	mState.stencilBackPassDepthFail = GL_KEEP;
88	mState.stencilBackPassDepthPass = GL_KEEP;
89	mState.polygonOffsetFillEnabled = false;
90	mState.polygonOffsetFactor = 0.0f;
91	mState.polygonOffsetUnits = 0.0f;
92	mState.sampleAlphaToCoverageEnabled = false;
93	mState.sampleCoverageEnabled = false;
94	mState.sampleCoverageValue = 1.0f;
95	mState.sampleCoverageInvert = false;
96	mState.scissorTestEnabled = false;
97	mState.ditherEnabled = true;
98	mState.primitiveRestartFixedIndexEnabled = false;
99	mState.rasterizerDiscardEnabled = false;
100	mState.generateMipmapHint = GL_DONT_CARE;
101	mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
102
103	mState.lineWidth = 1.0f;
104
105	mState.viewportX = 0;
106	mState.viewportY = 0;
107	mState.viewportWidth = 0;
108	mState.viewportHeight = 0;
109	mState.zNear = 0.0f;
110	mState.zFar = 1.0f;
111
112	mState.scissorX = 0;
113	mState.scissorY = 0;
114	mState.scissorWidth = 0;
115	mState.scissorHeight = 0;
116
117	mState.colorMaskRed = true;
118	mState.colorMaskGreen = true;
119	mState.colorMaskBlue = true;
120	mState.colorMaskAlpha = true;
121	mState.depthMask = true;
122
123	if(shareContext)
124	{
125		mResourceManager = shareContext->mResourceManager;
126		mResourceManager->addRef();
127	}
128	else
129	{
130		mResourceManager = new ResourceManager();
131	}
132
133	// [OpenGL ES 2.0.24] section 3.7 page 83:
134	// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
135	// and cube map texture state vectors respectively associated with them.
136	// In order that access to these initial textures not be lost, they are treated as texture
137	// objects all of whose names are 0.
138
139	mTexture2DZero = new Texture2D(0);
140	mTexture3DZero = new Texture3D(0);
141	mTexture2DArrayZero = new Texture2DArray(0);
142	mTextureCubeMapZero = new TextureCubeMap(0);
143	mTextureExternalZero = new TextureExternal(0);
144
145	mState.activeSampler = 0;
146	bindVertexArray(0);
147	bindArrayBuffer(0);
148	bindElementArrayBuffer(0);
149	bindTextureCubeMap(0);
150	bindTexture2D(0);
151	bindReadFramebuffer(0);
152	bindDrawFramebuffer(0);
153	bindRenderbuffer(0);
154	bindGenericUniformBuffer(0);
155	bindTransformFeedback(0);
156
157	mState.currentProgram = 0;
158
159	mState.packAlignment = 4;
160	mState.unpackInfo.alignment = 4;
161	mState.packRowLength = 0;
162	mState.packImageHeight = 0;
163	mState.packSkipPixels = 0;
164	mState.packSkipRows = 0;
165	mState.packSkipImages = 0;
166	mState.unpackInfo.rowLength = 0;
167	mState.unpackInfo.imageHeight = 0;
168	mState.unpackInfo.skipPixels = 0;
169	mState.unpackInfo.skipRows = 0;
170	mState.unpackInfo.skipImages = 0;
171
172	mVertexDataManager = nullptr;
173	mIndexDataManager = nullptr;
174
175	mInvalidEnum = false;
176	mInvalidValue = false;
177	mInvalidOperation = false;
178	mOutOfMemory = false;
179	mInvalidFramebufferOperation = false;
180
181	mHasBeenCurrent = false;
182
183	markAllStateDirty();
184}
185
186Context::~Context()
187{
188	if(mState.currentProgram != 0)
189	{
190		Program *programObject = mResourceManager->getProgram(mState.currentProgram);
191		if(programObject)
192		{
193			programObject->release();
194		}
195		mState.currentProgram = 0;
196	}
197
198	while(!mFramebufferNameSpace.empty())
199	{
200		deleteFramebuffer(mFramebufferNameSpace.firstName());
201	}
202
203	while(!mFenceNameSpace.empty())
204	{
205		deleteFence(mFenceNameSpace.firstName());
206	}
207
208	while(!mQueryNameSpace.empty())
209	{
210		deleteQuery(mQueryNameSpace.firstName());
211	}
212
213	while(!mVertexArrayNameSpace.empty())
214	{
215		deleteVertexArray(mVertexArrayNameSpace.lastName());
216	}
217
218	while(!mTransformFeedbackNameSpace.empty())
219	{
220		deleteTransformFeedback(mTransformFeedbackNameSpace.firstName());
221	}
222
223	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
224	{
225		for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
226		{
227			mState.samplerTexture[type][sampler] = nullptr;
228		}
229	}
230
231	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
232	{
233		mState.vertexAttribute[i].mBoundBuffer = nullptr;
234	}
235
236	for(int i = 0; i < QUERY_TYPE_COUNT; i++)
237	{
238		mState.activeQuery[i] = nullptr;
239	}
240
241	mState.arrayBuffer = nullptr;
242	mState.copyReadBuffer = nullptr;
243	mState.copyWriteBuffer = nullptr;
244	mState.pixelPackBuffer = nullptr;
245	mState.pixelUnpackBuffer = nullptr;
246	mState.genericUniformBuffer = nullptr;
247	mState.renderbuffer = nullptr;
248
249	for(int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
250	{
251		mState.sampler[i] = nullptr;
252	}
253
254	mTexture2DZero = nullptr;
255	mTexture3DZero = nullptr;
256	mTexture2DArrayZero = nullptr;
257	mTextureCubeMapZero = nullptr;
258	mTextureExternalZero = nullptr;
259
260	delete mVertexDataManager;
261	delete mIndexDataManager;
262
263	mResourceManager->release();
264	delete device;
265}
266
267void Context::makeCurrent(egl::Surface *surface)
268{
269	if(!mHasBeenCurrent)
270	{
271		mVertexDataManager = new VertexDataManager(this);
272		mIndexDataManager = new IndexDataManager();
273
274		mState.viewportX = 0;
275		mState.viewportY = 0;
276		mState.viewportWidth = surface->getWidth();
277		mState.viewportHeight = surface->getHeight();
278
279		mState.scissorX = 0;
280		mState.scissorY = 0;
281		mState.scissorWidth = surface->getWidth();
282		mState.scissorHeight = surface->getHeight();
283
284		mHasBeenCurrent = true;
285	}
286
287	// Wrap the existing resources into GL objects and assign them to the '0' names
288	egl::Image *defaultRenderTarget = surface->getRenderTarget();
289	egl::Image *depthStencil = surface->getDepthStencil();
290
291	Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
292	DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
293	Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
294
295	setFramebufferZero(framebufferZero);
296
297	if(defaultRenderTarget)
298	{
299		defaultRenderTarget->release();
300	}
301
302	if(depthStencil)
303	{
304		depthStencil->release();
305	}
306
307	markAllStateDirty();
308}
309
310EGLint Context::getClientVersion() const
311{
312	return clientVersion;
313}
314
315// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
316void Context::markAllStateDirty()
317{
318	mAppliedProgramSerial = 0;
319
320	mDepthStateDirty = true;
321	mMaskStateDirty = true;
322	mBlendStateDirty = true;
323	mStencilStateDirty = true;
324	mPolygonOffsetStateDirty = true;
325	mSampleStateDirty = true;
326	mDitherStateDirty = true;
327	mFrontFaceDirty = true;
328}
329
330void Context::setClearColor(float red, float green, float blue, float alpha)
331{
332	mState.colorClearValue.red = red;
333	mState.colorClearValue.green = green;
334	mState.colorClearValue.blue = blue;
335	mState.colorClearValue.alpha = alpha;
336}
337
338void Context::setClearDepth(float depth)
339{
340	mState.depthClearValue = depth;
341}
342
343void Context::setClearStencil(int stencil)
344{
345	mState.stencilClearValue = stencil;
346}
347
348void Context::setCullFaceEnabled(bool enabled)
349{
350	mState.cullFaceEnabled = enabled;
351}
352
353bool Context::isCullFaceEnabled() const
354{
355	return mState.cullFaceEnabled;
356}
357
358void Context::setCullMode(GLenum mode)
359{
360   mState.cullMode = mode;
361}
362
363void Context::setFrontFace(GLenum front)
364{
365	if(mState.frontFace != front)
366	{
367		mState.frontFace = front;
368		mFrontFaceDirty = true;
369	}
370}
371
372void Context::setDepthTestEnabled(bool enabled)
373{
374	if(mState.depthTestEnabled != enabled)
375	{
376		mState.depthTestEnabled = enabled;
377		mDepthStateDirty = true;
378	}
379}
380
381bool Context::isDepthTestEnabled() const
382{
383	return mState.depthTestEnabled;
384}
385
386void Context::setDepthFunc(GLenum depthFunc)
387{
388	if(mState.depthFunc != depthFunc)
389	{
390		mState.depthFunc = depthFunc;
391		mDepthStateDirty = true;
392	}
393}
394
395void Context::setDepthRange(float zNear, float zFar)
396{
397	mState.zNear = zNear;
398	mState.zFar = zFar;
399}
400
401void Context::setBlendEnabled(bool enabled)
402{
403	if(mState.blendEnabled != enabled)
404	{
405		mState.blendEnabled = enabled;
406		mBlendStateDirty = true;
407	}
408}
409
410bool Context::isBlendEnabled() const
411{
412	return mState.blendEnabled;
413}
414
415void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
416{
417	if(mState.sourceBlendRGB != sourceRGB ||
418	   mState.sourceBlendAlpha != sourceAlpha ||
419	   mState.destBlendRGB != destRGB ||
420	   mState.destBlendAlpha != destAlpha)
421	{
422		mState.sourceBlendRGB = sourceRGB;
423		mState.destBlendRGB = destRGB;
424		mState.sourceBlendAlpha = sourceAlpha;
425		mState.destBlendAlpha = destAlpha;
426		mBlendStateDirty = true;
427	}
428}
429
430void Context::setBlendColor(float red, float green, float blue, float alpha)
431{
432	if(mState.blendColor.red != red ||
433	   mState.blendColor.green != green ||
434	   mState.blendColor.blue != blue ||
435	   mState.blendColor.alpha != alpha)
436	{
437		mState.blendColor.red = red;
438		mState.blendColor.green = green;
439		mState.blendColor.blue = blue;
440		mState.blendColor.alpha = alpha;
441		mBlendStateDirty = true;
442	}
443}
444
445void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
446{
447	if(mState.blendEquationRGB != rgbEquation ||
448	   mState.blendEquationAlpha != alphaEquation)
449	{
450		mState.blendEquationRGB = rgbEquation;
451		mState.blendEquationAlpha = alphaEquation;
452		mBlendStateDirty = true;
453	}
454}
455
456void Context::setStencilTestEnabled(bool enabled)
457{
458	if(mState.stencilTestEnabled != enabled)
459	{
460		mState.stencilTestEnabled = enabled;
461		mStencilStateDirty = true;
462	}
463}
464
465bool Context::isStencilTestEnabled() const
466{
467	return mState.stencilTestEnabled;
468}
469
470void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
471{
472	if(mState.stencilFunc != stencilFunc ||
473	   mState.stencilRef != stencilRef ||
474	   mState.stencilMask != stencilMask)
475	{
476		mState.stencilFunc = stencilFunc;
477		mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
478		mState.stencilMask = stencilMask;
479		mStencilStateDirty = true;
480	}
481}
482
483void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
484{
485	if(mState.stencilBackFunc != stencilBackFunc ||
486	   mState.stencilBackRef != stencilBackRef ||
487	   mState.stencilBackMask != stencilBackMask)
488	{
489		mState.stencilBackFunc = stencilBackFunc;
490		mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
491		mState.stencilBackMask = stencilBackMask;
492		mStencilStateDirty = true;
493	}
494}
495
496void Context::setStencilWritemask(GLuint stencilWritemask)
497{
498	if(mState.stencilWritemask != stencilWritemask)
499	{
500		mState.stencilWritemask = stencilWritemask;
501		mStencilStateDirty = true;
502	}
503}
504
505void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
506{
507	if(mState.stencilBackWritemask != stencilBackWritemask)
508	{
509		mState.stencilBackWritemask = stencilBackWritemask;
510		mStencilStateDirty = true;
511	}
512}
513
514void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
515{
516	if(mState.stencilFail != stencilFail ||
517	   mState.stencilPassDepthFail != stencilPassDepthFail ||
518	   mState.stencilPassDepthPass != stencilPassDepthPass)
519	{
520		mState.stencilFail = stencilFail;
521		mState.stencilPassDepthFail = stencilPassDepthFail;
522		mState.stencilPassDepthPass = stencilPassDepthPass;
523		mStencilStateDirty = true;
524	}
525}
526
527void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
528{
529	if(mState.stencilBackFail != stencilBackFail ||
530	   mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
531	   mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
532	{
533		mState.stencilBackFail = stencilBackFail;
534		mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
535		mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
536		mStencilStateDirty = true;
537	}
538}
539
540void Context::setPolygonOffsetFillEnabled(bool enabled)
541{
542	if(mState.polygonOffsetFillEnabled != enabled)
543	{
544		mState.polygonOffsetFillEnabled = enabled;
545		mPolygonOffsetStateDirty = true;
546	}
547}
548
549bool Context::isPolygonOffsetFillEnabled() const
550{
551	return mState.polygonOffsetFillEnabled;
552}
553
554void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
555{
556	if(mState.polygonOffsetFactor != factor ||
557	   mState.polygonOffsetUnits != units)
558	{
559		mState.polygonOffsetFactor = factor;
560		mState.polygonOffsetUnits = units;
561		mPolygonOffsetStateDirty = true;
562	}
563}
564
565void Context::setSampleAlphaToCoverageEnabled(bool enabled)
566{
567	if(mState.sampleAlphaToCoverageEnabled != enabled)
568	{
569		mState.sampleAlphaToCoverageEnabled = enabled;
570		mSampleStateDirty = true;
571	}
572}
573
574bool Context::isSampleAlphaToCoverageEnabled() const
575{
576	return mState.sampleAlphaToCoverageEnabled;
577}
578
579void Context::setSampleCoverageEnabled(bool enabled)
580{
581	if(mState.sampleCoverageEnabled != enabled)
582	{
583		mState.sampleCoverageEnabled = enabled;
584		mSampleStateDirty = true;
585	}
586}
587
588bool Context::isSampleCoverageEnabled() const
589{
590	return mState.sampleCoverageEnabled;
591}
592
593void Context::setSampleCoverageParams(GLclampf value, bool invert)
594{
595	if(mState.sampleCoverageValue != value ||
596	   mState.sampleCoverageInvert != invert)
597	{
598		mState.sampleCoverageValue = value;
599		mState.sampleCoverageInvert = invert;
600		mSampleStateDirty = true;
601	}
602}
603
604void Context::setScissorTestEnabled(bool enabled)
605{
606	mState.scissorTestEnabled = enabled;
607}
608
609bool Context::isScissorTestEnabled() const
610{
611	return mState.scissorTestEnabled;
612}
613
614void Context::setDitherEnabled(bool enabled)
615{
616	if(mState.ditherEnabled != enabled)
617	{
618		mState.ditherEnabled = enabled;
619		mDitherStateDirty = true;
620	}
621}
622
623bool Context::isDitherEnabled() const
624{
625	return mState.ditherEnabled;
626}
627
628void Context::setPrimitiveRestartFixedIndexEnabled(bool enabled)
629{
630	mState.primitiveRestartFixedIndexEnabled = enabled;
631}
632
633bool Context::isPrimitiveRestartFixedIndexEnabled() const
634{
635	return mState.primitiveRestartFixedIndexEnabled;
636}
637
638void Context::setRasterizerDiscardEnabled(bool enabled)
639{
640	mState.rasterizerDiscardEnabled = enabled;
641}
642
643bool Context::isRasterizerDiscardEnabled() const
644{
645	return mState.rasterizerDiscardEnabled;
646}
647
648void Context::setLineWidth(GLfloat width)
649{
650	mState.lineWidth = width;
651	device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
652}
653
654void Context::setGenerateMipmapHint(GLenum hint)
655{
656	mState.generateMipmapHint = hint;
657}
658
659void Context::setFragmentShaderDerivativeHint(GLenum hint)
660{
661	mState.fragmentShaderDerivativeHint = hint;
662	// TODO: Propagate the hint to shader translator so we can write
663	// ddx, ddx_coarse, or ddx_fine depending on the hint.
664	// Ignore for now. It is valid for implementations to ignore hint.
665}
666
667void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
668{
669	mState.viewportX = x;
670	mState.viewportY = y;
671	mState.viewportWidth = std::min<GLsizei>(width, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE);     // GL_MAX_VIEWPORT_DIMS[0]
672	mState.viewportHeight = std::min<GLsizei>(height, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE);   // GL_MAX_VIEWPORT_DIMS[1]
673}
674
675void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
676{
677	mState.scissorX = x;
678	mState.scissorY = y;
679	mState.scissorWidth = width;
680	mState.scissorHeight = height;
681}
682
683void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
684{
685	if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
686	   mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
687	{
688		mState.colorMaskRed = red;
689		mState.colorMaskGreen = green;
690		mState.colorMaskBlue = blue;
691		mState.colorMaskAlpha = alpha;
692		mMaskStateDirty = true;
693	}
694}
695
696unsigned int Context::getColorMask() const
697{
698	return (mState.colorMaskRed ? 0x1 : 0) |
699	       (mState.colorMaskGreen ? 0x2 : 0) |
700	       (mState.colorMaskBlue ? 0x4 : 0) |
701	       (mState.colorMaskAlpha ? 0x8 : 0);
702}
703
704void Context::setDepthMask(bool mask)
705{
706	if(mState.depthMask != mask)
707	{
708		mState.depthMask = mask;
709		mMaskStateDirty = true;
710	}
711}
712
713void Context::setActiveSampler(unsigned int active)
714{
715	mState.activeSampler = active;
716}
717
718GLuint Context::getReadFramebufferName() const
719{
720	return mState.readFramebuffer;
721}
722
723GLuint Context::getDrawFramebufferName() const
724{
725	return mState.drawFramebuffer;
726}
727
728GLuint Context::getRenderbufferName() const
729{
730	return mState.renderbuffer.name();
731}
732
733void Context::setFramebufferReadBuffer(GLuint buf)
734{
735	getReadFramebuffer()->setReadBuffer(buf);
736}
737
738void Context::setFramebufferDrawBuffers(GLsizei n, const GLenum *bufs)
739{
740	Framebuffer *drawFramebuffer = getDrawFramebuffer();
741
742	for(int i = 0; i < MAX_COLOR_ATTACHMENTS; i++)
743	{
744		drawFramebuffer->setDrawBuffer(i, (i < n) ? bufs[i] : GL_NONE);
745	}
746}
747
748GLuint Context::getReadFramebufferColorIndex() const
749{
750	GLenum buf = getReadFramebuffer()->getReadBuffer();
751	switch(buf)
752	{
753	case GL_BACK:
754		return 0;
755	case GL_NONE:
756		return GL_INVALID_INDEX;
757	default:
758		return buf - GL_COLOR_ATTACHMENT0;
759}
760}
761
762GLuint Context::getArrayBufferName() const
763{
764	return mState.arrayBuffer.name();
765}
766
767GLuint Context::getElementArrayBufferName() const
768{
769	Buffer* elementArrayBuffer = getCurrentVertexArray()->getElementArrayBuffer();
770	return elementArrayBuffer ? elementArrayBuffer->name : 0;
771}
772
773GLuint Context::getActiveQuery(GLenum target) const
774{
775	Query *queryObject = nullptr;
776
777	switch(target)
778	{
779	case GL_ANY_SAMPLES_PASSED_EXT:
780		queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED];
781		break;
782	case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
783		queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE];
784		break;
785	case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
786		queryObject = mState.activeQuery[QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN];
787		break;
788	default:
789		ASSERT(false);
790	}
791
792	if(queryObject)
793	{
794		return queryObject->name;
795	}
796
797	return 0;
798}
799
800void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled)
801{
802	getCurrentVertexArray()->enableAttribute(attribNum, enabled);
803}
804
805void Context::setVertexAttribDivisor(unsigned int attribNum, GLuint divisor)
806{
807	getCurrentVertexArray()->setVertexAttribDivisor(attribNum, divisor);
808}
809
810const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) const
811{
812	return getCurrentVertexArray()->getVertexAttribute(attribNum);
813}
814
815void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
816                                   GLsizei stride, const void *pointer)
817{
818	getCurrentVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, stride, pointer);
819}
820
821const void *Context::getVertexAttribPointer(unsigned int attribNum) const
822{
823	return getCurrentVertexArray()->getVertexAttribute(attribNum).mPointer;
824}
825
826const VertexAttributeArray &Context::getVertexArrayAttributes()
827{
828	return getCurrentVertexArray()->getVertexAttributes();
829}
830
831const VertexAttributeArray &Context::getCurrentVertexAttributes()
832{
833	return mState.vertexAttribute;
834}
835
836void Context::setPackAlignment(GLint alignment)
837{
838	mState.packAlignment = alignment;
839}
840
841void Context::setUnpackAlignment(GLint alignment)
842{
843	mState.unpackInfo.alignment = alignment;
844}
845
846const egl::Image::UnpackInfo& Context::getUnpackInfo() const
847{
848	return mState.unpackInfo;
849}
850
851void Context::setPackRowLength(GLint rowLength)
852{
853	mState.packRowLength = rowLength;
854}
855
856void Context::setPackImageHeight(GLint imageHeight)
857{
858	mState.packImageHeight = imageHeight;
859}
860
861void Context::setPackSkipPixels(GLint skipPixels)
862{
863	mState.packSkipPixels = skipPixels;
864}
865
866void Context::setPackSkipRows(GLint skipRows)
867{
868	mState.packSkipRows = skipRows;
869}
870
871void Context::setPackSkipImages(GLint skipImages)
872{
873	mState.packSkipImages = skipImages;
874}
875
876void Context::setUnpackRowLength(GLint rowLength)
877{
878	mState.unpackInfo.rowLength = rowLength;
879}
880
881void Context::setUnpackImageHeight(GLint imageHeight)
882{
883	mState.unpackInfo.imageHeight = imageHeight;
884}
885
886void Context::setUnpackSkipPixels(GLint skipPixels)
887{
888	mState.unpackInfo.skipPixels = skipPixels;
889}
890
891void Context::setUnpackSkipRows(GLint skipRows)
892{
893	mState.unpackInfo.skipRows = skipRows;
894}
895
896void Context::setUnpackSkipImages(GLint skipImages)
897{
898	mState.unpackInfo.skipImages = skipImages;
899}
900
901GLuint Context::createBuffer()
902{
903	return mResourceManager->createBuffer();
904}
905
906GLuint Context::createProgram()
907{
908	return mResourceManager->createProgram();
909}
910
911GLuint Context::createShader(GLenum type)
912{
913	return mResourceManager->createShader(type);
914}
915
916GLuint Context::createTexture()
917{
918	return mResourceManager->createTexture();
919}
920
921GLuint Context::createRenderbuffer()
922{
923	return mResourceManager->createRenderbuffer();
924}
925
926// Returns an unused framebuffer name
927GLuint Context::createFramebuffer()
928{
929	return mFramebufferNameSpace.allocate();
930}
931
932GLuint Context::createFence()
933{
934	return mFenceNameSpace.allocate(new Fence());
935}
936
937// Returns an unused query name
938GLuint Context::createQuery()
939{
940	return mQueryNameSpace.allocate();
941}
942
943// Returns an unused vertex array name
944GLuint Context::createVertexArray()
945{
946	return mVertexArrayNameSpace.allocate();
947}
948
949GLsync Context::createFenceSync(GLenum condition, GLbitfield flags)
950{
951	GLuint handle = mResourceManager->createFenceSync(condition, flags);
952
953	return reinterpret_cast<GLsync>(static_cast<uintptr_t>(handle));
954}
955
956// Returns an unused transform feedback name
957GLuint Context::createTransformFeedback()
958{
959	return mTransformFeedbackNameSpace.allocate();
960}
961
962// Returns an unused sampler name
963GLuint Context::createSampler()
964{
965	return mResourceManager->createSampler();
966}
967
968void Context::deleteBuffer(GLuint buffer)
969{
970	detachBuffer(buffer);
971
972	mResourceManager->deleteBuffer(buffer);
973}
974
975void Context::deleteShader(GLuint shader)
976{
977	mResourceManager->deleteShader(shader);
978}
979
980void Context::deleteProgram(GLuint program)
981{
982	mResourceManager->deleteProgram(program);
983}
984
985void Context::deleteTexture(GLuint texture)
986{
987	detachTexture(texture);
988
989	mResourceManager->deleteTexture(texture);
990}
991
992void Context::deleteRenderbuffer(GLuint renderbuffer)
993{
994	if(mResourceManager->getRenderbuffer(renderbuffer))
995	{
996		detachRenderbuffer(renderbuffer);
997	}
998
999	mResourceManager->deleteRenderbuffer(renderbuffer);
1000}
1001
1002void Context::deleteFramebuffer(GLuint framebuffer)
1003{
1004	detachFramebuffer(framebuffer);
1005
1006	Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer);
1007
1008	if(framebufferObject)
1009	{
1010		delete framebufferObject;
1011	}
1012}
1013
1014void Context::deleteFence(GLuint fence)
1015{
1016	Fence *fenceObject = mFenceNameSpace.remove(fence);
1017
1018	if(fenceObject)
1019	{
1020		delete fenceObject;
1021	}
1022}
1023
1024void Context::deleteQuery(GLuint query)
1025{
1026	Query *queryObject = mQueryNameSpace.remove(query);
1027
1028	if(queryObject)
1029	{
1030		queryObject->release();
1031	}
1032}
1033
1034void Context::deleteVertexArray(GLuint vertexArray)
1035{
1036	// [OpenGL ES 3.0.2] section 2.10 page 43:
1037	// If a vertex array object that is currently bound is deleted, the binding
1038	// for that object reverts to zero and the default vertex array becomes current.
1039	if(getCurrentVertexArray()->name == vertexArray)
1040	{
1041		bindVertexArray(0);
1042	}
1043
1044	VertexArray *vertexArrayObject = mVertexArrayNameSpace.remove(vertexArray);
1045
1046	if(vertexArrayObject)
1047	{
1048		delete vertexArrayObject;
1049	}
1050}
1051
1052void Context::deleteFenceSync(GLsync fenceSync)
1053{
1054	// The spec specifies the underlying Fence object is not deleted until all current
1055	// wait commands finish. However, since the name becomes invalid, we cannot query the fence,
1056	// and since our API is currently designed for being called from a single thread, we can delete
1057	// the fence immediately.
1058	mResourceManager->deleteFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(fenceSync)));
1059}
1060
1061void Context::deleteTransformFeedback(GLuint transformFeedback)
1062{
1063	TransformFeedback *transformFeedbackObject = mTransformFeedbackNameSpace.remove(transformFeedback);
1064
1065	if(transformFeedbackObject)
1066	{
1067		delete transformFeedbackObject;
1068	}
1069}
1070
1071void Context::deleteSampler(GLuint sampler)
1072{
1073	detachSampler(sampler);
1074
1075	mResourceManager->deleteSampler(sampler);
1076}
1077
1078Buffer *Context::getBuffer(GLuint handle) const
1079{
1080	return mResourceManager->getBuffer(handle);
1081}
1082
1083Shader *Context::getShader(GLuint handle) const
1084{
1085	return mResourceManager->getShader(handle);
1086}
1087
1088Program *Context::getProgram(GLuint handle) const
1089{
1090	return mResourceManager->getProgram(handle);
1091}
1092
1093Texture *Context::getTexture(GLuint handle) const
1094{
1095	return mResourceManager->getTexture(handle);
1096}
1097
1098Renderbuffer *Context::getRenderbuffer(GLuint handle) const
1099{
1100	return mResourceManager->getRenderbuffer(handle);
1101}
1102
1103Framebuffer *Context::getReadFramebuffer() const
1104{
1105	return getFramebuffer(mState.readFramebuffer);
1106}
1107
1108Framebuffer *Context::getDrawFramebuffer() const
1109{
1110	return getFramebuffer(mState.drawFramebuffer);
1111}
1112
1113void Context::bindArrayBuffer(unsigned int buffer)
1114{
1115	mResourceManager->checkBufferAllocation(buffer);
1116
1117	mState.arrayBuffer = getBuffer(buffer);
1118}
1119
1120void Context::bindElementArrayBuffer(unsigned int buffer)
1121{
1122	mResourceManager->checkBufferAllocation(buffer);
1123
1124	getCurrentVertexArray()->setElementArrayBuffer(getBuffer(buffer));
1125}
1126
1127void Context::bindCopyReadBuffer(GLuint buffer)
1128{
1129	mResourceManager->checkBufferAllocation(buffer);
1130
1131	mState.copyReadBuffer = getBuffer(buffer);
1132}
1133
1134void Context::bindCopyWriteBuffer(GLuint buffer)
1135{
1136	mResourceManager->checkBufferAllocation(buffer);
1137
1138	mState.copyWriteBuffer = getBuffer(buffer);
1139}
1140
1141void Context::bindPixelPackBuffer(GLuint buffer)
1142{
1143	mResourceManager->checkBufferAllocation(buffer);
1144
1145	mState.pixelPackBuffer = getBuffer(buffer);
1146}
1147
1148void Context::bindPixelUnpackBuffer(GLuint buffer)
1149{
1150	mResourceManager->checkBufferAllocation(buffer);
1151
1152	mState.pixelUnpackBuffer = getBuffer(buffer);
1153}
1154
1155void Context::bindTransformFeedbackBuffer(GLuint buffer)
1156{
1157	mResourceManager->checkBufferAllocation(buffer);
1158
1159	TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
1160
1161	if(transformFeedback)
1162	{
1163		transformFeedback->setGenericBuffer(getBuffer(buffer));
1164	}
1165}
1166
1167void Context::bindTexture2D(GLuint texture)
1168{
1169	mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
1170
1171	mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture);
1172}
1173
1174void Context::bindTextureCubeMap(GLuint texture)
1175{
1176	mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE);
1177
1178	mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler] = getTexture(texture);
1179}
1180
1181void Context::bindTextureExternal(GLuint texture)
1182{
1183	mResourceManager->checkTextureAllocation(texture, TEXTURE_EXTERNAL);
1184
1185	mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler] = getTexture(texture);
1186}
1187
1188void Context::bindTexture3D(GLuint texture)
1189{
1190	mResourceManager->checkTextureAllocation(texture, TEXTURE_3D);
1191
1192	mState.samplerTexture[TEXTURE_3D][mState.activeSampler] = getTexture(texture);
1193}
1194
1195void Context::bindTexture2DArray(GLuint texture)
1196{
1197	mResourceManager->checkTextureAllocation(texture, TEXTURE_2D_ARRAY);
1198
1199	mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler] = getTexture(texture);
1200}
1201
1202void Context::bindReadFramebuffer(GLuint framebuffer)
1203{
1204	if(!getFramebuffer(framebuffer))
1205	{
1206		mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
1207	}
1208
1209	mState.readFramebuffer = framebuffer;
1210}
1211
1212void Context::bindDrawFramebuffer(GLuint framebuffer)
1213{
1214	if(!getFramebuffer(framebuffer))
1215	{
1216		mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
1217	}
1218
1219	mState.drawFramebuffer = framebuffer;
1220}
1221
1222void Context::bindRenderbuffer(GLuint renderbuffer)
1223{
1224	mResourceManager->checkRenderbufferAllocation(renderbuffer);
1225
1226	mState.renderbuffer = getRenderbuffer(renderbuffer);
1227}
1228
1229void Context::bindVertexArray(GLuint array)
1230{
1231	VertexArray *vertexArray = getVertexArray(array);
1232
1233	if(!vertexArray)
1234	{
1235		vertexArray = new VertexArray(array);
1236		mVertexArrayNameSpace.insert(array, vertexArray);
1237	}
1238
1239	mState.vertexArray = array;
1240}
1241
1242void Context::bindGenericUniformBuffer(GLuint buffer)
1243{
1244	mResourceManager->checkBufferAllocation(buffer);
1245
1246	mState.genericUniformBuffer = getBuffer(buffer);
1247}
1248
1249void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
1250{
1251	mResourceManager->checkBufferAllocation(buffer);
1252
1253	Buffer* bufferObject = getBuffer(buffer);
1254	mState.uniformBuffers[index].set(bufferObject, static_cast<int>(offset), static_cast<int>(size));
1255}
1256
1257void Context::bindGenericTransformFeedbackBuffer(GLuint buffer)
1258{
1259	mResourceManager->checkBufferAllocation(buffer);
1260
1261	getTransformFeedback()->setGenericBuffer(getBuffer(buffer));
1262}
1263
1264void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
1265{
1266	mResourceManager->checkBufferAllocation(buffer);
1267
1268	Buffer* bufferObject = getBuffer(buffer);
1269	getTransformFeedback()->setBuffer(index, bufferObject, offset, size);
1270}
1271
1272void Context::bindTransformFeedback(GLuint id)
1273{
1274	if(!getTransformFeedback(id))
1275	{
1276		mTransformFeedbackNameSpace.insert(id, new TransformFeedback(id));
1277	}
1278
1279	mState.transformFeedback = id;
1280}
1281
1282bool Context::bindSampler(GLuint unit, GLuint sampler)
1283{
1284	mResourceManager->checkSamplerAllocation(sampler);
1285
1286	Sampler* samplerObject = getSampler(sampler);
1287
1288	mState.sampler[unit] = samplerObject;
1289
1290	return !!samplerObject;
1291}
1292
1293void Context::useProgram(GLuint program)
1294{
1295	GLuint priorProgram = mState.currentProgram;
1296	mState.currentProgram = program;               // Must switch before trying to delete, otherwise it only gets flagged.
1297
1298	if(priorProgram != program)
1299	{
1300		Program *newProgram = mResourceManager->getProgram(program);
1301		Program *oldProgram = mResourceManager->getProgram(priorProgram);
1302
1303		if(newProgram)
1304		{
1305			newProgram->addRef();
1306		}
1307
1308		if(oldProgram)
1309		{
1310			oldProgram->release();
1311		}
1312	}
1313}
1314
1315void Context::beginQuery(GLenum target, GLuint query)
1316{
1317	// From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id>
1318	// of zero, if the active query object name for <target> is non-zero (for the
1319	// targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if
1320	// the active query for either target is non-zero), if <id> is the name of an
1321	// existing query object whose type does not match <target>, or if <id> is the
1322	// active query object name for any query type, the error INVALID_OPERATION is
1323	// generated.
1324
1325	// Ensure no other queries are active
1326	// NOTE: If other queries than occlusion are supported, we will need to check
1327	// separately that:
1328	//    a) The query ID passed is not the current active query for any target/type
1329	//    b) There are no active queries for the requested target (and in the case
1330	//       of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT,
1331	//       no query may be active for either if glBeginQuery targets either.
1332	for(int i = 0; i < QUERY_TYPE_COUNT; i++)
1333	{
1334		if(mState.activeQuery[i])
1335		{
1336			return error(GL_INVALID_OPERATION);
1337		}
1338	}
1339
1340	QueryType qType;
1341	switch(target)
1342	{
1343	case GL_ANY_SAMPLES_PASSED_EXT:
1344		qType = QUERY_ANY_SAMPLES_PASSED;
1345		break;
1346	case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
1347		qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
1348		break;
1349	case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
1350		qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN;
1351		break;
1352	default:
1353		UNREACHABLE(target);
1354		return error(GL_INVALID_ENUM);
1355	}
1356
1357	Query *queryObject = createQuery(query, target);
1358
1359	// Check that name was obtained with glGenQueries
1360	if(!queryObject)
1361	{
1362		return error(GL_INVALID_OPERATION);
1363	}
1364
1365	// Check for type mismatch
1366	if(queryObject->getType() != target)
1367	{
1368		return error(GL_INVALID_OPERATION);
1369	}
1370
1371	// Set query as active for specified target
1372	mState.activeQuery[qType] = queryObject;
1373
1374	// Begin query
1375	queryObject->begin();
1376}
1377
1378void Context::endQuery(GLenum target)
1379{
1380	QueryType qType;
1381
1382	switch(target)
1383	{
1384	case GL_ANY_SAMPLES_PASSED_EXT:                qType = QUERY_ANY_SAMPLES_PASSED;                    break;
1385	case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:   qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;       break;
1386	case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN; break;
1387	default: UNREACHABLE(target); return;
1388	}
1389
1390	Query *queryObject = mState.activeQuery[qType];
1391
1392	if(!queryObject)
1393	{
1394		return error(GL_INVALID_OPERATION);
1395	}
1396
1397	queryObject->end();
1398
1399	mState.activeQuery[qType] = nullptr;
1400}
1401
1402void Context::setFramebufferZero(Framebuffer *buffer)
1403{
1404	delete mFramebufferNameSpace.remove(0);
1405	mFramebufferNameSpace.insert(0, buffer);
1406}
1407
1408void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
1409{
1410	Renderbuffer *renderbufferObject = mState.renderbuffer;
1411	renderbufferObject->setStorage(renderbuffer);
1412}
1413
1414Framebuffer *Context::getFramebuffer(unsigned int handle) const
1415{
1416	return mFramebufferNameSpace.find(handle);
1417}
1418
1419Fence *Context::getFence(unsigned int handle) const
1420{
1421	return mFenceNameSpace.find(handle);
1422}
1423
1424FenceSync *Context::getFenceSync(GLsync handle) const
1425{
1426	return mResourceManager->getFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(handle)));
1427}
1428
1429Query *Context::getQuery(unsigned int handle) const
1430{
1431	return mQueryNameSpace.find(handle);
1432}
1433
1434Query *Context::createQuery(unsigned int handle, GLenum type)
1435{
1436	if(!mQueryNameSpace.isReserved(handle))
1437	{
1438		return nullptr;
1439	}
1440	else
1441	{
1442		Query *query = mQueryNameSpace.find(handle);
1443		if(!query)
1444		{
1445			query = new Query(handle, type);
1446			query->addRef();
1447			mQueryNameSpace.insert(handle, query);
1448		}
1449
1450		return query;
1451	}
1452}
1453
1454VertexArray *Context::getVertexArray(GLuint array) const
1455{
1456	return mVertexArrayNameSpace.find(array);
1457}
1458
1459VertexArray *Context::getCurrentVertexArray() const
1460{
1461	return getVertexArray(mState.vertexArray);
1462}
1463
1464bool Context::isVertexArray(GLuint array) const
1465{
1466	return mVertexArrayNameSpace.isReserved(array);
1467}
1468
1469bool Context::hasZeroDivisor() const
1470{
1471	// Verify there is at least one active attribute with a divisor of zero
1472	es2::Program *programObject = getCurrentProgram();
1473	for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
1474	{
1475		bool active = (programObject->getAttributeStream(attributeIndex) != -1);
1476		if(active && getCurrentVertexArray()->getVertexAttribute(attributeIndex).mDivisor == 0)
1477		{
1478			return true;
1479		}
1480	}
1481
1482	return false;
1483}
1484
1485TransformFeedback *Context::getTransformFeedback(GLuint transformFeedback) const
1486{
1487	return mTransformFeedbackNameSpace.find(transformFeedback);
1488}
1489
1490Sampler *Context::getSampler(GLuint sampler) const
1491{
1492	return mResourceManager->getSampler(sampler);
1493}
1494
1495bool Context::isSampler(GLuint sampler) const
1496{
1497	return mResourceManager->isSampler(sampler);
1498}
1499
1500Buffer *Context::getArrayBuffer() const
1501{
1502	return mState.arrayBuffer;
1503}
1504
1505Buffer *Context::getElementArrayBuffer() const
1506{
1507	return getCurrentVertexArray()->getElementArrayBuffer();
1508}
1509
1510Buffer *Context::getCopyReadBuffer() const
1511{
1512	return mState.copyReadBuffer;
1513}
1514
1515Buffer *Context::getCopyWriteBuffer() const
1516{
1517	return mState.copyWriteBuffer;
1518}
1519
1520Buffer *Context::getPixelPackBuffer() const
1521{
1522	return mState.pixelPackBuffer;
1523}
1524
1525Buffer *Context::getPixelUnpackBuffer() const
1526{
1527	return mState.pixelUnpackBuffer;
1528}
1529
1530Buffer *Context::getGenericUniformBuffer() const
1531{
1532	return mState.genericUniformBuffer;
1533}
1534
1535const GLvoid* Context::getPixels(const GLvoid* data) const
1536{
1537	es2::Buffer* unpackBuffer = getPixelUnpackBuffer();
1538	const unsigned char* unpackBufferData = unpackBuffer ? static_cast<const unsigned char*>(unpackBuffer->data()) : nullptr;
1539	return unpackBufferData ? unpackBufferData + (ptrdiff_t)(data) : data;
1540}
1541
1542bool Context::getBuffer(GLenum target, es2::Buffer **buffer) const
1543{
1544	switch(target)
1545	{
1546	case GL_ARRAY_BUFFER:
1547		*buffer = getArrayBuffer();
1548		break;
1549	case GL_ELEMENT_ARRAY_BUFFER:
1550		*buffer = getElementArrayBuffer();
1551		break;
1552	case GL_COPY_READ_BUFFER:
1553		if(clientVersion >= 3)
1554		{
1555			*buffer = getCopyReadBuffer();
1556			break;
1557		}
1558		else return false;
1559	case GL_COPY_WRITE_BUFFER:
1560		if(clientVersion >= 3)
1561		{
1562			*buffer = getCopyWriteBuffer();
1563			break;
1564		}
1565		else return false;
1566	case GL_PIXEL_PACK_BUFFER:
1567		if(clientVersion >= 3)
1568		{
1569			*buffer = getPixelPackBuffer();
1570			break;
1571		}
1572		else return false;
1573	case GL_PIXEL_UNPACK_BUFFER:
1574		if(clientVersion >= 3)
1575		{
1576			*buffer = getPixelUnpackBuffer();
1577			break;
1578		}
1579		else return false;
1580	case GL_TRANSFORM_FEEDBACK_BUFFER:
1581		if(clientVersion >= 3)
1582		{
1583			TransformFeedback* transformFeedback = getTransformFeedback();
1584			*buffer = transformFeedback ? static_cast<es2::Buffer*>(transformFeedback->getGenericBuffer()) : nullptr;
1585			break;
1586		}
1587		else return false;
1588	case GL_UNIFORM_BUFFER:
1589		if(clientVersion >= 3)
1590		{
1591			*buffer = getGenericUniformBuffer();
1592			break;
1593		}
1594		else return false;
1595	default:
1596		return false;
1597	}
1598	return true;
1599}
1600
1601TransformFeedback *Context::getTransformFeedback() const
1602{
1603	return getTransformFeedback(mState.transformFeedback);
1604}
1605
1606Program *Context::getCurrentProgram() const
1607{
1608	return mResourceManager->getProgram(mState.currentProgram);
1609}
1610
1611Texture2D *Context::getTexture2D() const
1612{
1613	return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
1614}
1615
1616Texture3D *Context::getTexture3D() const
1617{
1618	return static_cast<Texture3D*>(getSamplerTexture(mState.activeSampler, TEXTURE_3D));
1619}
1620
1621Texture2DArray *Context::getTexture2DArray() const
1622{
1623	return static_cast<Texture2DArray*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D_ARRAY));
1624}
1625
1626TextureCubeMap *Context::getTextureCubeMap() const
1627{
1628	return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE));
1629}
1630
1631TextureExternal *Context::getTextureExternal() const
1632{
1633	return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL));
1634}
1635
1636Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const
1637{
1638	GLuint texid = mState.samplerTexture[type][sampler].name();
1639
1640	if(texid == 0)   // Special case: 0 refers to different initial textures based on the target
1641	{
1642		switch(type)
1643		{
1644		case TEXTURE_2D: return mTexture2DZero;
1645		case TEXTURE_3D: return mTexture3DZero;
1646		case TEXTURE_2D_ARRAY: return mTexture2DArrayZero;
1647		case TEXTURE_CUBE: return mTextureCubeMapZero;
1648		case TEXTURE_EXTERNAL: return mTextureExternalZero;
1649		default: UNREACHABLE(type);
1650		}
1651	}
1652
1653	return mState.samplerTexture[type][sampler];
1654}
1655
1656void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param)
1657{
1658	mResourceManager->checkSamplerAllocation(sampler);
1659
1660	Sampler *samplerObject = getSampler(sampler);
1661	ASSERT(samplerObject);
1662
1663	switch(pname)
1664	{
1665	case GL_TEXTURE_MIN_FILTER:    samplerObject->setMinFilter(static_cast<GLenum>(param));       break;
1666	case GL_TEXTURE_MAG_FILTER:    samplerObject->setMagFilter(static_cast<GLenum>(param));       break;
1667	case GL_TEXTURE_WRAP_S:        samplerObject->setWrapS(static_cast<GLenum>(param));           break;
1668	case GL_TEXTURE_WRAP_T:        samplerObject->setWrapT(static_cast<GLenum>(param));           break;
1669	case GL_TEXTURE_WRAP_R:        samplerObject->setWrapR(static_cast<GLenum>(param));           break;
1670	case GL_TEXTURE_MIN_LOD:       samplerObject->setMinLod(static_cast<GLfloat>(param));         break;
1671	case GL_TEXTURE_MAX_LOD:       samplerObject->setMaxLod(static_cast<GLfloat>(param));         break;
1672	case GL_TEXTURE_COMPARE_MODE:  samplerObject->setComparisonMode(static_cast<GLenum>(param));  break;
1673	case GL_TEXTURE_COMPARE_FUNC:  samplerObject->setComparisonFunc(static_cast<GLenum>(param));  break;
1674	default:                       UNREACHABLE(pname); break;
1675	}
1676}
1677
1678void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
1679{
1680	mResourceManager->checkSamplerAllocation(sampler);
1681
1682	Sampler *samplerObject = getSampler(sampler);
1683	ASSERT(samplerObject);
1684
1685	switch(pname)
1686	{
1687	case GL_TEXTURE_MIN_FILTER:    samplerObject->setMinFilter(static_cast<GLenum>(roundf(param)));       break;
1688	case GL_TEXTURE_MAG_FILTER:    samplerObject->setMagFilter(static_cast<GLenum>(roundf(param)));       break;
1689	case GL_TEXTURE_WRAP_S:        samplerObject->setWrapS(static_cast<GLenum>(roundf(param)));           break;
1690	case GL_TEXTURE_WRAP_T:        samplerObject->setWrapT(static_cast<GLenum>(roundf(param)));           break;
1691	case GL_TEXTURE_WRAP_R:        samplerObject->setWrapR(static_cast<GLenum>(roundf(param)));           break;
1692	case GL_TEXTURE_MIN_LOD:       samplerObject->setMinLod(param);                                       break;
1693	case GL_TEXTURE_MAX_LOD:       samplerObject->setMaxLod(param);                                       break;
1694	case GL_TEXTURE_COMPARE_MODE:  samplerObject->setComparisonMode(static_cast<GLenum>(roundf(param)));  break;
1695	case GL_TEXTURE_COMPARE_FUNC:  samplerObject->setComparisonFunc(static_cast<GLenum>(roundf(param)));  break;
1696	default:                       UNREACHABLE(pname); break;
1697	}
1698}
1699
1700GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname)
1701{
1702	mResourceManager->checkSamplerAllocation(sampler);
1703
1704	Sampler *samplerObject = getSampler(sampler);
1705	ASSERT(samplerObject);
1706
1707	switch(pname)
1708	{
1709	case GL_TEXTURE_MIN_FILTER:    return static_cast<GLint>(samplerObject->getMinFilter());
1710	case GL_TEXTURE_MAG_FILTER:    return static_cast<GLint>(samplerObject->getMagFilter());
1711	case GL_TEXTURE_WRAP_S:        return static_cast<GLint>(samplerObject->getWrapS());
1712	case GL_TEXTURE_WRAP_T:        return static_cast<GLint>(samplerObject->getWrapT());
1713	case GL_TEXTURE_WRAP_R:        return static_cast<GLint>(samplerObject->getWrapR());
1714	case GL_TEXTURE_MIN_LOD:       return static_cast<GLint>(roundf(samplerObject->getMinLod()));
1715	case GL_TEXTURE_MAX_LOD:       return static_cast<GLint>(roundf(samplerObject->getMaxLod()));
1716	case GL_TEXTURE_COMPARE_MODE:  return static_cast<GLint>(samplerObject->getComparisonMode());
1717	case GL_TEXTURE_COMPARE_FUNC:  return static_cast<GLint>(samplerObject->getComparisonFunc());
1718	default:                       UNREACHABLE(pname); return 0;
1719	}
1720}
1721
1722GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname)
1723{
1724	mResourceManager->checkSamplerAllocation(sampler);
1725
1726	Sampler *samplerObject = getSampler(sampler);
1727	ASSERT(samplerObject);
1728
1729	switch(pname)
1730	{
1731	case GL_TEXTURE_MIN_FILTER:    return static_cast<GLfloat>(samplerObject->getMinFilter());
1732	case GL_TEXTURE_MAG_FILTER:    return static_cast<GLfloat>(samplerObject->getMagFilter());
1733	case GL_TEXTURE_WRAP_S:        return static_cast<GLfloat>(samplerObject->getWrapS());
1734	case GL_TEXTURE_WRAP_T:        return static_cast<GLfloat>(samplerObject->getWrapT());
1735	case GL_TEXTURE_WRAP_R:        return static_cast<GLfloat>(samplerObject->getWrapR());
1736	case GL_TEXTURE_MIN_LOD:       return samplerObject->getMinLod();
1737	case GL_TEXTURE_MAX_LOD:       return samplerObject->getMaxLod();
1738	case GL_TEXTURE_COMPARE_MODE:  return static_cast<GLfloat>(samplerObject->getComparisonMode());
1739	case GL_TEXTURE_COMPARE_FUNC:  return static_cast<GLfloat>(samplerObject->getComparisonFunc());
1740	default:                       UNREACHABLE(pname); return 0;
1741	}
1742}
1743
1744bool Context::getBooleanv(GLenum pname, GLboolean *params) const
1745{
1746	switch(pname)
1747	{
1748	case GL_SHADER_COMPILER:          *params = GL_TRUE;                          break;
1749	case GL_SAMPLE_COVERAGE_INVERT:   *params = mState.sampleCoverageInvert;      break;
1750	case GL_DEPTH_WRITEMASK:          *params = mState.depthMask;                 break;
1751	case GL_COLOR_WRITEMASK:
1752		params[0] = mState.colorMaskRed;
1753		params[1] = mState.colorMaskGreen;
1754		params[2] = mState.colorMaskBlue;
1755		params[3] = mState.colorMaskAlpha;
1756		break;
1757	case GL_CULL_FACE:                *params = mState.cullFaceEnabled;                  break;
1758	case GL_POLYGON_OFFSET_FILL:      *params = mState.polygonOffsetFillEnabled;         break;
1759	case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled;     break;
1760	case GL_SAMPLE_COVERAGE:          *params = mState.sampleCoverageEnabled;            break;
1761	case GL_SCISSOR_TEST:             *params = mState.scissorTestEnabled;               break;
1762	case GL_STENCIL_TEST:             *params = mState.stencilTestEnabled;               break;
1763	case GL_DEPTH_TEST:               *params = mState.depthTestEnabled;                 break;
1764	case GL_BLEND:                    *params = mState.blendEnabled;                     break;
1765	case GL_DITHER:                   *params = mState.ditherEnabled;                    break;
1766	case GL_PRIMITIVE_RESTART_FIXED_INDEX: *params = mState.primitiveRestartFixedIndexEnabled; break;
1767	case GL_RASTERIZER_DISCARD:       *params = mState.rasterizerDiscardEnabled;         break;
1768	case GL_TRANSFORM_FEEDBACK_ACTIVE:
1769		{
1770			TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
1771			if(transformFeedback)
1772			{
1773				*params = transformFeedback->isActive();
1774				break;
1775			}
1776			else return false;
1777		}
1778	 case GL_TRANSFORM_FEEDBACK_PAUSED:
1779		{
1780			TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
1781			if(transformFeedback)
1782			{
1783				*params = transformFeedback->isPaused();
1784				break;
1785			}
1786			else return false;
1787		}
1788	default:
1789		return false;
1790	}
1791
1792	return true;
1793}
1794
1795bool Context::getFloatv(GLenum pname, GLfloat *params) const
1796{
1797	// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
1798	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
1799	// GetIntegerv as its native query function. As it would require conversion in any
1800	// case, this should make no difference to the calling application.
1801	switch(pname)
1802	{
1803	case GL_LINE_WIDTH:               *params = mState.lineWidth;            break;
1804	case GL_SAMPLE_COVERAGE_VALUE:    *params = mState.sampleCoverageValue;  break;
1805	case GL_DEPTH_CLEAR_VALUE:        *params = mState.depthClearValue;      break;
1806	case GL_POLYGON_OFFSET_FACTOR:    *params = mState.polygonOffsetFactor;  break;
1807	case GL_POLYGON_OFFSET_UNITS:     *params = mState.polygonOffsetUnits;   break;
1808	case GL_ALIASED_LINE_WIDTH_RANGE:
1809		params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
1810		params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
1811		break;
1812	case GL_ALIASED_POINT_SIZE_RANGE:
1813		params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
1814		params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
1815		break;
1816	case GL_DEPTH_RANGE:
1817		params[0] = mState.zNear;
1818		params[1] = mState.zFar;
1819		break;
1820	case GL_COLOR_CLEAR_VALUE:
1821		params[0] = mState.colorClearValue.red;
1822		params[1] = mState.colorClearValue.green;
1823		params[2] = mState.colorClearValue.blue;
1824		params[3] = mState.colorClearValue.alpha;
1825		break;
1826	case GL_BLEND_COLOR:
1827		params[0] = mState.blendColor.red;
1828		params[1] = mState.blendColor.green;
1829		params[2] = mState.blendColor.blue;
1830		params[3] = mState.blendColor.alpha;
1831		break;
1832	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
1833		*params = MAX_TEXTURE_MAX_ANISOTROPY;
1834		break;
1835	default:
1836		return false;
1837	}
1838
1839	return true;
1840}
1841
1842template bool Context::getIntegerv<GLint>(GLenum pname, GLint *params) const;
1843template bool Context::getIntegerv<GLint64>(GLenum pname, GLint64 *params) const;
1844
1845template<typename T> bool Context::getIntegerv(GLenum pname, T *params) const
1846{
1847	// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
1848	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
1849	// GetIntegerv as its native query function. As it would require conversion in any
1850	// case, this should make no difference to the calling application. You may find it in
1851	// Context::getFloatv.
1852	switch(pname)
1853	{
1854	case GL_MAX_VERTEX_ATTRIBS:               *params = MAX_VERTEX_ATTRIBS;               return true;
1855	case GL_MAX_VERTEX_UNIFORM_VECTORS:       *params = MAX_VERTEX_UNIFORM_VECTORS;       return true;
1856	case GL_MAX_VARYING_VECTORS:              *params = MAX_VARYING_VECTORS;              return true;
1857	case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; return true;
1858	case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:   *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS;   return true;
1859	case GL_MAX_TEXTURE_IMAGE_UNITS:          *params = MAX_TEXTURE_IMAGE_UNITS;          return true;
1860	case GL_MAX_FRAGMENT_UNIFORM_VECTORS:     *params = MAX_FRAGMENT_UNIFORM_VECTORS;     return true;
1861	case GL_MAX_RENDERBUFFER_SIZE:            *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; return true;
1862	case GL_NUM_SHADER_BINARY_FORMATS:        *params = 0;                                    return true;
1863	case GL_SHADER_BINARY_FORMATS:      /* no shader binary formats are supported */          return true;
1864	case GL_ARRAY_BUFFER_BINDING:             *params = getArrayBufferName();                 return true;
1865	case GL_ELEMENT_ARRAY_BUFFER_BINDING:     *params = getElementArrayBufferName();          return true;
1866//	case GL_FRAMEBUFFER_BINDING:            // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
1867	case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE:   *params = mState.drawFramebuffer;               return true;
1868	case GL_READ_FRAMEBUFFER_BINDING_ANGLE:   *params = mState.readFramebuffer;               return true;
1869	case GL_RENDERBUFFER_BINDING:             *params = mState.renderbuffer.name();           return true;
1870	case GL_CURRENT_PROGRAM:                  *params = mState.currentProgram;                return true;
1871	case GL_PACK_ALIGNMENT:                   *params = mState.packAlignment;                 return true;
1872	case GL_UNPACK_ALIGNMENT:                 *params = mState.unpackInfo.alignment;          return true;
1873	case GL_GENERATE_MIPMAP_HINT:             *params = mState.generateMipmapHint;            return true;
1874	case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; return true;
1875	case GL_ACTIVE_TEXTURE:                   *params = (mState.activeSampler + GL_TEXTURE0); return true;
1876	case GL_STENCIL_FUNC:                     *params = mState.stencilFunc;                   return true;
1877	case GL_STENCIL_REF:                      *params = mState.stencilRef;                    return true;
1878	case GL_STENCIL_VALUE_MASK:               *params = sw::clampToSignedInt(mState.stencilMask); return true;
1879	case GL_STENCIL_BACK_FUNC:                *params = mState.stencilBackFunc;               return true;
1880	case GL_STENCIL_BACK_REF:                 *params = mState.stencilBackRef;                return true;
1881	case GL_STENCIL_BACK_VALUE_MASK:          *params = sw::clampToSignedInt(mState.stencilBackMask); return true;
1882	case GL_STENCIL_FAIL:                     *params = mState.stencilFail;                   return true;
1883	case GL_STENCIL_PASS_DEPTH_FAIL:          *params = mState.stencilPassDepthFail;          return true;
1884	case GL_STENCIL_PASS_DEPTH_PASS:          *params = mState.stencilPassDepthPass;          return true;
1885	case GL_STENCIL_BACK_FAIL:                *params = mState.stencilBackFail;               return true;
1886	case GL_STENCIL_BACK_PASS_DEPTH_FAIL:     *params = mState.stencilBackPassDepthFail;      return true;
1887	case GL_STENCIL_BACK_PASS_DEPTH_PASS:     *params = mState.stencilBackPassDepthPass;      return true;
1888	case GL_DEPTH_FUNC:                       *params = mState.depthFunc;                     return true;
1889	case GL_BLEND_SRC_RGB:                    *params = mState.sourceBlendRGB;                return true;
1890	case GL_BLEND_SRC_ALPHA:                  *params = mState.sourceBlendAlpha;              return true;
1891	case GL_BLEND_DST_RGB:                    *params = mState.destBlendRGB;                  return true;
1892	case GL_BLEND_DST_ALPHA:                  *params = mState.destBlendAlpha;                return true;
1893	case GL_BLEND_EQUATION_RGB:               *params = mState.blendEquationRGB;              return true;
1894	case GL_BLEND_EQUATION_ALPHA:             *params = mState.blendEquationAlpha;            return true;
1895	case GL_STENCIL_WRITEMASK:                *params = sw::clampToSignedInt(mState.stencilWritemask); return true;
1896	case GL_STENCIL_BACK_WRITEMASK:           *params = sw::clampToSignedInt(mState.stencilBackWritemask); return true;
1897	case GL_STENCIL_CLEAR_VALUE:              *params = mState.stencilClearValue;             return true;
1898	case GL_SUBPIXEL_BITS:                    *params = 4;                                    return true;
1899	case GL_MAX_TEXTURE_SIZE:                 *params = IMPLEMENTATION_MAX_TEXTURE_SIZE;          return true;
1900	case GL_MAX_CUBE_MAP_TEXTURE_SIZE:        *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; return true;
1901	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:   *params = NUM_COMPRESSED_TEXTURE_FORMATS;           return true;
1902	case GL_MAX_SAMPLES_ANGLE:                *params = IMPLEMENTATION_MAX_SAMPLES;               return true;
1903	case GL_SAMPLE_BUFFERS:
1904	case GL_SAMPLES:
1905		{
1906			Framebuffer *framebuffer = getDrawFramebuffer();
1907			int width, height, samples;
1908
1909			if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE)
1910			{
1911				switch(pname)
1912				{
1913				case GL_SAMPLE_BUFFERS:
1914					if(samples > 1)
1915					{
1916						*params = 1;
1917					}
1918					else
1919					{
1920						*params = 0;
1921					}
1922					break;
1923				case GL_SAMPLES:
1924					*params = samples;
1925					break;
1926				}
1927			}
1928			else
1929			{
1930				*params = 0;
1931			}
1932		}
1933		return true;
1934	case GL_IMPLEMENTATION_COLOR_READ_TYPE:
1935		{
1936			Framebuffer *framebuffer = getReadFramebuffer();
1937			*params = framebuffer->getImplementationColorReadType();
1938		}
1939		return true;
1940	case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
1941		{
1942			Framebuffer *framebuffer = getReadFramebuffer();
1943			*params = framebuffer->getImplementationColorReadFormat();
1944		}
1945		return true;
1946	case GL_MAX_VIEWPORT_DIMS:
1947		{
1948			int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
1949			params[0] = maxDimension;
1950			params[1] = maxDimension;
1951		}
1952		return true;
1953	case GL_COMPRESSED_TEXTURE_FORMATS:
1954		{
1955			for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
1956			{
1957				params[i] = compressedTextureFormats[i];
1958			}
1959		}
1960		return true;
1961	case GL_VIEWPORT:
1962		params[0] = mState.viewportX;
1963		params[1] = mState.viewportY;
1964		params[2] = mState.viewportWidth;
1965		params[3] = mState.viewportHeight;
1966		return true;
1967	case GL_SCISSOR_BOX:
1968		params[0] = mState.scissorX;
1969		params[1] = mState.scissorY;
1970		params[2] = mState.scissorWidth;
1971		params[3] = mState.scissorHeight;
1972		return true;
1973	case GL_CULL_FACE_MODE:                   *params = mState.cullMode;                 return true;
1974	case GL_FRONT_FACE:                       *params = mState.frontFace;                return true;
1975	case GL_RED_BITS:
1976	case GL_GREEN_BITS:
1977	case GL_BLUE_BITS:
1978	case GL_ALPHA_BITS:
1979		{
1980			Framebuffer *framebuffer = getDrawFramebuffer();
1981			Renderbuffer *colorbuffer = framebuffer->getColorbuffer(0);
1982
1983			if(colorbuffer)
1984			{
1985				switch(pname)
1986				{
1987				case GL_RED_BITS:   *params = colorbuffer->getRedSize();   return true;
1988				case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); return true;
1989				case GL_BLUE_BITS:  *params = colorbuffer->getBlueSize();  return true;
1990				case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); return true;
1991				}
1992			}
1993			else
1994			{
1995				*params = 0;
1996			}
1997		}
1998		return true;
1999	case GL_DEPTH_BITS:
2000		{
2001			Framebuffer *framebuffer = getDrawFramebuffer();
2002			Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
2003
2004			if(depthbuffer)
2005			{
2006				*params = depthbuffer->getDepthSize();
2007			}
2008			else
2009			{
2010				*params = 0;
2011			}
2012		}
2013		return true;
2014	case GL_STENCIL_BITS:
2015		{
2016			Framebuffer *framebuffer = getDrawFramebuffer();
2017			Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
2018
2019			if(stencilbuffer)
2020			{
2021				*params = stencilbuffer->getStencilSize();
2022			}
2023			else
2024			{
2025				*params = 0;
2026			}
2027		}
2028		return true;
2029	case GL_TEXTURE_BINDING_2D:
2030		if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
2031		{
2032			error(GL_INVALID_OPERATION);
2033			return false;
2034		}
2035
2036		*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();
2037		return true;
2038	case GL_TEXTURE_BINDING_CUBE_MAP:
2039		if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
2040		{
2041			error(GL_INVALID_OPERATION);
2042			return false;
2043		}
2044
2045		*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name();
2046		return true;
2047	case GL_TEXTURE_BINDING_EXTERNAL_OES:
2048		if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
2049		{
2050			error(GL_INVALID_OPERATION);
2051			return false;
2052		}
2053
2054		*params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name();
2055		return true;
2056	case GL_TEXTURE_BINDING_3D_OES:
2057		if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
2058		{
2059			error(GL_INVALID_OPERATION);
2060			return false;
2061		}
2062
2063		*params = mState.samplerTexture[TEXTURE_3D][mState.activeSampler].name();
2064		return true;
2065	case GL_DRAW_BUFFER0:
2066	case GL_DRAW_BUFFER1:
2067	case GL_DRAW_BUFFER2:
2068	case GL_DRAW_BUFFER3:
2069	case GL_DRAW_BUFFER4:
2070	case GL_DRAW_BUFFER5:
2071	case GL_DRAW_BUFFER6:
2072	case GL_DRAW_BUFFER7:
2073	case GL_DRAW_BUFFER8:
2074	case GL_DRAW_BUFFER9:
2075	case GL_DRAW_BUFFER10:
2076	case GL_DRAW_BUFFER11:
2077	case GL_DRAW_BUFFER12:
2078	case GL_DRAW_BUFFER13:
2079	case GL_DRAW_BUFFER14:
2080	case GL_DRAW_BUFFER15:
2081		if((pname - GL_DRAW_BUFFER0) < MAX_DRAW_BUFFERS)
2082		{
2083			*params = getDrawFramebuffer()->getDrawBuffer(pname - GL_DRAW_BUFFER0);
2084		}
2085		else
2086		{
2087			return false;
2088		}
2089		return true;
2090	case GL_MAX_DRAW_BUFFERS:
2091		*params = MAX_DRAW_BUFFERS;
2092		return true;
2093	default:
2094		break;
2095	}
2096
2097	if(clientVersion >= 3)
2098	{
2099		switch(pname)
2100		{
2101		case GL_TEXTURE_BINDING_2D_ARRAY:
2102			if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
2103			{
2104				error(GL_INVALID_OPERATION);
2105				return false;
2106			}
2107
2108			*params = mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].name();
2109			return true;
2110		case GL_COPY_READ_BUFFER_BINDING:
2111			*params = mState.copyReadBuffer.name();
2112			return true;
2113		case GL_COPY_WRITE_BUFFER_BINDING:
2114			*params = mState.copyWriteBuffer.name();
2115			return true;
2116		case GL_MAJOR_VERSION:
2117			*params = clientVersion;
2118			return true;
2119		case GL_MAX_3D_TEXTURE_SIZE:
2120			*params = IMPLEMENTATION_MAX_TEXTURE_SIZE;
2121			return true;
2122		case GL_MAX_ARRAY_TEXTURE_LAYERS:
2123			*params = IMPLEMENTATION_MAX_TEXTURE_SIZE;
2124			return true;
2125		case GL_MAX_COLOR_ATTACHMENTS: // Note: not supported in OES_framebuffer_object
2126			*params = MAX_COLOR_ATTACHMENTS;
2127			return true;
2128		case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
2129			*params = MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS;
2130			return true;
2131		case GL_MAX_COMBINED_UNIFORM_BLOCKS:
2132			*params = MAX_VERTEX_UNIFORM_BLOCKS + MAX_FRAGMENT_UNIFORM_BLOCKS;
2133			return true;
2134		case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
2135			*params = MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS;
2136			return true;
2137		case GL_MAX_ELEMENT_INDEX:
2138			*params = MAX_ELEMENT_INDEX;
2139			return true;
2140		case GL_MAX_ELEMENTS_INDICES:
2141			*params = MAX_ELEMENTS_INDICES;
2142			return true;
2143		case GL_MAX_ELEMENTS_VERTICES:
2144			*params = MAX_ELEMENTS_VERTICES;
2145			return true;
2146		case GL_MAX_FRAGMENT_INPUT_COMPONENTS:
2147			*params = MAX_FRAGMENT_INPUT_VECTORS * 4;
2148			return true;
2149		case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
2150			*params = MAX_FRAGMENT_UNIFORM_BLOCKS;
2151			return true;
2152		case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
2153			*params = MAX_FRAGMENT_UNIFORM_COMPONENTS;
2154			return true;
2155		case GL_MAX_PROGRAM_TEXEL_OFFSET:
2156			UNIMPLEMENTED();
2157			*params = MAX_PROGRAM_TEXEL_OFFSET;
2158			return true;
2159		case GL_MAX_SERVER_WAIT_TIMEOUT:
2160			*params = 0;
2161			return true;
2162		case GL_MAX_TEXTURE_LOD_BIAS:
2163			UNIMPLEMENTED();
2164			*params = 2;
2165			return true;
2166		case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
2167			*params = sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS;
2168			return true;
2169		case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
2170			*params = MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS;
2171			return true;
2172		case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
2173			*params = sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS;
2174			return true;
2175		case GL_MAX_UNIFORM_BLOCK_SIZE:
2176			*params = MAX_UNIFORM_BLOCK_SIZE;
2177			return true;
2178		case GL_MAX_UNIFORM_BUFFER_BINDINGS:
2179			*params = MAX_UNIFORM_BUFFER_BINDINGS;
2180			return true;
2181		case GL_MAX_VARYING_COMPONENTS:
2182			*params = MAX_VARYING_VECTORS * 4;
2183			return true;
2184		case GL_MAX_VERTEX_OUTPUT_COMPONENTS:
2185			*params = MAX_VERTEX_OUTPUT_VECTORS * 4;
2186			return true;
2187		case GL_MAX_VERTEX_UNIFORM_BLOCKS:
2188			*params = MAX_VERTEX_UNIFORM_BLOCKS;
2189			return true;
2190		case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
2191			*params = MAX_VERTEX_UNIFORM_COMPONENTS;
2192			return true;
2193		case GL_MIN_PROGRAM_TEXEL_OFFSET:
2194			UNIMPLEMENTED();
2195			*params = MIN_PROGRAM_TEXEL_OFFSET;
2196			return true;
2197		case GL_MINOR_VERSION:
2198			*params = 0;
2199			return true;
2200		case GL_NUM_EXTENSIONS:
2201			GLuint numExtensions;
2202			getExtensions(0, &numExtensions);
2203			*params = numExtensions;
2204			return true;
2205		case GL_NUM_PROGRAM_BINARY_FORMATS:
2206			*params = NUM_PROGRAM_BINARY_FORMATS;
2207			return true;
2208		case GL_PACK_ROW_LENGTH:
2209			*params = mState.packRowLength;
2210			return true;
2211		case GL_PACK_SKIP_PIXELS:
2212			*params = mState.packSkipPixels;
2213			return true;
2214		case GL_PACK_SKIP_ROWS:
2215			*params = mState.packSkipRows;
2216			return true;
2217		case GL_PIXEL_PACK_BUFFER_BINDING:
2218			*params = mState.pixelPackBuffer.name();
2219			return true;
2220		case GL_PIXEL_UNPACK_BUFFER_BINDING:
2221			*params = mState.pixelUnpackBuffer.name();
2222			return true;
2223		case GL_PROGRAM_BINARY_FORMATS:
2224			// Since NUM_PROGRAM_BINARY_FORMATS is 0, the input
2225			// should be a 0 sized array, so don't write to params
2226			return true;
2227		case GL_READ_BUFFER:
2228			*params = getReadFramebuffer()->getReadBuffer();
2229			return true;
2230		case GL_SAMPLER_BINDING:
2231			*params = mState.sampler[mState.activeSampler].name();
2232			return true;
2233		case GL_UNIFORM_BUFFER_BINDING:
2234			*params = mState.genericUniformBuffer.name();
2235			return true;
2236		case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
2237			*params = UNIFORM_BUFFER_OFFSET_ALIGNMENT;
2238			return true;
2239		case GL_UNIFORM_BUFFER_SIZE:
2240			*params = static_cast<T>(mState.genericUniformBuffer->size());
2241			return true;
2242		case GL_UNIFORM_BUFFER_START:
2243			*params = static_cast<T>(mState.genericUniformBuffer->offset());
2244			return true;
2245		case GL_UNPACK_IMAGE_HEIGHT:
2246			*params = mState.unpackInfo.imageHeight;
2247			return true;
2248		case GL_UNPACK_ROW_LENGTH:
2249			*params = mState.unpackInfo.rowLength;
2250			return true;
2251		case GL_UNPACK_SKIP_IMAGES:
2252			*params = mState.unpackInfo.skipImages;
2253			return true;
2254		case GL_UNPACK_SKIP_PIXELS:
2255			*params = mState.unpackInfo.skipPixels;
2256			return true;
2257		case GL_UNPACK_SKIP_ROWS:
2258			*params = mState.unpackInfo.skipRows;
2259			return true;
2260		case GL_VERTEX_ARRAY_BINDING:
2261			*params = getCurrentVertexArray()->name;
2262			return true;
2263		case GL_TRANSFORM_FEEDBACK_BINDING:
2264			{
2265				TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
2266				if(transformFeedback)
2267				{
2268					*params = transformFeedback->name;
2269				}
2270				else
2271				{
2272					return false;
2273				}
2274			}
2275			return true;
2276		case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
2277			{
2278				TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
2279				if(transformFeedback)
2280				{
2281					*params = transformFeedback->getGenericBufferName();
2282				}
2283				else
2284				{
2285					return false;
2286				}
2287			}
2288			return true;
2289		default:
2290			break;
2291		}
2292	}
2293
2294	return false;
2295}
2296
2297template bool Context::getTransformFeedbackiv<GLint>(GLuint index, GLenum pname, GLint *param) const;
2298template bool Context::getTransformFeedbackiv<GLint64>(GLuint index, GLenum pname, GLint64 *param) const;
2299
2300template<typename T> bool Context::getTransformFeedbackiv(GLuint index, GLenum pname, T *param) const
2301{
2302	TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
2303	if(!transformFeedback)
2304	{
2305		return false;
2306	}
2307
2308	switch(pname)
2309	{
2310	case GL_TRANSFORM_FEEDBACK_BINDING: // GLint, initially 0
2311		*param = transformFeedback->name;
2312		break;
2313	case GL_TRANSFORM_FEEDBACK_ACTIVE: // boolean, initially GL_FALSE
2314		*param = transformFeedback->isActive();
2315		break;
2316	case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: // name, initially 0
2317		*param = transformFeedback->getBufferName(index);
2318		break;
2319	case GL_TRANSFORM_FEEDBACK_PAUSED: // boolean, initially GL_FALSE
2320		*param = transformFeedback->isPaused();
2321		break;
2322	case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0
2323		if(transformFeedback->getBuffer(index))
2324		{
2325			*param = transformFeedback->getSize(index);
2326			break;
2327		}
2328		else return false;
2329	case GL_TRANSFORM_FEEDBACK_BUFFER_START: // indexed[n] 64-bit integer, initially 0
2330		if(transformFeedback->getBuffer(index))
2331		{
2332			*param = transformFeedback->getOffset(index);
2333		break;
2334		}
2335		else return false;
2336	default:
2337		return false;
2338	}
2339
2340	return true;
2341}
2342
2343template bool Context::getUniformBufferiv<GLint>(GLuint index, GLenum pname, GLint *param) const;
2344template bool Context::getUniformBufferiv<GLint64>(GLuint index, GLenum pname, GLint64 *param) const;
2345
2346template<typename T> bool Context::getUniformBufferiv(GLuint index, GLenum pname, T *param) const
2347{
2348	const BufferBinding& uniformBuffer = mState.uniformBuffers[index];
2349
2350	switch(pname)
2351	{
2352	case GL_UNIFORM_BUFFER_BINDING: // name, initially 0
2353		*param = uniformBuffer.get().name();
2354		break;
2355	case GL_UNIFORM_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0
2356		*param = uniformBuffer.getSize();
2357		break;
2358	case GL_UNIFORM_BUFFER_START: // indexed[n] 64-bit integer, initially 0
2359		*param = uniformBuffer.getOffset();
2360		break;
2361	default:
2362		return false;
2363	}
2364
2365	return true;
2366}
2367
2368bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) const
2369{
2370	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
2371	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
2372	// to the fact that it is stored internally as a float, and so would require conversion
2373	// if returned from Context::getIntegerv. Since this conversion is already implemented
2374	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
2375	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
2376	// application.
2377	switch(pname)
2378	{
2379	case GL_COMPRESSED_TEXTURE_FORMATS:
2380		{
2381			*type = GL_INT;
2382			*numParams = NUM_COMPRESSED_TEXTURE_FORMATS;
2383		}
2384		break;
2385	case GL_SHADER_BINARY_FORMATS:
2386		{
2387			*type = GL_INT;
2388			*numParams = 0;
2389		}
2390		break;
2391	case GL_MAX_VERTEX_ATTRIBS:
2392	case GL_MAX_VERTEX_UNIFORM_VECTORS:
2393	case GL_MAX_VARYING_VECTORS:
2394	case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
2395	case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
2396	case GL_MAX_TEXTURE_IMAGE_UNITS:
2397	case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
2398	case GL_MAX_RENDERBUFFER_SIZE:
2399	case GL_NUM_SHADER_BINARY_FORMATS:
2400	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
2401	case GL_ARRAY_BUFFER_BINDING:
2402	case GL_FRAMEBUFFER_BINDING: // Same as GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
2403	case GL_READ_FRAMEBUFFER_BINDING_ANGLE:
2404	case GL_RENDERBUFFER_BINDING:
2405	case GL_CURRENT_PROGRAM:
2406	case GL_PACK_ALIGNMENT:
2407	case GL_UNPACK_ALIGNMENT:
2408	case GL_GENERATE_MIPMAP_HINT:
2409	case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
2410	case GL_RED_BITS:
2411	case GL_GREEN_BITS:
2412	case GL_BLUE_BITS:
2413	case GL_ALPHA_BITS:
2414	case GL_DEPTH_BITS:
2415	case GL_STENCIL_BITS:
2416	case GL_ELEMENT_ARRAY_BUFFER_BINDING:
2417	case GL_CULL_FACE_MODE:
2418	case GL_FRONT_FACE:
2419	case GL_ACTIVE_TEXTURE:
2420	case GL_STENCIL_FUNC:
2421	case GL_STENCIL_VALUE_MASK:
2422	case GL_STENCIL_REF:
2423	case GL_STENCIL_FAIL:
2424	case GL_STENCIL_PASS_DEPTH_FAIL:
2425	case GL_STENCIL_PASS_DEPTH_PASS:
2426	case GL_STENCIL_BACK_FUNC:
2427	case GL_STENCIL_BACK_VALUE_MASK:
2428	case GL_STENCIL_BACK_REF:
2429	case GL_STENCIL_BACK_FAIL:
2430	case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
2431	case GL_STENCIL_BACK_PASS_DEPTH_PASS:
2432	case GL_DEPTH_FUNC:
2433	case GL_BLEND_SRC_RGB:
2434	case GL_BLEND_SRC_ALPHA:
2435	case GL_BLEND_DST_RGB:
2436	case GL_BLEND_DST_ALPHA:
2437	case GL_BLEND_EQUATION_RGB:
2438	case GL_BLEND_EQUATION_ALPHA:
2439	case GL_STENCIL_WRITEMASK:
2440	case GL_STENCIL_BACK_WRITEMASK:
2441	case GL_STENCIL_CLEAR_VALUE:
2442	case GL_SUBPIXEL_BITS:
2443	case GL_MAX_TEXTURE_SIZE:
2444	case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
2445	case GL_SAMPLE_BUFFERS:
2446	case GL_SAMPLES:
2447	case GL_IMPLEMENTATION_COLOR_READ_TYPE:
2448	case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
2449	case GL_TEXTURE_BINDING_2D:
2450	case GL_TEXTURE_BINDING_CUBE_MAP:
2451	case GL_TEXTURE_BINDING_EXTERNAL_OES:
2452	case GL_TEXTURE_BINDING_3D_OES:
2453	case GL_COPY_READ_BUFFER_BINDING:
2454	case GL_COPY_WRITE_BUFFER_BINDING:
2455	case GL_DRAW_BUFFER0:
2456	case GL_DRAW_BUFFER1:
2457	case GL_DRAW_BUFFER2:
2458	case GL_DRAW_BUFFER3:
2459	case GL_DRAW_BUFFER4:
2460	case GL_DRAW_BUFFER5:
2461	case GL_DRAW_BUFFER6:
2462	case GL_DRAW_BUFFER7:
2463	case GL_DRAW_BUFFER8:
2464	case GL_DRAW_BUFFER9:
2465	case GL_DRAW_BUFFER10:
2466	case GL_DRAW_BUFFER11:
2467	case GL_DRAW_BUFFER12:
2468	case GL_DRAW_BUFFER13:
2469	case GL_DRAW_BUFFER14:
2470	case GL_DRAW_BUFFER15:
2471	case GL_MAJOR_VERSION:
2472	case GL_MAX_3D_TEXTURE_SIZE:
2473	case GL_MAX_ARRAY_TEXTURE_LAYERS:
2474	case GL_MAX_COLOR_ATTACHMENTS:
2475	case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
2476	case GL_MAX_COMBINED_UNIFORM_BLOCKS:
2477	case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
2478	case GL_MAX_DRAW_BUFFERS:
2479	case GL_MAX_ELEMENT_INDEX:
2480	case GL_MAX_ELEMENTS_INDICES:
2481	case GL_MAX_ELEMENTS_VERTICES:
2482	case GL_MAX_FRAGMENT_INPUT_COMPONENTS:
2483	case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
2484	case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
2485	case GL_MAX_PROGRAM_TEXEL_OFFSET:
2486	case GL_MAX_SERVER_WAIT_TIMEOUT:
2487	case GL_MAX_TEXTURE_LOD_BIAS:
2488	case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
2489	case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
2490	case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
2491	case GL_MAX_UNIFORM_BLOCK_SIZE:
2492	case GL_MAX_UNIFORM_BUFFER_BINDINGS:
2493	case GL_MAX_VARYING_COMPONENTS:
2494	case GL_MAX_VERTEX_OUTPUT_COMPONENTS:
2495	case GL_MAX_VERTEX_UNIFORM_BLOCKS:
2496	case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
2497	case GL_MIN_PROGRAM_TEXEL_OFFSET:
2498	case GL_MINOR_VERSION:
2499	case GL_NUM_EXTENSIONS:
2500	case GL_NUM_PROGRAM_BINARY_FORMATS:
2501	case GL_PACK_ROW_LENGTH:
2502	case GL_PACK_SKIP_PIXELS:
2503	case GL_PACK_SKIP_ROWS:
2504	case GL_PIXEL_PACK_BUFFER_BINDING:
2505	case GL_PIXEL_UNPACK_BUFFER_BINDING:
2506	case GL_PROGRAM_BINARY_FORMATS:
2507	case GL_READ_BUFFER:
2508	case GL_SAMPLER_BINDING:
2509	case GL_TEXTURE_BINDING_2D_ARRAY:
2510	case GL_UNIFORM_BUFFER_BINDING:
2511	case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
2512	case GL_UNIFORM_BUFFER_SIZE:
2513	case GL_UNIFORM_BUFFER_START:
2514	case GL_UNPACK_IMAGE_HEIGHT:
2515	case GL_UNPACK_ROW_LENGTH:
2516	case GL_UNPACK_SKIP_IMAGES:
2517	case GL_UNPACK_SKIP_PIXELS:
2518	case GL_UNPACK_SKIP_ROWS:
2519	case GL_VERTEX_ARRAY_BINDING:
2520	case GL_TRANSFORM_FEEDBACK_BINDING:
2521	case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
2522		{
2523			*type = GL_INT;
2524			*numParams = 1;
2525		}
2526		break;
2527	case GL_MAX_SAMPLES_ANGLE:
2528		{
2529			*type = GL_INT;
2530			*numParams = 1;
2531		}
2532		break;
2533	case GL_MAX_VIEWPORT_DIMS:
2534		{
2535			*type = GL_INT;
2536			*numParams = 2;
2537		}
2538		break;
2539	case GL_VIEWPORT:
2540	case GL_SCISSOR_BOX:
2541		{
2542			*type = GL_INT;
2543			*numParams = 4;
2544		}
2545		break;
2546	case GL_SHADER_COMPILER:
2547	case GL_SAMPLE_COVERAGE_INVERT:
2548	case GL_DEPTH_WRITEMASK:
2549	case GL_CULL_FACE:                // CULL_FACE through DITHER are natural to IsEnabled,
2550	case GL_POLYGON_OFFSET_FILL:      // but can be retrieved through the Get{Type}v queries.
2551	case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
2552	case GL_SAMPLE_COVERAGE:
2553	case GL_SCISSOR_TEST:
2554	case GL_STENCIL_TEST:
2555	case GL_DEPTH_TEST:
2556	case GL_BLEND:
2557	case GL_DITHER:
2558	case GL_PRIMITIVE_RESTART_FIXED_INDEX:
2559	case GL_RASTERIZER_DISCARD:
2560	case GL_TRANSFORM_FEEDBACK_ACTIVE:
2561	case GL_TRANSFORM_FEEDBACK_PAUSED:
2562		{
2563			*type = GL_BOOL;
2564			*numParams = 1;
2565		}
2566		break;
2567	case GL_COLOR_WRITEMASK:
2568		{
2569			*type = GL_BOOL;
2570			*numParams = 4;
2571		}
2572		break;
2573	case GL_POLYGON_OFFSET_FACTOR:
2574	case GL_POLYGON_OFFSET_UNITS:
2575	case GL_SAMPLE_COVERAGE_VALUE:
2576	case GL_DEPTH_CLEAR_VALUE:
2577	case GL_LINE_WIDTH:
2578		{
2579			*type = GL_FLOAT;
2580			*numParams = 1;
2581		}
2582		break;
2583	case GL_ALIASED_LINE_WIDTH_RANGE:
2584	case GL_ALIASED_POINT_SIZE_RANGE:
2585	case GL_DEPTH_RANGE:
2586		{
2587			*type = GL_FLOAT;
2588			*numParams = 2;
2589		}
2590		break;
2591	case GL_COLOR_CLEAR_VALUE:
2592	case GL_BLEND_COLOR:
2593		{
2594			*type = GL_FLOAT;
2595			*numParams = 4;
2596		}
2597		break;
2598	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
2599		*type = GL_FLOAT;
2600		*numParams = 1;
2601		break;
2602	default:
2603		return false;
2604	}
2605
2606	return true;
2607}
2608
2609void Context::applyScissor(int width, int height)
2610{
2611	if(mState.scissorTestEnabled)
2612	{
2613		sw::Rect scissor = { mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight };
2614		scissor.clip(0, 0, width, height);
2615
2616		device->setScissorRect(scissor);
2617		device->setScissorEnable(true);
2618	}
2619	else
2620	{
2621		device->setScissorEnable(false);
2622	}
2623}
2624
2625// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
2626bool Context::applyRenderTarget()
2627{
2628	Framebuffer *framebuffer = getDrawFramebuffer();
2629	int width, height, samples;
2630
2631	if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE)
2632	{
2633		return error(GL_INVALID_FRAMEBUFFER_OPERATION, false);
2634	}
2635
2636	for(int i = 0; i < MAX_DRAW_BUFFERS; i++)
2637	{
2638		if(framebuffer->getDrawBuffer(i) != GL_NONE)
2639		{
2640			egl::Image *renderTarget = framebuffer->getRenderTarget(i);
2641			device->setRenderTarget(i, renderTarget);
2642			if(renderTarget) renderTarget->release();
2643		}
2644		else
2645		{
2646			device->setRenderTarget(i, nullptr);
2647		}
2648	}
2649
2650	egl::Image *depthBuffer = framebuffer->getDepthBuffer();
2651	device->setDepthBuffer(depthBuffer);
2652	if(depthBuffer) depthBuffer->release();
2653
2654	egl::Image *stencilBuffer = framebuffer->getStencilBuffer();
2655	device->setStencilBuffer(stencilBuffer);
2656	if(stencilBuffer) stencilBuffer->release();
2657
2658	Viewport viewport;
2659	float zNear = clamp01(mState.zNear);
2660	float zFar = clamp01(mState.zFar);
2661
2662	viewport.x0 = mState.viewportX;
2663	viewport.y0 = mState.viewportY;
2664	viewport.width = mState.viewportWidth;
2665	viewport.height = mState.viewportHeight;
2666	viewport.minZ = zNear;
2667	viewport.maxZ = zFar;
2668
2669	device->setViewport(viewport);
2670
2671	applyScissor(width, height);
2672
2673	Program *program = getCurrentProgram();
2674
2675	if(program)
2676	{
2677		GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
2678		program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]);
2679		program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]);
2680		program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]);
2681	}
2682
2683	return true;
2684}
2685
2686// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
2687void Context::applyState(GLenum drawMode)
2688{
2689	Framebuffer *framebuffer = getDrawFramebuffer();
2690
2691	if(mState.cullFaceEnabled)
2692	{
2693		device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace));
2694	}
2695	else
2696	{
2697		device->setCullMode(sw::CULL_NONE);
2698	}
2699
2700	if(mDepthStateDirty)
2701	{
2702		if(mState.depthTestEnabled)
2703		{
2704			device->setDepthBufferEnable(true);
2705			device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
2706		}
2707		else
2708		{
2709			device->setDepthBufferEnable(false);
2710		}
2711
2712		mDepthStateDirty = false;
2713	}
2714
2715	if(mBlendStateDirty)
2716	{
2717		if(mState.blendEnabled)
2718		{
2719			device->setAlphaBlendEnable(true);
2720			device->setSeparateAlphaBlendEnable(true);
2721
2722			device->setBlendConstant(es2sw::ConvertColor(mState.blendColor));
2723
2724			device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
2725			device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
2726			device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));
2727
2728			device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
2729			device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
2730			device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
2731		}
2732		else
2733		{
2734			device->setAlphaBlendEnable(false);
2735		}
2736
2737		mBlendStateDirty = false;
2738	}
2739
2740	if(mStencilStateDirty || mFrontFaceDirty)
2741	{
2742		if(mState.stencilTestEnabled && framebuffer->hasStencil())
2743		{
2744			device->setStencilEnable(true);
2745			device->setTwoSidedStencil(true);
2746
2747			// get the maximum size of the stencil ref
2748			Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
2749			GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
2750
2751			if(mState.frontFace == GL_CCW)
2752			{
2753				device->setStencilWriteMask(mState.stencilWritemask);
2754				device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));
2755
2756				device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
2757				device->setStencilMask(mState.stencilMask);
2758
2759				device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
2760				device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
2761				device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
2762
2763				device->setStencilWriteMaskCCW(mState.stencilBackWritemask);
2764				device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
2765
2766				device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
2767				device->setStencilMaskCCW(mState.stencilBackMask);
2768
2769				device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail));
2770				device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
2771				device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
2772			}
2773			else
2774			{
2775				device->setStencilWriteMaskCCW(mState.stencilWritemask);
2776				device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));
2777
2778				device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
2779				device->setStencilMaskCCW(mState.stencilMask);
2780
2781				device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
2782				device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
2783				device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
2784
2785				device->setStencilWriteMask(mState.stencilBackWritemask);
2786				device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
2787
2788				device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
2789				device->setStencilMask(mState.stencilBackMask);
2790
2791				device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail));
2792				device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
2793				device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
2794			}
2795		}
2796		else
2797		{
2798			device->setStencilEnable(false);
2799		}
2800
2801		mStencilStateDirty = false;
2802		mFrontFaceDirty = false;
2803	}
2804
2805	if(mMaskStateDirty)
2806	{
2807		for(int i = 0; i < MAX_DRAW_BUFFERS; i++)
2808		{
2809			device->setColorWriteMask(i, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
2810		}
2811
2812		device->setDepthWriteEnable(mState.depthMask);
2813
2814		mMaskStateDirty = false;
2815	}
2816
2817	if(mPolygonOffsetStateDirty)
2818	{
2819		if(mState.polygonOffsetFillEnabled)
2820		{
2821			Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
2822			if(depthbuffer)
2823			{
2824				device->setSlopeDepthBias(mState.polygonOffsetFactor);
2825				float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
2826				device->setDepthBias(depthBias);
2827			}
2828		}
2829		else
2830		{
2831			device->setSlopeDepthBias(0);
2832			device->setDepthBias(0);
2833		}
2834
2835		mPolygonOffsetStateDirty = false;
2836	}
2837
2838	if(mSampleStateDirty)
2839	{
2840		if(mState.sampleAlphaToCoverageEnabled)
2841		{
2842			device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
2843		}
2844		else
2845		{
2846			device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
2847		}
2848
2849		if(mState.sampleCoverageEnabled)
2850		{
2851			unsigned int mask = 0;
2852			if(mState.sampleCoverageValue != 0)
2853			{
2854				int width, height, samples;
2855				framebuffer->completeness(width, height, samples);
2856
2857				float threshold = 0.5f;
2858
2859				for(int i = 0; i < samples; i++)
2860				{
2861					mask <<= 1;
2862
2863					if((i + 1) * mState.sampleCoverageValue >= threshold)
2864					{
2865						threshold += 1.0f;
2866						mask |= 1;
2867					}
2868				}
2869			}
2870
2871			if(mState.sampleCoverageInvert)
2872			{
2873				mask = ~mask;
2874			}
2875
2876			device->setMultiSampleMask(mask);
2877		}
2878		else
2879		{
2880			device->setMultiSampleMask(0xFFFFFFFF);
2881		}
2882
2883		mSampleStateDirty = false;
2884	}
2885
2886	if(mDitherStateDirty)
2887	{
2888	//	UNIMPLEMENTED();   // FIXME
2889
2890		mDitherStateDirty = false;
2891	}
2892
2893	device->setRasterizerDiscard(mState.rasterizerDiscardEnabled);
2894}
2895
2896GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count, GLsizei instanceId)
2897{
2898	TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
2899
2900	GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes, instanceId);
2901	if(err != GL_NO_ERROR)
2902	{
2903		return err;
2904	}
2905
2906	Program *program = getCurrentProgram();
2907
2908	device->resetInputStreams(false);
2909
2910	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
2911	{
2912		if(program->getAttributeStream(i) == -1)
2913		{
2914			continue;
2915		}
2916
2917		sw::Resource *resource = attributes[i].vertexBuffer;
2918		const void *buffer = (char*)resource->data() + attributes[i].offset;
2919
2920		int stride = attributes[i].stride;
2921
2922		buffer = (char*)buffer + stride * base;
2923
2924		sw::Stream attribute(resource, buffer, stride);
2925
2926		attribute.type = attributes[i].type;
2927		attribute.count = attributes[i].count;
2928		attribute.normalized = attributes[i].normalized;
2929
2930		int stream = program->getAttributeStream(i);
2931		device->setInputStream(stream, attribute);
2932	}
2933
2934	return GL_NO_ERROR;
2935}
2936
2937// Applies the indices and element array bindings
2938GLenum Context::applyIndexBuffer(const void *indices, GLuint start, GLuint end, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
2939{
2940	GLenum err = mIndexDataManager->prepareIndexData(type, start, end, count, getCurrentVertexArray()->getElementArrayBuffer(), indices, indexInfo);
2941
2942	if(err == GL_NO_ERROR)
2943	{
2944		device->setIndexBuffer(indexInfo->indexBuffer);
2945	}
2946
2947	return err;
2948}
2949
2950// Applies the shaders and shader constants
2951void Context::applyShaders()
2952{
2953	Program *programObject = getCurrentProgram();
2954	sw::VertexShader *vertexShader = programObject->getVertexShader();
2955	sw::PixelShader *pixelShader = programObject->getPixelShader();
2956
2957	device->setVertexShader(vertexShader);
2958	device->setPixelShader(pixelShader);
2959
2960	if(programObject->getSerial() != mAppliedProgramSerial)
2961	{
2962		programObject->dirtyAllUniforms();
2963		mAppliedProgramSerial = programObject->getSerial();
2964	}
2965
2966	programObject->applyTransformFeedback(getTransformFeedback());
2967	programObject->applyUniformBuffers(mState.uniformBuffers);
2968	programObject->applyUniforms();
2969}
2970
2971void Context::applyTextures()
2972{
2973	applyTextures(sw::SAMPLER_PIXEL);
2974	applyTextures(sw::SAMPLER_VERTEX);
2975}
2976
2977void Context::applyTextures(sw::SamplerType samplerType)
2978{
2979	Program *programObject = getCurrentProgram();
2980
2981	int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS;   // Range of samplers of given sampler type
2982
2983	for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++)
2984	{
2985		int textureUnit = programObject->getSamplerMapping(samplerType, samplerIndex);   // OpenGL texture image unit index
2986
2987		if(textureUnit != -1)
2988		{
2989			TextureType textureType = programObject->getSamplerTextureType(samplerType, samplerIndex);
2990
2991			Texture *texture = getSamplerTexture(textureUnit, textureType);
2992
2993			if(texture->isSamplerComplete())
2994			{
2995				GLenum wrapS, wrapT, wrapR, minFilter, magFilter;
2996				GLfloat minLOD, maxLOD;
2997
2998				Sampler *samplerObject = mState.sampler[textureUnit];
2999				if(samplerObject)
3000				{
3001					wrapS = samplerObject->getWrapS();
3002					wrapT = samplerObject->getWrapT();
3003					wrapR = samplerObject->getWrapR();
3004					minFilter = samplerObject->getMinFilter();
3005					magFilter = samplerObject->getMagFilter();
3006					minLOD = samplerObject->getMinLod();
3007					maxLOD = samplerObject->getMaxLod();
3008				}
3009				else
3010				{
3011					wrapS = texture->getWrapS();
3012					wrapT = texture->getWrapT();
3013					wrapR = texture->getWrapR();
3014					minFilter = texture->getMinFilter();
3015					magFilter = texture->getMagFilter();
3016					minLOD = texture->getMinLOD();
3017					maxLOD = texture->getMaxLOD();
3018				}
3019				GLfloat maxAnisotropy = texture->getMaxAnisotropy();
3020
3021				GLint baseLevel = texture->getBaseLevel();
3022				GLint maxLevel = texture->getMaxLevel();
3023				GLenum swizzleR = texture->getSwizzleR();
3024				GLenum swizzleG = texture->getSwizzleG();
3025				GLenum swizzleB = texture->getSwizzleB();
3026				GLenum swizzleA = texture->getSwizzleA();
3027
3028				device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS));
3029				device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT));
3030				device->setAddressingModeW(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapR));
3031				device->setSwizzleR(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleR));
3032				device->setSwizzleG(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleG));
3033				device->setSwizzleB(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleB));
3034				device->setSwizzleA(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleA));
3035				device->setMinLod(samplerType, samplerIndex, minLOD);
3036				device->setMaxLod(samplerType, samplerIndex, maxLOD);
3037				device->setBaseLevel(samplerType, samplerIndex, baseLevel);
3038				device->setMaxLevel(samplerType, samplerIndex, maxLevel);
3039
3040				device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy));
3041				device->setMipmapFilter(samplerType, samplerIndex, es2sw::ConvertMipMapFilter(minFilter));
3042				device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy);
3043
3044				applyTexture(samplerType, samplerIndex, texture);
3045			}
3046			else
3047			{
3048				applyTexture(samplerType, samplerIndex, nullptr);
3049			}
3050		}
3051		else
3052		{
3053			applyTexture(samplerType, samplerIndex, nullptr);
3054		}
3055	}
3056}
3057
3058void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture)
3059{
3060	Program *program = getCurrentProgram();
3061	int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index;
3062	bool textureUsed = false;
3063
3064	if(type == sw::SAMPLER_PIXEL)
3065	{
3066		textureUsed = program->getPixelShader()->usesSampler(index);
3067	}
3068	else if(type == sw::SAMPLER_VERTEX)
3069	{
3070		textureUsed = program->getVertexShader()->usesSampler(index);
3071	}
3072	else UNREACHABLE(type);
3073
3074	sw::Resource *resource = 0;
3075
3076	if(baseTexture && textureUsed)
3077	{
3078		resource = baseTexture->getResource();
3079	}
3080
3081	device->setTextureResource(sampler, resource);
3082
3083	if(baseTexture && textureUsed)
3084	{
3085		int levelCount = baseTexture->getLevelCount();
3086
3087		if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES)
3088		{
3089			Texture2D *texture = static_cast<Texture2D*>(baseTexture);
3090
3091			for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
3092			{
3093				int surfaceLevel = mipmapLevel;
3094
3095				if(surfaceLevel < 0)
3096				{
3097					surfaceLevel = 0;
3098				}
3099				else if(surfaceLevel >= levelCount)
3100				{
3101					surfaceLevel = levelCount - 1;
3102				}
3103
3104				egl::Image *surface = texture->getImage(surfaceLevel);
3105				device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D);
3106			}
3107		}
3108		else if(baseTexture->getTarget() == GL_TEXTURE_3D_OES)
3109		{
3110			Texture3D *texture = static_cast<Texture3D*>(baseTexture);
3111
3112			for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
3113			{
3114				int surfaceLevel = mipmapLevel;
3115
3116				if(surfaceLevel < 0)
3117				{
3118					surfaceLevel = 0;
3119				}
3120				else if(surfaceLevel >= levelCount)
3121				{
3122					surfaceLevel = levelCount - 1;
3123				}
3124
3125				egl::Image *surface = texture->getImage(surfaceLevel);
3126				device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_3D);
3127			}
3128		}
3129		else if(baseTexture->getTarget() == GL_TEXTURE_2D_ARRAY)
3130		{
3131			Texture2DArray *texture = static_cast<Texture2DArray*>(baseTexture);
3132
3133			for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
3134			{
3135				int surfaceLevel = mipmapLevel;
3136
3137				if(surfaceLevel < 0)
3138				{
3139					surfaceLevel = 0;
3140				}
3141				else if(surfaceLevel >= levelCount)
3142				{
3143					surfaceLevel = levelCount - 1;
3144				}
3145
3146				egl::Image *surface = texture->getImage(surfaceLevel);
3147				device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D_ARRAY);
3148			}
3149		}
3150		else if(baseTexture->getTarget() == GL_TEXTURE_CUBE_MAP)
3151		{
3152			for(int face = 0; face < 6; face++)
3153			{
3154				TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture);
3155
3156				for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
3157				{
3158					int surfaceLevel = mipmapLevel;
3159
3160					if(surfaceLevel < 0)
3161					{
3162						surfaceLevel = 0;
3163					}
3164					else if(surfaceLevel >= levelCount)
3165					{
3166						surfaceLevel = levelCount - 1;
3167					}
3168
3169					egl::Image *surface = cubeTexture->getImage(face, surfaceLevel);
3170					device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE);
3171				}
3172			}
3173		}
3174		else UNIMPLEMENTED();
3175	}
3176	else
3177	{
3178		device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL);
3179	}
3180}
3181
3182void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
3183{
3184	Framebuffer *framebuffer = getReadFramebuffer();
3185	int framebufferWidth, framebufferHeight, framebufferSamples;
3186
3187	if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE)
3188	{
3189		return error(GL_INVALID_FRAMEBUFFER_OPERATION);
3190	}
3191
3192	if(getReadFramebufferName() != 0 && framebufferSamples != 0)
3193	{
3194		return error(GL_INVALID_OPERATION);
3195	}
3196
3197	if(!IsValidReadPixelsFormatType(framebuffer, format, type, clientVersion))
3198	{
3199		return error(GL_INVALID_OPERATION);
3200	}
3201
3202	GLsizei outputWidth = (mState.packRowLength > 0) ? mState.packRowLength : width;
3203	GLsizei outputPitch = egl::ComputePitch(outputWidth, format, type, mState.packAlignment);
3204	GLsizei outputHeight = (mState.packImageHeight == 0) ? height : mState.packImageHeight;
3205	pixels = getPixelPackBuffer() ? (unsigned char*)getPixelPackBuffer()->data() + (ptrdiff_t)pixels : (unsigned char*)pixels;
3206	pixels = ((char*)pixels) + egl::ComputePackingOffset(format, type, outputWidth, outputHeight, mState.packAlignment, mState.packSkipImages, mState.packSkipRows, mState.packSkipPixels);
3207
3208	// Sized query sanity check
3209	if(bufSize)
3210	{
3211		int requiredSize = outputPitch * height;
3212		if(requiredSize > *bufSize)
3213		{
3214			return error(GL_INVALID_OPERATION);
3215		}
3216	}
3217
3218	egl::Image *renderTarget = nullptr;
3219	switch(format)
3220	{
3221	case GL_DEPTH_COMPONENT:
3222		renderTarget = framebuffer->getDepthBuffer();
3223		break;
3224	default:
3225		renderTarget = framebuffer->getReadRenderTarget();
3226		break;
3227	}
3228
3229	if(!renderTarget)
3230	{
3231		return error(GL_INVALID_OPERATION);
3232	}
3233
3234	sw::Rect rect = {x, y, x + width, y + height};
3235	sw::Rect dstRect = { 0, 0, width, height };
3236	rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
3237
3238	sw::Surface externalSurface(width, height, 1, egl::ConvertFormatType(format, type), pixels, outputPitch, outputPitch * outputHeight);
3239	sw::SliceRect sliceRect(rect);
3240	sw::SliceRect dstSliceRect(dstRect);
3241	device->blit(renderTarget, sliceRect, &externalSurface, dstSliceRect, false);
3242
3243	renderTarget->release();
3244}
3245
3246void Context::clear(GLbitfield mask)
3247{
3248	if(mState.rasterizerDiscardEnabled)
3249	{
3250		return;
3251	}
3252
3253	Framebuffer *framebuffer = getDrawFramebuffer();
3254
3255	if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
3256	{
3257		return error(GL_INVALID_FRAMEBUFFER_OPERATION);
3258	}
3259
3260	if(!applyRenderTarget())
3261	{
3262		return;
3263	}
3264
3265	if(mask & GL_COLOR_BUFFER_BIT)
3266	{
3267		unsigned int rgbaMask = getColorMask();
3268
3269		if(rgbaMask != 0)
3270		{
3271			device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask);
3272		}
3273	}
3274
3275	if(mask & GL_DEPTH_BUFFER_BIT)
3276	{
3277		if(mState.depthMask != 0)
3278		{
3279			float depth = clamp01(mState.depthClearValue);
3280			device->clearDepth(depth);
3281		}
3282	}
3283
3284	if(mask & GL_STENCIL_BUFFER_BIT)
3285	{
3286		if(mState.stencilWritemask != 0)
3287		{
3288			int stencil = mState.stencilClearValue & 0x000000FF;
3289			device->clearStencil(stencil, mState.stencilWritemask);
3290		}
3291	}
3292}
3293
3294void Context::clearColorBuffer(GLint drawbuffer, void *value, sw::Format format)
3295{
3296	unsigned int rgbaMask = getColorMask();
3297	if(rgbaMask && !mState.rasterizerDiscardEnabled)
3298	{
3299		Framebuffer *framebuffer = getDrawFramebuffer();
3300		egl::Image *colorbuffer = framebuffer->getRenderTarget(drawbuffer);
3301
3302		if(colorbuffer)
3303		{
3304			sw::SliceRect clearRect = colorbuffer->getRect();
3305
3306			if(mState.scissorTestEnabled)
3307			{
3308				clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
3309			}
3310
3311			device->clear(value, format, colorbuffer, clearRect, rgbaMask);
3312
3313			colorbuffer->release();
3314		}
3315	}
3316}
3317
3318void Context::clearColorBuffer(GLint drawbuffer, const GLint *value)
3319{
3320	clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32I);
3321}
3322
3323void Context::clearColorBuffer(GLint drawbuffer, const GLuint *value)
3324{
3325	clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32UI);
3326}
3327
3328void Context::clearColorBuffer(GLint drawbuffer, const GLfloat *value)
3329{
3330	clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32F);
3331}
3332
3333void Context::clearDepthBuffer(const GLfloat value)
3334{
3335	if(mState.depthMask && !mState.rasterizerDiscardEnabled)
3336	{
3337		Framebuffer *framebuffer = getDrawFramebuffer();
3338		egl::Image *depthbuffer = framebuffer->getDepthBuffer();
3339
3340		if(depthbuffer)
3341		{
3342			float depth = clamp01(value);
3343			sw::SliceRect clearRect = depthbuffer->getRect();
3344
3345			if(mState.scissorTestEnabled)
3346			{
3347				clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
3348			}
3349
3350			depthbuffer->clearDepth(depth, clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height());
3351
3352			depthbuffer->release();
3353		}
3354	}
3355}
3356
3357void Context::clearStencilBuffer(const GLint value)
3358{
3359	if(mState.stencilWritemask && !mState.rasterizerDiscardEnabled)
3360	{
3361		Framebuffer *framebuffer = getDrawFramebuffer();
3362		egl::Image *stencilbuffer = framebuffer->getStencilBuffer();
3363
3364		if(stencilbuffer)
3365		{
3366			unsigned char stencil = value < 0 ? 0 : static_cast<unsigned char>(value & 0x000000FF);
3367			sw::SliceRect clearRect = stencilbuffer->getRect();
3368
3369			if(mState.scissorTestEnabled)
3370			{
3371				clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
3372			}
3373
3374			stencilbuffer->clearStencil(stencil, static_cast<unsigned char>(mState.stencilWritemask), clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height());
3375
3376			stencilbuffer->release();
3377		}
3378	}
3379}
3380
3381void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instanceCount)
3382{
3383	if(!mState.currentProgram)
3384	{
3385		return error(GL_INVALID_OPERATION);
3386	}
3387
3388	sw::DrawType primitiveType;
3389	int primitiveCount;
3390	int verticesPerPrimitive;
3391
3392	if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount, verticesPerPrimitive))
3393		return error(GL_INVALID_ENUM);
3394
3395	if(primitiveCount <= 0)
3396	{
3397		return;
3398	}
3399
3400	if(!applyRenderTarget())
3401	{
3402		return;
3403	}
3404
3405	applyState(mode);
3406
3407	for(int i = 0; i < instanceCount; ++i)
3408	{
3409		device->setInstanceID(i);
3410
3411		GLenum err = applyVertexBuffer(0, first, count, i);
3412		if(err != GL_NO_ERROR)
3413		{
3414			return error(err);
3415		}
3416
3417		applyShaders();
3418		applyTextures();
3419
3420		if(!getCurrentProgram()->validateSamplers(false))
3421		{
3422			return error(GL_INVALID_OPERATION);
3423		}
3424
3425		TransformFeedback* transformFeedback = getTransformFeedback();
3426		if(!cullSkipsDraw(mode) || (transformFeedback->isActive() && !transformFeedback->isPaused()))
3427		{
3428			device->drawPrimitive(primitiveType, primitiveCount);
3429		}
3430		if(transformFeedback)
3431		{
3432			transformFeedback->addVertexOffset(primitiveCount * verticesPerPrimitive);
3433		}
3434	}
3435}
3436
3437void Context::drawElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void *indices, GLsizei instanceCount)
3438{
3439	if(!mState.currentProgram)
3440	{
3441		return error(GL_INVALID_OPERATION);
3442	}
3443
3444	if(!indices && !getCurrentVertexArray()->getElementArrayBuffer())
3445	{
3446		return error(GL_INVALID_OPERATION);
3447	}
3448
3449	sw::DrawType primitiveType;
3450	int primitiveCount;
3451	int verticesPerPrimitive;
3452
3453	if(!es2sw::ConvertPrimitiveType(mode, count, type, primitiveType, primitiveCount, verticesPerPrimitive))
3454		return error(GL_INVALID_ENUM);
3455
3456	if(primitiveCount <= 0)
3457	{
3458		return;
3459	}
3460
3461	if(!applyRenderTarget())
3462	{
3463		return;
3464	}
3465
3466	applyState(mode);
3467
3468	for(int i = 0; i < instanceCount; ++i)
3469	{
3470		device->setInstanceID(i);
3471
3472		TranslatedIndexData indexInfo;
3473		GLenum err = applyIndexBuffer(indices, start, end, count, mode, type, &indexInfo);
3474		if(err != GL_NO_ERROR)
3475		{
3476			return error(err);
3477		}
3478
3479		GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
3480		err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount, i);
3481		if(err != GL_NO_ERROR)
3482		{
3483			return error(err);
3484		}
3485
3486		applyShaders();
3487		applyTextures();
3488
3489		if(!getCurrentProgram()->validateSamplers(false))
3490		{
3491			return error(GL_INVALID_OPERATION);
3492		}
3493
3494		TransformFeedback* transformFeedback = getTransformFeedback();
3495		if(!cullSkipsDraw(mode) || (transformFeedback->isActive() && !transformFeedback->isPaused()))
3496		{
3497			device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount);
3498		}
3499		if(transformFeedback)
3500		{
3501			transformFeedback->addVertexOffset(primitiveCount * verticesPerPrimitive);
3502		}
3503	}
3504}
3505
3506void Context::finish()
3507{
3508	device->finish();
3509}
3510
3511void Context::flush()
3512{
3513	// We don't queue anything without processing it as fast as possible
3514}
3515
3516void Context::recordInvalidEnum()
3517{
3518	mInvalidEnum = true;
3519}
3520
3521void Context::recordInvalidValue()
3522{
3523	mInvalidValue = true;
3524}
3525
3526void Context::recordInvalidOperation()
3527{
3528	mInvalidOperation = true;
3529}
3530
3531void Context::recordOutOfMemory()
3532{
3533	mOutOfMemory = true;
3534}
3535
3536void Context::recordInvalidFramebufferOperation()
3537{
3538	mInvalidFramebufferOperation = true;
3539}
3540
3541// Get one of the recorded errors and clear its flag, if any.
3542// [OpenGL ES 2.0.24] section 2.5 page 13.
3543GLenum Context::getError()
3544{
3545	if(mInvalidEnum)
3546	{
3547		mInvalidEnum = false;
3548
3549		return GL_INVALID_ENUM;
3550	}
3551
3552	if(mInvalidValue)
3553	{
3554		mInvalidValue = false;
3555
3556		return GL_INVALID_VALUE;
3557	}
3558
3559	if(mInvalidOperation)
3560	{
3561		mInvalidOperation = false;
3562
3563		return GL_INVALID_OPERATION;
3564	}
3565
3566	if(mOutOfMemory)
3567	{
3568		mOutOfMemory = false;
3569
3570		return GL_OUT_OF_MEMORY;
3571	}
3572
3573	if(mInvalidFramebufferOperation)
3574	{
3575		mInvalidFramebufferOperation = false;
3576
3577		return GL_INVALID_FRAMEBUFFER_OPERATION;
3578	}
3579
3580	return GL_NO_ERROR;
3581}
3582
3583int Context::getSupportedMultisampleCount(int requested)
3584{
3585	int supported = 0;
3586
3587	for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--)
3588	{
3589		if(supported >= requested)
3590		{
3591			return supported;
3592		}
3593
3594		supported = multisampleCount[i];
3595	}
3596
3597	return supported;
3598}
3599
3600void Context::detachBuffer(GLuint buffer)
3601{
3602	// [OpenGL ES 2.0.24] section 2.9 page 22:
3603	// If a buffer object is deleted while it is bound, all bindings to that object in the current context
3604	// (i.e. in the thread that called Delete-Buffers) are reset to zero.
3605
3606	if(mState.copyReadBuffer.name() == buffer)
3607	{
3608		mState.copyReadBuffer = nullptr;
3609	}
3610
3611	if(mState.copyWriteBuffer.name() == buffer)
3612	{
3613		mState.copyWriteBuffer = nullptr;
3614	}
3615
3616	if(mState.pixelPackBuffer.name() == buffer)
3617	{
3618		mState.pixelPackBuffer = nullptr;
3619	}
3620
3621	if(mState.pixelUnpackBuffer.name() == buffer)
3622	{
3623		mState.pixelUnpackBuffer = nullptr;
3624	}
3625
3626	if(mState.genericUniformBuffer.name() == buffer)
3627	{
3628		mState.genericUniformBuffer = nullptr;
3629	}
3630
3631	if(getArrayBufferName() == buffer)
3632	{
3633		mState.arrayBuffer = nullptr;
3634	}
3635
3636	// Only detach from the current transform feedback
3637	TransformFeedback* currentTransformFeedback = getTransformFeedback();
3638	if(currentTransformFeedback)
3639	{
3640		currentTransformFeedback->detachBuffer(buffer);
3641	}
3642
3643	// Only detach from the current vertex array
3644	VertexArray* currentVertexArray = getCurrentVertexArray();
3645	if(currentVertexArray)
3646	{
3647		currentVertexArray->detachBuffer(buffer);
3648	}
3649
3650	for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
3651	{
3652		if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
3653		{
3654			mState.vertexAttribute[attribute].mBoundBuffer = nullptr;
3655		}
3656	}
3657}
3658
3659void Context::detachTexture(GLuint texture)
3660{
3661	// [OpenGL ES 2.0.24] section 3.8 page 84:
3662	// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
3663	// rebound to texture object zero
3664
3665	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
3666	{
3667		for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
3668		{
3669			if(mState.samplerTexture[type][sampler].name() == texture)
3670			{
3671				mState.samplerTexture[type][sampler] = nullptr;
3672			}
3673		}
3674	}
3675
3676	// [OpenGL ES 2.0.24] section 4.4 page 112:
3677	// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
3678	// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
3679	// image was attached in the currently bound framebuffer.
3680
3681	Framebuffer *readFramebuffer = getReadFramebuffer();
3682	Framebuffer *drawFramebuffer = getDrawFramebuffer();
3683
3684	if(readFramebuffer)
3685	{
3686		readFramebuffer->detachTexture(texture);
3687	}
3688
3689	if(drawFramebuffer && drawFramebuffer != readFramebuffer)
3690	{
3691		drawFramebuffer->detachTexture(texture);
3692	}
3693}
3694
3695void Context::detachFramebuffer(GLuint framebuffer)
3696{
3697	// [OpenGL ES 2.0.24] section 4.4 page 107:
3698	// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
3699	// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
3700
3701	if(mState.readFramebuffer == framebuffer)
3702	{
3703		bindReadFramebuffer(0);
3704	}
3705
3706	if(mState.drawFramebuffer == framebuffer)
3707	{
3708		bindDrawFramebuffer(0);
3709	}
3710}
3711
3712void Context::detachRenderbuffer(GLuint renderbuffer)
3713{
3714	// [OpenGL ES 2.0.24] section 4.4 page 109:
3715	// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
3716	// had been executed with the target RENDERBUFFER and name of zero.
3717
3718	if(mState.renderbuffer.name() == renderbuffer)
3719	{
3720		bindRenderbuffer(0);
3721	}
3722
3723	// [OpenGL ES 2.0.24] section 4.4 page 111:
3724	// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
3725	// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
3726	// point to which this image was attached in the currently bound framebuffer.
3727
3728	Framebuffer *readFramebuffer = getReadFramebuffer();
3729	Framebuffer *drawFramebuffer = getDrawFramebuffer();
3730
3731	if(readFramebuffer)
3732	{
3733		readFramebuffer->detachRenderbuffer(renderbuffer);
3734	}
3735
3736	if(drawFramebuffer && drawFramebuffer != readFramebuffer)
3737	{
3738		drawFramebuffer->detachRenderbuffer(renderbuffer);
3739	}
3740}
3741
3742void Context::detachSampler(GLuint sampler)
3743{
3744	// [OpenGL ES 3.0.2] section 3.8.2 pages 123-124:
3745	// If a sampler object that is currently bound to one or more texture units is
3746	// deleted, it is as though BindSampler is called once for each texture unit to
3747	// which the sampler is bound, with unit set to the texture unit and sampler set to zero.
3748	for(size_t textureUnit = 0; textureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++textureUnit)
3749	{
3750		gl::BindingPointer<Sampler> &samplerBinding = mState.sampler[textureUnit];
3751		if(samplerBinding.name() == sampler)
3752		{
3753			samplerBinding = nullptr;
3754		}
3755	}
3756}
3757
3758bool Context::cullSkipsDraw(GLenum drawMode)
3759{
3760	return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
3761}
3762
3763bool Context::isTriangleMode(GLenum drawMode)
3764{
3765	switch(drawMode)
3766	{
3767	case GL_TRIANGLES:
3768	case GL_TRIANGLE_FAN:
3769	case GL_TRIANGLE_STRIP:
3770		return true;
3771	case GL_POINTS:
3772	case GL_LINES:
3773	case GL_LINE_LOOP:
3774	case GL_LINE_STRIP:
3775		return false;
3776	default: UNREACHABLE(drawMode);
3777	}
3778
3779	return false;
3780}
3781
3782void Context::setVertexAttrib(GLuint index, const GLfloat *values)
3783{
3784	ASSERT(index < MAX_VERTEX_ATTRIBS);
3785
3786	mState.vertexAttribute[index].setCurrentValue(values);
3787
3788	mVertexDataManager->dirtyCurrentValue(index);
3789}
3790
3791void Context::setVertexAttrib(GLuint index, const GLint *values)
3792{
3793	ASSERT(index < MAX_VERTEX_ATTRIBS);
3794
3795	mState.vertexAttribute[index].setCurrentValue(values);
3796
3797	mVertexDataManager->dirtyCurrentValue(index);
3798}
3799
3800void Context::setVertexAttrib(GLuint index, const GLuint *values)
3801{
3802	ASSERT(index < MAX_VERTEX_ATTRIBS);
3803
3804	mState.vertexAttribute[index].setCurrentValue(values);
3805
3806	mVertexDataManager->dirtyCurrentValue(index);
3807}
3808
3809void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
3810                              GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
3811                              GLbitfield mask, bool filter, bool allowPartialDepthStencilBlit)
3812{
3813	Framebuffer *readFramebuffer = getReadFramebuffer();
3814	Framebuffer *drawFramebuffer = getDrawFramebuffer();
3815
3816	int readBufferWidth, readBufferHeight, readBufferSamples;
3817	int drawBufferWidth, drawBufferHeight, drawBufferSamples;
3818
3819	if(!readFramebuffer || readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE ||
3820	   !drawFramebuffer || drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE)
3821	{
3822		return error(GL_INVALID_FRAMEBUFFER_OPERATION);
3823	}
3824
3825	if(drawBufferSamples > 1)
3826	{
3827		return error(GL_INVALID_OPERATION);
3828	}
3829
3830	sw::SliceRect sourceRect;
3831	sw::SliceRect destRect;
3832	bool flipX = (srcX0 < srcX1) ^ (dstX0 < dstX1);
3833	bool flipy = (srcY0 < srcY1) ^ (dstY0 < dstY1);
3834
3835	if(srcX0 < srcX1)
3836	{
3837		sourceRect.x0 = srcX0;
3838		sourceRect.x1 = srcX1;
3839	}
3840	else
3841	{
3842		sourceRect.x0 = srcX1;
3843		sourceRect.x1 = srcX0;
3844	}
3845
3846	if(dstX0 < dstX1)
3847	{
3848		destRect.x0 = dstX0;
3849		destRect.x1 = dstX1;
3850	}
3851	else
3852	{
3853		destRect.x0 = dstX1;
3854		destRect.x1 = dstX0;
3855	}
3856
3857	if(srcY0 < srcY1)
3858	{
3859		sourceRect.y0 = srcY0;
3860		sourceRect.y1 = srcY1;
3861	}
3862	else
3863	{
3864		sourceRect.y0 = srcY1;
3865		sourceRect.y1 = srcY0;
3866	}
3867
3868	if(dstY0 < dstY1)
3869	{
3870		destRect.y0 = dstY0;
3871		destRect.y1 = dstY1;
3872	}
3873	else
3874	{
3875		destRect.y0 = dstY1;
3876		destRect.y1 = dstY0;
3877	}
3878
3879	sw::Rect sourceScissoredRect = sourceRect;
3880	sw::Rect destScissoredRect = destRect;
3881
3882	if(mState.scissorTestEnabled)   // Only write to parts of the destination framebuffer which pass the scissor test
3883	{
3884		if(destRect.x0 < mState.scissorX)
3885		{
3886			int xDiff = mState.scissorX - destRect.x0;
3887			destScissoredRect.x0 = mState.scissorX;
3888			sourceScissoredRect.x0 += xDiff;
3889		}
3890
3891		if(destRect.x1 > mState.scissorX + mState.scissorWidth)
3892		{
3893			int xDiff = destRect.x1 - (mState.scissorX + mState.scissorWidth);
3894			destScissoredRect.x1 = mState.scissorX + mState.scissorWidth;
3895			sourceScissoredRect.x1 -= xDiff;
3896		}
3897
3898		if(destRect.y0 < mState.scissorY)
3899		{
3900			int yDiff = mState.scissorY - destRect.y0;
3901			destScissoredRect.y0 = mState.scissorY;
3902			sourceScissoredRect.y0 += yDiff;
3903		}
3904
3905		if(destRect.y1 > mState.scissorY + mState.scissorHeight)
3906		{
3907			int yDiff = destRect.y1 - (mState.scissorY + mState.scissorHeight);
3908			destScissoredRect.y1 = mState.scissorY + mState.scissorHeight;
3909			sourceScissoredRect.y1 -= yDiff;
3910		}
3911	}
3912
3913	sw::Rect sourceTrimmedRect = sourceScissoredRect;
3914	sw::Rect destTrimmedRect = destScissoredRect;
3915
3916	// The source & destination rectangles also may need to be trimmed if they fall out of the bounds of
3917	// the actual draw and read surfaces.
3918	if(sourceTrimmedRect.x0 < 0)
3919	{
3920		int xDiff = 0 - sourceTrimmedRect.x0;
3921		sourceTrimmedRect.x0 = 0;
3922		destTrimmedRect.x0 += xDiff;
3923	}
3924
3925	if(sourceTrimmedRect.x1 > readBufferWidth)
3926	{
3927		int xDiff = sourceTrimmedRect.x1 - readBufferWidth;
3928		sourceTrimmedRect.x1 = readBufferWidth;
3929		destTrimmedRect.x1 -= xDiff;
3930	}
3931
3932	if(sourceTrimmedRect.y0 < 0)
3933	{
3934		int yDiff = 0 - sourceTrimmedRect.y0;
3935		sourceTrimmedRect.y0 = 0;
3936		destTrimmedRect.y0 += yDiff;
3937	}
3938
3939	if(sourceTrimmedRect.y1 > readBufferHeight)
3940	{
3941		int yDiff = sourceTrimmedRect.y1 - readBufferHeight;
3942		sourceTrimmedRect.y1 = readBufferHeight;
3943		destTrimmedRect.y1 -= yDiff;
3944	}
3945
3946	if(destTrimmedRect.x0 < 0)
3947	{
3948		int xDiff = 0 - destTrimmedRect.x0;
3949		destTrimmedRect.x0 = 0;
3950		sourceTrimmedRect.x0 += xDiff;
3951	}
3952
3953	if(destTrimmedRect.x1 > drawBufferWidth)
3954	{
3955		int xDiff = destTrimmedRect.x1 - drawBufferWidth;
3956		destTrimmedRect.x1 = drawBufferWidth;
3957		sourceTrimmedRect.x1 -= xDiff;
3958	}
3959
3960	if(destTrimmedRect.y0 < 0)
3961	{
3962		int yDiff = 0 - destTrimmedRect.y0;
3963		destTrimmedRect.y0 = 0;
3964		sourceTrimmedRect.y0 += yDiff;
3965	}
3966
3967	if(destTrimmedRect.y1 > drawBufferHeight)
3968	{
3969		int yDiff = destTrimmedRect.y1 - drawBufferHeight;
3970		destTrimmedRect.y1 = drawBufferHeight;
3971		sourceTrimmedRect.y1 -= yDiff;
3972	}
3973
3974	bool partialBufferCopy = false;
3975
3976	if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight ||
3977	   sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth ||
3978	   destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight ||
3979	   destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth ||
3980	   sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0)
3981	{
3982		partialBufferCopy = true;
3983	}
3984
3985	bool sameBounds = (srcX0 == dstX0 && srcY0 == dstY0 && srcX1 == dstX1 && srcY1 == dstY1);
3986	bool blitRenderTarget = false;
3987	bool blitDepth = false;
3988	bool blitStencil = false;
3989
3990	if(mask & GL_COLOR_BUFFER_BIT)
3991	{
3992		GLenum readColorbufferType = readFramebuffer->getColorbufferType(getReadFramebufferColorIndex());
3993		GLenum drawColorbufferType = drawFramebuffer->getColorbufferType(0);
3994		const bool validReadType = readColorbufferType == GL_TEXTURE_2D || Framebuffer::IsRenderbuffer(readColorbufferType);
3995		const bool validDrawType = drawColorbufferType == GL_TEXTURE_2D || Framebuffer::IsRenderbuffer(drawColorbufferType);
3996		if(!validReadType || !validDrawType)
3997		{
3998			return error(GL_INVALID_OPERATION);
3999		}
4000
4001		if(partialBufferCopy && readBufferSamples > 1 && !sameBounds)
4002		{
4003			return error(GL_INVALID_OPERATION);
4004		}
4005
4006		blitRenderTarget = true;
4007	}
4008
4009	if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT))
4010	{
4011		Renderbuffer *readDSBuffer = nullptr;
4012		Renderbuffer *drawDSBuffer = nullptr;
4013
4014		if(mask & GL_DEPTH_BUFFER_BIT)
4015		{
4016			if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
4017			{
4018				GLenum readDepthBufferType = readFramebuffer->getDepthbufferType();
4019				GLenum drawDepthBufferType = drawFramebuffer->getDepthbufferType();
4020				if((readDepthBufferType != drawDepthBufferType) &&
4021				   !(Framebuffer::IsRenderbuffer(readDepthBufferType) && Framebuffer::IsRenderbuffer(drawDepthBufferType)))
4022				{
4023					return error(GL_INVALID_OPERATION);
4024				}
4025
4026				blitDepth = true;
4027				readDSBuffer = readFramebuffer->getDepthbuffer();
4028				drawDSBuffer = drawFramebuffer->getDepthbuffer();
4029			}
4030		}
4031
4032		if(mask & GL_STENCIL_BUFFER_BIT)
4033		{
4034			if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
4035			{
4036				GLenum readStencilBufferType = readFramebuffer->getStencilbufferType();
4037				GLenum drawStencilBufferType = drawFramebuffer->getStencilbufferType();
4038				if((readStencilBufferType != drawStencilBufferType) &&
4039				   !(Framebuffer::IsRenderbuffer(readStencilBufferType) && Framebuffer::IsRenderbuffer(drawStencilBufferType)))
4040				{
4041					return error(GL_INVALID_OPERATION);
4042				}
4043
4044				blitStencil = true;
4045				readDSBuffer = readFramebuffer->getStencilbuffer();
4046				drawDSBuffer = drawFramebuffer->getStencilbuffer();
4047			}
4048		}
4049
4050		if(partialBufferCopy && !allowPartialDepthStencilBlit)
4051		{
4052			ERR("Only whole-buffer depth and stencil blits are supported by ANGLE_framebuffer_blit.");
4053			return error(GL_INVALID_OPERATION);   // Only whole-buffer copies are permitted
4054		}
4055
4056		// OpenGL ES 3.0.4 spec, p.199:
4057		// ...an INVALID_OPERATION error is generated if the formats of the read
4058		// and draw framebuffers are not identical or if the source and destination
4059		// rectangles are not defined with the same(X0, Y 0) and (X1, Y 1) bounds.
4060		// If SAMPLE_BUFFERS for the draw framebuffer is greater than zero, an
4061		// INVALID_OPERATION error is generated.
4062		if((drawDSBuffer && drawDSBuffer->getSamples() > 1) ||
4063		   ((readDSBuffer && readDSBuffer->getSamples() > 1) &&
4064		    (!sameBounds || (drawDSBuffer->getFormat() != readDSBuffer->getFormat()))))
4065		{
4066			return error(GL_INVALID_OPERATION);
4067		}
4068	}
4069
4070	if(blitRenderTarget || blitDepth || blitStencil)
4071	{
4072		if(blitRenderTarget)
4073		{
4074			egl::Image *readRenderTarget = readFramebuffer->getReadRenderTarget();
4075			egl::Image *drawRenderTarget = drawFramebuffer->getRenderTarget(0);
4076
4077			if(flipX)
4078			{
4079				swap(destRect.x0, destRect.x1);
4080			}
4081			if(flipy)
4082			{
4083				swap(destRect.y0, destRect.y1);
4084			}
4085
4086			bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, (filter ? Device::USE_FILTER : 0) | Device::COLOR_BUFFER);
4087
4088			readRenderTarget->release();
4089			drawRenderTarget->release();
4090
4091			if(!success)
4092			{
4093				ERR("BlitFramebuffer failed.");
4094				return;
4095			}
4096		}
4097
4098		if(blitDepth)
4099		{
4100			egl::Image *readRenderTarget = readFramebuffer->getDepthBuffer();
4101			egl::Image *drawRenderTarget = drawFramebuffer->getDepthBuffer();
4102
4103			bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, (filter ? Device::USE_FILTER : 0) | Device::DEPTH_BUFFER);
4104
4105			readRenderTarget->release();
4106			drawRenderTarget->release();
4107
4108			if(!success)
4109			{
4110				ERR("BlitFramebuffer failed.");
4111				return;
4112			}
4113		}
4114
4115		if(blitStencil)
4116		{
4117			egl::Image *readRenderTarget = readFramebuffer->getStencilBuffer();
4118			egl::Image *drawRenderTarget = drawFramebuffer->getStencilBuffer();
4119
4120			bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, (filter ? Device::USE_FILTER : 0) | Device::STENCIL_BUFFER);
4121
4122			readRenderTarget->release();
4123			drawRenderTarget->release();
4124
4125			if(!success)
4126			{
4127				ERR("BlitFramebuffer failed.");
4128				return;
4129			}
4130		}
4131	}
4132}
4133
4134void Context::bindTexImage(egl::Surface *surface)
4135{
4136	es2::Texture2D *textureObject = getTexture2D();
4137
4138	if(textureObject)
4139	{
4140		textureObject->bindTexImage(surface);
4141	}
4142}
4143
4144EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
4145{
4146	GLenum textureTarget = GL_NONE;
4147
4148	switch(target)
4149	{
4150	case EGL_GL_TEXTURE_2D_KHR:
4151		textureTarget = GL_TEXTURE_2D;
4152		break;
4153	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR:
4154	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR:
4155	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR:
4156	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR:
4157	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR:
4158	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR:
4159		textureTarget = GL_TEXTURE_CUBE_MAP;
4160		break;
4161	case EGL_GL_RENDERBUFFER_KHR:
4162		break;
4163	default:
4164		return EGL_BAD_PARAMETER;
4165	}
4166
4167	if(textureLevel >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
4168	{
4169		return EGL_BAD_MATCH;
4170	}
4171
4172	if(textureTarget != GL_NONE)
4173	{
4174		es2::Texture *texture = getTexture(name);
4175
4176		if(!texture || texture->getTarget() != textureTarget)
4177		{
4178			return EGL_BAD_PARAMETER;
4179		}
4180
4181		if(texture->isShared(textureTarget, textureLevel))   // Bound to an EGLSurface or already an EGLImage sibling
4182		{
4183			return EGL_BAD_ACCESS;
4184		}
4185
4186		if(textureLevel != 0 && !texture->isSamplerComplete())
4187		{
4188			return EGL_BAD_PARAMETER;
4189		}
4190
4191		if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getLevelCount() == 1))
4192		{
4193			return EGL_BAD_PARAMETER;
4194		}
4195	}
4196	else if(target == EGL_GL_RENDERBUFFER_KHR)
4197	{
4198		es2::Renderbuffer *renderbuffer = getRenderbuffer(name);
4199
4200		if(!renderbuffer)
4201		{
4202			return EGL_BAD_PARAMETER;
4203		}
4204
4205		if(renderbuffer->isShared())   // Already an EGLImage sibling
4206		{
4207			return EGL_BAD_ACCESS;
4208		}
4209	}
4210	else UNREACHABLE(target);
4211
4212	return EGL_SUCCESS;
4213}
4214
4215egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
4216{
4217	GLenum textureTarget = GL_NONE;
4218
4219	switch(target)
4220	{
4221	case EGL_GL_TEXTURE_2D_KHR:                  textureTarget = GL_TEXTURE_2D;                  break;
4222	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X; break;
4223	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_X; break;
4224	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Y; break;
4225	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Y; break;
4226	case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Z; break;
4227	case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Z; break;
4228	}
4229
4230	if(textureTarget != GL_NONE)
4231	{
4232		es2::Texture *texture = getTexture(name);
4233
4234		return texture->createSharedImage(textureTarget, textureLevel);
4235	}
4236	else if(target == EGL_GL_RENDERBUFFER_KHR)
4237	{
4238		es2::Renderbuffer *renderbuffer = getRenderbuffer(name);
4239
4240		return renderbuffer->createSharedImage();
4241	}
4242	else UNREACHABLE(target);
4243
4244	return nullptr;
4245}
4246
4247egl::Image *Context::getSharedImage(GLeglImageOES image)
4248{
4249	return display->getSharedImage(image);
4250}
4251
4252Device *Context::getDevice()
4253{
4254	return device;
4255}
4256
4257const GLubyte* Context::getExtensions(GLuint index, GLuint* numExt) const
4258{
4259	// Keep list sorted in following order:
4260	// OES extensions
4261	// EXT extensions
4262	// Vendor extensions
4263	static const GLubyte* extensions[] = {
4264		(const GLubyte*)"GL_OES_compressed_ETC1_RGB8_texture",
4265		(const GLubyte*)"GL_OES_depth24",
4266		(const GLubyte*)"GL_OES_depth32",
4267		(const GLubyte*)"GL_OES_depth_texture",
4268		(const GLubyte*)"GL_OES_depth_texture_cube_map",
4269		(const GLubyte*)"GL_OES_EGL_image",
4270		(const GLubyte*)"GL_OES_EGL_image_external",
4271		(const GLubyte*)"GL_OES_EGL_sync",
4272		(const GLubyte*)"GL_OES_element_index_uint",
4273		(const GLubyte*)"GL_OES_framebuffer_object",
4274		(const GLubyte*)"GL_OES_packed_depth_stencil",
4275		(const GLubyte*)"GL_OES_rgb8_rgba8",
4276		(const GLubyte*)"GL_OES_standard_derivatives",
4277		(const GLubyte*)"GL_OES_texture_float",
4278		(const GLubyte*)"GL_OES_texture_float_linear",
4279		(const GLubyte*)"GL_OES_texture_half_float",
4280		(const GLubyte*)"GL_OES_texture_half_float_linear",
4281		(const GLubyte*)"GL_OES_texture_npot",
4282		(const GLubyte*)"GL_OES_texture_3D",
4283		(const GLubyte*)"GL_EXT_blend_minmax",
4284		(const GLubyte*)"GL_EXT_color_buffer_half_float",
4285		(const GLubyte*)"GL_EXT_draw_buffers",
4286		(const GLubyte*)"GL_EXT_occlusion_query_boolean",
4287		(const GLubyte*)"GL_EXT_read_format_bgra",
4288#if (S3TC_SUPPORT)
4289		(const GLubyte*)"GL_EXT_texture_compression_dxt1",
4290#endif
4291		(const GLubyte*)"GL_EXT_texture_filter_anisotropic",
4292		(const GLubyte*)"GL_EXT_texture_format_BGRA8888",
4293		(const GLubyte*)"GL_ANGLE_framebuffer_blit",
4294		(const GLubyte*)"GL_NV_framebuffer_blit",
4295		(const GLubyte*)"GL_ANGLE_framebuffer_multisample",
4296#if (S3TC_SUPPORT)
4297		(const GLubyte*)"GL_ANGLE_texture_compression_dxt3",
4298		(const GLubyte*)"GL_ANGLE_texture_compression_dxt5",
4299#endif
4300		(const GLubyte*)"GL_NV_fence",
4301		(const GLubyte*)"GL_NV_read_depth",
4302		(const GLubyte*)"GL_EXT_instanced_arrays",
4303		(const GLubyte*)"GL_ANGLE_instanced_arrays",
4304	};
4305	static const GLuint numExtensions = sizeof(extensions) / sizeof(*extensions);
4306
4307	if(numExt)
4308	{
4309		*numExt = numExtensions;
4310		return nullptr;
4311	}
4312
4313	if(index == GL_INVALID_INDEX)
4314	{
4315		static GLubyte* extensionsCat = nullptr;
4316		if(!extensionsCat && (numExtensions > 0))
4317		{
4318			size_t totalLength = numExtensions; // 1 space between each extension name + terminating null
4319			for(unsigned int i = 0; i < numExtensions; i++)
4320			{
4321				totalLength += strlen(reinterpret_cast<const char*>(extensions[i]));
4322			}
4323			extensionsCat = new GLubyte[totalLength];
4324			extensionsCat[0] = '\0';
4325			for(unsigned int i = 0; i < numExtensions; i++)
4326			{
4327				if(i != 0)
4328				{
4329					strcat(reinterpret_cast<char*>(extensionsCat), " ");
4330				}
4331				strcat(reinterpret_cast<char*>(extensionsCat), reinterpret_cast<const char*>(extensions[i]));
4332			}
4333		}
4334		return extensionsCat;
4335	}
4336
4337	if(index >= numExtensions)
4338	{
4339		return nullptr;
4340	}
4341
4342	return extensions[index];
4343}
4344
4345}
4346
4347egl::Context *es2CreateContext(egl::Display *display, const egl::Context *shareContext, int clientVersion)
4348{
4349	ASSERT(!shareContext || shareContext->getClientVersion() == clientVersion);   // Should be checked by eglCreateContext
4350	return new es2::Context(display, static_cast<const es2::Context*>(shareContext), clientVersion);
4351}
4352