ConstantFolding.cpp revision e178000ed3213e37bc897a3b29334cbb1c621c1a
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/FEnv.h"
35#include <cerrno>
36#include <cmath>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Constant Folding internal helper functions
41//===----------------------------------------------------------------------===//
42
43/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44/// TargetData.  This always returns a non-null constant, but it may be a
45/// ConstantExpr if unfoldable.
46static Constant *FoldBitCast(Constant *C, Type *DestTy,
47                             const TargetData &TD) {
48  // Catch the obvious splat cases.
49  if (C->isNullValue() && !DestTy->isX86_MMXTy())
50    return Constant::getNullValue(DestTy);
51  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
52    return Constant::getAllOnesValue(DestTy);
53
54  // The code below only handles casts to vectors currently.
55  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
56  if (DestVTy == 0)
57    return ConstantExpr::getBitCast(C, DestTy);
58
59  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
60  // vector so the code below can handle it uniformly.
61  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
62    Constant *Ops = C; // don't take the address of C!
63    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
64  }
65
66  // If this is a bitcast from constant vector -> vector, fold it.
67  ConstantVector *CV = dyn_cast<ConstantVector>(C);
68  if (CV == 0)
69    return ConstantExpr::getBitCast(C, DestTy);
70
71  // If the element types match, VMCore can fold it.
72  unsigned NumDstElt = DestVTy->getNumElements();
73  unsigned NumSrcElt = CV->getNumOperands();
74  if (NumDstElt == NumSrcElt)
75    return ConstantExpr::getBitCast(C, DestTy);
76
77  Type *SrcEltTy = CV->getType()->getElementType();
78  Type *DstEltTy = DestVTy->getElementType();
79
80  // Otherwise, we're changing the number of elements in a vector, which
81  // requires endianness information to do the right thing.  For example,
82  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
83  // folds to (little endian):
84  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
85  // and to (big endian):
86  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
87
88  // First thing is first.  We only want to think about integer here, so if
89  // we have something in FP form, recast it as integer.
90  if (DstEltTy->isFloatingPointTy()) {
91    // Fold to an vector of integers with same size as our FP type.
92    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
93    Type *DestIVTy =
94      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
95    // Recursively handle this integer conversion, if possible.
96    C = FoldBitCast(C, DestIVTy, TD);
97    if (!C) return ConstantExpr::getBitCast(C, DestTy);
98
99    // Finally, VMCore can handle this now that #elts line up.
100    return ConstantExpr::getBitCast(C, DestTy);
101  }
102
103  // Okay, we know the destination is integer, if the input is FP, convert
104  // it to integer first.
105  if (SrcEltTy->isFloatingPointTy()) {
106    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
107    Type *SrcIVTy =
108      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
109    // Ask VMCore to do the conversion now that #elts line up.
110    C = ConstantExpr::getBitCast(C, SrcIVTy);
111    CV = dyn_cast<ConstantVector>(C);
112    if (!CV)  // If VMCore wasn't able to fold it, bail out.
113      return C;
114  }
115
116  // Now we know that the input and output vectors are both integer vectors
117  // of the same size, and that their #elements is not the same.  Do the
118  // conversion here, which depends on whether the input or output has
119  // more elements.
120  bool isLittleEndian = TD.isLittleEndian();
121
122  SmallVector<Constant*, 32> Result;
123  if (NumDstElt < NumSrcElt) {
124    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
125    Constant *Zero = Constant::getNullValue(DstEltTy);
126    unsigned Ratio = NumSrcElt/NumDstElt;
127    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
128    unsigned SrcElt = 0;
129    for (unsigned i = 0; i != NumDstElt; ++i) {
130      // Build each element of the result.
131      Constant *Elt = Zero;
132      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
133      for (unsigned j = 0; j != Ratio; ++j) {
134        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
135        if (!Src)  // Reject constantexpr elements.
136          return ConstantExpr::getBitCast(C, DestTy);
137
138        // Zero extend the element to the right size.
139        Src = ConstantExpr::getZExt(Src, Elt->getType());
140
141        // Shift it to the right place, depending on endianness.
142        Src = ConstantExpr::getShl(Src,
143                                   ConstantInt::get(Src->getType(), ShiftAmt));
144        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
145
146        // Mix it in.
147        Elt = ConstantExpr::getOr(Elt, Src);
148      }
149      Result.push_back(Elt);
150    }
151  } else {
152    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
153    unsigned Ratio = NumDstElt/NumSrcElt;
154    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
155
156    // Loop over each source value, expanding into multiple results.
157    for (unsigned i = 0; i != NumSrcElt; ++i) {
158      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
159      if (!Src)  // Reject constantexpr elements.
160        return ConstantExpr::getBitCast(C, DestTy);
161
162      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
163      for (unsigned j = 0; j != Ratio; ++j) {
164        // Shift the piece of the value into the right place, depending on
165        // endianness.
166        Constant *Elt = ConstantExpr::getLShr(Src,
167                                    ConstantInt::get(Src->getType(), ShiftAmt));
168        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
169
170        // Truncate and remember this piece.
171        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
172      }
173    }
174  }
175
176  return ConstantVector::get(Result);
177}
178
179
180/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
181/// from a global, return the global and the constant.  Because of
182/// constantexprs, this function is recursive.
183static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
184                                       int64_t &Offset, const TargetData &TD) {
185  // Trivial case, constant is the global.
186  if ((GV = dyn_cast<GlobalValue>(C))) {
187    Offset = 0;
188    return true;
189  }
190
191  // Otherwise, if this isn't a constant expr, bail out.
192  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
193  if (!CE) return false;
194
195  // Look through ptr->int and ptr->ptr casts.
196  if (CE->getOpcode() == Instruction::PtrToInt ||
197      CE->getOpcode() == Instruction::BitCast)
198    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
199
200  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
201  if (CE->getOpcode() == Instruction::GetElementPtr) {
202    // Cannot compute this if the element type of the pointer is missing size
203    // info.
204    if (!cast<PointerType>(CE->getOperand(0)->getType())
205                 ->getElementType()->isSized())
206      return false;
207
208    // If the base isn't a global+constant, we aren't either.
209    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
210      return false;
211
212    // Otherwise, add any offset that our operands provide.
213    gep_type_iterator GTI = gep_type_begin(CE);
214    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
215         i != e; ++i, ++GTI) {
216      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
217      if (!CI) return false;  // Index isn't a simple constant?
218      if (CI->isZero()) continue;  // Not adding anything.
219
220      if (StructType *ST = dyn_cast<StructType>(*GTI)) {
221        // N = N + Offset
222        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
223      } else {
224        SequentialType *SQT = cast<SequentialType>(*GTI);
225        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
226      }
227    }
228    return true;
229  }
230
231  return false;
232}
233
234/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
235/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
236/// pointer to copy results into and BytesLeft is the number of bytes left in
237/// the CurPtr buffer.  TD is the target data.
238static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
239                               unsigned char *CurPtr, unsigned BytesLeft,
240                               const TargetData &TD) {
241  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
242         "Out of range access");
243
244  // If this element is zero or undefined, we can just return since *CurPtr is
245  // zero initialized.
246  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
247    return true;
248
249  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
250    if (CI->getBitWidth() > 64 ||
251        (CI->getBitWidth() & 7) != 0)
252      return false;
253
254    uint64_t Val = CI->getZExtValue();
255    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
256
257    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
258      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
259      ++ByteOffset;
260    }
261    return true;
262  }
263
264  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
265    if (CFP->getType()->isDoubleTy()) {
266      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
267      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
268    }
269    if (CFP->getType()->isFloatTy()){
270      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
271      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
272    }
273    return false;
274  }
275
276  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
277    const StructLayout *SL = TD.getStructLayout(CS->getType());
278    unsigned Index = SL->getElementContainingOffset(ByteOffset);
279    uint64_t CurEltOffset = SL->getElementOffset(Index);
280    ByteOffset -= CurEltOffset;
281
282    while (1) {
283      // If the element access is to the element itself and not to tail padding,
284      // read the bytes from the element.
285      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
286
287      if (ByteOffset < EltSize &&
288          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
289                              BytesLeft, TD))
290        return false;
291
292      ++Index;
293
294      // Check to see if we read from the last struct element, if so we're done.
295      if (Index == CS->getType()->getNumElements())
296        return true;
297
298      // If we read all of the bytes we needed from this element we're done.
299      uint64_t NextEltOffset = SL->getElementOffset(Index);
300
301      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
302        return true;
303
304      // Move to the next element of the struct.
305      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
306      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
307      ByteOffset = 0;
308      CurEltOffset = NextEltOffset;
309    }
310    // not reached.
311  }
312
313  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
314    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
315    uint64_t Index = ByteOffset / EltSize;
316    uint64_t Offset = ByteOffset - Index * EltSize;
317    for (; Index != CA->getType()->getNumElements(); ++Index) {
318      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
319                              BytesLeft, TD))
320        return false;
321      if (EltSize >= BytesLeft)
322        return true;
323
324      Offset = 0;
325      BytesLeft -= EltSize;
326      CurPtr += EltSize;
327    }
328    return true;
329  }
330
331  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
332    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
333    uint64_t Index = ByteOffset / EltSize;
334    uint64_t Offset = ByteOffset - Index * EltSize;
335    for (; Index != CV->getType()->getNumElements(); ++Index) {
336      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
337                              BytesLeft, TD))
338        return false;
339      if (EltSize >= BytesLeft)
340        return true;
341
342      Offset = 0;
343      BytesLeft -= EltSize;
344      CurPtr += EltSize;
345    }
346    return true;
347  }
348
349  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
350    if (CE->getOpcode() == Instruction::IntToPtr &&
351        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
352        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
353                                  BytesLeft, TD);
354  }
355
356  // Otherwise, unknown initializer type.
357  return false;
358}
359
360static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
361                                                 const TargetData &TD) {
362  Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
363  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
364
365  // If this isn't an integer load we can't fold it directly.
366  if (!IntType) {
367    // If this is a float/double load, we can try folding it as an int32/64 load
368    // and then bitcast the result.  This can be useful for union cases.  Note
369    // that address spaces don't matter here since we're not going to result in
370    // an actual new load.
371    Type *MapTy;
372    if (LoadTy->isFloatTy())
373      MapTy = Type::getInt32PtrTy(C->getContext());
374    else if (LoadTy->isDoubleTy())
375      MapTy = Type::getInt64PtrTy(C->getContext());
376    else if (LoadTy->isVectorTy()) {
377      MapTy = IntegerType::get(C->getContext(),
378                               TD.getTypeAllocSizeInBits(LoadTy));
379      MapTy = PointerType::getUnqual(MapTy);
380    } else
381      return 0;
382
383    C = FoldBitCast(C, MapTy, TD);
384    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
385      return FoldBitCast(Res, LoadTy, TD);
386    return 0;
387  }
388
389  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
390  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
391
392  GlobalValue *GVal;
393  int64_t Offset;
394  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
395    return 0;
396
397  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
398  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
399      !GV->getInitializer()->getType()->isSized())
400    return 0;
401
402  // If we're loading off the beginning of the global, some bytes may be valid,
403  // but we don't try to handle this.
404  if (Offset < 0) return 0;
405
406  // If we're not accessing anything in this constant, the result is undefined.
407  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
408    return UndefValue::get(IntType);
409
410  unsigned char RawBytes[32] = {0};
411  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
412                          BytesLoaded, TD))
413    return 0;
414
415  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
416  for (unsigned i = 1; i != BytesLoaded; ++i) {
417    ResultVal <<= 8;
418    ResultVal |= RawBytes[BytesLoaded-1-i];
419  }
420
421  return ConstantInt::get(IntType->getContext(), ResultVal);
422}
423
424/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
425/// produce if it is constant and determinable.  If this is not determinable,
426/// return null.
427Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
428                                             const TargetData *TD) {
429  // First, try the easy cases:
430  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
431    if (GV->isConstant() && GV->hasDefinitiveInitializer())
432      return GV->getInitializer();
433
434  // If the loaded value isn't a constant expr, we can't handle it.
435  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
436  if (!CE) return 0;
437
438  if (CE->getOpcode() == Instruction::GetElementPtr) {
439    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
440      if (GV->isConstant() && GV->hasDefinitiveInitializer())
441        if (Constant *V =
442             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
443          return V;
444  }
445
446  // Instead of loading constant c string, use corresponding integer value
447  // directly if string length is small enough.
448  std::string Str;
449  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
450    unsigned StrLen = Str.length();
451    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
452    unsigned NumBits = Ty->getPrimitiveSizeInBits();
453    // Replace load with immediate integer if the result is an integer or fp
454    // value.
455    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
456        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
457      APInt StrVal(NumBits, 0);
458      APInt SingleChar(NumBits, 0);
459      if (TD->isLittleEndian()) {
460        for (signed i = StrLen-1; i >= 0; i--) {
461          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
462          StrVal = (StrVal << 8) | SingleChar;
463        }
464      } else {
465        for (unsigned i = 0; i < StrLen; i++) {
466          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
467          StrVal = (StrVal << 8) | SingleChar;
468        }
469        // Append NULL at the end.
470        SingleChar = 0;
471        StrVal = (StrVal << 8) | SingleChar;
472      }
473
474      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
475      if (Ty->isFloatingPointTy())
476        Res = ConstantExpr::getBitCast(Res, Ty);
477      return Res;
478    }
479  }
480
481  // If this load comes from anywhere in a constant global, and if the global
482  // is all undef or zero, we know what it loads.
483  if (GlobalVariable *GV =
484        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
485    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
486      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
487      if (GV->getInitializer()->isNullValue())
488        return Constant::getNullValue(ResTy);
489      if (isa<UndefValue>(GV->getInitializer()))
490        return UndefValue::get(ResTy);
491    }
492  }
493
494  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
495  // currently don't do any of this for big endian systems.  It can be
496  // generalized in the future if someone is interested.
497  if (TD && TD->isLittleEndian())
498    return FoldReinterpretLoadFromConstPtr(CE, *TD);
499  return 0;
500}
501
502static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
503  if (LI->isVolatile()) return 0;
504
505  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
506    return ConstantFoldLoadFromConstPtr(C, TD);
507
508  return 0;
509}
510
511/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
512/// Attempt to symbolically evaluate the result of a binary operator merging
513/// these together.  If target data info is available, it is provided as TD,
514/// otherwise TD is null.
515static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
516                                           Constant *Op1, const TargetData *TD){
517  // SROA
518
519  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
520  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
521  // bits.
522
523
524  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
525  // constant.  This happens frequently when iterating over a global array.
526  if (Opc == Instruction::Sub && TD) {
527    GlobalValue *GV1, *GV2;
528    int64_t Offs1, Offs2;
529
530    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
531      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
532          GV1 == GV2) {
533        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
534        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
535      }
536  }
537
538  return 0;
539}
540
541/// CastGEPIndices - If array indices are not pointer-sized integers,
542/// explicitly cast them so that they aren't implicitly casted by the
543/// getelementptr.
544static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
545                                Type *ResultTy,
546                                const TargetData *TD) {
547  if (!TD) return 0;
548  Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
549
550  bool Any = false;
551  SmallVector<Constant*, 32> NewIdxs;
552  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
553    if ((i == 1 ||
554         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
555                                                        Ops.slice(1, i-1)))) &&
556        Ops[i]->getType() != IntPtrTy) {
557      Any = true;
558      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
559                                                                      true,
560                                                                      IntPtrTy,
561                                                                      true),
562                                              Ops[i], IntPtrTy));
563    } else
564      NewIdxs.push_back(Ops[i]);
565  }
566  if (!Any) return 0;
567
568  Constant *C =
569    ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
570  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
571    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
572      C = Folded;
573  return C;
574}
575
576/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
577/// constant expression, do so.
578static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
579                                         Type *ResultTy,
580                                         const TargetData *TD) {
581  Constant *Ptr = Ops[0];
582  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
583    return 0;
584
585  Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
586
587  // If this is a constant expr gep that is effectively computing an
588  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
589  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
590    if (!isa<ConstantInt>(Ops[i])) {
591
592      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
593      // "inttoptr (sub (ptrtoint Ptr), V)"
594      if (Ops.size() == 2 &&
595          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
596        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
597        assert((CE == 0 || CE->getType() == IntPtrTy) &&
598               "CastGEPIndices didn't canonicalize index types!");
599        if (CE && CE->getOpcode() == Instruction::Sub &&
600            CE->getOperand(0)->isNullValue()) {
601          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
602          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
603          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
604          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
605            Res = ConstantFoldConstantExpression(ResCE, TD);
606          return Res;
607        }
608      }
609      return 0;
610    }
611
612  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
613  APInt Offset =
614    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
615                                         makeArrayRef((Value **)Ops.data() + 1,
616                                                      Ops.size() - 1)));
617  Ptr = cast<Constant>(Ptr->stripPointerCasts());
618
619  // If this is a GEP of a GEP, fold it all into a single GEP.
620  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
621    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
622
623    // Do not try the incorporate the sub-GEP if some index is not a number.
624    bool AllConstantInt = true;
625    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
626      if (!isa<ConstantInt>(NestedOps[i])) {
627        AllConstantInt = false;
628        break;
629      }
630    if (!AllConstantInt)
631      break;
632
633    Ptr = cast<Constant>(GEP->getOperand(0));
634    Offset += APInt(BitWidth,
635                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
636    Ptr = cast<Constant>(Ptr->stripPointerCasts());
637  }
638
639  // If the base value for this address is a literal integer value, fold the
640  // getelementptr to the resulting integer value casted to the pointer type.
641  APInt BasePtr(BitWidth, 0);
642  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
643    if (CE->getOpcode() == Instruction::IntToPtr)
644      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
645        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
646  if (Ptr->isNullValue() || BasePtr != 0) {
647    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
648    return ConstantExpr::getIntToPtr(C, ResultTy);
649  }
650
651  // Otherwise form a regular getelementptr. Recompute the indices so that
652  // we eliminate over-indexing of the notional static type array bounds.
653  // This makes it easy to determine if the getelementptr is "inbounds".
654  // Also, this helps GlobalOpt do SROA on GlobalVariables.
655  Type *Ty = Ptr->getType();
656  SmallVector<Constant*, 32> NewIdxs;
657  do {
658    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
659      if (ATy->isPointerTy()) {
660        // The only pointer indexing we'll do is on the first index of the GEP.
661        if (!NewIdxs.empty())
662          break;
663
664        // Only handle pointers to sized types, not pointers to functions.
665        if (!ATy->getElementType()->isSized())
666          return 0;
667      }
668
669      // Determine which element of the array the offset points into.
670      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
671      IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
672      if (ElemSize == 0)
673        // The element size is 0. This may be [0 x Ty]*, so just use a zero
674        // index for this level and proceed to the next level to see if it can
675        // accommodate the offset.
676        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
677      else {
678        // The element size is non-zero divide the offset by the element
679        // size (rounding down), to compute the index at this level.
680        APInt NewIdx = Offset.udiv(ElemSize);
681        Offset -= NewIdx * ElemSize;
682        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
683      }
684      Ty = ATy->getElementType();
685    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
686      // Determine which field of the struct the offset points into. The
687      // getZExtValue is at least as safe as the StructLayout API because we
688      // know the offset is within the struct at this point.
689      const StructLayout &SL = *TD->getStructLayout(STy);
690      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
691      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
692                                         ElIdx));
693      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
694      Ty = STy->getTypeAtIndex(ElIdx);
695    } else {
696      // We've reached some non-indexable type.
697      break;
698    }
699  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
700
701  // If we haven't used up the entire offset by descending the static
702  // type, then the offset is pointing into the middle of an indivisible
703  // member, so we can't simplify it.
704  if (Offset != 0)
705    return 0;
706
707  // Create a GEP.
708  Constant *C =
709    ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
710  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
711         "Computed GetElementPtr has unexpected type!");
712
713  // If we ended up indexing a member with a type that doesn't match
714  // the type of what the original indices indexed, add a cast.
715  if (Ty != cast<PointerType>(ResultTy)->getElementType())
716    C = FoldBitCast(C, ResultTy, *TD);
717
718  return C;
719}
720
721
722
723//===----------------------------------------------------------------------===//
724// Constant Folding public APIs
725//===----------------------------------------------------------------------===//
726
727/// ConstantFoldInstruction - Try to constant fold the specified instruction.
728/// If successful, the constant result is returned, if not, null is returned.
729/// Note that this fails if not all of the operands are constant.  Otherwise,
730/// this function can only fail when attempting to fold instructions like loads
731/// and stores, which have no constant expression form.
732Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
733  // Handle PHI nodes quickly here...
734  if (PHINode *PN = dyn_cast<PHINode>(I)) {
735    Constant *CommonValue = 0;
736
737    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
738      Value *Incoming = PN->getIncomingValue(i);
739      // If the incoming value is undef then skip it.  Note that while we could
740      // skip the value if it is equal to the phi node itself we choose not to
741      // because that would break the rule that constant folding only applies if
742      // all operands are constants.
743      if (isa<UndefValue>(Incoming))
744        continue;
745      // If the incoming value is not a constant, or is a different constant to
746      // the one we saw previously, then give up.
747      Constant *C = dyn_cast<Constant>(Incoming);
748      if (!C || (CommonValue && C != CommonValue))
749        return 0;
750      CommonValue = C;
751    }
752
753    // If we reach here, all incoming values are the same constant or undef.
754    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
755  }
756
757  // Scan the operand list, checking to see if they are all constants, if so,
758  // hand off to ConstantFoldInstOperands.
759  SmallVector<Constant*, 8> Ops;
760  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
761    if (Constant *Op = dyn_cast<Constant>(*i))
762      Ops.push_back(Op);
763    else
764      return 0;  // All operands not constant!
765
766  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
767    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
768                                           TD);
769
770  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
771    return ConstantFoldLoadInst(LI, TD);
772
773  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
774    return ConstantExpr::getInsertValue(
775                                cast<Constant>(IVI->getAggregateOperand()),
776                                cast<Constant>(IVI->getInsertedValueOperand()),
777                                IVI->getIndices());
778
779  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
780    return ConstantExpr::getExtractValue(
781                                    cast<Constant>(EVI->getAggregateOperand()),
782                                    EVI->getIndices());
783
784  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
785}
786
787/// ConstantFoldConstantExpression - Attempt to fold the constant expression
788/// using the specified TargetData.  If successful, the constant result is
789/// result is returned, if not, null is returned.
790Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
791                                               const TargetData *TD) {
792  SmallVector<Constant*, 8> Ops;
793  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
794       i != e; ++i) {
795    Constant *NewC = cast<Constant>(*i);
796    // Recursively fold the ConstantExpr's operands.
797    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
798      NewC = ConstantFoldConstantExpression(NewCE, TD);
799    Ops.push_back(NewC);
800  }
801
802  if (CE->isCompare())
803    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
804                                           TD);
805  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
806}
807
808/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
809/// specified opcode and operands.  If successful, the constant result is
810/// returned, if not, null is returned.  Note that this function can fail when
811/// attempting to fold instructions like loads and stores, which have no
812/// constant expression form.
813///
814/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
815/// information, due to only being passed an opcode and operands. Constant
816/// folding using this function strips this information.
817///
818Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
819                                         ArrayRef<Constant *> Ops,
820                                         const TargetData *TD) {
821  // Handle easy binops first.
822  if (Instruction::isBinaryOp(Opcode)) {
823    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
824      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
825        return C;
826
827    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
828  }
829
830  switch (Opcode) {
831  default: return 0;
832  case Instruction::ICmp:
833  case Instruction::FCmp: assert(0 && "Invalid for compares");
834  case Instruction::Call:
835    if (Function *F = dyn_cast<Function>(Ops.back()))
836      if (canConstantFoldCallTo(F))
837        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
838    return 0;
839  case Instruction::PtrToInt:
840    // If the input is a inttoptr, eliminate the pair.  This requires knowing
841    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
842    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
843      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
844        Constant *Input = CE->getOperand(0);
845        unsigned InWidth = Input->getType()->getScalarSizeInBits();
846        if (TD->getPointerSizeInBits() < InWidth) {
847          Constant *Mask =
848            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
849                                                  TD->getPointerSizeInBits()));
850          Input = ConstantExpr::getAnd(Input, Mask);
851        }
852        // Do a zext or trunc to get to the dest size.
853        return ConstantExpr::getIntegerCast(Input, DestTy, false);
854      }
855    }
856    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
857  case Instruction::IntToPtr:
858    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
859    // the int size is >= the ptr size.  This requires knowing the width of a
860    // pointer, so it can't be done in ConstantExpr::getCast.
861    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
862      if (TD &&
863          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
864          CE->getOpcode() == Instruction::PtrToInt)
865        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
866
867    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
868  case Instruction::Trunc:
869  case Instruction::ZExt:
870  case Instruction::SExt:
871  case Instruction::FPTrunc:
872  case Instruction::FPExt:
873  case Instruction::UIToFP:
874  case Instruction::SIToFP:
875  case Instruction::FPToUI:
876  case Instruction::FPToSI:
877      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
878  case Instruction::BitCast:
879    if (TD)
880      return FoldBitCast(Ops[0], DestTy, *TD);
881    return ConstantExpr::getBitCast(Ops[0], DestTy);
882  case Instruction::Select:
883    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
884  case Instruction::ExtractElement:
885    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
886  case Instruction::InsertElement:
887    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
888  case Instruction::ShuffleVector:
889    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
890  case Instruction::GetElementPtr:
891    if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
892      return C;
893    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
894      return C;
895
896    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
897  }
898}
899
900/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
901/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
902/// returns a constant expression of the specified operands.
903///
904Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
905                                                Constant *Ops0, Constant *Ops1,
906                                                const TargetData *TD) {
907  // fold: icmp (inttoptr x), null         -> icmp x, 0
908  // fold: icmp (ptrtoint x), 0            -> icmp x, null
909  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
910  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
911  //
912  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
913  // around to know if bit truncation is happening.
914  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
915    if (TD && Ops1->isNullValue()) {
916      Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
917      if (CE0->getOpcode() == Instruction::IntToPtr) {
918        // Convert the integer value to the right size to ensure we get the
919        // proper extension or truncation.
920        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
921                                                   IntPtrTy, false);
922        Constant *Null = Constant::getNullValue(C->getType());
923        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
924      }
925
926      // Only do this transformation if the int is intptrty in size, otherwise
927      // there is a truncation or extension that we aren't modeling.
928      if (CE0->getOpcode() == Instruction::PtrToInt &&
929          CE0->getType() == IntPtrTy) {
930        Constant *C = CE0->getOperand(0);
931        Constant *Null = Constant::getNullValue(C->getType());
932        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
933      }
934    }
935
936    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
937      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
938        Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
939
940        if (CE0->getOpcode() == Instruction::IntToPtr) {
941          // Convert the integer value to the right size to ensure we get the
942          // proper extension or truncation.
943          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
944                                                      IntPtrTy, false);
945          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
946                                                      IntPtrTy, false);
947          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
948        }
949
950        // Only do this transformation if the int is intptrty in size, otherwise
951        // there is a truncation or extension that we aren't modeling.
952        if ((CE0->getOpcode() == Instruction::PtrToInt &&
953             CE0->getType() == IntPtrTy &&
954             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
955          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
956                                                 CE1->getOperand(0), TD);
957      }
958    }
959
960    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
961    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
962    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
963        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
964      Constant *LHS =
965        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
966      Constant *RHS =
967        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
968      unsigned OpC =
969        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
970      Constant *Ops[] = { LHS, RHS };
971      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
972    }
973  }
974
975  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
976}
977
978
979/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
980/// getelementptr constantexpr, return the constant value being addressed by the
981/// constant expression, or null if something is funny and we can't decide.
982Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
983                                                       ConstantExpr *CE) {
984  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
985    return 0;  // Do not allow stepping over the value!
986
987  // Loop over all of the operands, tracking down which value we are
988  // addressing...
989  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
990  for (++I; I != E; ++I)
991    if (StructType *STy = dyn_cast<StructType>(*I)) {
992      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
993      assert(CU->getZExtValue() < STy->getNumElements() &&
994             "Struct index out of range!");
995      unsigned El = (unsigned)CU->getZExtValue();
996      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
997        C = CS->getOperand(El);
998      } else if (isa<ConstantAggregateZero>(C)) {
999        C = Constant::getNullValue(STy->getElementType(El));
1000      } else if (isa<UndefValue>(C)) {
1001        C = UndefValue::get(STy->getElementType(El));
1002      } else {
1003        return 0;
1004      }
1005    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1006      if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1007        if (CI->getZExtValue() >= ATy->getNumElements())
1008         return 0;
1009        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1010          C = CA->getOperand(CI->getZExtValue());
1011        else if (isa<ConstantAggregateZero>(C))
1012          C = Constant::getNullValue(ATy->getElementType());
1013        else if (isa<UndefValue>(C))
1014          C = UndefValue::get(ATy->getElementType());
1015        else
1016          return 0;
1017      } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
1018        if (CI->getZExtValue() >= VTy->getNumElements())
1019          return 0;
1020        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1021          C = CP->getOperand(CI->getZExtValue());
1022        else if (isa<ConstantAggregateZero>(C))
1023          C = Constant::getNullValue(VTy->getElementType());
1024        else if (isa<UndefValue>(C))
1025          C = UndefValue::get(VTy->getElementType());
1026        else
1027          return 0;
1028      } else {
1029        return 0;
1030      }
1031    } else {
1032      return 0;
1033    }
1034  return C;
1035}
1036
1037
1038//===----------------------------------------------------------------------===//
1039//  Constant Folding for Calls
1040//
1041
1042/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1043/// the specified function.
1044bool
1045llvm::canConstantFoldCallTo(const Function *F) {
1046  switch (F->getIntrinsicID()) {
1047  case Intrinsic::sqrt:
1048  case Intrinsic::powi:
1049  case Intrinsic::bswap:
1050  case Intrinsic::ctpop:
1051  case Intrinsic::ctlz:
1052  case Intrinsic::cttz:
1053  case Intrinsic::sadd_with_overflow:
1054  case Intrinsic::uadd_with_overflow:
1055  case Intrinsic::ssub_with_overflow:
1056  case Intrinsic::usub_with_overflow:
1057  case Intrinsic::smul_with_overflow:
1058  case Intrinsic::umul_with_overflow:
1059  case Intrinsic::convert_from_fp16:
1060  case Intrinsic::convert_to_fp16:
1061  case Intrinsic::x86_sse_cvtss2si:
1062  case Intrinsic::x86_sse_cvtss2si64:
1063  case Intrinsic::x86_sse_cvttss2si:
1064  case Intrinsic::x86_sse_cvttss2si64:
1065  case Intrinsic::x86_sse2_cvtsd2si:
1066  case Intrinsic::x86_sse2_cvtsd2si64:
1067  case Intrinsic::x86_sse2_cvttsd2si:
1068  case Intrinsic::x86_sse2_cvttsd2si64:
1069    return true;
1070  default:
1071    return false;
1072  case 0: break;
1073  }
1074
1075  if (!F->hasName()) return false;
1076  StringRef Name = F->getName();
1077
1078  // In these cases, the check of the length is required.  We don't want to
1079  // return true for a name like "cos\0blah" which strcmp would return equal to
1080  // "cos", but has length 8.
1081  switch (Name[0]) {
1082  default: return false;
1083  case 'a':
1084    return Name == "acos" || Name == "asin" ||
1085      Name == "atan" || Name == "atan2";
1086  case 'c':
1087    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1088  case 'e':
1089    return Name == "exp" || Name == "exp2";
1090  case 'f':
1091    return Name == "fabs" || Name == "fmod" || Name == "floor";
1092  case 'l':
1093    return Name == "log" || Name == "log10";
1094  case 'p':
1095    return Name == "pow";
1096  case 's':
1097    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1098      Name == "sinf" || Name == "sqrtf";
1099  case 't':
1100    return Name == "tan" || Name == "tanh";
1101  }
1102}
1103
1104static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1105                                Type *Ty) {
1106  sys::llvm_fenv_clearexcept();
1107  V = NativeFP(V);
1108  if (sys::llvm_fenv_testexcept()) {
1109    sys::llvm_fenv_clearexcept();
1110    return 0;
1111  }
1112
1113  if (Ty->isFloatTy())
1114    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1115  if (Ty->isDoubleTy())
1116    return ConstantFP::get(Ty->getContext(), APFloat(V));
1117  llvm_unreachable("Can only constant fold float/double");
1118  return 0; // dummy return to suppress warning
1119}
1120
1121static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1122                                      double V, double W, Type *Ty) {
1123  sys::llvm_fenv_clearexcept();
1124  V = NativeFP(V, W);
1125  if (sys::llvm_fenv_testexcept()) {
1126    sys::llvm_fenv_clearexcept();
1127    return 0;
1128  }
1129
1130  if (Ty->isFloatTy())
1131    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1132  if (Ty->isDoubleTy())
1133    return ConstantFP::get(Ty->getContext(), APFloat(V));
1134  llvm_unreachable("Can only constant fold float/double");
1135  return 0; // dummy return to suppress warning
1136}
1137
1138/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1139/// conversion of a constant floating point. If roundTowardZero is false, the
1140/// default IEEE rounding is used (toward nearest, ties to even). This matches
1141/// the behavior of the non-truncating SSE instructions in the default rounding
1142/// mode. The desired integer type Ty is used to select how many bits are
1143/// available for the result. Returns null if the conversion cannot be
1144/// performed, otherwise returns the Constant value resulting from the
1145/// conversion.
1146static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1147                                          Type *Ty) {
1148  assert(Op && "Called with NULL operand");
1149  APFloat Val(Op->getValueAPF());
1150
1151  // All of these conversion intrinsics form an integer of at most 64bits.
1152  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1153  assert(ResultWidth <= 64 &&
1154         "Can only constant fold conversions to 64 and 32 bit ints");
1155
1156  uint64_t UIntVal;
1157  bool isExact = false;
1158  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1159                                              : APFloat::rmNearestTiesToEven;
1160  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1161                                                  /*isSigned=*/true, mode,
1162                                                  &isExact);
1163  if (status != APFloat::opOK && status != APFloat::opInexact)
1164    return 0;
1165  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1166}
1167
1168/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1169/// with the specified arguments, returning null if unsuccessful.
1170Constant *
1171llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
1172  if (!F->hasName()) return 0;
1173  StringRef Name = F->getName();
1174
1175  Type *Ty = F->getReturnType();
1176  if (Operands.size() == 1) {
1177    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1178      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1179        APFloat Val(Op->getValueAPF());
1180
1181        bool lost = false;
1182        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1183
1184        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1185      }
1186
1187      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1188        return 0;
1189
1190      /// We only fold functions with finite arguments. Folding NaN and inf is
1191      /// likely to be aborted with an exception anyway, and some host libms
1192      /// have known errors raising exceptions.
1193      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1194        return 0;
1195
1196      /// Currently APFloat versions of these functions do not exist, so we use
1197      /// the host native double versions.  Float versions are not called
1198      /// directly but for all these it is true (float)(f((double)arg)) ==
1199      /// f(arg).  Long double not supported yet.
1200      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1201                                     Op->getValueAPF().convertToDouble();
1202      switch (Name[0]) {
1203      case 'a':
1204        if (Name == "acos")
1205          return ConstantFoldFP(acos, V, Ty);
1206        else if (Name == "asin")
1207          return ConstantFoldFP(asin, V, Ty);
1208        else if (Name == "atan")
1209          return ConstantFoldFP(atan, V, Ty);
1210        break;
1211      case 'c':
1212        if (Name == "ceil")
1213          return ConstantFoldFP(ceil, V, Ty);
1214        else if (Name == "cos")
1215          return ConstantFoldFP(cos, V, Ty);
1216        else if (Name == "cosh")
1217          return ConstantFoldFP(cosh, V, Ty);
1218        else if (Name == "cosf")
1219          return ConstantFoldFP(cos, V, Ty);
1220        break;
1221      case 'e':
1222        if (Name == "exp")
1223          return ConstantFoldFP(exp, V, Ty);
1224
1225        if (Name == "exp2") {
1226          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1227          // C99 library.
1228          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1229        }
1230        break;
1231      case 'f':
1232        if (Name == "fabs")
1233          return ConstantFoldFP(fabs, V, Ty);
1234        else if (Name == "floor")
1235          return ConstantFoldFP(floor, V, Ty);
1236        break;
1237      case 'l':
1238        if (Name == "log" && V > 0)
1239          return ConstantFoldFP(log, V, Ty);
1240        else if (Name == "log10" && V > 0)
1241          return ConstantFoldFP(log10, V, Ty);
1242        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1243                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1244          if (V >= -0.0)
1245            return ConstantFoldFP(sqrt, V, Ty);
1246          else // Undefined
1247            return Constant::getNullValue(Ty);
1248        }
1249        break;
1250      case 's':
1251        if (Name == "sin")
1252          return ConstantFoldFP(sin, V, Ty);
1253        else if (Name == "sinh")
1254          return ConstantFoldFP(sinh, V, Ty);
1255        else if (Name == "sqrt" && V >= 0)
1256          return ConstantFoldFP(sqrt, V, Ty);
1257        else if (Name == "sqrtf" && V >= 0)
1258          return ConstantFoldFP(sqrt, V, Ty);
1259        else if (Name == "sinf")
1260          return ConstantFoldFP(sin, V, Ty);
1261        break;
1262      case 't':
1263        if (Name == "tan")
1264          return ConstantFoldFP(tan, V, Ty);
1265        else if (Name == "tanh")
1266          return ConstantFoldFP(tanh, V, Ty);
1267        break;
1268      default:
1269        break;
1270      }
1271      return 0;
1272    }
1273
1274    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1275      switch (F->getIntrinsicID()) {
1276      case Intrinsic::bswap:
1277        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1278      case Intrinsic::ctpop:
1279        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1280      case Intrinsic::cttz:
1281        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1282      case Intrinsic::ctlz:
1283        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1284      case Intrinsic::convert_from_fp16: {
1285        APFloat Val(Op->getValue());
1286
1287        bool lost = false;
1288        APFloat::opStatus status =
1289          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1290
1291        // Conversion is always precise.
1292        (void)status;
1293        assert(status == APFloat::opOK && !lost &&
1294               "Precision lost during fp16 constfolding");
1295
1296        return ConstantFP::get(F->getContext(), Val);
1297      }
1298      default:
1299        return 0;
1300      }
1301    }
1302
1303    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1304      switch (F->getIntrinsicID()) {
1305      default: break;
1306      case Intrinsic::x86_sse_cvtss2si:
1307      case Intrinsic::x86_sse_cvtss2si64:
1308      case Intrinsic::x86_sse2_cvtsd2si:
1309      case Intrinsic::x86_sse2_cvtsd2si64:
1310        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1311          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1312      case Intrinsic::x86_sse_cvttss2si:
1313      case Intrinsic::x86_sse_cvttss2si64:
1314      case Intrinsic::x86_sse2_cvttsd2si:
1315      case Intrinsic::x86_sse2_cvttsd2si64:
1316        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1317          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1318      }
1319    }
1320
1321    if (isa<UndefValue>(Operands[0])) {
1322      if (F->getIntrinsicID() == Intrinsic::bswap)
1323        return Operands[0];
1324      return 0;
1325    }
1326
1327    return 0;
1328  }
1329
1330  if (Operands.size() == 2) {
1331    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1332      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1333        return 0;
1334      double Op1V = Ty->isFloatTy() ?
1335                      (double)Op1->getValueAPF().convertToFloat() :
1336                      Op1->getValueAPF().convertToDouble();
1337      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1338        if (Op2->getType() != Op1->getType())
1339          return 0;
1340
1341        double Op2V = Ty->isFloatTy() ?
1342                      (double)Op2->getValueAPF().convertToFloat():
1343                      Op2->getValueAPF().convertToDouble();
1344
1345        if (Name == "pow")
1346          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1347        if (Name == "fmod")
1348          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1349        if (Name == "atan2")
1350          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1351      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1352        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1353          return ConstantFP::get(F->getContext(),
1354                                 APFloat((float)std::pow((float)Op1V,
1355                                                 (int)Op2C->getZExtValue())));
1356        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1357          return ConstantFP::get(F->getContext(),
1358                                 APFloat((double)std::pow((double)Op1V,
1359                                                   (int)Op2C->getZExtValue())));
1360      }
1361      return 0;
1362    }
1363
1364
1365    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1366      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1367        switch (F->getIntrinsicID()) {
1368        default: break;
1369        case Intrinsic::sadd_with_overflow:
1370        case Intrinsic::uadd_with_overflow:
1371        case Intrinsic::ssub_with_overflow:
1372        case Intrinsic::usub_with_overflow:
1373        case Intrinsic::smul_with_overflow:
1374        case Intrinsic::umul_with_overflow: {
1375          APInt Res;
1376          bool Overflow;
1377          switch (F->getIntrinsicID()) {
1378          default: assert(0 && "Invalid case");
1379          case Intrinsic::sadd_with_overflow:
1380            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1381            break;
1382          case Intrinsic::uadd_with_overflow:
1383            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1384            break;
1385          case Intrinsic::ssub_with_overflow:
1386            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1387            break;
1388          case Intrinsic::usub_with_overflow:
1389            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1390            break;
1391          case Intrinsic::smul_with_overflow:
1392            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1393            break;
1394          case Intrinsic::umul_with_overflow:
1395            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1396            break;
1397          }
1398          Constant *Ops[] = {
1399            ConstantInt::get(F->getContext(), Res),
1400            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1401          };
1402          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1403        }
1404        }
1405      }
1406
1407      return 0;
1408    }
1409    return 0;
1410  }
1411  return 0;
1412}
1413