1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/ADT/StringExtras.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <sstream>
55using namespace llvm;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
59
60// This option should go away when tail calls fully work.
61static cl::opt<bool>
62EnableARMTailCalls("arm-tail-calls", cl::Hidden,
63  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
64  cl::init(false));
65
66cl::opt<bool>
67EnableARMLongCalls("arm-long-calls", cl::Hidden,
68  cl::desc("Generate calls via indirect call instructions"),
69  cl::init(false));
70
71static cl::opt<bool>
72ARMInterworking("arm-interworking", cl::Hidden,
73  cl::desc("Enable / disable ARM interworking (for debugging only)"),
74  cl::init(true));
75
76namespace llvm {
77  class ARMCCState : public CCState {
78  public:
79    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
80               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
81               LLVMContext &C, ParmContext PC)
82        : CCState(CC, isVarArg, MF, TM, locs, C) {
83      assert(((PC == Call) || (PC == Prologue)) &&
84             "ARMCCState users must specify whether their context is call"
85             "or prologue generation.");
86      CallOrPrologue = PC;
87    }
88  };
89}
90
91// The APCS parameter registers.
92static const unsigned GPRArgRegs[] = {
93  ARM::R0, ARM::R1, ARM::R2, ARM::R3
94};
95
96void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
97                                       EVT PromotedBitwiseVT) {
98  if (VT != PromotedLdStVT) {
99    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102
103    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
104    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
105                       PromotedLdStVT.getSimpleVT());
106  }
107
108  EVT ElemTy = VT.getVectorElementType();
109  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
110    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  if (ElemTy != MVT::i32) {
113    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
117  }
118  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
119  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
120  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
121  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
122  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
123  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
124  if (VT.isInteger()) {
125    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
126    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
127    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
128    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
129    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
130    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
131         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
132      setTruncStoreAction(VT.getSimpleVT(),
133                          (MVT::SimpleValueType)InnerVT, Expand);
134  }
135  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
136
137  // Promote all bit-wise operations.
138  if (VT.isInteger() && VT != PromotedBitwiseVT) {
139    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
140    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
141                       PromotedBitwiseVT.getSimpleVT());
142    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
143    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
144                       PromotedBitwiseVT.getSimpleVT());
145    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
146    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
147                       PromotedBitwiseVT.getSimpleVT());
148  }
149
150  // Neon does not support vector divide/remainder operations.
151  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
156  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
157}
158
159void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
160  addRegisterClass(VT, ARM::DPRRegisterClass);
161  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
162}
163
164void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
165  addRegisterClass(VT, ARM::QPRRegisterClass);
166  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
167}
168
169static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
170  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
171    return new TargetLoweringObjectFileMachO();
172
173  return new ARMElfTargetObjectFile();
174}
175
176ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
177    : TargetLowering(TM, createTLOF(TM)) {
178  Subtarget = &TM.getSubtarget<ARMSubtarget>();
179  RegInfo = TM.getRegisterInfo();
180  Itins = TM.getInstrItineraryData();
181
182  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
183
184  if (Subtarget->isTargetDarwin()) {
185    // Uses VFP for Thumb libfuncs if available.
186    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
187      // Single-precision floating-point arithmetic.
188      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
189      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
190      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
191      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
192
193      // Double-precision floating-point arithmetic.
194      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
195      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
196      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
197      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
198
199      // Single-precision comparisons.
200      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
201      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
202      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
203      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
204      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
205      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
206      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
207      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
208
209      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
216      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
217
218      // Double-precision comparisons.
219      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
220      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
221      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
222      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
223      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
224      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
225      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
226      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
227
228      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
234      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
235      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
236
237      // Floating-point to integer conversions.
238      // i64 conversions are done via library routines even when generating VFP
239      // instructions, so use the same ones.
240      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
241      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
242      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
243      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
244
245      // Conversions between floating types.
246      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
247      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
248
249      // Integer to floating-point conversions.
250      // i64 conversions are done via library routines even when generating VFP
251      // instructions, so use the same ones.
252      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
253      // e.g., __floatunsidf vs. __floatunssidfvfp.
254      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
255      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
256      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
257      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
258    }
259  }
260
261  // These libcalls are not available in 32-bit.
262  setLibcallName(RTLIB::SHL_I128, 0);
263  setLibcallName(RTLIB::SRL_I128, 0);
264  setLibcallName(RTLIB::SRA_I128, 0);
265
266  if (Subtarget->isAAPCS_ABI()) {
267    // Double-precision floating-point arithmetic helper functions
268    // RTABI chapter 4.1.2, Table 2
269    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
270    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
271    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
272    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
273    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
277
278    // Double-precision floating-point comparison helper functions
279    // RTABI chapter 4.1.2, Table 3
280    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
281    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
282    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
283    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
284    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
285    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
287    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
288    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
289    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
290    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
291    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
292    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
293    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
294    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
295    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
296    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
303    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
304
305    // Single-precision floating-point arithmetic helper functions
306    // RTABI chapter 4.1.2, Table 4
307    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
308    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
309    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
310    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
311    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
315
316    // Single-precision floating-point comparison helper functions
317    // RTABI chapter 4.1.2, Table 5
318    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
319    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
320    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
321    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
322    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
323    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
325    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
326    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
327    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
328    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
329    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
330    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
331    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
332    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
333    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
334    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
342
343    // Floating-point to integer conversions.
344    // RTABI chapter 4.1.2, Table 6
345    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
346    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
347    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
348    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
349    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
350    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
351    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
352    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
353    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
361
362    // Conversions between floating types.
363    // RTABI chapter 4.1.2, Table 7
364    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
365    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
366    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
368
369    // Integer to floating-point conversions.
370    // RTABI chapter 4.1.2, Table 8
371    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
372    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
373    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
374    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
375    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
376    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
377    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
378    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
379    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
387
388    // Long long helper functions
389    // RTABI chapter 4.2, Table 9
390    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
391    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
392    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
393    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
394    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
395    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
396    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
401    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
402
403    // Integer division functions
404    // RTABI chapter 4.3.1
405    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
407    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
408    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
410    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
411    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
416    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
417
418    // Memory operations
419    // RTABI chapter 4.3.4
420    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
421    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
422    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
423  }
424
425  // Use divmod compiler-rt calls for iOS 5.0 and later.
426  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
427      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
428    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
429    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
430  }
431
432  if (Subtarget->isThumb1Only())
433    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
434  else
435    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
436  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
437    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
438    if (!Subtarget->isFPOnlySP())
439      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
440
441    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442  }
443
444  if (Subtarget->hasNEON()) {
445    addDRTypeForNEON(MVT::v2f32);
446    addDRTypeForNEON(MVT::v8i8);
447    addDRTypeForNEON(MVT::v4i16);
448    addDRTypeForNEON(MVT::v2i32);
449    addDRTypeForNEON(MVT::v1i64);
450
451    addQRTypeForNEON(MVT::v4f32);
452    addQRTypeForNEON(MVT::v2f64);
453    addQRTypeForNEON(MVT::v16i8);
454    addQRTypeForNEON(MVT::v8i16);
455    addQRTypeForNEON(MVT::v4i32);
456    addQRTypeForNEON(MVT::v2i64);
457
458    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
459    // neither Neon nor VFP support any arithmetic operations on it.
460    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
461    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
462    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
463    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
464    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
466    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
467    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
468    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
469    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
470    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
471    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
472    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
473    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
474    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
475    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
476    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
477    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
478    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
479    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
480    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
481    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
482    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
483    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
484
485    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
486
487    // Neon does not support some operations on v1i64 and v2i64 types.
488    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
489    // Custom handling for some quad-vector types to detect VMULL.
490    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
491    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
492    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
493    // Custom handling for some vector types to avoid expensive expansions
494    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
495    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
496    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
497    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
498    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
499    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
500    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
501    // a destination type that is wider than the source.
502    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
503    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
504
505    setTargetDAGCombine(ISD::INTRINSIC_VOID);
506    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
507    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
508    setTargetDAGCombine(ISD::SHL);
509    setTargetDAGCombine(ISD::SRL);
510    setTargetDAGCombine(ISD::SRA);
511    setTargetDAGCombine(ISD::SIGN_EXTEND);
512    setTargetDAGCombine(ISD::ZERO_EXTEND);
513    setTargetDAGCombine(ISD::ANY_EXTEND);
514    setTargetDAGCombine(ISD::SELECT_CC);
515    setTargetDAGCombine(ISD::BUILD_VECTOR);
516    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
517    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
518    setTargetDAGCombine(ISD::STORE);
519    setTargetDAGCombine(ISD::FP_TO_SINT);
520    setTargetDAGCombine(ISD::FP_TO_UINT);
521    setTargetDAGCombine(ISD::FDIV);
522  }
523
524  computeRegisterProperties();
525
526  // ARM does not have f32 extending load.
527  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
528
529  // ARM does not have i1 sign extending load.
530  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
531
532  // ARM supports all 4 flavors of integer indexed load / store.
533  if (!Subtarget->isThumb1Only()) {
534    for (unsigned im = (unsigned)ISD::PRE_INC;
535         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
536      setIndexedLoadAction(im,  MVT::i1,  Legal);
537      setIndexedLoadAction(im,  MVT::i8,  Legal);
538      setIndexedLoadAction(im,  MVT::i16, Legal);
539      setIndexedLoadAction(im,  MVT::i32, Legal);
540      setIndexedStoreAction(im, MVT::i1,  Legal);
541      setIndexedStoreAction(im, MVT::i8,  Legal);
542      setIndexedStoreAction(im, MVT::i16, Legal);
543      setIndexedStoreAction(im, MVT::i32, Legal);
544    }
545  }
546
547  // i64 operation support.
548  setOperationAction(ISD::MUL,     MVT::i64, Expand);
549  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
550  if (Subtarget->isThumb1Only()) {
551    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
552    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
553  }
554  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
555      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
556    setOperationAction(ISD::MULHS, MVT::i32, Expand);
557
558  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
559  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
560  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
561  setOperationAction(ISD::SRL,       MVT::i64, Custom);
562  setOperationAction(ISD::SRA,       MVT::i64, Custom);
563
564  if (!Subtarget->isThumb1Only()) {
565    // FIXME: We should do this for Thumb1 as well.
566    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
567    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
568    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
569    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
570  }
571
572  // ARM does not have ROTL.
573  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
574  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
575  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
576  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
577    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
578
579  // Only ARMv6 has BSWAP.
580  if (!Subtarget->hasV6Ops())
581    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
582
583  // These are expanded into libcalls.
584  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
585    // v7M has a hardware divider
586    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
587    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
588  }
589  setOperationAction(ISD::SREM,  MVT::i32, Expand);
590  setOperationAction(ISD::UREM,  MVT::i32, Expand);
591  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
592  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
593
594  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
595  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
596  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
597  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
598  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
599
600  setOperationAction(ISD::TRAP, MVT::Other, Legal);
601
602  // Use the default implementation.
603  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
604  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
605  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
606  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
607  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
608  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
609  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
610  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
611  setExceptionPointerRegister(ARM::R0);
612  setExceptionSelectorRegister(ARM::R1);
613
614  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
615  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
616  // the default expansion.
617  // FIXME: This should be checking for v6k, not just v6.
618  if (Subtarget->hasDataBarrier() ||
619      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
620    // membarrier needs custom lowering; the rest are legal and handled
621    // normally.
622    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
623    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
624    // Custom lowering for 64-bit ops
625    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
626    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
627    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
628    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
629    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
630    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
631    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
632    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
633    setInsertFencesForAtomic(true);
634  } else {
635    // Set them all for expansion, which will force libcalls.
636    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
637    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
638    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
639    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
640    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
641    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
642    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
643    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
644    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
645    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
646    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
647    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
648    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
649    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
650    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
651    // Unordered/Monotonic case.
652    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
653    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
654    // Since the libcalls include locking, fold in the fences
655    setShouldFoldAtomicFences(true);
656  }
657
658  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
659
660  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
661  if (!Subtarget->hasV6Ops()) {
662    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
663    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
664  }
665  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
666
667  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
668    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
669    // iff target supports vfp2.
670    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
671    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
672  }
673
674  // We want to custom lower some of our intrinsics.
675  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
676  if (Subtarget->isTargetDarwin()) {
677    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
678    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
679    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
680    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
681  }
682
683  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
684  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
685  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
686  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
687  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
688  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
689  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
690  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
691  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
692
693  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
694  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
695  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
696  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
697  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
698
699  // We don't support sin/cos/fmod/copysign/pow
700  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
701  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
702  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
703  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
704  setOperationAction(ISD::FREM,      MVT::f64, Expand);
705  setOperationAction(ISD::FREM,      MVT::f32, Expand);
706  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
707    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
708    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
709  }
710  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
711  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
712
713  setOperationAction(ISD::FMA, MVT::f64, Expand);
714  setOperationAction(ISD::FMA, MVT::f32, Expand);
715
716  // Various VFP goodness
717  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
718    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
719    if (Subtarget->hasVFP2()) {
720      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
721      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
722      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
723      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
724    }
725    // Special handling for half-precision FP.
726    if (!Subtarget->hasFP16()) {
727      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
728      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
729    }
730  }
731
732  // We have target-specific dag combine patterns for the following nodes:
733  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
734  setTargetDAGCombine(ISD::ADD);
735  setTargetDAGCombine(ISD::SUB);
736  setTargetDAGCombine(ISD::MUL);
737
738  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
739    setTargetDAGCombine(ISD::OR);
740  if (Subtarget->hasNEON())
741    setTargetDAGCombine(ISD::AND);
742
743  setStackPointerRegisterToSaveRestore(ARM::SP);
744
745  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
746    setSchedulingPreference(Sched::RegPressure);
747  else
748    setSchedulingPreference(Sched::Hybrid);
749
750  //// temporary - rewrite interface to use type
751  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
752
753  // On ARM arguments smaller than 4 bytes are extended, so all arguments
754  // are at least 4 bytes aligned.
755  setMinStackArgumentAlignment(4);
756
757  benefitFromCodePlacementOpt = true;
758
759  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
760}
761
762// FIXME: It might make sense to define the representative register class as the
763// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
764// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
765// SPR's representative would be DPR_VFP2. This should work well if register
766// pressure tracking were modified such that a register use would increment the
767// pressure of the register class's representative and all of it's super
768// classes' representatives transitively. We have not implemented this because
769// of the difficulty prior to coalescing of modeling operand register classes
770// due to the common occurrence of cross class copies and subregister insertions
771// and extractions.
772std::pair<const TargetRegisterClass*, uint8_t>
773ARMTargetLowering::findRepresentativeClass(EVT VT) const{
774  const TargetRegisterClass *RRC = 0;
775  uint8_t Cost = 1;
776  switch (VT.getSimpleVT().SimpleTy) {
777  default:
778    return TargetLowering::findRepresentativeClass(VT);
779  // Use DPR as representative register class for all floating point
780  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
781  // the cost is 1 for both f32 and f64.
782  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
783  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
784    RRC = ARM::DPRRegisterClass;
785    // When NEON is used for SP, only half of the register file is available
786    // because operations that define both SP and DP results will be constrained
787    // to the VFP2 class (D0-D15). We currently model this constraint prior to
788    // coalescing by double-counting the SP regs. See the FIXME above.
789    if (Subtarget->useNEONForSinglePrecisionFP())
790      Cost = 2;
791    break;
792  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
793  case MVT::v4f32: case MVT::v2f64:
794    RRC = ARM::DPRRegisterClass;
795    Cost = 2;
796    break;
797  case MVT::v4i64:
798    RRC = ARM::DPRRegisterClass;
799    Cost = 4;
800    break;
801  case MVT::v8i64:
802    RRC = ARM::DPRRegisterClass;
803    Cost = 8;
804    break;
805  }
806  return std::make_pair(RRC, Cost);
807}
808
809const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
810  switch (Opcode) {
811  default: return 0;
812  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
813  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
814  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
815  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
816  case ARMISD::CALL:          return "ARMISD::CALL";
817  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
818  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
819  case ARMISD::tCALL:         return "ARMISD::tCALL";
820  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
821  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
822  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
823  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
824  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
825  case ARMISD::CMP:           return "ARMISD::CMP";
826  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
827  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
828  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
829  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
830  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
831  case ARMISD::CMOV:          return "ARMISD::CMOV";
832
833  case ARMISD::RBIT:          return "ARMISD::RBIT";
834
835  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
836  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
837  case ARMISD::SITOF:         return "ARMISD::SITOF";
838  case ARMISD::UITOF:         return "ARMISD::UITOF";
839
840  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
841  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
842  case ARMISD::RRX:           return "ARMISD::RRX";
843
844  case ARMISD::ADDC:          return "ARMISD::ADDC";
845  case ARMISD::ADDE:          return "ARMISD::ADDE";
846  case ARMISD::SUBC:          return "ARMISD::SUBC";
847  case ARMISD::SUBE:          return "ARMISD::SUBE";
848
849  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
850  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
851
852  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
853  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
854  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
855
856  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
857
858  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
859
860  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
861
862  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
863  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
864
865  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
866
867  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
868  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
869  case ARMISD::VCGE:          return "ARMISD::VCGE";
870  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
871  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
872  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
873  case ARMISD::VCGT:          return "ARMISD::VCGT";
874  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
875  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
876  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
877  case ARMISD::VTST:          return "ARMISD::VTST";
878
879  case ARMISD::VSHL:          return "ARMISD::VSHL";
880  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
881  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
882  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
883  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
884  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
885  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
886  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
887  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
888  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
889  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
890  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
891  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
892  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
893  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
894  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
895  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
896  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
897  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
898  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
899  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
900  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
901  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
902  case ARMISD::VDUP:          return "ARMISD::VDUP";
903  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
904  case ARMISD::VEXT:          return "ARMISD::VEXT";
905  case ARMISD::VREV64:        return "ARMISD::VREV64";
906  case ARMISD::VREV32:        return "ARMISD::VREV32";
907  case ARMISD::VREV16:        return "ARMISD::VREV16";
908  case ARMISD::VZIP:          return "ARMISD::VZIP";
909  case ARMISD::VUZP:          return "ARMISD::VUZP";
910  case ARMISD::VTRN:          return "ARMISD::VTRN";
911  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
912  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
913  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
914  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
915  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
916  case ARMISD::FMAX:          return "ARMISD::FMAX";
917  case ARMISD::FMIN:          return "ARMISD::FMIN";
918  case ARMISD::BFI:           return "ARMISD::BFI";
919  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
920  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
921  case ARMISD::VBSL:          return "ARMISD::VBSL";
922  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
923  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
924  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
925  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
926  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
927  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
928  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
929  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
930  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
931  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
932  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
933  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
934  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
935  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
936  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
937  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
938  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
939  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
940  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
941  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
942  }
943}
944
945EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
946  if (!VT.isVector()) return getPointerTy();
947  return VT.changeVectorElementTypeToInteger();
948}
949
950/// getRegClassFor - Return the register class that should be used for the
951/// specified value type.
952TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
953  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
954  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
955  // load / store 4 to 8 consecutive D registers.
956  if (Subtarget->hasNEON()) {
957    if (VT == MVT::v4i64)
958      return ARM::QQPRRegisterClass;
959    else if (VT == MVT::v8i64)
960      return ARM::QQQQPRRegisterClass;
961  }
962  return TargetLowering::getRegClassFor(VT);
963}
964
965// Create a fast isel object.
966FastISel *
967ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
968  return ARM::createFastISel(funcInfo);
969}
970
971/// getMaximalGlobalOffset - Returns the maximal possible offset which can
972/// be used for loads / stores from the global.
973unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
974  return (Subtarget->isThumb1Only() ? 127 : 4095);
975}
976
977Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
978  unsigned NumVals = N->getNumValues();
979  if (!NumVals)
980    return Sched::RegPressure;
981
982  for (unsigned i = 0; i != NumVals; ++i) {
983    EVT VT = N->getValueType(i);
984    if (VT == MVT::Glue || VT == MVT::Other)
985      continue;
986    if (VT.isFloatingPoint() || VT.isVector())
987      return Sched::Latency;
988  }
989
990  if (!N->isMachineOpcode())
991    return Sched::RegPressure;
992
993  // Load are scheduled for latency even if there instruction itinerary
994  // is not available.
995  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
996  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
997
998  if (MCID.getNumDefs() == 0)
999    return Sched::RegPressure;
1000  if (!Itins->isEmpty() &&
1001      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1002    return Sched::Latency;
1003
1004  return Sched::RegPressure;
1005}
1006
1007//===----------------------------------------------------------------------===//
1008// Lowering Code
1009//===----------------------------------------------------------------------===//
1010
1011/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1012static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1013  switch (CC) {
1014  default: llvm_unreachable("Unknown condition code!");
1015  case ISD::SETNE:  return ARMCC::NE;
1016  case ISD::SETEQ:  return ARMCC::EQ;
1017  case ISD::SETGT:  return ARMCC::GT;
1018  case ISD::SETGE:  return ARMCC::GE;
1019  case ISD::SETLT:  return ARMCC::LT;
1020  case ISD::SETLE:  return ARMCC::LE;
1021  case ISD::SETUGT: return ARMCC::HI;
1022  case ISD::SETUGE: return ARMCC::HS;
1023  case ISD::SETULT: return ARMCC::LO;
1024  case ISD::SETULE: return ARMCC::LS;
1025  }
1026}
1027
1028/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1029static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1030                        ARMCC::CondCodes &CondCode2) {
1031  CondCode2 = ARMCC::AL;
1032  switch (CC) {
1033  default: llvm_unreachable("Unknown FP condition!");
1034  case ISD::SETEQ:
1035  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1036  case ISD::SETGT:
1037  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1038  case ISD::SETGE:
1039  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1040  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1041  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1042  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1043  case ISD::SETO:   CondCode = ARMCC::VC; break;
1044  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1045  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1046  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1047  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1048  case ISD::SETLT:
1049  case ISD::SETULT: CondCode = ARMCC::LT; break;
1050  case ISD::SETLE:
1051  case ISD::SETULE: CondCode = ARMCC::LE; break;
1052  case ISD::SETNE:
1053  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1054  }
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//                      Calling Convention Implementation
1059//===----------------------------------------------------------------------===//
1060
1061#include "ARMGenCallingConv.inc"
1062
1063/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1064/// given CallingConvention value.
1065CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1066                                                 bool Return,
1067                                                 bool isVarArg) const {
1068  switch (CC) {
1069  default:
1070    llvm_unreachable("Unsupported calling convention");
1071  case CallingConv::Fast:
1072    if (Subtarget->hasVFP2() && !isVarArg) {
1073      if (!Subtarget->isAAPCS_ABI())
1074        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1075      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1076      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1077    }
1078    // Fallthrough
1079  case CallingConv::C: {
1080    // Use target triple & subtarget features to do actual dispatch.
1081    if (!Subtarget->isAAPCS_ABI())
1082      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1083    else if (Subtarget->hasVFP2() &&
1084             FloatABIType == FloatABI::Hard && !isVarArg)
1085      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1086    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1087  }
1088  case CallingConv::ARM_AAPCS_VFP:
1089    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1090  case CallingConv::ARM_AAPCS:
1091    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1092  case CallingConv::ARM_APCS:
1093    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1094  case CallingConv::GHC:
1095    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1096  }
1097}
1098
1099/// LowerCallResult - Lower the result values of a call into the
1100/// appropriate copies out of appropriate physical registers.
1101SDValue
1102ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1103                                   CallingConv::ID CallConv, bool isVarArg,
1104                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1105                                   DebugLoc dl, SelectionDAG &DAG,
1106                                   SmallVectorImpl<SDValue> &InVals) const {
1107
1108  // Assign locations to each value returned by this call.
1109  SmallVector<CCValAssign, 16> RVLocs;
1110  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1111                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1112  CCInfo.AnalyzeCallResult(Ins,
1113                           CCAssignFnForNode(CallConv, /* Return*/ true,
1114                                             isVarArg));
1115
1116  // Copy all of the result registers out of their specified physreg.
1117  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1118    CCValAssign VA = RVLocs[i];
1119
1120    SDValue Val;
1121    if (VA.needsCustom()) {
1122      // Handle f64 or half of a v2f64.
1123      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1124                                      InFlag);
1125      Chain = Lo.getValue(1);
1126      InFlag = Lo.getValue(2);
1127      VA = RVLocs[++i]; // skip ahead to next loc
1128      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1129                                      InFlag);
1130      Chain = Hi.getValue(1);
1131      InFlag = Hi.getValue(2);
1132      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1133
1134      if (VA.getLocVT() == MVT::v2f64) {
1135        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1136        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1137                          DAG.getConstant(0, MVT::i32));
1138
1139        VA = RVLocs[++i]; // skip ahead to next loc
1140        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1141        Chain = Lo.getValue(1);
1142        InFlag = Lo.getValue(2);
1143        VA = RVLocs[++i]; // skip ahead to next loc
1144        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1145        Chain = Hi.getValue(1);
1146        InFlag = Hi.getValue(2);
1147        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1148        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1149                          DAG.getConstant(1, MVT::i32));
1150      }
1151    } else {
1152      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1153                               InFlag);
1154      Chain = Val.getValue(1);
1155      InFlag = Val.getValue(2);
1156    }
1157
1158    switch (VA.getLocInfo()) {
1159    default: llvm_unreachable("Unknown loc info!");
1160    case CCValAssign::Full: break;
1161    case CCValAssign::BCvt:
1162      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1163      break;
1164    }
1165
1166    InVals.push_back(Val);
1167  }
1168
1169  return Chain;
1170}
1171
1172/// LowerMemOpCallTo - Store the argument to the stack.
1173SDValue
1174ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1175                                    SDValue StackPtr, SDValue Arg,
1176                                    DebugLoc dl, SelectionDAG &DAG,
1177                                    const CCValAssign &VA,
1178                                    ISD::ArgFlagsTy Flags) const {
1179  unsigned LocMemOffset = VA.getLocMemOffset();
1180  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1181  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1182  return DAG.getStore(Chain, dl, Arg, PtrOff,
1183                      MachinePointerInfo::getStack(LocMemOffset),
1184                      false, false, 0);
1185}
1186
1187void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1188                                         SDValue Chain, SDValue &Arg,
1189                                         RegsToPassVector &RegsToPass,
1190                                         CCValAssign &VA, CCValAssign &NextVA,
1191                                         SDValue &StackPtr,
1192                                         SmallVector<SDValue, 8> &MemOpChains,
1193                                         ISD::ArgFlagsTy Flags) const {
1194
1195  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1196                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1197  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1198
1199  if (NextVA.isRegLoc())
1200    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1201  else {
1202    assert(NextVA.isMemLoc());
1203    if (StackPtr.getNode() == 0)
1204      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1205
1206    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1207                                           dl, DAG, NextVA,
1208                                           Flags));
1209  }
1210}
1211
1212/// LowerCall - Lowering a call into a callseq_start <-
1213/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1214/// nodes.
1215SDValue
1216ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1217                             CallingConv::ID CallConv, bool isVarArg,
1218                             bool &isTailCall,
1219                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1220                             const SmallVectorImpl<SDValue> &OutVals,
1221                             const SmallVectorImpl<ISD::InputArg> &Ins,
1222                             DebugLoc dl, SelectionDAG &DAG,
1223                             SmallVectorImpl<SDValue> &InVals) const {
1224  MachineFunction &MF = DAG.getMachineFunction();
1225  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1226  bool IsSibCall = false;
1227  // Disable tail calls if they're not supported.
1228  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1229    isTailCall = false;
1230  if (isTailCall) {
1231    // Check if it's really possible to do a tail call.
1232    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1233                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1234                                                   Outs, OutVals, Ins, DAG);
1235    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1236    // detected sibcalls.
1237    if (isTailCall) {
1238      ++NumTailCalls;
1239      IsSibCall = true;
1240    }
1241  }
1242
1243  // Analyze operands of the call, assigning locations to each operand.
1244  SmallVector<CCValAssign, 16> ArgLocs;
1245  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1246                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1247  CCInfo.AnalyzeCallOperands(Outs,
1248                             CCAssignFnForNode(CallConv, /* Return*/ false,
1249                                               isVarArg));
1250
1251  // Get a count of how many bytes are to be pushed on the stack.
1252  unsigned NumBytes = CCInfo.getNextStackOffset();
1253
1254  // For tail calls, memory operands are available in our caller's stack.
1255  if (IsSibCall)
1256    NumBytes = 0;
1257
1258  // Adjust the stack pointer for the new arguments...
1259  // These operations are automatically eliminated by the prolog/epilog pass
1260  if (!IsSibCall)
1261    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1262
1263  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1264
1265  RegsToPassVector RegsToPass;
1266  SmallVector<SDValue, 8> MemOpChains;
1267
1268  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1269  // of tail call optimization, arguments are handled later.
1270  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1271       i != e;
1272       ++i, ++realArgIdx) {
1273    CCValAssign &VA = ArgLocs[i];
1274    SDValue Arg = OutVals[realArgIdx];
1275    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1276    bool isByVal = Flags.isByVal();
1277
1278    // Promote the value if needed.
1279    switch (VA.getLocInfo()) {
1280    default: llvm_unreachable("Unknown loc info!");
1281    case CCValAssign::Full: break;
1282    case CCValAssign::SExt:
1283      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1284      break;
1285    case CCValAssign::ZExt:
1286      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1287      break;
1288    case CCValAssign::AExt:
1289      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1290      break;
1291    case CCValAssign::BCvt:
1292      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1293      break;
1294    }
1295
1296    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1297    if (VA.needsCustom()) {
1298      if (VA.getLocVT() == MVT::v2f64) {
1299        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1300                                  DAG.getConstant(0, MVT::i32));
1301        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1302                                  DAG.getConstant(1, MVT::i32));
1303
1304        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1305                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1306
1307        VA = ArgLocs[++i]; // skip ahead to next loc
1308        if (VA.isRegLoc()) {
1309          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1310                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1311        } else {
1312          assert(VA.isMemLoc());
1313
1314          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1315                                                 dl, DAG, VA, Flags));
1316        }
1317      } else {
1318        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1319                         StackPtr, MemOpChains, Flags);
1320      }
1321    } else if (VA.isRegLoc()) {
1322      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1323    } else if (isByVal) {
1324      assert(VA.isMemLoc());
1325      unsigned offset = 0;
1326
1327      // True if this byval aggregate will be split between registers
1328      // and memory.
1329      if (CCInfo.isFirstByValRegValid()) {
1330        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1331        unsigned int i, j;
1332        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1333          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1334          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1335          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1336                                     MachinePointerInfo(),
1337                                     false, false, 0);
1338          MemOpChains.push_back(Load.getValue(1));
1339          RegsToPass.push_back(std::make_pair(j, Load));
1340        }
1341        offset = ARM::R4 - CCInfo.getFirstByValReg();
1342        CCInfo.clearFirstByValReg();
1343      }
1344
1345      unsigned LocMemOffset = VA.getLocMemOffset();
1346      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1347      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1348                                StkPtrOff);
1349      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1350      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1351      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1352                                         MVT::i32);
1353      // TODO: Disable AlwaysInline when it becomes possible
1354      //       to emit a nested call sequence.
1355      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1356                                          Flags.getByValAlign(),
1357                                          /*isVolatile=*/false,
1358                                          /*AlwaysInline=*/true,
1359                                          MachinePointerInfo(0),
1360                                          MachinePointerInfo(0)));
1361
1362    } else if (!IsSibCall) {
1363      assert(VA.isMemLoc());
1364
1365      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1366                                             dl, DAG, VA, Flags));
1367    }
1368  }
1369
1370  if (!MemOpChains.empty())
1371    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1372                        &MemOpChains[0], MemOpChains.size());
1373
1374  // Build a sequence of copy-to-reg nodes chained together with token chain
1375  // and flag operands which copy the outgoing args into the appropriate regs.
1376  SDValue InFlag;
1377  // Tail call byval lowering might overwrite argument registers so in case of
1378  // tail call optimization the copies to registers are lowered later.
1379  if (!isTailCall)
1380    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1381      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1382                               RegsToPass[i].second, InFlag);
1383      InFlag = Chain.getValue(1);
1384    }
1385
1386  // For tail calls lower the arguments to the 'real' stack slot.
1387  if (isTailCall) {
1388    // Force all the incoming stack arguments to be loaded from the stack
1389    // before any new outgoing arguments are stored to the stack, because the
1390    // outgoing stack slots may alias the incoming argument stack slots, and
1391    // the alias isn't otherwise explicit. This is slightly more conservative
1392    // than necessary, because it means that each store effectively depends
1393    // on every argument instead of just those arguments it would clobber.
1394
1395    // Do not flag preceding copytoreg stuff together with the following stuff.
1396    InFlag = SDValue();
1397    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1398      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1399                               RegsToPass[i].second, InFlag);
1400      InFlag = Chain.getValue(1);
1401    }
1402    InFlag =SDValue();
1403  }
1404
1405  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1406  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1407  // node so that legalize doesn't hack it.
1408  bool isDirect = false;
1409  bool isARMFunc = false;
1410  bool isLocalARMFunc = false;
1411  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1412
1413  if (EnableARMLongCalls) {
1414    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1415            && "long-calls with non-static relocation model!");
1416    // Handle a global address or an external symbol. If it's not one of
1417    // those, the target's already in a register, so we don't need to do
1418    // anything extra.
1419    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1420      const GlobalValue *GV = G->getGlobal();
1421      // Create a constant pool entry for the callee address
1422      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1423      ARMConstantPoolValue *CPV =
1424        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1425
1426      // Get the address of the callee into a register
1427      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1428      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1429      Callee = DAG.getLoad(getPointerTy(), dl,
1430                           DAG.getEntryNode(), CPAddr,
1431                           MachinePointerInfo::getConstantPool(),
1432                           false, false, 0);
1433    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1434      const char *Sym = S->getSymbol();
1435
1436      // Create a constant pool entry for the callee address
1437      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1438      ARMConstantPoolValue *CPV =
1439        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1440                                      ARMPCLabelIndex, 0);
1441      // Get the address of the callee into a register
1442      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1443      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1444      Callee = DAG.getLoad(getPointerTy(), dl,
1445                           DAG.getEntryNode(), CPAddr,
1446                           MachinePointerInfo::getConstantPool(),
1447                           false, false, 0);
1448    }
1449  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1450    const GlobalValue *GV = G->getGlobal();
1451    isDirect = true;
1452    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1453    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1454                   getTargetMachine().getRelocationModel() != Reloc::Static;
1455    isARMFunc = !Subtarget->isThumb() || isStub;
1456    // ARM call to a local ARM function is predicable.
1457    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1458    // tBX takes a register source operand.
1459    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1460      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1461      ARMConstantPoolValue *CPV =
1462        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1463      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1464      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1465      Callee = DAG.getLoad(getPointerTy(), dl,
1466                           DAG.getEntryNode(), CPAddr,
1467                           MachinePointerInfo::getConstantPool(),
1468                           false, false, 0);
1469      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1470      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1471                           getPointerTy(), Callee, PICLabel);
1472    } else {
1473      // On ELF targets for PIC code, direct calls should go through the PLT
1474      unsigned OpFlags = 0;
1475      if (Subtarget->isTargetELF() &&
1476                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1477        OpFlags = ARMII::MO_PLT;
1478      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1479    }
1480  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1481    isDirect = true;
1482    bool isStub = Subtarget->isTargetDarwin() &&
1483                  getTargetMachine().getRelocationModel() != Reloc::Static;
1484    isARMFunc = !Subtarget->isThumb() || isStub;
1485    // tBX takes a register source operand.
1486    const char *Sym = S->getSymbol();
1487    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1488      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1489      ARMConstantPoolValue *CPV =
1490        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1491                                      ARMPCLabelIndex, 4);
1492      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1493      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1494      Callee = DAG.getLoad(getPointerTy(), dl,
1495                           DAG.getEntryNode(), CPAddr,
1496                           MachinePointerInfo::getConstantPool(),
1497                           false, false, 0);
1498      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1499      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1500                           getPointerTy(), Callee, PICLabel);
1501    } else {
1502      unsigned OpFlags = 0;
1503      // On ELF targets for PIC code, direct calls should go through the PLT
1504      if (Subtarget->isTargetELF() &&
1505                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1506        OpFlags = ARMII::MO_PLT;
1507      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1508    }
1509  }
1510
1511  // FIXME: handle tail calls differently.
1512  unsigned CallOpc;
1513  if (Subtarget->isThumb()) {
1514    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1515      CallOpc = ARMISD::CALL_NOLINK;
1516    else
1517      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1518  } else {
1519    CallOpc = (isDirect || Subtarget->hasV5TOps())
1520      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1521      : ARMISD::CALL_NOLINK;
1522  }
1523
1524  std::vector<SDValue> Ops;
1525  Ops.push_back(Chain);
1526  Ops.push_back(Callee);
1527
1528  // Add argument registers to the end of the list so that they are known live
1529  // into the call.
1530  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1531    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1532                                  RegsToPass[i].second.getValueType()));
1533
1534  if (InFlag.getNode())
1535    Ops.push_back(InFlag);
1536
1537  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1538  if (isTailCall)
1539    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1540
1541  // Returns a chain and a flag for retval copy to use.
1542  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1543  InFlag = Chain.getValue(1);
1544
1545  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1546                             DAG.getIntPtrConstant(0, true), InFlag);
1547  if (!Ins.empty())
1548    InFlag = Chain.getValue(1);
1549
1550  // Handle result values, copying them out of physregs into vregs that we
1551  // return.
1552  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1553                         dl, DAG, InVals);
1554}
1555
1556/// HandleByVal - Every parameter *after* a byval parameter is passed
1557/// on the stack.  Remember the next parameter register to allocate,
1558/// and then confiscate the rest of the parameter registers to insure
1559/// this.
1560void
1561llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1562  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1563  assert((State->getCallOrPrologue() == Prologue ||
1564          State->getCallOrPrologue() == Call) &&
1565         "unhandled ParmContext");
1566  if ((!State->isFirstByValRegValid()) &&
1567      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1568    State->setFirstByValReg(reg);
1569    // At a call site, a byval parameter that is split between
1570    // registers and memory needs its size truncated here.  In a
1571    // function prologue, such byval parameters are reassembled in
1572    // memory, and are not truncated.
1573    if (State->getCallOrPrologue() == Call) {
1574      unsigned excess = 4 * (ARM::R4 - reg);
1575      assert(size >= excess && "expected larger existing stack allocation");
1576      size -= excess;
1577    }
1578  }
1579  // Confiscate any remaining parameter registers to preclude their
1580  // assignment to subsequent parameters.
1581  while (State->AllocateReg(GPRArgRegs, 4))
1582    ;
1583}
1584
1585/// MatchingStackOffset - Return true if the given stack call argument is
1586/// already available in the same position (relatively) of the caller's
1587/// incoming argument stack.
1588static
1589bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1590                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1591                         const ARMInstrInfo *TII) {
1592  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1593  int FI = INT_MAX;
1594  if (Arg.getOpcode() == ISD::CopyFromReg) {
1595    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1596    if (!TargetRegisterInfo::isVirtualRegister(VR))
1597      return false;
1598    MachineInstr *Def = MRI->getVRegDef(VR);
1599    if (!Def)
1600      return false;
1601    if (!Flags.isByVal()) {
1602      if (!TII->isLoadFromStackSlot(Def, FI))
1603        return false;
1604    } else {
1605      return false;
1606    }
1607  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1608    if (Flags.isByVal())
1609      // ByVal argument is passed in as a pointer but it's now being
1610      // dereferenced. e.g.
1611      // define @foo(%struct.X* %A) {
1612      //   tail call @bar(%struct.X* byval %A)
1613      // }
1614      return false;
1615    SDValue Ptr = Ld->getBasePtr();
1616    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1617    if (!FINode)
1618      return false;
1619    FI = FINode->getIndex();
1620  } else
1621    return false;
1622
1623  assert(FI != INT_MAX);
1624  if (!MFI->isFixedObjectIndex(FI))
1625    return false;
1626  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1627}
1628
1629/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1630/// for tail call optimization. Targets which want to do tail call
1631/// optimization should implement this function.
1632bool
1633ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1634                                                     CallingConv::ID CalleeCC,
1635                                                     bool isVarArg,
1636                                                     bool isCalleeStructRet,
1637                                                     bool isCallerStructRet,
1638                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1639                                    const SmallVectorImpl<SDValue> &OutVals,
1640                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1641                                                     SelectionDAG& DAG) const {
1642  const Function *CallerF = DAG.getMachineFunction().getFunction();
1643  CallingConv::ID CallerCC = CallerF->getCallingConv();
1644  bool CCMatch = CallerCC == CalleeCC;
1645
1646  // Look for obvious safe cases to perform tail call optimization that do not
1647  // require ABI changes. This is what gcc calls sibcall.
1648
1649  // Do not sibcall optimize vararg calls unless the call site is not passing
1650  // any arguments.
1651  if (isVarArg && !Outs.empty())
1652    return false;
1653
1654  // Also avoid sibcall optimization if either caller or callee uses struct
1655  // return semantics.
1656  if (isCalleeStructRet || isCallerStructRet)
1657    return false;
1658
1659  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1660  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1661  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1662  // support in the assembler and linker to be used. This would need to be
1663  // fixed to fully support tail calls in Thumb1.
1664  //
1665  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1666  // LR.  This means if we need to reload LR, it takes an extra instructions,
1667  // which outweighs the value of the tail call; but here we don't know yet
1668  // whether LR is going to be used.  Probably the right approach is to
1669  // generate the tail call here and turn it back into CALL/RET in
1670  // emitEpilogue if LR is used.
1671
1672  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1673  // but we need to make sure there are enough registers; the only valid
1674  // registers are the 4 used for parameters.  We don't currently do this
1675  // case.
1676  if (Subtarget->isThumb1Only())
1677    return false;
1678
1679  // If the calling conventions do not match, then we'd better make sure the
1680  // results are returned in the same way as what the caller expects.
1681  if (!CCMatch) {
1682    SmallVector<CCValAssign, 16> RVLocs1;
1683    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1684                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1685    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1686
1687    SmallVector<CCValAssign, 16> RVLocs2;
1688    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1689                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1690    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1691
1692    if (RVLocs1.size() != RVLocs2.size())
1693      return false;
1694    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1695      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1696        return false;
1697      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1698        return false;
1699      if (RVLocs1[i].isRegLoc()) {
1700        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1701          return false;
1702      } else {
1703        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1704          return false;
1705      }
1706    }
1707  }
1708
1709  // If the callee takes no arguments then go on to check the results of the
1710  // call.
1711  if (!Outs.empty()) {
1712    // Check if stack adjustment is needed. For now, do not do this if any
1713    // argument is passed on the stack.
1714    SmallVector<CCValAssign, 16> ArgLocs;
1715    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1716                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1717    CCInfo.AnalyzeCallOperands(Outs,
1718                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1719    if (CCInfo.getNextStackOffset()) {
1720      MachineFunction &MF = DAG.getMachineFunction();
1721
1722      // Check if the arguments are already laid out in the right way as
1723      // the caller's fixed stack objects.
1724      MachineFrameInfo *MFI = MF.getFrameInfo();
1725      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1726      const ARMInstrInfo *TII =
1727        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1728      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1729           i != e;
1730           ++i, ++realArgIdx) {
1731        CCValAssign &VA = ArgLocs[i];
1732        EVT RegVT = VA.getLocVT();
1733        SDValue Arg = OutVals[realArgIdx];
1734        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1735        if (VA.getLocInfo() == CCValAssign::Indirect)
1736          return false;
1737        if (VA.needsCustom()) {
1738          // f64 and vector types are split into multiple registers or
1739          // register/stack-slot combinations.  The types will not match
1740          // the registers; give up on memory f64 refs until we figure
1741          // out what to do about this.
1742          if (!VA.isRegLoc())
1743            return false;
1744          if (!ArgLocs[++i].isRegLoc())
1745            return false;
1746          if (RegVT == MVT::v2f64) {
1747            if (!ArgLocs[++i].isRegLoc())
1748              return false;
1749            if (!ArgLocs[++i].isRegLoc())
1750              return false;
1751          }
1752        } else if (!VA.isRegLoc()) {
1753          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1754                                   MFI, MRI, TII))
1755            return false;
1756        }
1757      }
1758    }
1759  }
1760
1761  return true;
1762}
1763
1764SDValue
1765ARMTargetLowering::LowerReturn(SDValue Chain,
1766                               CallingConv::ID CallConv, bool isVarArg,
1767                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1768                               const SmallVectorImpl<SDValue> &OutVals,
1769                               DebugLoc dl, SelectionDAG &DAG) const {
1770
1771  // CCValAssign - represent the assignment of the return value to a location.
1772  SmallVector<CCValAssign, 16> RVLocs;
1773
1774  // CCState - Info about the registers and stack slots.
1775  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1776                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1777
1778  // Analyze outgoing return values.
1779  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1780                                               isVarArg));
1781
1782  // If this is the first return lowered for this function, add
1783  // the regs to the liveout set for the function.
1784  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1785    for (unsigned i = 0; i != RVLocs.size(); ++i)
1786      if (RVLocs[i].isRegLoc())
1787        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1788  }
1789
1790  SDValue Flag;
1791
1792  // Copy the result values into the output registers.
1793  for (unsigned i = 0, realRVLocIdx = 0;
1794       i != RVLocs.size();
1795       ++i, ++realRVLocIdx) {
1796    CCValAssign &VA = RVLocs[i];
1797    assert(VA.isRegLoc() && "Can only return in registers!");
1798
1799    SDValue Arg = OutVals[realRVLocIdx];
1800
1801    switch (VA.getLocInfo()) {
1802    default: llvm_unreachable("Unknown loc info!");
1803    case CCValAssign::Full: break;
1804    case CCValAssign::BCvt:
1805      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1806      break;
1807    }
1808
1809    if (VA.needsCustom()) {
1810      if (VA.getLocVT() == MVT::v2f64) {
1811        // Extract the first half and return it in two registers.
1812        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1813                                   DAG.getConstant(0, MVT::i32));
1814        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1815                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1816
1817        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1818        Flag = Chain.getValue(1);
1819        VA = RVLocs[++i]; // skip ahead to next loc
1820        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1821                                 HalfGPRs.getValue(1), Flag);
1822        Flag = Chain.getValue(1);
1823        VA = RVLocs[++i]; // skip ahead to next loc
1824
1825        // Extract the 2nd half and fall through to handle it as an f64 value.
1826        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1827                          DAG.getConstant(1, MVT::i32));
1828      }
1829      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1830      // available.
1831      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1832                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1833      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1834      Flag = Chain.getValue(1);
1835      VA = RVLocs[++i]; // skip ahead to next loc
1836      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1837                               Flag);
1838    } else
1839      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1840
1841    // Guarantee that all emitted copies are
1842    // stuck together, avoiding something bad.
1843    Flag = Chain.getValue(1);
1844  }
1845
1846  SDValue result;
1847  if (Flag.getNode())
1848    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1849  else // Return Void
1850    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1851
1852  return result;
1853}
1854
1855bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1856  if (N->getNumValues() != 1)
1857    return false;
1858  if (!N->hasNUsesOfValue(1, 0))
1859    return false;
1860
1861  unsigned NumCopies = 0;
1862  SDNode* Copies[2];
1863  SDNode *Use = *N->use_begin();
1864  if (Use->getOpcode() == ISD::CopyToReg) {
1865    Copies[NumCopies++] = Use;
1866  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1867    // f64 returned in a pair of GPRs.
1868    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1869         UI != UE; ++UI) {
1870      if (UI->getOpcode() != ISD::CopyToReg)
1871        return false;
1872      Copies[UI.getUse().getResNo()] = *UI;
1873      ++NumCopies;
1874    }
1875  } else if (Use->getOpcode() == ISD::BITCAST) {
1876    // f32 returned in a single GPR.
1877    if (!Use->hasNUsesOfValue(1, 0))
1878      return false;
1879    Use = *Use->use_begin();
1880    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1881      return false;
1882    Copies[NumCopies++] = Use;
1883  } else {
1884    return false;
1885  }
1886
1887  if (NumCopies != 1 && NumCopies != 2)
1888    return false;
1889
1890  bool HasRet = false;
1891  for (unsigned i = 0; i < NumCopies; ++i) {
1892    SDNode *Copy = Copies[i];
1893    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1894         UI != UE; ++UI) {
1895      if (UI->getOpcode() == ISD::CopyToReg) {
1896        SDNode *Use = *UI;
1897        if (Use == Copies[0] || Use == Copies[1])
1898          continue;
1899        return false;
1900      }
1901      if (UI->getOpcode() != ARMISD::RET_FLAG)
1902        return false;
1903      HasRet = true;
1904    }
1905  }
1906
1907  return HasRet;
1908}
1909
1910bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1911  if (!EnableARMTailCalls)
1912    return false;
1913
1914  if (!CI->isTailCall())
1915    return false;
1916
1917  return !Subtarget->isThumb1Only();
1918}
1919
1920// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1921// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1922// one of the above mentioned nodes. It has to be wrapped because otherwise
1923// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1924// be used to form addressing mode. These wrapped nodes will be selected
1925// into MOVi.
1926static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1927  EVT PtrVT = Op.getValueType();
1928  // FIXME there is no actual debug info here
1929  DebugLoc dl = Op.getDebugLoc();
1930  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1931  SDValue Res;
1932  if (CP->isMachineConstantPoolEntry())
1933    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1934                                    CP->getAlignment());
1935  else
1936    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1937                                    CP->getAlignment());
1938  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1939}
1940
1941unsigned ARMTargetLowering::getJumpTableEncoding() const {
1942  return MachineJumpTableInfo::EK_Inline;
1943}
1944
1945SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1946                                             SelectionDAG &DAG) const {
1947  MachineFunction &MF = DAG.getMachineFunction();
1948  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1949  unsigned ARMPCLabelIndex = 0;
1950  DebugLoc DL = Op.getDebugLoc();
1951  EVT PtrVT = getPointerTy();
1952  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1953  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1954  SDValue CPAddr;
1955  if (RelocM == Reloc::Static) {
1956    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1957  } else {
1958    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1959    ARMPCLabelIndex = AFI->createPICLabelUId();
1960    ARMConstantPoolValue *CPV =
1961      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1962                                      ARMCP::CPBlockAddress, PCAdj);
1963    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1964  }
1965  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1966  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1967                               MachinePointerInfo::getConstantPool(),
1968                               false, false, 0);
1969  if (RelocM == Reloc::Static)
1970    return Result;
1971  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1972  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1973}
1974
1975// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1976SDValue
1977ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1978                                                 SelectionDAG &DAG) const {
1979  DebugLoc dl = GA->getDebugLoc();
1980  EVT PtrVT = getPointerTy();
1981  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1982  MachineFunction &MF = DAG.getMachineFunction();
1983  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1984  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1985  ARMConstantPoolValue *CPV =
1986    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
1987                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1988  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1989  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1990  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1991                         MachinePointerInfo::getConstantPool(),
1992                         false, false, 0);
1993  SDValue Chain = Argument.getValue(1);
1994
1995  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1996  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1997
1998  // call __tls_get_addr.
1999  ArgListTy Args;
2000  ArgListEntry Entry;
2001  Entry.Node = Argument;
2002  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2003  Args.push_back(Entry);
2004  // FIXME: is there useful debug info available here?
2005  std::pair<SDValue, SDValue> CallResult =
2006    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2007                false, false, false, false,
2008                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2009                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2010  return CallResult.first;
2011}
2012
2013// Lower ISD::GlobalTLSAddress using the "initial exec" or
2014// "local exec" model.
2015SDValue
2016ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2017                                        SelectionDAG &DAG) const {
2018  const GlobalValue *GV = GA->getGlobal();
2019  DebugLoc dl = GA->getDebugLoc();
2020  SDValue Offset;
2021  SDValue Chain = DAG.getEntryNode();
2022  EVT PtrVT = getPointerTy();
2023  // Get the Thread Pointer
2024  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2025
2026  if (GV->isDeclaration()) {
2027    MachineFunction &MF = DAG.getMachineFunction();
2028    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2029    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2030    // Initial exec model.
2031    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2032    ARMConstantPoolValue *CPV =
2033      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2034                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2035                                      true);
2036    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2037    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2038    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2039                         MachinePointerInfo::getConstantPool(),
2040                         false, false, 0);
2041    Chain = Offset.getValue(1);
2042
2043    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2044    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2045
2046    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2047                         MachinePointerInfo::getConstantPool(),
2048                         false, false, 0);
2049  } else {
2050    // local exec model
2051    ARMConstantPoolValue *CPV =
2052      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2053    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2054    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2055    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2056                         MachinePointerInfo::getConstantPool(),
2057                         false, false, 0);
2058  }
2059
2060  // The address of the thread local variable is the add of the thread
2061  // pointer with the offset of the variable.
2062  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2063}
2064
2065SDValue
2066ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2067  // TODO: implement the "local dynamic" model
2068  assert(Subtarget->isTargetELF() &&
2069         "TLS not implemented for non-ELF targets");
2070  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2071  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2072  // otherwise use the "Local Exec" TLS Model
2073  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2074    return LowerToTLSGeneralDynamicModel(GA, DAG);
2075  else
2076    return LowerToTLSExecModels(GA, DAG);
2077}
2078
2079SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2080                                                 SelectionDAG &DAG) const {
2081  EVT PtrVT = getPointerTy();
2082  DebugLoc dl = Op.getDebugLoc();
2083  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2084  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2085  if (RelocM == Reloc::PIC_) {
2086    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2087    ARMConstantPoolValue *CPV =
2088      ARMConstantPoolConstant::Create(GV,
2089                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2090    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2091    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2092    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2093                                 CPAddr,
2094                                 MachinePointerInfo::getConstantPool(),
2095                                 false, false, 0);
2096    SDValue Chain = Result.getValue(1);
2097    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2098    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2099    if (!UseGOTOFF)
2100      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2101                           MachinePointerInfo::getGOT(), false, false, 0);
2102    return Result;
2103  }
2104
2105  // If we have T2 ops, we can materialize the address directly via movt/movw
2106  // pair. This is always cheaper.
2107  if (Subtarget->useMovt()) {
2108    ++NumMovwMovt;
2109    // FIXME: Once remat is capable of dealing with instructions with register
2110    // operands, expand this into two nodes.
2111    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2112                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2113  } else {
2114    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2115    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2116    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2117                       MachinePointerInfo::getConstantPool(),
2118                       false, false, 0);
2119  }
2120}
2121
2122SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2123                                                    SelectionDAG &DAG) const {
2124  EVT PtrVT = getPointerTy();
2125  DebugLoc dl = Op.getDebugLoc();
2126  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2127  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2128  MachineFunction &MF = DAG.getMachineFunction();
2129  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2130
2131  // FIXME: Enable this for static codegen when tool issues are fixed.
2132  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2133    ++NumMovwMovt;
2134    // FIXME: Once remat is capable of dealing with instructions with register
2135    // operands, expand this into two nodes.
2136    if (RelocM == Reloc::Static)
2137      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2138                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2139
2140    unsigned Wrapper = (RelocM == Reloc::PIC_)
2141      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2142    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2143                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2144    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2145      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2146                           MachinePointerInfo::getGOT(), false, false, 0);
2147    return Result;
2148  }
2149
2150  unsigned ARMPCLabelIndex = 0;
2151  SDValue CPAddr;
2152  if (RelocM == Reloc::Static) {
2153    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2154  } else {
2155    ARMPCLabelIndex = AFI->createPICLabelUId();
2156    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2157    ARMConstantPoolValue *CPV =
2158      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2159                                      PCAdj);
2160    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2161  }
2162  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2163
2164  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2165                               MachinePointerInfo::getConstantPool(),
2166                               false, false, 0);
2167  SDValue Chain = Result.getValue(1);
2168
2169  if (RelocM == Reloc::PIC_) {
2170    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2171    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2172  }
2173
2174  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2175    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2176                         false, false, 0);
2177
2178  return Result;
2179}
2180
2181SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2182                                                    SelectionDAG &DAG) const {
2183  assert(Subtarget->isTargetELF() &&
2184         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2185  MachineFunction &MF = DAG.getMachineFunction();
2186  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2187  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2188  EVT PtrVT = getPointerTy();
2189  DebugLoc dl = Op.getDebugLoc();
2190  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2191  ARMConstantPoolValue *CPV =
2192    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2193                                  ARMPCLabelIndex, PCAdj);
2194  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2195  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2196  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2197                               MachinePointerInfo::getConstantPool(),
2198                               false, false, 0);
2199  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2200  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2201}
2202
2203SDValue
2204ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2205  const {
2206  DebugLoc dl = Op.getDebugLoc();
2207  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2208                     Op.getOperand(0), Op.getOperand(1));
2209}
2210
2211SDValue
2212ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2213  DebugLoc dl = Op.getDebugLoc();
2214  SDValue Val = DAG.getConstant(0, MVT::i32);
2215  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2216                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2217                     Op.getOperand(1), Val);
2218}
2219
2220SDValue
2221ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2222  DebugLoc dl = Op.getDebugLoc();
2223  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2224                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2225}
2226
2227SDValue
2228ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2229                                          const ARMSubtarget *Subtarget) const {
2230  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2231  DebugLoc dl = Op.getDebugLoc();
2232  switch (IntNo) {
2233  default: return SDValue();    // Don't custom lower most intrinsics.
2234  case Intrinsic::arm_thread_pointer: {
2235    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2236    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2237  }
2238  case Intrinsic::eh_sjlj_lsda: {
2239    MachineFunction &MF = DAG.getMachineFunction();
2240    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2241    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2242    EVT PtrVT = getPointerTy();
2243    DebugLoc dl = Op.getDebugLoc();
2244    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2245    SDValue CPAddr;
2246    unsigned PCAdj = (RelocM != Reloc::PIC_)
2247      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2248    ARMConstantPoolValue *CPV =
2249      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2250                                      ARMCP::CPLSDA, PCAdj);
2251    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2252    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2253    SDValue Result =
2254      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2255                  MachinePointerInfo::getConstantPool(),
2256                  false, false, 0);
2257
2258    if (RelocM == Reloc::PIC_) {
2259      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2260      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2261    }
2262    return Result;
2263  }
2264  case Intrinsic::arm_neon_vmulls:
2265  case Intrinsic::arm_neon_vmullu: {
2266    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2267      ? ARMISD::VMULLs : ARMISD::VMULLu;
2268    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2269                       Op.getOperand(1), Op.getOperand(2));
2270  }
2271  }
2272}
2273
2274static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2275                               const ARMSubtarget *Subtarget) {
2276  DebugLoc dl = Op.getDebugLoc();
2277  if (!Subtarget->hasDataBarrier()) {
2278    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2279    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2280    // here.
2281    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2282           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2283    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2284                       DAG.getConstant(0, MVT::i32));
2285  }
2286
2287  SDValue Op5 = Op.getOperand(5);
2288  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2289  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2290  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2291  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2292
2293  ARM_MB::MemBOpt DMBOpt;
2294  if (isDeviceBarrier)
2295    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2296  else
2297    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2298  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2299                     DAG.getConstant(DMBOpt, MVT::i32));
2300}
2301
2302
2303static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2304                                 const ARMSubtarget *Subtarget) {
2305  // FIXME: handle "fence singlethread" more efficiently.
2306  DebugLoc dl = Op.getDebugLoc();
2307  if (!Subtarget->hasDataBarrier()) {
2308    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2309    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2310    // here.
2311    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2312           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2313    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2314                       DAG.getConstant(0, MVT::i32));
2315  }
2316
2317  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2318                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2319}
2320
2321static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2322                             const ARMSubtarget *Subtarget) {
2323  // ARM pre v5TE and Thumb1 does not have preload instructions.
2324  if (!(Subtarget->isThumb2() ||
2325        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2326    // Just preserve the chain.
2327    return Op.getOperand(0);
2328
2329  DebugLoc dl = Op.getDebugLoc();
2330  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2331  if (!isRead &&
2332      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2333    // ARMv7 with MP extension has PLDW.
2334    return Op.getOperand(0);
2335
2336  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2337  if (Subtarget->isThumb()) {
2338    // Invert the bits.
2339    isRead = ~isRead & 1;
2340    isData = ~isData & 1;
2341  }
2342
2343  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2344                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2345                     DAG.getConstant(isData, MVT::i32));
2346}
2347
2348static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2349  MachineFunction &MF = DAG.getMachineFunction();
2350  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2351
2352  // vastart just stores the address of the VarArgsFrameIndex slot into the
2353  // memory location argument.
2354  DebugLoc dl = Op.getDebugLoc();
2355  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2356  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2357  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2358  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2359                      MachinePointerInfo(SV), false, false, 0);
2360}
2361
2362SDValue
2363ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2364                                        SDValue &Root, SelectionDAG &DAG,
2365                                        DebugLoc dl) const {
2366  MachineFunction &MF = DAG.getMachineFunction();
2367  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2368
2369  TargetRegisterClass *RC;
2370  if (AFI->isThumb1OnlyFunction())
2371    RC = ARM::tGPRRegisterClass;
2372  else
2373    RC = ARM::GPRRegisterClass;
2374
2375  // Transform the arguments stored in physical registers into virtual ones.
2376  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2377  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2378
2379  SDValue ArgValue2;
2380  if (NextVA.isMemLoc()) {
2381    MachineFrameInfo *MFI = MF.getFrameInfo();
2382    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2383
2384    // Create load node to retrieve arguments from the stack.
2385    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2386    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2387                            MachinePointerInfo::getFixedStack(FI),
2388                            false, false, 0);
2389  } else {
2390    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2391    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2392  }
2393
2394  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2395}
2396
2397void
2398ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2399                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2400  const {
2401  unsigned NumGPRs;
2402  if (CCInfo.isFirstByValRegValid())
2403    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2404  else {
2405    unsigned int firstUnalloced;
2406    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2407                                                sizeof(GPRArgRegs) /
2408                                                sizeof(GPRArgRegs[0]));
2409    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2410  }
2411
2412  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2413  VARegSize = NumGPRs * 4;
2414  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2415}
2416
2417// The remaining GPRs hold either the beginning of variable-argument
2418// data, or the beginning of an aggregate passed by value (usuall
2419// byval).  Either way, we allocate stack slots adjacent to the data
2420// provided by our caller, and store the unallocated registers there.
2421// If this is a variadic function, the va_list pointer will begin with
2422// these values; otherwise, this reassembles a (byval) structure that
2423// was split between registers and memory.
2424void
2425ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2426                                        DebugLoc dl, SDValue &Chain,
2427                                        unsigned ArgOffset) const {
2428  MachineFunction &MF = DAG.getMachineFunction();
2429  MachineFrameInfo *MFI = MF.getFrameInfo();
2430  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2431  unsigned firstRegToSaveIndex;
2432  if (CCInfo.isFirstByValRegValid())
2433    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2434  else {
2435    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2436      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2437  }
2438
2439  unsigned VARegSize, VARegSaveSize;
2440  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2441  if (VARegSaveSize) {
2442    // If this function is vararg, store any remaining integer argument regs
2443    // to their spots on the stack so that they may be loaded by deferencing
2444    // the result of va_next.
2445    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2446    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2447                                                     ArgOffset + VARegSaveSize
2448                                                     - VARegSize,
2449                                                     false));
2450    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2451                                    getPointerTy());
2452
2453    SmallVector<SDValue, 4> MemOps;
2454    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2455      TargetRegisterClass *RC;
2456      if (AFI->isThumb1OnlyFunction())
2457        RC = ARM::tGPRRegisterClass;
2458      else
2459        RC = ARM::GPRRegisterClass;
2460
2461      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2462      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2463      SDValue Store =
2464        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2465                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2466                     false, false, 0);
2467      MemOps.push_back(Store);
2468      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2469                        DAG.getConstant(4, getPointerTy()));
2470    }
2471    if (!MemOps.empty())
2472      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2473                          &MemOps[0], MemOps.size());
2474  } else
2475    // This will point to the next argument passed via stack.
2476    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2477}
2478
2479SDValue
2480ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2481                                        CallingConv::ID CallConv, bool isVarArg,
2482                                        const SmallVectorImpl<ISD::InputArg>
2483                                          &Ins,
2484                                        DebugLoc dl, SelectionDAG &DAG,
2485                                        SmallVectorImpl<SDValue> &InVals)
2486                                          const {
2487  MachineFunction &MF = DAG.getMachineFunction();
2488  MachineFrameInfo *MFI = MF.getFrameInfo();
2489
2490  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2491
2492  // Assign locations to all of the incoming arguments.
2493  SmallVector<CCValAssign, 16> ArgLocs;
2494  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2495                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2496  CCInfo.AnalyzeFormalArguments(Ins,
2497                                CCAssignFnForNode(CallConv, /* Return*/ false,
2498                                                  isVarArg));
2499
2500  SmallVector<SDValue, 16> ArgValues;
2501  int lastInsIndex = -1;
2502
2503  SDValue ArgValue;
2504  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2505    CCValAssign &VA = ArgLocs[i];
2506
2507    // Arguments stored in registers.
2508    if (VA.isRegLoc()) {
2509      EVT RegVT = VA.getLocVT();
2510
2511      if (VA.needsCustom()) {
2512        // f64 and vector types are split up into multiple registers or
2513        // combinations of registers and stack slots.
2514        if (VA.getLocVT() == MVT::v2f64) {
2515          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2516                                                   Chain, DAG, dl);
2517          VA = ArgLocs[++i]; // skip ahead to next loc
2518          SDValue ArgValue2;
2519          if (VA.isMemLoc()) {
2520            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2521            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2522            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2523                                    MachinePointerInfo::getFixedStack(FI),
2524                                    false, false, 0);
2525          } else {
2526            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2527                                             Chain, DAG, dl);
2528          }
2529          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2530          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2531                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2532          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2533                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2534        } else
2535          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2536
2537      } else {
2538        TargetRegisterClass *RC;
2539
2540        if (RegVT == MVT::f32)
2541          RC = ARM::SPRRegisterClass;
2542        else if (RegVT == MVT::f64)
2543          RC = ARM::DPRRegisterClass;
2544        else if (RegVT == MVT::v2f64)
2545          RC = ARM::QPRRegisterClass;
2546        else if (RegVT == MVT::i32)
2547          RC = (AFI->isThumb1OnlyFunction() ?
2548                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2549        else
2550          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2551
2552        // Transform the arguments in physical registers into virtual ones.
2553        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2554        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2555      }
2556
2557      // If this is an 8 or 16-bit value, it is really passed promoted
2558      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2559      // truncate to the right size.
2560      switch (VA.getLocInfo()) {
2561      default: llvm_unreachable("Unknown loc info!");
2562      case CCValAssign::Full: break;
2563      case CCValAssign::BCvt:
2564        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2565        break;
2566      case CCValAssign::SExt:
2567        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2568                               DAG.getValueType(VA.getValVT()));
2569        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2570        break;
2571      case CCValAssign::ZExt:
2572        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2573                               DAG.getValueType(VA.getValVT()));
2574        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2575        break;
2576      }
2577
2578      InVals.push_back(ArgValue);
2579
2580    } else { // VA.isRegLoc()
2581
2582      // sanity check
2583      assert(VA.isMemLoc());
2584      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2585
2586      int index = ArgLocs[i].getValNo();
2587
2588      // Some Ins[] entries become multiple ArgLoc[] entries.
2589      // Process them only once.
2590      if (index != lastInsIndex)
2591        {
2592          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2593          // FIXME: For now, all byval parameter objects are marked mutable.
2594          // This can be changed with more analysis.
2595          // In case of tail call optimization mark all arguments mutable.
2596          // Since they could be overwritten by lowering of arguments in case of
2597          // a tail call.
2598          if (Flags.isByVal()) {
2599            unsigned VARegSize, VARegSaveSize;
2600            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2601            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2602            unsigned Bytes = Flags.getByValSize() - VARegSize;
2603            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2604            int FI = MFI->CreateFixedObject(Bytes,
2605                                            VA.getLocMemOffset(), false);
2606            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2607          } else {
2608            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2609                                            VA.getLocMemOffset(), true);
2610
2611            // Create load nodes to retrieve arguments from the stack.
2612            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2613            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2614                                         MachinePointerInfo::getFixedStack(FI),
2615                                         false, false, 0));
2616          }
2617          lastInsIndex = index;
2618        }
2619    }
2620  }
2621
2622  // varargs
2623  if (isVarArg)
2624    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2625
2626  return Chain;
2627}
2628
2629/// isFloatingPointZero - Return true if this is +0.0.
2630static bool isFloatingPointZero(SDValue Op) {
2631  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2632    return CFP->getValueAPF().isPosZero();
2633  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2634    // Maybe this has already been legalized into the constant pool?
2635    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2636      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2637      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2638        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2639          return CFP->getValueAPF().isPosZero();
2640    }
2641  }
2642  return false;
2643}
2644
2645/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2646/// the given operands.
2647SDValue
2648ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2649                             SDValue &ARMcc, SelectionDAG &DAG,
2650                             DebugLoc dl) const {
2651  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2652    unsigned C = RHSC->getZExtValue();
2653    if (!isLegalICmpImmediate(C)) {
2654      // Constant does not fit, try adjusting it by one?
2655      switch (CC) {
2656      default: break;
2657      case ISD::SETLT:
2658      case ISD::SETGE:
2659        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2660          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2661          RHS = DAG.getConstant(C-1, MVT::i32);
2662        }
2663        break;
2664      case ISD::SETULT:
2665      case ISD::SETUGE:
2666        if (C != 0 && isLegalICmpImmediate(C-1)) {
2667          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2668          RHS = DAG.getConstant(C-1, MVT::i32);
2669        }
2670        break;
2671      case ISD::SETLE:
2672      case ISD::SETGT:
2673        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2674          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2675          RHS = DAG.getConstant(C+1, MVT::i32);
2676        }
2677        break;
2678      case ISD::SETULE:
2679      case ISD::SETUGT:
2680        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2681          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2682          RHS = DAG.getConstant(C+1, MVT::i32);
2683        }
2684        break;
2685      }
2686    }
2687  }
2688
2689  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2690  ARMISD::NodeType CompareType;
2691  switch (CondCode) {
2692  default:
2693    CompareType = ARMISD::CMP;
2694    break;
2695  case ARMCC::EQ:
2696  case ARMCC::NE:
2697    // Uses only Z Flag
2698    CompareType = ARMISD::CMPZ;
2699    break;
2700  }
2701  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2702  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2703}
2704
2705/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2706SDValue
2707ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2708                             DebugLoc dl) const {
2709  SDValue Cmp;
2710  if (!isFloatingPointZero(RHS))
2711    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2712  else
2713    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2714  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2715}
2716
2717/// duplicateCmp - Glue values can have only one use, so this function
2718/// duplicates a comparison node.
2719SDValue
2720ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2721  unsigned Opc = Cmp.getOpcode();
2722  DebugLoc DL = Cmp.getDebugLoc();
2723  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2724    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2725
2726  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2727  Cmp = Cmp.getOperand(0);
2728  Opc = Cmp.getOpcode();
2729  if (Opc == ARMISD::CMPFP)
2730    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2731  else {
2732    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2733    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2734  }
2735  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2736}
2737
2738SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2739  SDValue Cond = Op.getOperand(0);
2740  SDValue SelectTrue = Op.getOperand(1);
2741  SDValue SelectFalse = Op.getOperand(2);
2742  DebugLoc dl = Op.getDebugLoc();
2743
2744  // Convert:
2745  //
2746  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2747  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2748  //
2749  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2750    const ConstantSDNode *CMOVTrue =
2751      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2752    const ConstantSDNode *CMOVFalse =
2753      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2754
2755    if (CMOVTrue && CMOVFalse) {
2756      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2757      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2758
2759      SDValue True;
2760      SDValue False;
2761      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2762        True = SelectTrue;
2763        False = SelectFalse;
2764      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2765        True = SelectFalse;
2766        False = SelectTrue;
2767      }
2768
2769      if (True.getNode() && False.getNode()) {
2770        EVT VT = Op.getValueType();
2771        SDValue ARMcc = Cond.getOperand(2);
2772        SDValue CCR = Cond.getOperand(3);
2773        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2774        assert(True.getValueType() == VT);
2775        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2776      }
2777    }
2778  }
2779
2780  return DAG.getSelectCC(dl, Cond,
2781                         DAG.getConstant(0, Cond.getValueType()),
2782                         SelectTrue, SelectFalse, ISD::SETNE);
2783}
2784
2785SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2786  EVT VT = Op.getValueType();
2787  SDValue LHS = Op.getOperand(0);
2788  SDValue RHS = Op.getOperand(1);
2789  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2790  SDValue TrueVal = Op.getOperand(2);
2791  SDValue FalseVal = Op.getOperand(3);
2792  DebugLoc dl = Op.getDebugLoc();
2793
2794  if (LHS.getValueType() == MVT::i32) {
2795    SDValue ARMcc;
2796    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2797    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2798    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2799  }
2800
2801  ARMCC::CondCodes CondCode, CondCode2;
2802  FPCCToARMCC(CC, CondCode, CondCode2);
2803
2804  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2805  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2806  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2807  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2808                               ARMcc, CCR, Cmp);
2809  if (CondCode2 != ARMCC::AL) {
2810    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2811    // FIXME: Needs another CMP because flag can have but one use.
2812    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2813    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2814                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2815  }
2816  return Result;
2817}
2818
2819/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2820/// to morph to an integer compare sequence.
2821static bool canChangeToInt(SDValue Op, bool &SeenZero,
2822                           const ARMSubtarget *Subtarget) {
2823  SDNode *N = Op.getNode();
2824  if (!N->hasOneUse())
2825    // Otherwise it requires moving the value from fp to integer registers.
2826    return false;
2827  if (!N->getNumValues())
2828    return false;
2829  EVT VT = Op.getValueType();
2830  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2831    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2832    // vmrs are very slow, e.g. cortex-a8.
2833    return false;
2834
2835  if (isFloatingPointZero(Op)) {
2836    SeenZero = true;
2837    return true;
2838  }
2839  return ISD::isNormalLoad(N);
2840}
2841
2842static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2843  if (isFloatingPointZero(Op))
2844    return DAG.getConstant(0, MVT::i32);
2845
2846  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2847    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2848                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2849                       Ld->isVolatile(), Ld->isNonTemporal(),
2850                       Ld->getAlignment());
2851
2852  llvm_unreachable("Unknown VFP cmp argument!");
2853}
2854
2855static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2856                           SDValue &RetVal1, SDValue &RetVal2) {
2857  if (isFloatingPointZero(Op)) {
2858    RetVal1 = DAG.getConstant(0, MVT::i32);
2859    RetVal2 = DAG.getConstant(0, MVT::i32);
2860    return;
2861  }
2862
2863  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2864    SDValue Ptr = Ld->getBasePtr();
2865    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2866                          Ld->getChain(), Ptr,
2867                          Ld->getPointerInfo(),
2868                          Ld->isVolatile(), Ld->isNonTemporal(),
2869                          Ld->getAlignment());
2870
2871    EVT PtrType = Ptr.getValueType();
2872    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2873    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2874                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2875    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2876                          Ld->getChain(), NewPtr,
2877                          Ld->getPointerInfo().getWithOffset(4),
2878                          Ld->isVolatile(), Ld->isNonTemporal(),
2879                          NewAlign);
2880    return;
2881  }
2882
2883  llvm_unreachable("Unknown VFP cmp argument!");
2884}
2885
2886/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2887/// f32 and even f64 comparisons to integer ones.
2888SDValue
2889ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2890  SDValue Chain = Op.getOperand(0);
2891  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2892  SDValue LHS = Op.getOperand(2);
2893  SDValue RHS = Op.getOperand(3);
2894  SDValue Dest = Op.getOperand(4);
2895  DebugLoc dl = Op.getDebugLoc();
2896
2897  bool SeenZero = false;
2898  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2899      canChangeToInt(RHS, SeenZero, Subtarget) &&
2900      // If one of the operand is zero, it's safe to ignore the NaN case since
2901      // we only care about equality comparisons.
2902      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2903    // If unsafe fp math optimization is enabled and there are no other uses of
2904    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2905    // to an integer comparison.
2906    if (CC == ISD::SETOEQ)
2907      CC = ISD::SETEQ;
2908    else if (CC == ISD::SETUNE)
2909      CC = ISD::SETNE;
2910
2911    SDValue ARMcc;
2912    if (LHS.getValueType() == MVT::f32) {
2913      LHS = bitcastf32Toi32(LHS, DAG);
2914      RHS = bitcastf32Toi32(RHS, DAG);
2915      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2916      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2917      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2918                         Chain, Dest, ARMcc, CCR, Cmp);
2919    }
2920
2921    SDValue LHS1, LHS2;
2922    SDValue RHS1, RHS2;
2923    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2924    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2925    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2926    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2927    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2928    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2929    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2930  }
2931
2932  return SDValue();
2933}
2934
2935SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2936  SDValue Chain = Op.getOperand(0);
2937  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2938  SDValue LHS = Op.getOperand(2);
2939  SDValue RHS = Op.getOperand(3);
2940  SDValue Dest = Op.getOperand(4);
2941  DebugLoc dl = Op.getDebugLoc();
2942
2943  if (LHS.getValueType() == MVT::i32) {
2944    SDValue ARMcc;
2945    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2946    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2947    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2948                       Chain, Dest, ARMcc, CCR, Cmp);
2949  }
2950
2951  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2952
2953  if (UnsafeFPMath &&
2954      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2955       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2956    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2957    if (Result.getNode())
2958      return Result;
2959  }
2960
2961  ARMCC::CondCodes CondCode, CondCode2;
2962  FPCCToARMCC(CC, CondCode, CondCode2);
2963
2964  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2965  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2966  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2967  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2968  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2969  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2970  if (CondCode2 != ARMCC::AL) {
2971    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2972    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2973    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2974  }
2975  return Res;
2976}
2977
2978SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2979  SDValue Chain = Op.getOperand(0);
2980  SDValue Table = Op.getOperand(1);
2981  SDValue Index = Op.getOperand(2);
2982  DebugLoc dl = Op.getDebugLoc();
2983
2984  EVT PTy = getPointerTy();
2985  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2986  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2987  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2988  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2989  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2990  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2991  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2992  if (Subtarget->isThumb2()) {
2993    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2994    // which does another jump to the destination. This also makes it easier
2995    // to translate it to TBB / TBH later.
2996    // FIXME: This might not work if the function is extremely large.
2997    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2998                       Addr, Op.getOperand(2), JTI, UId);
2999  }
3000  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3001    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3002                       MachinePointerInfo::getJumpTable(),
3003                       false, false, 0);
3004    Chain = Addr.getValue(1);
3005    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3006    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3007  } else {
3008    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3009                       MachinePointerInfo::getJumpTable(), false, false, 0);
3010    Chain = Addr.getValue(1);
3011    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3012  }
3013}
3014
3015static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3016  DebugLoc dl = Op.getDebugLoc();
3017  unsigned Opc;
3018
3019  switch (Op.getOpcode()) {
3020  default:
3021    assert(0 && "Invalid opcode!");
3022  case ISD::FP_TO_SINT:
3023    Opc = ARMISD::FTOSI;
3024    break;
3025  case ISD::FP_TO_UINT:
3026    Opc = ARMISD::FTOUI;
3027    break;
3028  }
3029  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3030  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3031}
3032
3033static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3034  EVT VT = Op.getValueType();
3035  DebugLoc dl = Op.getDebugLoc();
3036
3037  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3038         "Invalid type for custom lowering!");
3039  if (VT != MVT::v4f32)
3040    return DAG.UnrollVectorOp(Op.getNode());
3041
3042  unsigned CastOpc;
3043  unsigned Opc;
3044  switch (Op.getOpcode()) {
3045  default:
3046    assert(0 && "Invalid opcode!");
3047  case ISD::SINT_TO_FP:
3048    CastOpc = ISD::SIGN_EXTEND;
3049    Opc = ISD::SINT_TO_FP;
3050    break;
3051  case ISD::UINT_TO_FP:
3052    CastOpc = ISD::ZERO_EXTEND;
3053    Opc = ISD::UINT_TO_FP;
3054    break;
3055  }
3056
3057  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3058  return DAG.getNode(Opc, dl, VT, Op);
3059}
3060
3061static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3062  EVT VT = Op.getValueType();
3063  if (VT.isVector())
3064    return LowerVectorINT_TO_FP(Op, DAG);
3065
3066  DebugLoc dl = Op.getDebugLoc();
3067  unsigned Opc;
3068
3069  switch (Op.getOpcode()) {
3070  default:
3071    assert(0 && "Invalid opcode!");
3072  case ISD::SINT_TO_FP:
3073    Opc = ARMISD::SITOF;
3074    break;
3075  case ISD::UINT_TO_FP:
3076    Opc = ARMISD::UITOF;
3077    break;
3078  }
3079
3080  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3081  return DAG.getNode(Opc, dl, VT, Op);
3082}
3083
3084SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3085  // Implement fcopysign with a fabs and a conditional fneg.
3086  SDValue Tmp0 = Op.getOperand(0);
3087  SDValue Tmp1 = Op.getOperand(1);
3088  DebugLoc dl = Op.getDebugLoc();
3089  EVT VT = Op.getValueType();
3090  EVT SrcVT = Tmp1.getValueType();
3091  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3092    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3093  bool UseNEON = !InGPR && Subtarget->hasNEON();
3094
3095  if (UseNEON) {
3096    // Use VBSL to copy the sign bit.
3097    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3098    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3099                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3100    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3101    if (VT == MVT::f64)
3102      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3103                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3104                         DAG.getConstant(32, MVT::i32));
3105    else /*if (VT == MVT::f32)*/
3106      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3107    if (SrcVT == MVT::f32) {
3108      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3109      if (VT == MVT::f64)
3110        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3111                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3112                           DAG.getConstant(32, MVT::i32));
3113    } else if (VT == MVT::f32)
3114      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3115                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3116                         DAG.getConstant(32, MVT::i32));
3117    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3118    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3119
3120    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3121                                            MVT::i32);
3122    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3123    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3124                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3125
3126    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3127                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3128                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3129    if (VT == MVT::f32) {
3130      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3131      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3132                        DAG.getConstant(0, MVT::i32));
3133    } else {
3134      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3135    }
3136
3137    return Res;
3138  }
3139
3140  // Bitcast operand 1 to i32.
3141  if (SrcVT == MVT::f64)
3142    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3143                       &Tmp1, 1).getValue(1);
3144  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3145
3146  // Or in the signbit with integer operations.
3147  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3148  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3149  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3150  if (VT == MVT::f32) {
3151    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3152                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3153    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3154                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3155  }
3156
3157  // f64: Or the high part with signbit and then combine two parts.
3158  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3159                     &Tmp0, 1);
3160  SDValue Lo = Tmp0.getValue(0);
3161  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3162  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3163  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3164}
3165
3166SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3167  MachineFunction &MF = DAG.getMachineFunction();
3168  MachineFrameInfo *MFI = MF.getFrameInfo();
3169  MFI->setReturnAddressIsTaken(true);
3170
3171  EVT VT = Op.getValueType();
3172  DebugLoc dl = Op.getDebugLoc();
3173  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3174  if (Depth) {
3175    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3176    SDValue Offset = DAG.getConstant(4, MVT::i32);
3177    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3178                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3179                       MachinePointerInfo(), false, false, 0);
3180  }
3181
3182  // Return LR, which contains the return address. Mark it an implicit live-in.
3183  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3184  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3185}
3186
3187SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3188  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3189  MFI->setFrameAddressIsTaken(true);
3190
3191  EVT VT = Op.getValueType();
3192  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3193  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3194  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3195    ? ARM::R7 : ARM::R11;
3196  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3197  while (Depth--)
3198    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3199                            MachinePointerInfo(),
3200                            false, false, 0);
3201  return FrameAddr;
3202}
3203
3204/// ExpandBITCAST - If the target supports VFP, this function is called to
3205/// expand a bit convert where either the source or destination type is i64 to
3206/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3207/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3208/// vectors), since the legalizer won't know what to do with that.
3209static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3210  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3211  DebugLoc dl = N->getDebugLoc();
3212  SDValue Op = N->getOperand(0);
3213
3214  // This function is only supposed to be called for i64 types, either as the
3215  // source or destination of the bit convert.
3216  EVT SrcVT = Op.getValueType();
3217  EVT DstVT = N->getValueType(0);
3218  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3219         "ExpandBITCAST called for non-i64 type");
3220
3221  // Turn i64->f64 into VMOVDRR.
3222  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3223    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3224                             DAG.getConstant(0, MVT::i32));
3225    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3226                             DAG.getConstant(1, MVT::i32));
3227    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3228                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3229  }
3230
3231  // Turn f64->i64 into VMOVRRD.
3232  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3233    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3234                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3235    // Merge the pieces into a single i64 value.
3236    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3237  }
3238
3239  return SDValue();
3240}
3241
3242/// getZeroVector - Returns a vector of specified type with all zero elements.
3243/// Zero vectors are used to represent vector negation and in those cases
3244/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3245/// not support i64 elements, so sometimes the zero vectors will need to be
3246/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3247/// zero vector.
3248static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3249  assert(VT.isVector() && "Expected a vector type");
3250  // The canonical modified immediate encoding of a zero vector is....0!
3251  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3252  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3253  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3254  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3255}
3256
3257/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3258/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3259SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3260                                                SelectionDAG &DAG) const {
3261  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3262  EVT VT = Op.getValueType();
3263  unsigned VTBits = VT.getSizeInBits();
3264  DebugLoc dl = Op.getDebugLoc();
3265  SDValue ShOpLo = Op.getOperand(0);
3266  SDValue ShOpHi = Op.getOperand(1);
3267  SDValue ShAmt  = Op.getOperand(2);
3268  SDValue ARMcc;
3269  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3270
3271  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3272
3273  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3274                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3275  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3276  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3277                                   DAG.getConstant(VTBits, MVT::i32));
3278  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3279  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3280  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3281
3282  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3283  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3284                          ARMcc, DAG, dl);
3285  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3286  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3287                           CCR, Cmp);
3288
3289  SDValue Ops[2] = { Lo, Hi };
3290  return DAG.getMergeValues(Ops, 2, dl);
3291}
3292
3293/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3294/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3295SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3296                                               SelectionDAG &DAG) const {
3297  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3298  EVT VT = Op.getValueType();
3299  unsigned VTBits = VT.getSizeInBits();
3300  DebugLoc dl = Op.getDebugLoc();
3301  SDValue ShOpLo = Op.getOperand(0);
3302  SDValue ShOpHi = Op.getOperand(1);
3303  SDValue ShAmt  = Op.getOperand(2);
3304  SDValue ARMcc;
3305
3306  assert(Op.getOpcode() == ISD::SHL_PARTS);
3307  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3308                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3309  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3310  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3311                                   DAG.getConstant(VTBits, MVT::i32));
3312  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3313  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3314
3315  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3316  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3317  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3318                          ARMcc, DAG, dl);
3319  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3320  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3321                           CCR, Cmp);
3322
3323  SDValue Ops[2] = { Lo, Hi };
3324  return DAG.getMergeValues(Ops, 2, dl);
3325}
3326
3327SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3328                                            SelectionDAG &DAG) const {
3329  // The rounding mode is in bits 23:22 of the FPSCR.
3330  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3331  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3332  // so that the shift + and get folded into a bitfield extract.
3333  DebugLoc dl = Op.getDebugLoc();
3334  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3335                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3336                                              MVT::i32));
3337  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3338                                  DAG.getConstant(1U << 22, MVT::i32));
3339  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3340                              DAG.getConstant(22, MVT::i32));
3341  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3342                     DAG.getConstant(3, MVT::i32));
3343}
3344
3345static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3346                         const ARMSubtarget *ST) {
3347  EVT VT = N->getValueType(0);
3348  DebugLoc dl = N->getDebugLoc();
3349
3350  if (!ST->hasV6T2Ops())
3351    return SDValue();
3352
3353  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3354  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3355}
3356
3357static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3358                          const ARMSubtarget *ST) {
3359  EVT VT = N->getValueType(0);
3360  DebugLoc dl = N->getDebugLoc();
3361
3362  if (!VT.isVector())
3363    return SDValue();
3364
3365  // Lower vector shifts on NEON to use VSHL.
3366  assert(ST->hasNEON() && "unexpected vector shift");
3367
3368  // Left shifts translate directly to the vshiftu intrinsic.
3369  if (N->getOpcode() == ISD::SHL)
3370    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3371                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3372                       N->getOperand(0), N->getOperand(1));
3373
3374  assert((N->getOpcode() == ISD::SRA ||
3375          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3376
3377  // NEON uses the same intrinsics for both left and right shifts.  For
3378  // right shifts, the shift amounts are negative, so negate the vector of
3379  // shift amounts.
3380  EVT ShiftVT = N->getOperand(1).getValueType();
3381  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3382                                     getZeroVector(ShiftVT, DAG, dl),
3383                                     N->getOperand(1));
3384  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3385                             Intrinsic::arm_neon_vshifts :
3386                             Intrinsic::arm_neon_vshiftu);
3387  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3388                     DAG.getConstant(vshiftInt, MVT::i32),
3389                     N->getOperand(0), NegatedCount);
3390}
3391
3392static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3393                                const ARMSubtarget *ST) {
3394  EVT VT = N->getValueType(0);
3395  DebugLoc dl = N->getDebugLoc();
3396
3397  // We can get here for a node like i32 = ISD::SHL i32, i64
3398  if (VT != MVT::i64)
3399    return SDValue();
3400
3401  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3402         "Unknown shift to lower!");
3403
3404  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3405  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3406      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3407    return SDValue();
3408
3409  // If we are in thumb mode, we don't have RRX.
3410  if (ST->isThumb1Only()) return SDValue();
3411
3412  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3413  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3414                           DAG.getConstant(0, MVT::i32));
3415  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3416                           DAG.getConstant(1, MVT::i32));
3417
3418  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3419  // captures the result into a carry flag.
3420  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3421  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3422
3423  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3424  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3425
3426  // Merge the pieces into a single i64 value.
3427 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3428}
3429
3430static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3431  SDValue TmpOp0, TmpOp1;
3432  bool Invert = false;
3433  bool Swap = false;
3434  unsigned Opc = 0;
3435
3436  SDValue Op0 = Op.getOperand(0);
3437  SDValue Op1 = Op.getOperand(1);
3438  SDValue CC = Op.getOperand(2);
3439  EVT VT = Op.getValueType();
3440  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3441  DebugLoc dl = Op.getDebugLoc();
3442
3443  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3444    switch (SetCCOpcode) {
3445    default: llvm_unreachable("Illegal FP comparison"); break;
3446    case ISD::SETUNE:
3447    case ISD::SETNE:  Invert = true; // Fallthrough
3448    case ISD::SETOEQ:
3449    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3450    case ISD::SETOLT:
3451    case ISD::SETLT: Swap = true; // Fallthrough
3452    case ISD::SETOGT:
3453    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3454    case ISD::SETOLE:
3455    case ISD::SETLE:  Swap = true; // Fallthrough
3456    case ISD::SETOGE:
3457    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3458    case ISD::SETUGE: Swap = true; // Fallthrough
3459    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3460    case ISD::SETUGT: Swap = true; // Fallthrough
3461    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3462    case ISD::SETUEQ: Invert = true; // Fallthrough
3463    case ISD::SETONE:
3464      // Expand this to (OLT | OGT).
3465      TmpOp0 = Op0;
3466      TmpOp1 = Op1;
3467      Opc = ISD::OR;
3468      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3469      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3470      break;
3471    case ISD::SETUO: Invert = true; // Fallthrough
3472    case ISD::SETO:
3473      // Expand this to (OLT | OGE).
3474      TmpOp0 = Op0;
3475      TmpOp1 = Op1;
3476      Opc = ISD::OR;
3477      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3478      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3479      break;
3480    }
3481  } else {
3482    // Integer comparisons.
3483    switch (SetCCOpcode) {
3484    default: llvm_unreachable("Illegal integer comparison"); break;
3485    case ISD::SETNE:  Invert = true;
3486    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3487    case ISD::SETLT:  Swap = true;
3488    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3489    case ISD::SETLE:  Swap = true;
3490    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3491    case ISD::SETULT: Swap = true;
3492    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3493    case ISD::SETULE: Swap = true;
3494    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3495    }
3496
3497    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3498    if (Opc == ARMISD::VCEQ) {
3499
3500      SDValue AndOp;
3501      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3502        AndOp = Op0;
3503      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3504        AndOp = Op1;
3505
3506      // Ignore bitconvert.
3507      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3508        AndOp = AndOp.getOperand(0);
3509
3510      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3511        Opc = ARMISD::VTST;
3512        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3513        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3514        Invert = !Invert;
3515      }
3516    }
3517  }
3518
3519  if (Swap)
3520    std::swap(Op0, Op1);
3521
3522  // If one of the operands is a constant vector zero, attempt to fold the
3523  // comparison to a specialized compare-against-zero form.
3524  SDValue SingleOp;
3525  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3526    SingleOp = Op0;
3527  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3528    if (Opc == ARMISD::VCGE)
3529      Opc = ARMISD::VCLEZ;
3530    else if (Opc == ARMISD::VCGT)
3531      Opc = ARMISD::VCLTZ;
3532    SingleOp = Op1;
3533  }
3534
3535  SDValue Result;
3536  if (SingleOp.getNode()) {
3537    switch (Opc) {
3538    case ARMISD::VCEQ:
3539      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3540    case ARMISD::VCGE:
3541      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3542    case ARMISD::VCLEZ:
3543      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3544    case ARMISD::VCGT:
3545      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3546    case ARMISD::VCLTZ:
3547      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3548    default:
3549      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3550    }
3551  } else {
3552     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3553  }
3554
3555  if (Invert)
3556    Result = DAG.getNOT(dl, Result, VT);
3557
3558  return Result;
3559}
3560
3561/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3562/// valid vector constant for a NEON instruction with a "modified immediate"
3563/// operand (e.g., VMOV).  If so, return the encoded value.
3564static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3565                                 unsigned SplatBitSize, SelectionDAG &DAG,
3566                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3567  unsigned OpCmode, Imm;
3568
3569  // SplatBitSize is set to the smallest size that splats the vector, so a
3570  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3571  // immediate instructions others than VMOV do not support the 8-bit encoding
3572  // of a zero vector, and the default encoding of zero is supposed to be the
3573  // 32-bit version.
3574  if (SplatBits == 0)
3575    SplatBitSize = 32;
3576
3577  switch (SplatBitSize) {
3578  case 8:
3579    if (type != VMOVModImm)
3580      return SDValue();
3581    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3582    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3583    OpCmode = 0xe;
3584    Imm = SplatBits;
3585    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3586    break;
3587
3588  case 16:
3589    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3590    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3591    if ((SplatBits & ~0xff) == 0) {
3592      // Value = 0x00nn: Op=x, Cmode=100x.
3593      OpCmode = 0x8;
3594      Imm = SplatBits;
3595      break;
3596    }
3597    if ((SplatBits & ~0xff00) == 0) {
3598      // Value = 0xnn00: Op=x, Cmode=101x.
3599      OpCmode = 0xa;
3600      Imm = SplatBits >> 8;
3601      break;
3602    }
3603    return SDValue();
3604
3605  case 32:
3606    // NEON's 32-bit VMOV supports splat values where:
3607    // * only one byte is nonzero, or
3608    // * the least significant byte is 0xff and the second byte is nonzero, or
3609    // * the least significant 2 bytes are 0xff and the third is nonzero.
3610    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3611    if ((SplatBits & ~0xff) == 0) {
3612      // Value = 0x000000nn: Op=x, Cmode=000x.
3613      OpCmode = 0;
3614      Imm = SplatBits;
3615      break;
3616    }
3617    if ((SplatBits & ~0xff00) == 0) {
3618      // Value = 0x0000nn00: Op=x, Cmode=001x.
3619      OpCmode = 0x2;
3620      Imm = SplatBits >> 8;
3621      break;
3622    }
3623    if ((SplatBits & ~0xff0000) == 0) {
3624      // Value = 0x00nn0000: Op=x, Cmode=010x.
3625      OpCmode = 0x4;
3626      Imm = SplatBits >> 16;
3627      break;
3628    }
3629    if ((SplatBits & ~0xff000000) == 0) {
3630      // Value = 0xnn000000: Op=x, Cmode=011x.
3631      OpCmode = 0x6;
3632      Imm = SplatBits >> 24;
3633      break;
3634    }
3635
3636    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3637    if (type == OtherModImm) return SDValue();
3638
3639    if ((SplatBits & ~0xffff) == 0 &&
3640        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3641      // Value = 0x0000nnff: Op=x, Cmode=1100.
3642      OpCmode = 0xc;
3643      Imm = SplatBits >> 8;
3644      SplatBits |= 0xff;
3645      break;
3646    }
3647
3648    if ((SplatBits & ~0xffffff) == 0 &&
3649        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3650      // Value = 0x00nnffff: Op=x, Cmode=1101.
3651      OpCmode = 0xd;
3652      Imm = SplatBits >> 16;
3653      SplatBits |= 0xffff;
3654      break;
3655    }
3656
3657    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3658    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3659    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3660    // and fall through here to test for a valid 64-bit splat.  But, then the
3661    // caller would also need to check and handle the change in size.
3662    return SDValue();
3663
3664  case 64: {
3665    if (type != VMOVModImm)
3666      return SDValue();
3667    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3668    uint64_t BitMask = 0xff;
3669    uint64_t Val = 0;
3670    unsigned ImmMask = 1;
3671    Imm = 0;
3672    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3673      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3674        Val |= BitMask;
3675        Imm |= ImmMask;
3676      } else if ((SplatBits & BitMask) != 0) {
3677        return SDValue();
3678      }
3679      BitMask <<= 8;
3680      ImmMask <<= 1;
3681    }
3682    // Op=1, Cmode=1110.
3683    OpCmode = 0x1e;
3684    SplatBits = Val;
3685    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3686    break;
3687  }
3688
3689  default:
3690    llvm_unreachable("unexpected size for isNEONModifiedImm");
3691    return SDValue();
3692  }
3693
3694  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3695  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3696}
3697
3698static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3699                       bool &ReverseVEXT, unsigned &Imm) {
3700  unsigned NumElts = VT.getVectorNumElements();
3701  ReverseVEXT = false;
3702
3703  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3704  if (M[0] < 0)
3705    return false;
3706
3707  Imm = M[0];
3708
3709  // If this is a VEXT shuffle, the immediate value is the index of the first
3710  // element.  The other shuffle indices must be the successive elements after
3711  // the first one.
3712  unsigned ExpectedElt = Imm;
3713  for (unsigned i = 1; i < NumElts; ++i) {
3714    // Increment the expected index.  If it wraps around, it may still be
3715    // a VEXT but the source vectors must be swapped.
3716    ExpectedElt += 1;
3717    if (ExpectedElt == NumElts * 2) {
3718      ExpectedElt = 0;
3719      ReverseVEXT = true;
3720    }
3721
3722    if (M[i] < 0) continue; // ignore UNDEF indices
3723    if (ExpectedElt != static_cast<unsigned>(M[i]))
3724      return false;
3725  }
3726
3727  // Adjust the index value if the source operands will be swapped.
3728  if (ReverseVEXT)
3729    Imm -= NumElts;
3730
3731  return true;
3732}
3733
3734/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3735/// instruction with the specified blocksize.  (The order of the elements
3736/// within each block of the vector is reversed.)
3737static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3738                       unsigned BlockSize) {
3739  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3740         "Only possible block sizes for VREV are: 16, 32, 64");
3741
3742  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3743  if (EltSz == 64)
3744    return false;
3745
3746  unsigned NumElts = VT.getVectorNumElements();
3747  unsigned BlockElts = M[0] + 1;
3748  // If the first shuffle index is UNDEF, be optimistic.
3749  if (M[0] < 0)
3750    BlockElts = BlockSize / EltSz;
3751
3752  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3753    return false;
3754
3755  for (unsigned i = 0; i < NumElts; ++i) {
3756    if (M[i] < 0) continue; // ignore UNDEF indices
3757    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3758      return false;
3759  }
3760
3761  return true;
3762}
3763
3764static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3765  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3766  // range, then 0 is placed into the resulting vector. So pretty much any mask
3767  // of 8 elements can work here.
3768  return VT == MVT::v8i8 && M.size() == 8;
3769}
3770
3771static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3772                       unsigned &WhichResult) {
3773  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3774  if (EltSz == 64)
3775    return false;
3776
3777  unsigned NumElts = VT.getVectorNumElements();
3778  WhichResult = (M[0] == 0 ? 0 : 1);
3779  for (unsigned i = 0; i < NumElts; i += 2) {
3780    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3781        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3782      return false;
3783  }
3784  return true;
3785}
3786
3787/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3788/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3789/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3790static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3791                                unsigned &WhichResult) {
3792  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3793  if (EltSz == 64)
3794    return false;
3795
3796  unsigned NumElts = VT.getVectorNumElements();
3797  WhichResult = (M[0] == 0 ? 0 : 1);
3798  for (unsigned i = 0; i < NumElts; i += 2) {
3799    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3800        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3801      return false;
3802  }
3803  return true;
3804}
3805
3806static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3807                       unsigned &WhichResult) {
3808  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3809  if (EltSz == 64)
3810    return false;
3811
3812  unsigned NumElts = VT.getVectorNumElements();
3813  WhichResult = (M[0] == 0 ? 0 : 1);
3814  for (unsigned i = 0; i != NumElts; ++i) {
3815    if (M[i] < 0) continue; // ignore UNDEF indices
3816    if ((unsigned) M[i] != 2 * i + WhichResult)
3817      return false;
3818  }
3819
3820  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3821  if (VT.is64BitVector() && EltSz == 32)
3822    return false;
3823
3824  return true;
3825}
3826
3827/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3828/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3829/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3830static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3831                                unsigned &WhichResult) {
3832  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3833  if (EltSz == 64)
3834    return false;
3835
3836  unsigned Half = VT.getVectorNumElements() / 2;
3837  WhichResult = (M[0] == 0 ? 0 : 1);
3838  for (unsigned j = 0; j != 2; ++j) {
3839    unsigned Idx = WhichResult;
3840    for (unsigned i = 0; i != Half; ++i) {
3841      int MIdx = M[i + j * Half];
3842      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3843        return false;
3844      Idx += 2;
3845    }
3846  }
3847
3848  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3849  if (VT.is64BitVector() && EltSz == 32)
3850    return false;
3851
3852  return true;
3853}
3854
3855static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3856                       unsigned &WhichResult) {
3857  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3858  if (EltSz == 64)
3859    return false;
3860
3861  unsigned NumElts = VT.getVectorNumElements();
3862  WhichResult = (M[0] == 0 ? 0 : 1);
3863  unsigned Idx = WhichResult * NumElts / 2;
3864  for (unsigned i = 0; i != NumElts; i += 2) {
3865    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3866        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3867      return false;
3868    Idx += 1;
3869  }
3870
3871  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3872  if (VT.is64BitVector() && EltSz == 32)
3873    return false;
3874
3875  return true;
3876}
3877
3878/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3879/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3880/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3881static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3882                                unsigned &WhichResult) {
3883  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3884  if (EltSz == 64)
3885    return false;
3886
3887  unsigned NumElts = VT.getVectorNumElements();
3888  WhichResult = (M[0] == 0 ? 0 : 1);
3889  unsigned Idx = WhichResult * NumElts / 2;
3890  for (unsigned i = 0; i != NumElts; i += 2) {
3891    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3892        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3893      return false;
3894    Idx += 1;
3895  }
3896
3897  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3898  if (VT.is64BitVector() && EltSz == 32)
3899    return false;
3900
3901  return true;
3902}
3903
3904// If N is an integer constant that can be moved into a register in one
3905// instruction, return an SDValue of such a constant (will become a MOV
3906// instruction).  Otherwise return null.
3907static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3908                                     const ARMSubtarget *ST, DebugLoc dl) {
3909  uint64_t Val;
3910  if (!isa<ConstantSDNode>(N))
3911    return SDValue();
3912  Val = cast<ConstantSDNode>(N)->getZExtValue();
3913
3914  if (ST->isThumb1Only()) {
3915    if (Val <= 255 || ~Val <= 255)
3916      return DAG.getConstant(Val, MVT::i32);
3917  } else {
3918    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3919      return DAG.getConstant(Val, MVT::i32);
3920  }
3921  return SDValue();
3922}
3923
3924// If this is a case we can't handle, return null and let the default
3925// expansion code take care of it.
3926SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3927                                             const ARMSubtarget *ST) const {
3928  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3929  DebugLoc dl = Op.getDebugLoc();
3930  EVT VT = Op.getValueType();
3931
3932  APInt SplatBits, SplatUndef;
3933  unsigned SplatBitSize;
3934  bool HasAnyUndefs;
3935  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3936    if (SplatBitSize <= 64) {
3937      // Check if an immediate VMOV works.
3938      EVT VmovVT;
3939      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3940                                      SplatUndef.getZExtValue(), SplatBitSize,
3941                                      DAG, VmovVT, VT.is128BitVector(),
3942                                      VMOVModImm);
3943      if (Val.getNode()) {
3944        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3945        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3946      }
3947
3948      // Try an immediate VMVN.
3949      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3950      Val = isNEONModifiedImm(NegatedImm,
3951                                      SplatUndef.getZExtValue(), SplatBitSize,
3952                                      DAG, VmovVT, VT.is128BitVector(),
3953                                      VMVNModImm);
3954      if (Val.getNode()) {
3955        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3956        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3957      }
3958    }
3959  }
3960
3961  // Scan through the operands to see if only one value is used.
3962  unsigned NumElts = VT.getVectorNumElements();
3963  bool isOnlyLowElement = true;
3964  bool usesOnlyOneValue = true;
3965  bool isConstant = true;
3966  SDValue Value;
3967  for (unsigned i = 0; i < NumElts; ++i) {
3968    SDValue V = Op.getOperand(i);
3969    if (V.getOpcode() == ISD::UNDEF)
3970      continue;
3971    if (i > 0)
3972      isOnlyLowElement = false;
3973    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3974      isConstant = false;
3975
3976    if (!Value.getNode())
3977      Value = V;
3978    else if (V != Value)
3979      usesOnlyOneValue = false;
3980  }
3981
3982  if (!Value.getNode())
3983    return DAG.getUNDEF(VT);
3984
3985  if (isOnlyLowElement)
3986    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3987
3988  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3989
3990  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3991  // i32 and try again.
3992  if (usesOnlyOneValue && EltSize <= 32) {
3993    if (!isConstant)
3994      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3995    if (VT.getVectorElementType().isFloatingPoint()) {
3996      SmallVector<SDValue, 8> Ops;
3997      for (unsigned i = 0; i < NumElts; ++i)
3998        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3999                                  Op.getOperand(i)));
4000      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4001      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4002      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4003      if (Val.getNode())
4004        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4005    }
4006    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4007    if (Val.getNode())
4008      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4009  }
4010
4011  // If all elements are constants and the case above didn't get hit, fall back
4012  // to the default expansion, which will generate a load from the constant
4013  // pool.
4014  if (isConstant)
4015    return SDValue();
4016
4017  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4018  if (NumElts >= 4) {
4019    SDValue shuffle = ReconstructShuffle(Op, DAG);
4020    if (shuffle != SDValue())
4021      return shuffle;
4022  }
4023
4024  // Vectors with 32- or 64-bit elements can be built by directly assigning
4025  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4026  // will be legalized.
4027  if (EltSize >= 32) {
4028    // Do the expansion with floating-point types, since that is what the VFP
4029    // registers are defined to use, and since i64 is not legal.
4030    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4031    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4032    SmallVector<SDValue, 8> Ops;
4033    for (unsigned i = 0; i < NumElts; ++i)
4034      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4035    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4036    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4037  }
4038
4039  return SDValue();
4040}
4041
4042// Gather data to see if the operation can be modelled as a
4043// shuffle in combination with VEXTs.
4044SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4045                                              SelectionDAG &DAG) const {
4046  DebugLoc dl = Op.getDebugLoc();
4047  EVT VT = Op.getValueType();
4048  unsigned NumElts = VT.getVectorNumElements();
4049
4050  SmallVector<SDValue, 2> SourceVecs;
4051  SmallVector<unsigned, 2> MinElts;
4052  SmallVector<unsigned, 2> MaxElts;
4053
4054  for (unsigned i = 0; i < NumElts; ++i) {
4055    SDValue V = Op.getOperand(i);
4056    if (V.getOpcode() == ISD::UNDEF)
4057      continue;
4058    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4059      // A shuffle can only come from building a vector from various
4060      // elements of other vectors.
4061      return SDValue();
4062    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4063               VT.getVectorElementType()) {
4064      // This code doesn't know how to handle shuffles where the vector
4065      // element types do not match (this happens because type legalization
4066      // promotes the return type of EXTRACT_VECTOR_ELT).
4067      // FIXME: It might be appropriate to extend this code to handle
4068      // mismatched types.
4069      return SDValue();
4070    }
4071
4072    // Record this extraction against the appropriate vector if possible...
4073    SDValue SourceVec = V.getOperand(0);
4074    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4075    bool FoundSource = false;
4076    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4077      if (SourceVecs[j] == SourceVec) {
4078        if (MinElts[j] > EltNo)
4079          MinElts[j] = EltNo;
4080        if (MaxElts[j] < EltNo)
4081          MaxElts[j] = EltNo;
4082        FoundSource = true;
4083        break;
4084      }
4085    }
4086
4087    // Or record a new source if not...
4088    if (!FoundSource) {
4089      SourceVecs.push_back(SourceVec);
4090      MinElts.push_back(EltNo);
4091      MaxElts.push_back(EltNo);
4092    }
4093  }
4094
4095  // Currently only do something sane when at most two source vectors
4096  // involved.
4097  if (SourceVecs.size() > 2)
4098    return SDValue();
4099
4100  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4101  int VEXTOffsets[2] = {0, 0};
4102
4103  // This loop extracts the usage patterns of the source vectors
4104  // and prepares appropriate SDValues for a shuffle if possible.
4105  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4106    if (SourceVecs[i].getValueType() == VT) {
4107      // No VEXT necessary
4108      ShuffleSrcs[i] = SourceVecs[i];
4109      VEXTOffsets[i] = 0;
4110      continue;
4111    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4112      // It probably isn't worth padding out a smaller vector just to
4113      // break it down again in a shuffle.
4114      return SDValue();
4115    }
4116
4117    // Since only 64-bit and 128-bit vectors are legal on ARM and
4118    // we've eliminated the other cases...
4119    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4120           "unexpected vector sizes in ReconstructShuffle");
4121
4122    if (MaxElts[i] - MinElts[i] >= NumElts) {
4123      // Span too large for a VEXT to cope
4124      return SDValue();
4125    }
4126
4127    if (MinElts[i] >= NumElts) {
4128      // The extraction can just take the second half
4129      VEXTOffsets[i] = NumElts;
4130      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4131                                   SourceVecs[i],
4132                                   DAG.getIntPtrConstant(NumElts));
4133    } else if (MaxElts[i] < NumElts) {
4134      // The extraction can just take the first half
4135      VEXTOffsets[i] = 0;
4136      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4137                                   SourceVecs[i],
4138                                   DAG.getIntPtrConstant(0));
4139    } else {
4140      // An actual VEXT is needed
4141      VEXTOffsets[i] = MinElts[i];
4142      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4143                                     SourceVecs[i],
4144                                     DAG.getIntPtrConstant(0));
4145      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4146                                     SourceVecs[i],
4147                                     DAG.getIntPtrConstant(NumElts));
4148      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4149                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4150    }
4151  }
4152
4153  SmallVector<int, 8> Mask;
4154
4155  for (unsigned i = 0; i < NumElts; ++i) {
4156    SDValue Entry = Op.getOperand(i);
4157    if (Entry.getOpcode() == ISD::UNDEF) {
4158      Mask.push_back(-1);
4159      continue;
4160    }
4161
4162    SDValue ExtractVec = Entry.getOperand(0);
4163    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4164                                          .getOperand(1))->getSExtValue();
4165    if (ExtractVec == SourceVecs[0]) {
4166      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4167    } else {
4168      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4169    }
4170  }
4171
4172  // Final check before we try to produce nonsense...
4173  if (isShuffleMaskLegal(Mask, VT))
4174    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4175                                &Mask[0]);
4176
4177  return SDValue();
4178}
4179
4180/// isShuffleMaskLegal - Targets can use this to indicate that they only
4181/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4182/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4183/// are assumed to be legal.
4184bool
4185ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4186                                      EVT VT) const {
4187  if (VT.getVectorNumElements() == 4 &&
4188      (VT.is128BitVector() || VT.is64BitVector())) {
4189    unsigned PFIndexes[4];
4190    for (unsigned i = 0; i != 4; ++i) {
4191      if (M[i] < 0)
4192        PFIndexes[i] = 8;
4193      else
4194        PFIndexes[i] = M[i];
4195    }
4196
4197    // Compute the index in the perfect shuffle table.
4198    unsigned PFTableIndex =
4199      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4200    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4201    unsigned Cost = (PFEntry >> 30);
4202
4203    if (Cost <= 4)
4204      return true;
4205  }
4206
4207  bool ReverseVEXT;
4208  unsigned Imm, WhichResult;
4209
4210  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4211  return (EltSize >= 32 ||
4212          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4213          isVREVMask(M, VT, 64) ||
4214          isVREVMask(M, VT, 32) ||
4215          isVREVMask(M, VT, 16) ||
4216          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4217          isVTBLMask(M, VT) ||
4218          isVTRNMask(M, VT, WhichResult) ||
4219          isVUZPMask(M, VT, WhichResult) ||
4220          isVZIPMask(M, VT, WhichResult) ||
4221          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4222          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4223          isVZIP_v_undef_Mask(M, VT, WhichResult));
4224}
4225
4226/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4227/// the specified operations to build the shuffle.
4228static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4229                                      SDValue RHS, SelectionDAG &DAG,
4230                                      DebugLoc dl) {
4231  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4232  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4233  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4234
4235  enum {
4236    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4237    OP_VREV,
4238    OP_VDUP0,
4239    OP_VDUP1,
4240    OP_VDUP2,
4241    OP_VDUP3,
4242    OP_VEXT1,
4243    OP_VEXT2,
4244    OP_VEXT3,
4245    OP_VUZPL, // VUZP, left result
4246    OP_VUZPR, // VUZP, right result
4247    OP_VZIPL, // VZIP, left result
4248    OP_VZIPR, // VZIP, right result
4249    OP_VTRNL, // VTRN, left result
4250    OP_VTRNR  // VTRN, right result
4251  };
4252
4253  if (OpNum == OP_COPY) {
4254    if (LHSID == (1*9+2)*9+3) return LHS;
4255    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4256    return RHS;
4257  }
4258
4259  SDValue OpLHS, OpRHS;
4260  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4261  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4262  EVT VT = OpLHS.getValueType();
4263
4264  switch (OpNum) {
4265  default: llvm_unreachable("Unknown shuffle opcode!");
4266  case OP_VREV:
4267    // VREV divides the vector in half and swaps within the half.
4268    if (VT.getVectorElementType() == MVT::i32 ||
4269        VT.getVectorElementType() == MVT::f32)
4270      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4271    // vrev <4 x i16> -> VREV32
4272    if (VT.getVectorElementType() == MVT::i16)
4273      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4274    // vrev <4 x i8> -> VREV16
4275    assert(VT.getVectorElementType() == MVT::i8);
4276    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4277  case OP_VDUP0:
4278  case OP_VDUP1:
4279  case OP_VDUP2:
4280  case OP_VDUP3:
4281    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4282                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4283  case OP_VEXT1:
4284  case OP_VEXT2:
4285  case OP_VEXT3:
4286    return DAG.getNode(ARMISD::VEXT, dl, VT,
4287                       OpLHS, OpRHS,
4288                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4289  case OP_VUZPL:
4290  case OP_VUZPR:
4291    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4292                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4293  case OP_VZIPL:
4294  case OP_VZIPR:
4295    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4296                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4297  case OP_VTRNL:
4298  case OP_VTRNR:
4299    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4300                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4301  }
4302}
4303
4304static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4305                                       SmallVectorImpl<int> &ShuffleMask,
4306                                       SelectionDAG &DAG) {
4307  // Check to see if we can use the VTBL instruction.
4308  SDValue V1 = Op.getOperand(0);
4309  SDValue V2 = Op.getOperand(1);
4310  DebugLoc DL = Op.getDebugLoc();
4311
4312  SmallVector<SDValue, 8> VTBLMask;
4313  for (SmallVectorImpl<int>::iterator
4314         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4315    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4316
4317  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4318    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4319                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4320                                   &VTBLMask[0], 8));
4321
4322  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4323                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4324                                 &VTBLMask[0], 8));
4325}
4326
4327static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4328  SDValue V1 = Op.getOperand(0);
4329  SDValue V2 = Op.getOperand(1);
4330  DebugLoc dl = Op.getDebugLoc();
4331  EVT VT = Op.getValueType();
4332  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4333  SmallVector<int, 8> ShuffleMask;
4334
4335  // Convert shuffles that are directly supported on NEON to target-specific
4336  // DAG nodes, instead of keeping them as shuffles and matching them again
4337  // during code selection.  This is more efficient and avoids the possibility
4338  // of inconsistencies between legalization and selection.
4339  // FIXME: floating-point vectors should be canonicalized to integer vectors
4340  // of the same time so that they get CSEd properly.
4341  SVN->getMask(ShuffleMask);
4342
4343  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4344  if (EltSize <= 32) {
4345    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4346      int Lane = SVN->getSplatIndex();
4347      // If this is undef splat, generate it via "just" vdup, if possible.
4348      if (Lane == -1) Lane = 0;
4349
4350      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4351        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4352      }
4353      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4354                         DAG.getConstant(Lane, MVT::i32));
4355    }
4356
4357    bool ReverseVEXT;
4358    unsigned Imm;
4359    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4360      if (ReverseVEXT)
4361        std::swap(V1, V2);
4362      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4363                         DAG.getConstant(Imm, MVT::i32));
4364    }
4365
4366    if (isVREVMask(ShuffleMask, VT, 64))
4367      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4368    if (isVREVMask(ShuffleMask, VT, 32))
4369      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4370    if (isVREVMask(ShuffleMask, VT, 16))
4371      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4372
4373    // Check for Neon shuffles that modify both input vectors in place.
4374    // If both results are used, i.e., if there are two shuffles with the same
4375    // source operands and with masks corresponding to both results of one of
4376    // these operations, DAG memoization will ensure that a single node is
4377    // used for both shuffles.
4378    unsigned WhichResult;
4379    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4380      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4381                         V1, V2).getValue(WhichResult);
4382    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4383      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4384                         V1, V2).getValue(WhichResult);
4385    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4386      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4387                         V1, V2).getValue(WhichResult);
4388
4389    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4390      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4391                         V1, V1).getValue(WhichResult);
4392    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4393      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4394                         V1, V1).getValue(WhichResult);
4395    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4396      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4397                         V1, V1).getValue(WhichResult);
4398  }
4399
4400  // If the shuffle is not directly supported and it has 4 elements, use
4401  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4402  unsigned NumElts = VT.getVectorNumElements();
4403  if (NumElts == 4) {
4404    unsigned PFIndexes[4];
4405    for (unsigned i = 0; i != 4; ++i) {
4406      if (ShuffleMask[i] < 0)
4407        PFIndexes[i] = 8;
4408      else
4409        PFIndexes[i] = ShuffleMask[i];
4410    }
4411
4412    // Compute the index in the perfect shuffle table.
4413    unsigned PFTableIndex =
4414      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4415    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4416    unsigned Cost = (PFEntry >> 30);
4417
4418    if (Cost <= 4)
4419      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4420  }
4421
4422  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4423  if (EltSize >= 32) {
4424    // Do the expansion with floating-point types, since that is what the VFP
4425    // registers are defined to use, and since i64 is not legal.
4426    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4427    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4428    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4429    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4430    SmallVector<SDValue, 8> Ops;
4431    for (unsigned i = 0; i < NumElts; ++i) {
4432      if (ShuffleMask[i] < 0)
4433        Ops.push_back(DAG.getUNDEF(EltVT));
4434      else
4435        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4436                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4437                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4438                                                  MVT::i32)));
4439    }
4440    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4441    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4442  }
4443
4444  if (VT == MVT::v8i8) {
4445    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4446    if (NewOp.getNode())
4447      return NewOp;
4448  }
4449
4450  return SDValue();
4451}
4452
4453static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4454  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4455  SDValue Lane = Op.getOperand(1);
4456  if (!isa<ConstantSDNode>(Lane))
4457    return SDValue();
4458
4459  SDValue Vec = Op.getOperand(0);
4460  if (Op.getValueType() == MVT::i32 &&
4461      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4462    DebugLoc dl = Op.getDebugLoc();
4463    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4464  }
4465
4466  return Op;
4467}
4468
4469static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4470  // The only time a CONCAT_VECTORS operation can have legal types is when
4471  // two 64-bit vectors are concatenated to a 128-bit vector.
4472  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4473         "unexpected CONCAT_VECTORS");
4474  DebugLoc dl = Op.getDebugLoc();
4475  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4476  SDValue Op0 = Op.getOperand(0);
4477  SDValue Op1 = Op.getOperand(1);
4478  if (Op0.getOpcode() != ISD::UNDEF)
4479    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4480                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4481                      DAG.getIntPtrConstant(0));
4482  if (Op1.getOpcode() != ISD::UNDEF)
4483    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4484                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4485                      DAG.getIntPtrConstant(1));
4486  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4487}
4488
4489/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4490/// element has been zero/sign-extended, depending on the isSigned parameter,
4491/// from an integer type half its size.
4492static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4493                                   bool isSigned) {
4494  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4495  EVT VT = N->getValueType(0);
4496  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4497    SDNode *BVN = N->getOperand(0).getNode();
4498    if (BVN->getValueType(0) != MVT::v4i32 ||
4499        BVN->getOpcode() != ISD::BUILD_VECTOR)
4500      return false;
4501    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4502    unsigned HiElt = 1 - LoElt;
4503    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4504    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4505    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4506    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4507    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4508      return false;
4509    if (isSigned) {
4510      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4511          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4512        return true;
4513    } else {
4514      if (Hi0->isNullValue() && Hi1->isNullValue())
4515        return true;
4516    }
4517    return false;
4518  }
4519
4520  if (N->getOpcode() != ISD::BUILD_VECTOR)
4521    return false;
4522
4523  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4524    SDNode *Elt = N->getOperand(i).getNode();
4525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4526      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4527      unsigned HalfSize = EltSize / 2;
4528      if (isSigned) {
4529        int64_t SExtVal = C->getSExtValue();
4530        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4531          return false;
4532      } else {
4533        if ((C->getZExtValue() >> HalfSize) != 0)
4534          return false;
4535      }
4536      continue;
4537    }
4538    return false;
4539  }
4540
4541  return true;
4542}
4543
4544/// isSignExtended - Check if a node is a vector value that is sign-extended
4545/// or a constant BUILD_VECTOR with sign-extended elements.
4546static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4547  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4548    return true;
4549  if (isExtendedBUILD_VECTOR(N, DAG, true))
4550    return true;
4551  return false;
4552}
4553
4554/// isZeroExtended - Check if a node is a vector value that is zero-extended
4555/// or a constant BUILD_VECTOR with zero-extended elements.
4556static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4557  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4558    return true;
4559  if (isExtendedBUILD_VECTOR(N, DAG, false))
4560    return true;
4561  return false;
4562}
4563
4564/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4565/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4566static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4567  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4568    return N->getOperand(0);
4569  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4570    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4571                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4572                       LD->isNonTemporal(), LD->getAlignment());
4573  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4574  // have been legalized as a BITCAST from v4i32.
4575  if (N->getOpcode() == ISD::BITCAST) {
4576    SDNode *BVN = N->getOperand(0).getNode();
4577    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4578           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4579    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4580    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4581                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4582  }
4583  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4584  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4585  EVT VT = N->getValueType(0);
4586  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4587  unsigned NumElts = VT.getVectorNumElements();
4588  MVT TruncVT = MVT::getIntegerVT(EltSize);
4589  SmallVector<SDValue, 8> Ops;
4590  for (unsigned i = 0; i != NumElts; ++i) {
4591    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4592    const APInt &CInt = C->getAPIntValue();
4593    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4594  }
4595  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4596                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4597}
4598
4599static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4600  unsigned Opcode = N->getOpcode();
4601  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4602    SDNode *N0 = N->getOperand(0).getNode();
4603    SDNode *N1 = N->getOperand(1).getNode();
4604    return N0->hasOneUse() && N1->hasOneUse() &&
4605      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4606  }
4607  return false;
4608}
4609
4610static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4611  unsigned Opcode = N->getOpcode();
4612  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4613    SDNode *N0 = N->getOperand(0).getNode();
4614    SDNode *N1 = N->getOperand(1).getNode();
4615    return N0->hasOneUse() && N1->hasOneUse() &&
4616      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4617  }
4618  return false;
4619}
4620
4621static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4622  // Multiplications are only custom-lowered for 128-bit vectors so that
4623  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4624  EVT VT = Op.getValueType();
4625  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4626  SDNode *N0 = Op.getOperand(0).getNode();
4627  SDNode *N1 = Op.getOperand(1).getNode();
4628  unsigned NewOpc = 0;
4629  bool isMLA = false;
4630  bool isN0SExt = isSignExtended(N0, DAG);
4631  bool isN1SExt = isSignExtended(N1, DAG);
4632  if (isN0SExt && isN1SExt)
4633    NewOpc = ARMISD::VMULLs;
4634  else {
4635    bool isN0ZExt = isZeroExtended(N0, DAG);
4636    bool isN1ZExt = isZeroExtended(N1, DAG);
4637    if (isN0ZExt && isN1ZExt)
4638      NewOpc = ARMISD::VMULLu;
4639    else if (isN1SExt || isN1ZExt) {
4640      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4641      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4642      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4643        NewOpc = ARMISD::VMULLs;
4644        isMLA = true;
4645      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4646        NewOpc = ARMISD::VMULLu;
4647        isMLA = true;
4648      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4649        std::swap(N0, N1);
4650        NewOpc = ARMISD::VMULLu;
4651        isMLA = true;
4652      }
4653    }
4654
4655    if (!NewOpc) {
4656      if (VT == MVT::v2i64)
4657        // Fall through to expand this.  It is not legal.
4658        return SDValue();
4659      else
4660        // Other vector multiplications are legal.
4661        return Op;
4662    }
4663  }
4664
4665  // Legalize to a VMULL instruction.
4666  DebugLoc DL = Op.getDebugLoc();
4667  SDValue Op0;
4668  SDValue Op1 = SkipExtension(N1, DAG);
4669  if (!isMLA) {
4670    Op0 = SkipExtension(N0, DAG);
4671    assert(Op0.getValueType().is64BitVector() &&
4672           Op1.getValueType().is64BitVector() &&
4673           "unexpected types for extended operands to VMULL");
4674    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4675  }
4676
4677  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4678  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4679  //   vmull q0, d4, d6
4680  //   vmlal q0, d5, d6
4681  // is faster than
4682  //   vaddl q0, d4, d5
4683  //   vmovl q1, d6
4684  //   vmul  q0, q0, q1
4685  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4686  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4687  EVT Op1VT = Op1.getValueType();
4688  return DAG.getNode(N0->getOpcode(), DL, VT,
4689                     DAG.getNode(NewOpc, DL, VT,
4690                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4691                     DAG.getNode(NewOpc, DL, VT,
4692                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4693}
4694
4695static SDValue
4696LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4697  // Convert to float
4698  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4699  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4700  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4701  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4702  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4703  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4704  // Get reciprocal estimate.
4705  // float4 recip = vrecpeq_f32(yf);
4706  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4707                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4708  // Because char has a smaller range than uchar, we can actually get away
4709  // without any newton steps.  This requires that we use a weird bias
4710  // of 0xb000, however (again, this has been exhaustively tested).
4711  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4712  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4713  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4714  Y = DAG.getConstant(0xb000, MVT::i32);
4715  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4716  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4717  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4718  // Convert back to short.
4719  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4720  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4721  return X;
4722}
4723
4724static SDValue
4725LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4726  SDValue N2;
4727  // Convert to float.
4728  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4729  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4730  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4731  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4732  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4733  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4734
4735  // Use reciprocal estimate and one refinement step.
4736  // float4 recip = vrecpeq_f32(yf);
4737  // recip *= vrecpsq_f32(yf, recip);
4738  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4739                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4740  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4741                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4742                   N1, N2);
4743  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4744  // Because short has a smaller range than ushort, we can actually get away
4745  // with only a single newton step.  This requires that we use a weird bias
4746  // of 89, however (again, this has been exhaustively tested).
4747  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4748  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4749  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4750  N1 = DAG.getConstant(0x89, MVT::i32);
4751  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4752  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4753  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4754  // Convert back to integer and return.
4755  // return vmovn_s32(vcvt_s32_f32(result));
4756  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4757  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4758  return N0;
4759}
4760
4761static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4762  EVT VT = Op.getValueType();
4763  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4764         "unexpected type for custom-lowering ISD::SDIV");
4765
4766  DebugLoc dl = Op.getDebugLoc();
4767  SDValue N0 = Op.getOperand(0);
4768  SDValue N1 = Op.getOperand(1);
4769  SDValue N2, N3;
4770
4771  if (VT == MVT::v8i8) {
4772    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4773    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4774
4775    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4776                     DAG.getIntPtrConstant(4));
4777    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4778                     DAG.getIntPtrConstant(4));
4779    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4780                     DAG.getIntPtrConstant(0));
4781    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4782                     DAG.getIntPtrConstant(0));
4783
4784    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4785    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4786
4787    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4788    N0 = LowerCONCAT_VECTORS(N0, DAG);
4789
4790    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4791    return N0;
4792  }
4793  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4794}
4795
4796static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4797  EVT VT = Op.getValueType();
4798  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4799         "unexpected type for custom-lowering ISD::UDIV");
4800
4801  DebugLoc dl = Op.getDebugLoc();
4802  SDValue N0 = Op.getOperand(0);
4803  SDValue N1 = Op.getOperand(1);
4804  SDValue N2, N3;
4805
4806  if (VT == MVT::v8i8) {
4807    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4808    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4809
4810    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4811                     DAG.getIntPtrConstant(4));
4812    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4813                     DAG.getIntPtrConstant(4));
4814    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4815                     DAG.getIntPtrConstant(0));
4816    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4817                     DAG.getIntPtrConstant(0));
4818
4819    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4820    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4821
4822    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4823    N0 = LowerCONCAT_VECTORS(N0, DAG);
4824
4825    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4826                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4827                     N0);
4828    return N0;
4829  }
4830
4831  // v4i16 sdiv ... Convert to float.
4832  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4833  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4834  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4835  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4836  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4837  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4838
4839  // Use reciprocal estimate and two refinement steps.
4840  // float4 recip = vrecpeq_f32(yf);
4841  // recip *= vrecpsq_f32(yf, recip);
4842  // recip *= vrecpsq_f32(yf, recip);
4843  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4844                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4845  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4846                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4847                   BN1, N2);
4848  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4849  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4850                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4851                   BN1, N2);
4852  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4853  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4854  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4855  // and that it will never cause us to return an answer too large).
4856  // float4 result = as_float4(as_int4(xf*recip) + 2);
4857  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4858  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4859  N1 = DAG.getConstant(2, MVT::i32);
4860  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4861  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4862  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4863  // Convert back to integer and return.
4864  // return vmovn_u32(vcvt_s32_f32(result));
4865  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4866  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4867  return N0;
4868}
4869
4870static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4871  EVT VT = Op.getNode()->getValueType(0);
4872  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4873
4874  unsigned Opc;
4875  bool ExtraOp = false;
4876  switch (Op.getOpcode()) {
4877  default: assert(0 && "Invalid code");
4878  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4879  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4880  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4881  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4882  }
4883
4884  if (!ExtraOp)
4885    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4886                       Op.getOperand(1));
4887  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4888                     Op.getOperand(1), Op.getOperand(2));
4889}
4890
4891static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4892  // Monotonic load/store is legal for all targets
4893  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4894    return Op;
4895
4896  // Aquire/Release load/store is not legal for targets without a
4897  // dmb or equivalent available.
4898  return SDValue();
4899}
4900
4901
4902static void
4903ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4904                    SelectionDAG &DAG, unsigned NewOp) {
4905  DebugLoc dl = Node->getDebugLoc();
4906  assert (Node->getValueType(0) == MVT::i64 &&
4907          "Only know how to expand i64 atomics");
4908
4909  SmallVector<SDValue, 6> Ops;
4910  Ops.push_back(Node->getOperand(0)); // Chain
4911  Ops.push_back(Node->getOperand(1)); // Ptr
4912  // Low part of Val1
4913  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4914                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4915  // High part of Val1
4916  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4917                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4918  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4919    // High part of Val1
4920    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4921                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4922    // High part of Val2
4923    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4924                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
4925  }
4926  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4927  SDValue Result =
4928    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
4929                            cast<MemSDNode>(Node)->getMemOperand());
4930  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
4931  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
4932  Results.push_back(Result.getValue(2));
4933}
4934
4935SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4936  switch (Op.getOpcode()) {
4937  default: llvm_unreachable("Don't know how to custom lower this!");
4938  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4939  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4940  case ISD::GlobalAddress:
4941    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4942      LowerGlobalAddressELF(Op, DAG);
4943  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4944  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4945  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4946  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4947  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4948  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4949  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4950  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
4951  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4952  case ISD::SINT_TO_FP:
4953  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4954  case ISD::FP_TO_SINT:
4955  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4956  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4957  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4958  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4959  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4960  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4961  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4962  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4963  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4964                                                               Subtarget);
4965  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4966  case ISD::SHL:
4967  case ISD::SRL:
4968  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4969  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4970  case ISD::SRL_PARTS:
4971  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4972  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4973  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
4974  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4975  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4976  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4977  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4978  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4979  case ISD::MUL:           return LowerMUL(Op, DAG);
4980  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4981  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4982  case ISD::ADDC:
4983  case ISD::ADDE:
4984  case ISD::SUBC:
4985  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
4986  case ISD::ATOMIC_LOAD:
4987  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
4988  }
4989  return SDValue();
4990}
4991
4992/// ReplaceNodeResults - Replace the results of node with an illegal result
4993/// type with new values built out of custom code.
4994void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4995                                           SmallVectorImpl<SDValue>&Results,
4996                                           SelectionDAG &DAG) const {
4997  SDValue Res;
4998  switch (N->getOpcode()) {
4999  default:
5000    llvm_unreachable("Don't know how to custom expand this!");
5001    break;
5002  case ISD::BITCAST:
5003    Res = ExpandBITCAST(N, DAG);
5004    break;
5005  case ISD::SRL:
5006  case ISD::SRA:
5007    Res = Expand64BitShift(N, DAG, Subtarget);
5008    break;
5009  case ISD::ATOMIC_LOAD_ADD:
5010    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5011    return;
5012  case ISD::ATOMIC_LOAD_AND:
5013    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5014    return;
5015  case ISD::ATOMIC_LOAD_NAND:
5016    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5017    return;
5018  case ISD::ATOMIC_LOAD_OR:
5019    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5020    return;
5021  case ISD::ATOMIC_LOAD_SUB:
5022    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5023    return;
5024  case ISD::ATOMIC_LOAD_XOR:
5025    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5026    return;
5027  case ISD::ATOMIC_SWAP:
5028    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5029    return;
5030  case ISD::ATOMIC_CMP_SWAP:
5031    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5032    return;
5033  }
5034  if (Res.getNode())
5035    Results.push_back(Res);
5036}
5037
5038//===----------------------------------------------------------------------===//
5039//                           ARM Scheduler Hooks
5040//===----------------------------------------------------------------------===//
5041
5042MachineBasicBlock *
5043ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5044                                     MachineBasicBlock *BB,
5045                                     unsigned Size) const {
5046  unsigned dest    = MI->getOperand(0).getReg();
5047  unsigned ptr     = MI->getOperand(1).getReg();
5048  unsigned oldval  = MI->getOperand(2).getReg();
5049  unsigned newval  = MI->getOperand(3).getReg();
5050  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5051  DebugLoc dl = MI->getDebugLoc();
5052  bool isThumb2 = Subtarget->isThumb2();
5053
5054  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5055  unsigned scratch =
5056    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5057                                       : ARM::GPRRegisterClass);
5058
5059  if (isThumb2) {
5060    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5061    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5062    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5063  }
5064
5065  unsigned ldrOpc, strOpc;
5066  switch (Size) {
5067  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5068  case 1:
5069    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5070    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5071    break;
5072  case 2:
5073    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5074    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5075    break;
5076  case 4:
5077    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5078    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5079    break;
5080  }
5081
5082  MachineFunction *MF = BB->getParent();
5083  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5084  MachineFunction::iterator It = BB;
5085  ++It; // insert the new blocks after the current block
5086
5087  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5088  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5089  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5090  MF->insert(It, loop1MBB);
5091  MF->insert(It, loop2MBB);
5092  MF->insert(It, exitMBB);
5093
5094  // Transfer the remainder of BB and its successor edges to exitMBB.
5095  exitMBB->splice(exitMBB->begin(), BB,
5096                  llvm::next(MachineBasicBlock::iterator(MI)),
5097                  BB->end());
5098  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5099
5100  //  thisMBB:
5101  //   ...
5102  //   fallthrough --> loop1MBB
5103  BB->addSuccessor(loop1MBB);
5104
5105  // loop1MBB:
5106  //   ldrex dest, [ptr]
5107  //   cmp dest, oldval
5108  //   bne exitMBB
5109  BB = loop1MBB;
5110  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5111  if (ldrOpc == ARM::t2LDREX)
5112    MIB.addImm(0);
5113  AddDefaultPred(MIB);
5114  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5115                 .addReg(dest).addReg(oldval));
5116  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5117    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5118  BB->addSuccessor(loop2MBB);
5119  BB->addSuccessor(exitMBB);
5120
5121  // loop2MBB:
5122  //   strex scratch, newval, [ptr]
5123  //   cmp scratch, #0
5124  //   bne loop1MBB
5125  BB = loop2MBB;
5126  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5127  if (strOpc == ARM::t2STREX)
5128    MIB.addImm(0);
5129  AddDefaultPred(MIB);
5130  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5131                 .addReg(scratch).addImm(0));
5132  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5133    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5134  BB->addSuccessor(loop1MBB);
5135  BB->addSuccessor(exitMBB);
5136
5137  //  exitMBB:
5138  //   ...
5139  BB = exitMBB;
5140
5141  MI->eraseFromParent();   // The instruction is gone now.
5142
5143  return BB;
5144}
5145
5146MachineBasicBlock *
5147ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5148                                    unsigned Size, unsigned BinOpcode) const {
5149  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5150  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5151
5152  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5153  MachineFunction *MF = BB->getParent();
5154  MachineFunction::iterator It = BB;
5155  ++It;
5156
5157  unsigned dest = MI->getOperand(0).getReg();
5158  unsigned ptr = MI->getOperand(1).getReg();
5159  unsigned incr = MI->getOperand(2).getReg();
5160  DebugLoc dl = MI->getDebugLoc();
5161  bool isThumb2 = Subtarget->isThumb2();
5162
5163  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5164  if (isThumb2) {
5165    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5166    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5167  }
5168
5169  unsigned ldrOpc, strOpc;
5170  switch (Size) {
5171  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5172  case 1:
5173    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5174    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5175    break;
5176  case 2:
5177    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5178    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5179    break;
5180  case 4:
5181    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5182    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5183    break;
5184  }
5185
5186  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5187  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5188  MF->insert(It, loopMBB);
5189  MF->insert(It, exitMBB);
5190
5191  // Transfer the remainder of BB and its successor edges to exitMBB.
5192  exitMBB->splice(exitMBB->begin(), BB,
5193                  llvm::next(MachineBasicBlock::iterator(MI)),
5194                  BB->end());
5195  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5196
5197  TargetRegisterClass *TRC =
5198    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5199  unsigned scratch = MRI.createVirtualRegister(TRC);
5200  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5201
5202  //  thisMBB:
5203  //   ...
5204  //   fallthrough --> loopMBB
5205  BB->addSuccessor(loopMBB);
5206
5207  //  loopMBB:
5208  //   ldrex dest, ptr
5209  //   <binop> scratch2, dest, incr
5210  //   strex scratch, scratch2, ptr
5211  //   cmp scratch, #0
5212  //   bne- loopMBB
5213  //   fallthrough --> exitMBB
5214  BB = loopMBB;
5215  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5216  if (ldrOpc == ARM::t2LDREX)
5217    MIB.addImm(0);
5218  AddDefaultPred(MIB);
5219  if (BinOpcode) {
5220    // operand order needs to go the other way for NAND
5221    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5222      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5223                     addReg(incr).addReg(dest)).addReg(0);
5224    else
5225      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5226                     addReg(dest).addReg(incr)).addReg(0);
5227  }
5228
5229  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5230  if (strOpc == ARM::t2STREX)
5231    MIB.addImm(0);
5232  AddDefaultPred(MIB);
5233  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5234                 .addReg(scratch).addImm(0));
5235  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5236    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5237
5238  BB->addSuccessor(loopMBB);
5239  BB->addSuccessor(exitMBB);
5240
5241  //  exitMBB:
5242  //   ...
5243  BB = exitMBB;
5244
5245  MI->eraseFromParent();   // The instruction is gone now.
5246
5247  return BB;
5248}
5249
5250MachineBasicBlock *
5251ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5252                                          MachineBasicBlock *BB,
5253                                          unsigned Size,
5254                                          bool signExtend,
5255                                          ARMCC::CondCodes Cond) const {
5256  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5257
5258  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5259  MachineFunction *MF = BB->getParent();
5260  MachineFunction::iterator It = BB;
5261  ++It;
5262
5263  unsigned dest = MI->getOperand(0).getReg();
5264  unsigned ptr = MI->getOperand(1).getReg();
5265  unsigned incr = MI->getOperand(2).getReg();
5266  unsigned oldval = dest;
5267  DebugLoc dl = MI->getDebugLoc();
5268  bool isThumb2 = Subtarget->isThumb2();
5269
5270  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5271  if (isThumb2) {
5272    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5273    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5274  }
5275
5276  unsigned ldrOpc, strOpc, extendOpc;
5277  switch (Size) {
5278  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5279  case 1:
5280    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5281    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5282    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5283    break;
5284  case 2:
5285    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5286    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5287    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5288    break;
5289  case 4:
5290    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5291    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5292    extendOpc = 0;
5293    break;
5294  }
5295
5296  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5297  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5298  MF->insert(It, loopMBB);
5299  MF->insert(It, exitMBB);
5300
5301  // Transfer the remainder of BB and its successor edges to exitMBB.
5302  exitMBB->splice(exitMBB->begin(), BB,
5303                  llvm::next(MachineBasicBlock::iterator(MI)),
5304                  BB->end());
5305  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5306
5307  TargetRegisterClass *TRC =
5308    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5309  unsigned scratch = MRI.createVirtualRegister(TRC);
5310  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5311
5312  //  thisMBB:
5313  //   ...
5314  //   fallthrough --> loopMBB
5315  BB->addSuccessor(loopMBB);
5316
5317  //  loopMBB:
5318  //   ldrex dest, ptr
5319  //   (sign extend dest, if required)
5320  //   cmp dest, incr
5321  //   cmov.cond scratch2, dest, incr
5322  //   strex scratch, scratch2, ptr
5323  //   cmp scratch, #0
5324  //   bne- loopMBB
5325  //   fallthrough --> exitMBB
5326  BB = loopMBB;
5327  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5328  if (ldrOpc == ARM::t2LDREX)
5329    MIB.addImm(0);
5330  AddDefaultPred(MIB);
5331
5332  // Sign extend the value, if necessary.
5333  if (signExtend && extendOpc) {
5334    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5335    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5336                     .addReg(dest)
5337                     .addImm(0));
5338  }
5339
5340  // Build compare and cmov instructions.
5341  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5342                 .addReg(oldval).addReg(incr));
5343  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5344         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5345
5346  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5347  if (strOpc == ARM::t2STREX)
5348    MIB.addImm(0);
5349  AddDefaultPred(MIB);
5350  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5351                 .addReg(scratch).addImm(0));
5352  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5353    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5354
5355  BB->addSuccessor(loopMBB);
5356  BB->addSuccessor(exitMBB);
5357
5358  //  exitMBB:
5359  //   ...
5360  BB = exitMBB;
5361
5362  MI->eraseFromParent();   // The instruction is gone now.
5363
5364  return BB;
5365}
5366
5367MachineBasicBlock *
5368ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5369                                      unsigned Op1, unsigned Op2,
5370                                      bool NeedsCarry, bool IsCmpxchg) const {
5371  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5372  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5373
5374  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5375  MachineFunction *MF = BB->getParent();
5376  MachineFunction::iterator It = BB;
5377  ++It;
5378
5379  unsigned destlo = MI->getOperand(0).getReg();
5380  unsigned desthi = MI->getOperand(1).getReg();
5381  unsigned ptr = MI->getOperand(2).getReg();
5382  unsigned vallo = MI->getOperand(3).getReg();
5383  unsigned valhi = MI->getOperand(4).getReg();
5384  DebugLoc dl = MI->getDebugLoc();
5385  bool isThumb2 = Subtarget->isThumb2();
5386
5387  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5388  if (isThumb2) {
5389    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5390    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5391    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5392  }
5393
5394  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5395  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5396
5397  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5398  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5399  if (IsCmpxchg) {
5400    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5401    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5402  }
5403  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5404  MF->insert(It, loopMBB);
5405  if (IsCmpxchg) {
5406    MF->insert(It, contBB);
5407    MF->insert(It, cont2BB);
5408  }
5409  MF->insert(It, exitMBB);
5410
5411  // Transfer the remainder of BB and its successor edges to exitMBB.
5412  exitMBB->splice(exitMBB->begin(), BB,
5413                  llvm::next(MachineBasicBlock::iterator(MI)),
5414                  BB->end());
5415  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5416
5417  TargetRegisterClass *TRC =
5418    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5419  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5420
5421  //  thisMBB:
5422  //   ...
5423  //   fallthrough --> loopMBB
5424  BB->addSuccessor(loopMBB);
5425
5426  //  loopMBB:
5427  //   ldrexd r2, r3, ptr
5428  //   <binopa> r0, r2, incr
5429  //   <binopb> r1, r3, incr
5430  //   strexd storesuccess, r0, r1, ptr
5431  //   cmp storesuccess, #0
5432  //   bne- loopMBB
5433  //   fallthrough --> exitMBB
5434  //
5435  // Note that the registers are explicitly specified because there is not any
5436  // way to force the register allocator to allocate a register pair.
5437  //
5438  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5439  // need to properly enforce the restriction that the two output registers
5440  // for ldrexd must be different.
5441  BB = loopMBB;
5442  // Load
5443  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5444                 .addReg(ARM::R2, RegState::Define)
5445                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5446  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5447  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5448  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5449
5450  if (IsCmpxchg) {
5451    // Add early exit
5452    for (unsigned i = 0; i < 2; i++) {
5453      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5454                                                         ARM::CMPrr))
5455                     .addReg(i == 0 ? destlo : desthi)
5456                     .addReg(i == 0 ? vallo : valhi));
5457      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5458        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5459      BB->addSuccessor(exitMBB);
5460      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5461      BB = (i == 0 ? contBB : cont2BB);
5462    }
5463
5464    // Copy to physregs for strexd
5465    unsigned setlo = MI->getOperand(5).getReg();
5466    unsigned sethi = MI->getOperand(6).getReg();
5467    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5468    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5469  } else if (Op1) {
5470    // Perform binary operation
5471    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5472                   .addReg(destlo).addReg(vallo))
5473        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5474    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5475                   .addReg(desthi).addReg(valhi)).addReg(0);
5476  } else {
5477    // Copy to physregs for strexd
5478    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5479    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5480  }
5481
5482  // Store
5483  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5484                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5485  // Cmp+jump
5486  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5487                 .addReg(storesuccess).addImm(0));
5488  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5489    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5490
5491  BB->addSuccessor(loopMBB);
5492  BB->addSuccessor(exitMBB);
5493
5494  //  exitMBB:
5495  //   ...
5496  BB = exitMBB;
5497
5498  MI->eraseFromParent();   // The instruction is gone now.
5499
5500  return BB;
5501}
5502
5503/// EmitBasePointerRecalculation - For functions using a base pointer, we
5504/// rematerialize it (via the frame pointer).
5505void ARMTargetLowering::
5506EmitBasePointerRecalculation(MachineInstr *MI, MachineBasicBlock *MBB,
5507                             MachineBasicBlock *DispatchBB) const {
5508  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5509  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5510  MachineFunction &MF = *MI->getParent()->getParent();
5511  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
5512  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5513
5514  if (!RI.hasBasePointer(MF)) return;
5515
5516  MachineBasicBlock::iterator MBBI = MI;
5517
5518  int32_t NumBytes = AFI->getFramePtrSpillOffset();
5519  unsigned FramePtr = RI.getFrameRegister(MF);
5520  assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
5521         "Base pointer without frame pointer?");
5522
5523  if (AFI->isThumb2Function())
5524    llvm::emitT2RegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5525                                 FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5526  else if (AFI->isThumbFunction())
5527    llvm::emitThumbRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5528                                    FramePtr, -NumBytes, *AII, RI);
5529  else
5530    llvm::emitARMRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5531                                  FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5532
5533  if (!RI.needsStackRealignment(MF)) return;
5534
5535  // If there's dynamic realignment, adjust for it.
5536  MachineFrameInfo *MFI = MF.getFrameInfo();
5537  unsigned MaxAlign = MFI->getMaxAlignment();
5538  assert(!AFI->isThumb1OnlyFunction());
5539
5540  // Emit bic r6, r6, MaxAlign
5541  unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri;
5542  AddDefaultCC(
5543    AddDefaultPred(
5544      BuildMI(*MBB, MBBI, MI->getDebugLoc(), TII->get(bicOpc), ARM::R6)
5545      .addReg(ARM::R6, RegState::Kill)
5546      .addImm(MaxAlign - 1)));
5547}
5548
5549/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5550/// registers the function context.
5551void ARMTargetLowering::
5552SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5553                       MachineBasicBlock *DispatchBB, int FI) const {
5554  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5555  DebugLoc dl = MI->getDebugLoc();
5556  MachineFunction *MF = MBB->getParent();
5557  MachineRegisterInfo *MRI = &MF->getRegInfo();
5558  MachineConstantPool *MCP = MF->getConstantPool();
5559  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5560  const Function *F = MF->getFunction();
5561
5562  bool isThumb = Subtarget->isThumb();
5563  bool isThumb2 = Subtarget->isThumb2();
5564
5565  unsigned PCLabelId = AFI->createPICLabelUId();
5566  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5567  ARMConstantPoolValue *CPV =
5568    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5569  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5570
5571  const TargetRegisterClass *TRC =
5572    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5573
5574  // Grab constant pool and fixed stack memory operands.
5575  MachineMemOperand *CPMMO =
5576    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5577                             MachineMemOperand::MOLoad, 4, 4);
5578
5579  MachineMemOperand *FIMMOSt =
5580    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5581                             MachineMemOperand::MOStore, 4, 4);
5582
5583  EmitBasePointerRecalculation(MI, MBB, DispatchBB);
5584
5585  // Load the address of the dispatch MBB into the jump buffer.
5586  if (isThumb2) {
5587    // Incoming value: jbuf
5588    //   ldr.n  r5, LCPI1_1
5589    //   orr    r5, r5, #1
5590    //   add    r5, pc
5591    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5592    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5593    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5594                   .addConstantPoolIndex(CPI)
5595                   .addMemOperand(CPMMO));
5596    // Set the low bit because of thumb mode.
5597    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5598    AddDefaultCC(
5599      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5600                     .addReg(NewVReg1, RegState::Kill)
5601                     .addImm(0x01)));
5602    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5603    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5604      .addReg(NewVReg2, RegState::Kill)
5605      .addImm(PCLabelId);
5606    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5607                   .addReg(NewVReg3, RegState::Kill)
5608                   .addFrameIndex(FI)
5609                   .addImm(36)  // &jbuf[1] :: pc
5610                   .addMemOperand(FIMMOSt));
5611  } else if (isThumb) {
5612    // Incoming value: jbuf
5613    //   ldr.n  r1, LCPI1_4
5614    //   add    r1, pc
5615    //   mov    r2, #1
5616    //   orrs   r1, r2
5617    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5618    //   str    r1, [r2]
5619    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5620    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5621                   .addConstantPoolIndex(CPI)
5622                   .addMemOperand(CPMMO));
5623    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5624    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5625      .addReg(NewVReg1, RegState::Kill)
5626      .addImm(PCLabelId);
5627    // Set the low bit because of thumb mode.
5628    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5629    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5630                   .addReg(ARM::CPSR, RegState::Define)
5631                   .addImm(1));
5632    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5633    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5634                   .addReg(ARM::CPSR, RegState::Define)
5635                   .addReg(NewVReg2, RegState::Kill)
5636                   .addReg(NewVReg3, RegState::Kill));
5637    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5638    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5639                   .addFrameIndex(FI)
5640                   .addImm(36)); // &jbuf[1] :: pc
5641    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5642                   .addReg(NewVReg4, RegState::Kill)
5643                   .addReg(NewVReg5, RegState::Kill)
5644                   .addImm(0)
5645                   .addMemOperand(FIMMOSt));
5646  } else {
5647    // Incoming value: jbuf
5648    //   ldr  r1, LCPI1_1
5649    //   add  r1, pc, r1
5650    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5651    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5652    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5653                   .addConstantPoolIndex(CPI)
5654                   .addImm(0)
5655                   .addMemOperand(CPMMO));
5656    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5657    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5658                   .addReg(NewVReg1, RegState::Kill)
5659                   .addImm(PCLabelId));
5660    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5661                   .addReg(NewVReg2, RegState::Kill)
5662                   .addFrameIndex(FI)
5663                   .addImm(36)  // &jbuf[1] :: pc
5664                   .addMemOperand(FIMMOSt));
5665  }
5666}
5667
5668MachineBasicBlock *ARMTargetLowering::
5669EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5670  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5671  DebugLoc dl = MI->getDebugLoc();
5672  MachineFunction *MF = MBB->getParent();
5673  MachineRegisterInfo *MRI = &MF->getRegInfo();
5674  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5675  MachineFrameInfo *MFI = MF->getFrameInfo();
5676  int FI = MFI->getFunctionContextIndex();
5677
5678  const TargetRegisterClass *TRC =
5679    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5680
5681  // Get a mapping of the call site numbers to all of the landing pads they're
5682  // associated with.
5683  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5684  unsigned MaxCSNum = 0;
5685  MachineModuleInfo &MMI = MF->getMMI();
5686  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5687    if (!BB->isLandingPad()) continue;
5688
5689    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5690    // pad.
5691    for (MachineBasicBlock::iterator
5692           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5693      if (!II->isEHLabel()) continue;
5694
5695      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5696      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5697
5698      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5699      for (SmallVectorImpl<unsigned>::iterator
5700             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5701           CSI != CSE; ++CSI) {
5702        CallSiteNumToLPad[*CSI].push_back(BB);
5703        MaxCSNum = std::max(MaxCSNum, *CSI);
5704      }
5705      break;
5706    }
5707  }
5708
5709  // Get an ordered list of the machine basic blocks for the jump table.
5710  std::vector<MachineBasicBlock*> LPadList;
5711  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5712  LPadList.reserve(CallSiteNumToLPad.size());
5713  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5714    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5715    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5716           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5717      LPadList.push_back(*II);
5718      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5719    }
5720  }
5721
5722  assert(!LPadList.empty() &&
5723         "No landing pad destinations for the dispatch jump table!");
5724
5725  // Create the jump table and associated information.
5726  MachineJumpTableInfo *JTI =
5727    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5728  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5729  unsigned UId = AFI->createJumpTableUId();
5730
5731  // Create the MBBs for the dispatch code.
5732
5733  // Shove the dispatch's address into the return slot in the function context.
5734  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5735  DispatchBB->setIsLandingPad();
5736
5737  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5738  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5739  DispatchBB->addSuccessor(TrapBB);
5740
5741  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5742  DispatchBB->addSuccessor(DispContBB);
5743
5744  // Insert and renumber MBBs.
5745  MachineBasicBlock *Last = &MF->back();
5746  MF->insert(MF->end(), DispatchBB);
5747  MF->insert(MF->end(), DispContBB);
5748  MF->insert(MF->end(), TrapBB);
5749  MF->RenumberBlocks(Last);
5750
5751  // Insert code into the entry block that creates and registers the function
5752  // context.
5753  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5754
5755  MachineMemOperand *FIMMOLd =
5756    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5757                             MachineMemOperand::MOLoad |
5758                             MachineMemOperand::MOVolatile, 4, 4);
5759
5760  if (Subtarget->isThumb2()) {
5761    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5762    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5763                   .addFrameIndex(FI)
5764                   .addImm(4)
5765                   .addMemOperand(FIMMOLd));
5766    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5767                   .addReg(NewVReg1)
5768                   .addImm(LPadList.size()));
5769    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5770      .addMBB(TrapBB)
5771      .addImm(ARMCC::HI)
5772      .addReg(ARM::CPSR);
5773
5774    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5775    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg2)
5776                   .addJumpTableIndex(MJTI)
5777                   .addImm(UId));
5778
5779    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5780    AddDefaultCC(
5781      AddDefaultPred(
5782        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg3)
5783        .addReg(NewVReg2, RegState::Kill)
5784        .addReg(NewVReg1)
5785        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5786
5787    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5788      .addReg(NewVReg3, RegState::Kill)
5789      .addReg(NewVReg1)
5790      .addJumpTableIndex(MJTI)
5791      .addImm(UId);
5792  } else if (Subtarget->isThumb()) {
5793    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5794    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5795                   .addFrameIndex(FI)
5796                   .addImm(1)
5797                   .addMemOperand(FIMMOLd));
5798
5799    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5800                   .addReg(NewVReg1)
5801                   .addImm(LPadList.size()));
5802    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5803      .addMBB(TrapBB)
5804      .addImm(ARMCC::HI)
5805      .addReg(ARM::CPSR);
5806
5807    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5808    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5809                   .addReg(ARM::CPSR, RegState::Define)
5810                   .addReg(NewVReg1)
5811                   .addImm(2));
5812
5813    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5814    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5815                   .addJumpTableIndex(MJTI)
5816                   .addImm(UId));
5817
5818    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5819    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5820                   .addReg(ARM::CPSR, RegState::Define)
5821                   .addReg(NewVReg2, RegState::Kill)
5822                   .addReg(NewVReg3));
5823
5824    MachineMemOperand *JTMMOLd =
5825      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5826                               MachineMemOperand::MOLoad, 4, 4);
5827
5828    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5829    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5830                   .addReg(NewVReg4, RegState::Kill)
5831                   .addImm(0)
5832                   .addMemOperand(JTMMOLd));
5833
5834    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5835    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5836                   .addReg(ARM::CPSR, RegState::Define)
5837                   .addReg(NewVReg5, RegState::Kill)
5838                   .addReg(NewVReg3));
5839
5840    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5841      .addReg(NewVReg6, RegState::Kill)
5842      .addJumpTableIndex(MJTI)
5843      .addImm(UId);
5844  } else {
5845    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5846    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5847                   .addFrameIndex(FI)
5848                   .addImm(4)
5849                   .addMemOperand(FIMMOLd));
5850    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5851                   .addReg(NewVReg1)
5852                   .addImm(LPadList.size()));
5853    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5854      .addMBB(TrapBB)
5855      .addImm(ARMCC::HI)
5856      .addReg(ARM::CPSR);
5857
5858    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5859    AddDefaultCC(
5860      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg2)
5861                     .addReg(NewVReg1)
5862                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5863    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5864    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg3)
5865                   .addJumpTableIndex(MJTI)
5866                   .addImm(UId));
5867
5868    MachineMemOperand *JTMMOLd =
5869      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5870                               MachineMemOperand::MOLoad, 4, 4);
5871    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5872    AddDefaultPred(
5873      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg4)
5874      .addReg(NewVReg2, RegState::Kill)
5875      .addReg(NewVReg3)
5876      .addImm(0)
5877      .addMemOperand(JTMMOLd));
5878
5879    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5880      .addReg(NewVReg4, RegState::Kill)
5881      .addReg(NewVReg3)
5882      .addJumpTableIndex(MJTI)
5883      .addImm(UId);
5884  }
5885
5886  // Add the jump table entries as successors to the MBB.
5887  MachineBasicBlock *PrevMBB = 0;
5888  for (std::vector<MachineBasicBlock*>::iterator
5889         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
5890    MachineBasicBlock *CurMBB = *I;
5891    if (PrevMBB != CurMBB)
5892      DispContBB->addSuccessor(CurMBB);
5893    PrevMBB = CurMBB;
5894  }
5895
5896  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5897  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5898  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
5899  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
5900         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
5901    MachineBasicBlock *BB = *I;
5902
5903    // Remove the landing pad successor from the invoke block and replace it
5904    // with the new dispatch block.
5905    for (MachineBasicBlock::succ_iterator
5906           SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) {
5907      MachineBasicBlock *SMBB = *SI;
5908      if (SMBB->isLandingPad()) {
5909        BB->removeSuccessor(SMBB);
5910        SMBB->setIsLandingPad(false);
5911      }
5912    }
5913
5914    BB->addSuccessor(DispatchBB);
5915
5916    // Find the invoke call and mark all of the callee-saved registers as
5917    // 'implicit defined' so that they're spilled. This prevents code from
5918    // moving instructions to before the EH block, where they will never be
5919    // executed.
5920    for (MachineBasicBlock::reverse_iterator
5921           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
5922      if (!II->getDesc().isCall()) continue;
5923
5924      DenseMap<unsigned, bool> DefRegs;
5925      for (MachineInstr::mop_iterator
5926             OI = II->operands_begin(), OE = II->operands_end();
5927           OI != OE; ++OI) {
5928        if (!OI->isReg()) continue;
5929        DefRegs[OI->getReg()] = true;
5930      }
5931
5932      MachineInstrBuilder MIB(&*II);
5933
5934      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
5935        if (!TRC->contains(SavedRegs[i])) continue;
5936        if (!DefRegs[SavedRegs[i]])
5937          MIB.addReg(SavedRegs[i], RegState::ImplicitDefine | RegState::Dead);
5938      }
5939
5940      break;
5941    }
5942  }
5943
5944  // The instruction is gone now.
5945  MI->eraseFromParent();
5946
5947  return MBB;
5948}
5949
5950static
5951MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5952  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5953       E = MBB->succ_end(); I != E; ++I)
5954    if (*I != Succ)
5955      return *I;
5956  llvm_unreachable("Expecting a BB with two successors!");
5957}
5958
5959MachineBasicBlock *
5960ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5961                                               MachineBasicBlock *BB) const {
5962  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5963  DebugLoc dl = MI->getDebugLoc();
5964  bool isThumb2 = Subtarget->isThumb2();
5965  switch (MI->getOpcode()) {
5966  default: {
5967    MI->dump();
5968    llvm_unreachable("Unexpected instr type to insert");
5969  }
5970  // The Thumb2 pre-indexed stores have the same MI operands, they just
5971  // define them differently in the .td files from the isel patterns, so
5972  // they need pseudos.
5973  case ARM::t2STR_preidx:
5974    MI->setDesc(TII->get(ARM::t2STR_PRE));
5975    return BB;
5976  case ARM::t2STRB_preidx:
5977    MI->setDesc(TII->get(ARM::t2STRB_PRE));
5978    return BB;
5979  case ARM::t2STRH_preidx:
5980    MI->setDesc(TII->get(ARM::t2STRH_PRE));
5981    return BB;
5982
5983  case ARM::STRi_preidx:
5984  case ARM::STRBi_preidx: {
5985    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
5986      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
5987    // Decode the offset.
5988    unsigned Offset = MI->getOperand(4).getImm();
5989    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
5990    Offset = ARM_AM::getAM2Offset(Offset);
5991    if (isSub)
5992      Offset = -Offset;
5993
5994    MachineMemOperand *MMO = *MI->memoperands_begin();
5995    BuildMI(*BB, MI, dl, TII->get(NewOpc))
5996      .addOperand(MI->getOperand(0))  // Rn_wb
5997      .addOperand(MI->getOperand(1))  // Rt
5998      .addOperand(MI->getOperand(2))  // Rn
5999      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6000      .addOperand(MI->getOperand(5))  // pred
6001      .addOperand(MI->getOperand(6))
6002      .addMemOperand(MMO);
6003    MI->eraseFromParent();
6004    return BB;
6005  }
6006  case ARM::STRr_preidx:
6007  case ARM::STRBr_preidx:
6008  case ARM::STRH_preidx: {
6009    unsigned NewOpc;
6010    switch (MI->getOpcode()) {
6011    default: llvm_unreachable("unexpected opcode!");
6012    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6013    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6014    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6015    }
6016    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6017    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6018      MIB.addOperand(MI->getOperand(i));
6019    MI->eraseFromParent();
6020    return BB;
6021  }
6022  case ARM::ATOMIC_LOAD_ADD_I8:
6023     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6024  case ARM::ATOMIC_LOAD_ADD_I16:
6025     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6026  case ARM::ATOMIC_LOAD_ADD_I32:
6027     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6028
6029  case ARM::ATOMIC_LOAD_AND_I8:
6030     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6031  case ARM::ATOMIC_LOAD_AND_I16:
6032     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6033  case ARM::ATOMIC_LOAD_AND_I32:
6034     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6035
6036  case ARM::ATOMIC_LOAD_OR_I8:
6037     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6038  case ARM::ATOMIC_LOAD_OR_I16:
6039     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6040  case ARM::ATOMIC_LOAD_OR_I32:
6041     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6042
6043  case ARM::ATOMIC_LOAD_XOR_I8:
6044     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6045  case ARM::ATOMIC_LOAD_XOR_I16:
6046     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6047  case ARM::ATOMIC_LOAD_XOR_I32:
6048     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6049
6050  case ARM::ATOMIC_LOAD_NAND_I8:
6051     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6052  case ARM::ATOMIC_LOAD_NAND_I16:
6053     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6054  case ARM::ATOMIC_LOAD_NAND_I32:
6055     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6056
6057  case ARM::ATOMIC_LOAD_SUB_I8:
6058     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6059  case ARM::ATOMIC_LOAD_SUB_I16:
6060     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6061  case ARM::ATOMIC_LOAD_SUB_I32:
6062     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6063
6064  case ARM::ATOMIC_LOAD_MIN_I8:
6065     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6066  case ARM::ATOMIC_LOAD_MIN_I16:
6067     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6068  case ARM::ATOMIC_LOAD_MIN_I32:
6069     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6070
6071  case ARM::ATOMIC_LOAD_MAX_I8:
6072     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6073  case ARM::ATOMIC_LOAD_MAX_I16:
6074     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6075  case ARM::ATOMIC_LOAD_MAX_I32:
6076     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6077
6078  case ARM::ATOMIC_LOAD_UMIN_I8:
6079     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6080  case ARM::ATOMIC_LOAD_UMIN_I16:
6081     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6082  case ARM::ATOMIC_LOAD_UMIN_I32:
6083     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6084
6085  case ARM::ATOMIC_LOAD_UMAX_I8:
6086     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6087  case ARM::ATOMIC_LOAD_UMAX_I16:
6088     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6089  case ARM::ATOMIC_LOAD_UMAX_I32:
6090     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6091
6092  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6093  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6094  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6095
6096  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6097  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6098  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6099
6100
6101  case ARM::ATOMADD6432:
6102    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6103                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6104                              /*NeedsCarry*/ true);
6105  case ARM::ATOMSUB6432:
6106    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6107                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6108                              /*NeedsCarry*/ true);
6109  case ARM::ATOMOR6432:
6110    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6111                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6112  case ARM::ATOMXOR6432:
6113    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6114                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6115  case ARM::ATOMAND6432:
6116    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6117                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6118  case ARM::ATOMSWAP6432:
6119    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6120  case ARM::ATOMCMPXCHG6432:
6121    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6122                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6123                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6124
6125  case ARM::tMOVCCr_pseudo: {
6126    // To "insert" a SELECT_CC instruction, we actually have to insert the
6127    // diamond control-flow pattern.  The incoming instruction knows the
6128    // destination vreg to set, the condition code register to branch on, the
6129    // true/false values to select between, and a branch opcode to use.
6130    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6131    MachineFunction::iterator It = BB;
6132    ++It;
6133
6134    //  thisMBB:
6135    //  ...
6136    //   TrueVal = ...
6137    //   cmpTY ccX, r1, r2
6138    //   bCC copy1MBB
6139    //   fallthrough --> copy0MBB
6140    MachineBasicBlock *thisMBB  = BB;
6141    MachineFunction *F = BB->getParent();
6142    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6143    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6144    F->insert(It, copy0MBB);
6145    F->insert(It, sinkMBB);
6146
6147    // Transfer the remainder of BB and its successor edges to sinkMBB.
6148    sinkMBB->splice(sinkMBB->begin(), BB,
6149                    llvm::next(MachineBasicBlock::iterator(MI)),
6150                    BB->end());
6151    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6152
6153    BB->addSuccessor(copy0MBB);
6154    BB->addSuccessor(sinkMBB);
6155
6156    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6157      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6158
6159    //  copy0MBB:
6160    //   %FalseValue = ...
6161    //   # fallthrough to sinkMBB
6162    BB = copy0MBB;
6163
6164    // Update machine-CFG edges
6165    BB->addSuccessor(sinkMBB);
6166
6167    //  sinkMBB:
6168    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6169    //  ...
6170    BB = sinkMBB;
6171    BuildMI(*BB, BB->begin(), dl,
6172            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6173      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6174      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6175
6176    MI->eraseFromParent();   // The pseudo instruction is gone now.
6177    return BB;
6178  }
6179
6180  case ARM::BCCi64:
6181  case ARM::BCCZi64: {
6182    // If there is an unconditional branch to the other successor, remove it.
6183    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6184
6185    // Compare both parts that make up the double comparison separately for
6186    // equality.
6187    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6188
6189    unsigned LHS1 = MI->getOperand(1).getReg();
6190    unsigned LHS2 = MI->getOperand(2).getReg();
6191    if (RHSisZero) {
6192      AddDefaultPred(BuildMI(BB, dl,
6193                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6194                     .addReg(LHS1).addImm(0));
6195      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6196        .addReg(LHS2).addImm(0)
6197        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6198    } else {
6199      unsigned RHS1 = MI->getOperand(3).getReg();
6200      unsigned RHS2 = MI->getOperand(4).getReg();
6201      AddDefaultPred(BuildMI(BB, dl,
6202                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6203                     .addReg(LHS1).addReg(RHS1));
6204      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6205        .addReg(LHS2).addReg(RHS2)
6206        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6207    }
6208
6209    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6210    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6211    if (MI->getOperand(0).getImm() == ARMCC::NE)
6212      std::swap(destMBB, exitMBB);
6213
6214    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6215      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6216    if (isThumb2)
6217      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6218    else
6219      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6220
6221    MI->eraseFromParent();   // The pseudo instruction is gone now.
6222    return BB;
6223  }
6224
6225  case ARM::ABS:
6226  case ARM::t2ABS: {
6227    // To insert an ABS instruction, we have to insert the
6228    // diamond control-flow pattern.  The incoming instruction knows the
6229    // source vreg to test against 0, the destination vreg to set,
6230    // the condition code register to branch on, the
6231    // true/false values to select between, and a branch opcode to use.
6232    // It transforms
6233    //     V1 = ABS V0
6234    // into
6235    //     V2 = MOVS V0
6236    //     BCC                      (branch to SinkBB if V0 >= 0)
6237    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6238    //     SinkBB: V1 = PHI(V2, V3)
6239    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6240    MachineFunction::iterator BBI = BB;
6241    ++BBI;
6242    MachineFunction *Fn = BB->getParent();
6243    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6244    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6245    Fn->insert(BBI, RSBBB);
6246    Fn->insert(BBI, SinkBB);
6247
6248    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6249    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6250    bool isThumb2 = Subtarget->isThumb2();
6251    MachineRegisterInfo &MRI = Fn->getRegInfo();
6252    // In Thumb mode S must not be specified if source register is the SP or
6253    // PC and if destination register is the SP, so restrict register class
6254    unsigned NewMovDstReg = MRI.createVirtualRegister(
6255      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6256    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6257      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6258
6259    // Transfer the remainder of BB and its successor edges to sinkMBB.
6260    SinkBB->splice(SinkBB->begin(), BB,
6261      llvm::next(MachineBasicBlock::iterator(MI)),
6262      BB->end());
6263    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6264
6265    BB->addSuccessor(RSBBB);
6266    BB->addSuccessor(SinkBB);
6267
6268    // fall through to SinkMBB
6269    RSBBB->addSuccessor(SinkBB);
6270
6271    // insert a movs at the end of BB
6272    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6273      NewMovDstReg)
6274      .addReg(ABSSrcReg, RegState::Kill)
6275      .addImm((unsigned)ARMCC::AL).addReg(0)
6276      .addReg(ARM::CPSR, RegState::Define);
6277
6278    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6279    BuildMI(BB, dl,
6280      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6281      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6282
6283    // insert rsbri in RSBBB
6284    // Note: BCC and rsbri will be converted into predicated rsbmi
6285    // by if-conversion pass
6286    BuildMI(*RSBBB, RSBBB->begin(), dl,
6287      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6288      .addReg(NewMovDstReg, RegState::Kill)
6289      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6290
6291    // insert PHI in SinkBB,
6292    // reuse ABSDstReg to not change uses of ABS instruction
6293    BuildMI(*SinkBB, SinkBB->begin(), dl,
6294      TII->get(ARM::PHI), ABSDstReg)
6295      .addReg(NewRsbDstReg).addMBB(RSBBB)
6296      .addReg(NewMovDstReg).addMBB(BB);
6297
6298    // remove ABS instruction
6299    MI->eraseFromParent();
6300
6301    // return last added BB
6302    return SinkBB;
6303  }
6304  }
6305}
6306
6307void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6308                                                      SDNode *Node) const {
6309  const MCInstrDesc &MCID = MI->getDesc();
6310  if (!MCID.hasPostISelHook()) {
6311    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6312           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6313    return;
6314  }
6315
6316  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6317  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6318  // operand is still set to noreg. If needed, set the optional operand's
6319  // register to CPSR, and remove the redundant implicit def.
6320  //
6321  // e.g. ADCS (...opt:%noreg, CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6322
6323  // Rename pseudo opcodes.
6324  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6325  if (NewOpc) {
6326    const ARMBaseInstrInfo *TII =
6327      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6328    MI->setDesc(TII->get(NewOpc));
6329  }
6330  unsigned ccOutIdx = MCID.getNumOperands() - 1;
6331
6332  // Any ARM instruction that sets the 's' bit should specify an optional
6333  // "cc_out" operand in the last operand position.
6334  if (!MCID.hasOptionalDef() || !MCID.OpInfo[ccOutIdx].isOptionalDef()) {
6335    assert(!NewOpc && "Optional cc_out operand required");
6336    return;
6337  }
6338  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6339  // since we already have an optional CPSR def.
6340  bool definesCPSR = false;
6341  bool deadCPSR = false;
6342  for (unsigned i = MCID.getNumOperands(), e = MI->getNumOperands();
6343       i != e; ++i) {
6344    const MachineOperand &MO = MI->getOperand(i);
6345    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6346      definesCPSR = true;
6347      if (MO.isDead())
6348        deadCPSR = true;
6349      MI->RemoveOperand(i);
6350      break;
6351    }
6352  }
6353  if (!definesCPSR) {
6354    assert(!NewOpc && "Optional cc_out operand required");
6355    return;
6356  }
6357  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6358  if (deadCPSR) {
6359    assert(!MI->getOperand(ccOutIdx).getReg() &&
6360           "expect uninitialized optional cc_out operand");
6361    return;
6362  }
6363
6364  // If this instruction was defined with an optional CPSR def and its dag node
6365  // had a live implicit CPSR def, then activate the optional CPSR def.
6366  MachineOperand &MO = MI->getOperand(ccOutIdx);
6367  MO.setReg(ARM::CPSR);
6368  MO.setIsDef(true);
6369}
6370
6371//===----------------------------------------------------------------------===//
6372//                           ARM Optimization Hooks
6373//===----------------------------------------------------------------------===//
6374
6375static
6376SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6377                            TargetLowering::DAGCombinerInfo &DCI) {
6378  SelectionDAG &DAG = DCI.DAG;
6379  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6380  EVT VT = N->getValueType(0);
6381  unsigned Opc = N->getOpcode();
6382  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6383  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6384  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6385  ISD::CondCode CC = ISD::SETCC_INVALID;
6386
6387  if (isSlctCC) {
6388    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6389  } else {
6390    SDValue CCOp = Slct.getOperand(0);
6391    if (CCOp.getOpcode() == ISD::SETCC)
6392      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6393  }
6394
6395  bool DoXform = false;
6396  bool InvCC = false;
6397  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6398          "Bad input!");
6399
6400  if (LHS.getOpcode() == ISD::Constant &&
6401      cast<ConstantSDNode>(LHS)->isNullValue()) {
6402    DoXform = true;
6403  } else if (CC != ISD::SETCC_INVALID &&
6404             RHS.getOpcode() == ISD::Constant &&
6405             cast<ConstantSDNode>(RHS)->isNullValue()) {
6406    std::swap(LHS, RHS);
6407    SDValue Op0 = Slct.getOperand(0);
6408    EVT OpVT = isSlctCC ? Op0.getValueType() :
6409                          Op0.getOperand(0).getValueType();
6410    bool isInt = OpVT.isInteger();
6411    CC = ISD::getSetCCInverse(CC, isInt);
6412
6413    if (!TLI.isCondCodeLegal(CC, OpVT))
6414      return SDValue();         // Inverse operator isn't legal.
6415
6416    DoXform = true;
6417    InvCC = true;
6418  }
6419
6420  if (DoXform) {
6421    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6422    if (isSlctCC)
6423      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6424                             Slct.getOperand(0), Slct.getOperand(1), CC);
6425    SDValue CCOp = Slct.getOperand(0);
6426    if (InvCC)
6427      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6428                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6429    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6430                       CCOp, OtherOp, Result);
6431  }
6432  return SDValue();
6433}
6434
6435// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6436// (only after legalization).
6437static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6438                                 TargetLowering::DAGCombinerInfo &DCI,
6439                                 const ARMSubtarget *Subtarget) {
6440
6441  // Only perform optimization if after legalize, and if NEON is available. We
6442  // also expected both operands to be BUILD_VECTORs.
6443  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6444      || N0.getOpcode() != ISD::BUILD_VECTOR
6445      || N1.getOpcode() != ISD::BUILD_VECTOR)
6446    return SDValue();
6447
6448  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6449  EVT VT = N->getValueType(0);
6450  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6451    return SDValue();
6452
6453  // Check that the vector operands are of the right form.
6454  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6455  // operands, where N is the size of the formed vector.
6456  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6457  // index such that we have a pair wise add pattern.
6458
6459  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6460  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6461    return SDValue();
6462  SDValue Vec = N0->getOperand(0)->getOperand(0);
6463  SDNode *V = Vec.getNode();
6464  unsigned nextIndex = 0;
6465
6466  // For each operands to the ADD which are BUILD_VECTORs,
6467  // check to see if each of their operands are an EXTRACT_VECTOR with
6468  // the same vector and appropriate index.
6469  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6470    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6471        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6472
6473      SDValue ExtVec0 = N0->getOperand(i);
6474      SDValue ExtVec1 = N1->getOperand(i);
6475
6476      // First operand is the vector, verify its the same.
6477      if (V != ExtVec0->getOperand(0).getNode() ||
6478          V != ExtVec1->getOperand(0).getNode())
6479        return SDValue();
6480
6481      // Second is the constant, verify its correct.
6482      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6483      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6484
6485      // For the constant, we want to see all the even or all the odd.
6486      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6487          || C1->getZExtValue() != nextIndex+1)
6488        return SDValue();
6489
6490      // Increment index.
6491      nextIndex+=2;
6492    } else
6493      return SDValue();
6494  }
6495
6496  // Create VPADDL node.
6497  SelectionDAG &DAG = DCI.DAG;
6498  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6499
6500  // Build operand list.
6501  SmallVector<SDValue, 8> Ops;
6502  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6503                                TLI.getPointerTy()));
6504
6505  // Input is the vector.
6506  Ops.push_back(Vec);
6507
6508  // Get widened type and narrowed type.
6509  MVT widenType;
6510  unsigned numElem = VT.getVectorNumElements();
6511  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6512    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6513    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6514    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6515    default:
6516      assert(0 && "Invalid vector element type for padd optimization.");
6517  }
6518
6519  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6520                            widenType, &Ops[0], Ops.size());
6521  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6522}
6523
6524/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6525/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6526/// called with the default operands, and if that fails, with commuted
6527/// operands.
6528static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6529                                          TargetLowering::DAGCombinerInfo &DCI,
6530                                          const ARMSubtarget *Subtarget){
6531
6532  // Attempt to create vpaddl for this add.
6533  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6534  if (Result.getNode())
6535    return Result;
6536
6537  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6538  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6539    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6540    if (Result.getNode()) return Result;
6541  }
6542  return SDValue();
6543}
6544
6545/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6546///
6547static SDValue PerformADDCombine(SDNode *N,
6548                                 TargetLowering::DAGCombinerInfo &DCI,
6549                                 const ARMSubtarget *Subtarget) {
6550  SDValue N0 = N->getOperand(0);
6551  SDValue N1 = N->getOperand(1);
6552
6553  // First try with the default operand order.
6554  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6555  if (Result.getNode())
6556    return Result;
6557
6558  // If that didn't work, try again with the operands commuted.
6559  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6560}
6561
6562/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6563///
6564static SDValue PerformSUBCombine(SDNode *N,
6565                                 TargetLowering::DAGCombinerInfo &DCI) {
6566  SDValue N0 = N->getOperand(0);
6567  SDValue N1 = N->getOperand(1);
6568
6569  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6570  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6571    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6572    if (Result.getNode()) return Result;
6573  }
6574
6575  return SDValue();
6576}
6577
6578/// PerformVMULCombine
6579/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6580/// special multiplier accumulator forwarding.
6581///   vmul d3, d0, d2
6582///   vmla d3, d1, d2
6583/// is faster than
6584///   vadd d3, d0, d1
6585///   vmul d3, d3, d2
6586static SDValue PerformVMULCombine(SDNode *N,
6587                                  TargetLowering::DAGCombinerInfo &DCI,
6588                                  const ARMSubtarget *Subtarget) {
6589  if (!Subtarget->hasVMLxForwarding())
6590    return SDValue();
6591
6592  SelectionDAG &DAG = DCI.DAG;
6593  SDValue N0 = N->getOperand(0);
6594  SDValue N1 = N->getOperand(1);
6595  unsigned Opcode = N0.getOpcode();
6596  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6597      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6598    Opcode = N1.getOpcode();
6599    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6600        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6601      return SDValue();
6602    std::swap(N0, N1);
6603  }
6604
6605  EVT VT = N->getValueType(0);
6606  DebugLoc DL = N->getDebugLoc();
6607  SDValue N00 = N0->getOperand(0);
6608  SDValue N01 = N0->getOperand(1);
6609  return DAG.getNode(Opcode, DL, VT,
6610                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6611                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6612}
6613
6614static SDValue PerformMULCombine(SDNode *N,
6615                                 TargetLowering::DAGCombinerInfo &DCI,
6616                                 const ARMSubtarget *Subtarget) {
6617  SelectionDAG &DAG = DCI.DAG;
6618
6619  if (Subtarget->isThumb1Only())
6620    return SDValue();
6621
6622  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6623    return SDValue();
6624
6625  EVT VT = N->getValueType(0);
6626  if (VT.is64BitVector() || VT.is128BitVector())
6627    return PerformVMULCombine(N, DCI, Subtarget);
6628  if (VT != MVT::i32)
6629    return SDValue();
6630
6631  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6632  if (!C)
6633    return SDValue();
6634
6635  uint64_t MulAmt = C->getZExtValue();
6636  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6637  ShiftAmt = ShiftAmt & (32 - 1);
6638  SDValue V = N->getOperand(0);
6639  DebugLoc DL = N->getDebugLoc();
6640
6641  SDValue Res;
6642  MulAmt >>= ShiftAmt;
6643  if (isPowerOf2_32(MulAmt - 1)) {
6644    // (mul x, 2^N + 1) => (add (shl x, N), x)
6645    Res = DAG.getNode(ISD::ADD, DL, VT,
6646                      V, DAG.getNode(ISD::SHL, DL, VT,
6647                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6648                                                        MVT::i32)));
6649  } else if (isPowerOf2_32(MulAmt + 1)) {
6650    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6651    Res = DAG.getNode(ISD::SUB, DL, VT,
6652                      DAG.getNode(ISD::SHL, DL, VT,
6653                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6654                                                     MVT::i32)),
6655                                                     V);
6656  } else
6657    return SDValue();
6658
6659  if (ShiftAmt != 0)
6660    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6661                      DAG.getConstant(ShiftAmt, MVT::i32));
6662
6663  // Do not add new nodes to DAG combiner worklist.
6664  DCI.CombineTo(N, Res, false);
6665  return SDValue();
6666}
6667
6668static SDValue PerformANDCombine(SDNode *N,
6669                                TargetLowering::DAGCombinerInfo &DCI) {
6670
6671  // Attempt to use immediate-form VBIC
6672  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6673  DebugLoc dl = N->getDebugLoc();
6674  EVT VT = N->getValueType(0);
6675  SelectionDAG &DAG = DCI.DAG;
6676
6677  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6678    return SDValue();
6679
6680  APInt SplatBits, SplatUndef;
6681  unsigned SplatBitSize;
6682  bool HasAnyUndefs;
6683  if (BVN &&
6684      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6685    if (SplatBitSize <= 64) {
6686      EVT VbicVT;
6687      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6688                                      SplatUndef.getZExtValue(), SplatBitSize,
6689                                      DAG, VbicVT, VT.is128BitVector(),
6690                                      OtherModImm);
6691      if (Val.getNode()) {
6692        SDValue Input =
6693          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6694        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6695        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6696      }
6697    }
6698  }
6699
6700  return SDValue();
6701}
6702
6703/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6704static SDValue PerformORCombine(SDNode *N,
6705                                TargetLowering::DAGCombinerInfo &DCI,
6706                                const ARMSubtarget *Subtarget) {
6707  // Attempt to use immediate-form VORR
6708  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6709  DebugLoc dl = N->getDebugLoc();
6710  EVT VT = N->getValueType(0);
6711  SelectionDAG &DAG = DCI.DAG;
6712
6713  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6714    return SDValue();
6715
6716  APInt SplatBits, SplatUndef;
6717  unsigned SplatBitSize;
6718  bool HasAnyUndefs;
6719  if (BVN && Subtarget->hasNEON() &&
6720      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6721    if (SplatBitSize <= 64) {
6722      EVT VorrVT;
6723      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6724                                      SplatUndef.getZExtValue(), SplatBitSize,
6725                                      DAG, VorrVT, VT.is128BitVector(),
6726                                      OtherModImm);
6727      if (Val.getNode()) {
6728        SDValue Input =
6729          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6730        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6731        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6732      }
6733    }
6734  }
6735
6736  SDValue N0 = N->getOperand(0);
6737  if (N0.getOpcode() != ISD::AND)
6738    return SDValue();
6739  SDValue N1 = N->getOperand(1);
6740
6741  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6742  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6743      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6744    APInt SplatUndef;
6745    unsigned SplatBitSize;
6746    bool HasAnyUndefs;
6747
6748    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6749    APInt SplatBits0;
6750    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6751                                  HasAnyUndefs) && !HasAnyUndefs) {
6752      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6753      APInt SplatBits1;
6754      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6755                                    HasAnyUndefs) && !HasAnyUndefs &&
6756          SplatBits0 == ~SplatBits1) {
6757        // Canonicalize the vector type to make instruction selection simpler.
6758        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6759        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6760                                     N0->getOperand(1), N0->getOperand(0),
6761                                     N1->getOperand(0));
6762        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6763      }
6764    }
6765  }
6766
6767  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6768  // reasonable.
6769
6770  // BFI is only available on V6T2+
6771  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6772    return SDValue();
6773
6774  DebugLoc DL = N->getDebugLoc();
6775  // 1) or (and A, mask), val => ARMbfi A, val, mask
6776  //      iff (val & mask) == val
6777  //
6778  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6779  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6780  //          && mask == ~mask2
6781  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6782  //          && ~mask == mask2
6783  //  (i.e., copy a bitfield value into another bitfield of the same width)
6784
6785  if (VT != MVT::i32)
6786    return SDValue();
6787
6788  SDValue N00 = N0.getOperand(0);
6789
6790  // The value and the mask need to be constants so we can verify this is
6791  // actually a bitfield set. If the mask is 0xffff, we can do better
6792  // via a movt instruction, so don't use BFI in that case.
6793  SDValue MaskOp = N0.getOperand(1);
6794  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6795  if (!MaskC)
6796    return SDValue();
6797  unsigned Mask = MaskC->getZExtValue();
6798  if (Mask == 0xffff)
6799    return SDValue();
6800  SDValue Res;
6801  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6802  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6803  if (N1C) {
6804    unsigned Val = N1C->getZExtValue();
6805    if ((Val & ~Mask) != Val)
6806      return SDValue();
6807
6808    if (ARM::isBitFieldInvertedMask(Mask)) {
6809      Val >>= CountTrailingZeros_32(~Mask);
6810
6811      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6812                        DAG.getConstant(Val, MVT::i32),
6813                        DAG.getConstant(Mask, MVT::i32));
6814
6815      // Do not add new nodes to DAG combiner worklist.
6816      DCI.CombineTo(N, Res, false);
6817      return SDValue();
6818    }
6819  } else if (N1.getOpcode() == ISD::AND) {
6820    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6821    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6822    if (!N11C)
6823      return SDValue();
6824    unsigned Mask2 = N11C->getZExtValue();
6825
6826    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6827    // as is to match.
6828    if (ARM::isBitFieldInvertedMask(Mask) &&
6829        (Mask == ~Mask2)) {
6830      // The pack halfword instruction works better for masks that fit it,
6831      // so use that when it's available.
6832      if (Subtarget->hasT2ExtractPack() &&
6833          (Mask == 0xffff || Mask == 0xffff0000))
6834        return SDValue();
6835      // 2a
6836      unsigned amt = CountTrailingZeros_32(Mask2);
6837      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6838                        DAG.getConstant(amt, MVT::i32));
6839      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6840                        DAG.getConstant(Mask, MVT::i32));
6841      // Do not add new nodes to DAG combiner worklist.
6842      DCI.CombineTo(N, Res, false);
6843      return SDValue();
6844    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6845               (~Mask == Mask2)) {
6846      // The pack halfword instruction works better for masks that fit it,
6847      // so use that when it's available.
6848      if (Subtarget->hasT2ExtractPack() &&
6849          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6850        return SDValue();
6851      // 2b
6852      unsigned lsb = CountTrailingZeros_32(Mask);
6853      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
6854                        DAG.getConstant(lsb, MVT::i32));
6855      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
6856                        DAG.getConstant(Mask2, MVT::i32));
6857      // Do not add new nodes to DAG combiner worklist.
6858      DCI.CombineTo(N, Res, false);
6859      return SDValue();
6860    }
6861  }
6862
6863  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
6864      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
6865      ARM::isBitFieldInvertedMask(~Mask)) {
6866    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
6867    // where lsb(mask) == #shamt and masked bits of B are known zero.
6868    SDValue ShAmt = N00.getOperand(1);
6869    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6870    unsigned LSB = CountTrailingZeros_32(Mask);
6871    if (ShAmtC != LSB)
6872      return SDValue();
6873
6874    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
6875                      DAG.getConstant(~Mask, MVT::i32));
6876
6877    // Do not add new nodes to DAG combiner worklist.
6878    DCI.CombineTo(N, Res, false);
6879  }
6880
6881  return SDValue();
6882}
6883
6884/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
6885/// the bits being cleared by the AND are not demanded by the BFI.
6886static SDValue PerformBFICombine(SDNode *N,
6887                                 TargetLowering::DAGCombinerInfo &DCI) {
6888  SDValue N1 = N->getOperand(1);
6889  if (N1.getOpcode() == ISD::AND) {
6890    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6891    if (!N11C)
6892      return SDValue();
6893    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
6894    unsigned LSB = CountTrailingZeros_32(~InvMask);
6895    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
6896    unsigned Mask = (1 << Width)-1;
6897    unsigned Mask2 = N11C->getZExtValue();
6898    if ((Mask & (~Mask2)) == 0)
6899      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
6900                             N->getOperand(0), N1.getOperand(0),
6901                             N->getOperand(2));
6902  }
6903  return SDValue();
6904}
6905
6906/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
6907/// ARMISD::VMOVRRD.
6908static SDValue PerformVMOVRRDCombine(SDNode *N,
6909                                     TargetLowering::DAGCombinerInfo &DCI) {
6910  // vmovrrd(vmovdrr x, y) -> x,y
6911  SDValue InDouble = N->getOperand(0);
6912  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
6913    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
6914
6915  // vmovrrd(load f64) -> (load i32), (load i32)
6916  SDNode *InNode = InDouble.getNode();
6917  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
6918      InNode->getValueType(0) == MVT::f64 &&
6919      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
6920      !cast<LoadSDNode>(InNode)->isVolatile()) {
6921    // TODO: Should this be done for non-FrameIndex operands?
6922    LoadSDNode *LD = cast<LoadSDNode>(InNode);
6923
6924    SelectionDAG &DAG = DCI.DAG;
6925    DebugLoc DL = LD->getDebugLoc();
6926    SDValue BasePtr = LD->getBasePtr();
6927    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
6928                                 LD->getPointerInfo(), LD->isVolatile(),
6929                                 LD->isNonTemporal(), LD->getAlignment());
6930
6931    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6932                                    DAG.getConstant(4, MVT::i32));
6933    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
6934                                 LD->getPointerInfo(), LD->isVolatile(),
6935                                 LD->isNonTemporal(),
6936                                 std::min(4U, LD->getAlignment() / 2));
6937
6938    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
6939    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
6940    DCI.RemoveFromWorklist(LD);
6941    DAG.DeleteNode(LD);
6942    return Result;
6943  }
6944
6945  return SDValue();
6946}
6947
6948/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
6949/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
6950static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
6951  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
6952  SDValue Op0 = N->getOperand(0);
6953  SDValue Op1 = N->getOperand(1);
6954  if (Op0.getOpcode() == ISD::BITCAST)
6955    Op0 = Op0.getOperand(0);
6956  if (Op1.getOpcode() == ISD::BITCAST)
6957    Op1 = Op1.getOperand(0);
6958  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
6959      Op0.getNode() == Op1.getNode() &&
6960      Op0.getResNo() == 0 && Op1.getResNo() == 1)
6961    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6962                       N->getValueType(0), Op0.getOperand(0));
6963  return SDValue();
6964}
6965
6966/// PerformSTORECombine - Target-specific dag combine xforms for
6967/// ISD::STORE.
6968static SDValue PerformSTORECombine(SDNode *N,
6969                                   TargetLowering::DAGCombinerInfo &DCI) {
6970  // Bitcast an i64 store extracted from a vector to f64.
6971  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6972  StoreSDNode *St = cast<StoreSDNode>(N);
6973  SDValue StVal = St->getValue();
6974  if (!ISD::isNormalStore(St) || St->isVolatile())
6975    return SDValue();
6976
6977  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
6978      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
6979    SelectionDAG  &DAG = DCI.DAG;
6980    DebugLoc DL = St->getDebugLoc();
6981    SDValue BasePtr = St->getBasePtr();
6982    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
6983                                  StVal.getNode()->getOperand(0), BasePtr,
6984                                  St->getPointerInfo(), St->isVolatile(),
6985                                  St->isNonTemporal(), St->getAlignment());
6986
6987    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6988                                    DAG.getConstant(4, MVT::i32));
6989    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
6990                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
6991                        St->isNonTemporal(),
6992                        std::min(4U, St->getAlignment() / 2));
6993  }
6994
6995  if (StVal.getValueType() != MVT::i64 ||
6996      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6997    return SDValue();
6998
6999  SelectionDAG &DAG = DCI.DAG;
7000  DebugLoc dl = StVal.getDebugLoc();
7001  SDValue IntVec = StVal.getOperand(0);
7002  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7003                                 IntVec.getValueType().getVectorNumElements());
7004  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7005  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7006                               Vec, StVal.getOperand(1));
7007  dl = N->getDebugLoc();
7008  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7009  // Make the DAGCombiner fold the bitcasts.
7010  DCI.AddToWorklist(Vec.getNode());
7011  DCI.AddToWorklist(ExtElt.getNode());
7012  DCI.AddToWorklist(V.getNode());
7013  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7014                      St->getPointerInfo(), St->isVolatile(),
7015                      St->isNonTemporal(), St->getAlignment(),
7016                      St->getTBAAInfo());
7017}
7018
7019/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7020/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7021/// i64 vector to have f64 elements, since the value can then be loaded
7022/// directly into a VFP register.
7023static bool hasNormalLoadOperand(SDNode *N) {
7024  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7025  for (unsigned i = 0; i < NumElts; ++i) {
7026    SDNode *Elt = N->getOperand(i).getNode();
7027    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7028      return true;
7029  }
7030  return false;
7031}
7032
7033/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7034/// ISD::BUILD_VECTOR.
7035static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7036                                          TargetLowering::DAGCombinerInfo &DCI){
7037  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7038  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7039  // into a pair of GPRs, which is fine when the value is used as a scalar,
7040  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7041  SelectionDAG &DAG = DCI.DAG;
7042  if (N->getNumOperands() == 2) {
7043    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7044    if (RV.getNode())
7045      return RV;
7046  }
7047
7048  // Load i64 elements as f64 values so that type legalization does not split
7049  // them up into i32 values.
7050  EVT VT = N->getValueType(0);
7051  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7052    return SDValue();
7053  DebugLoc dl = N->getDebugLoc();
7054  SmallVector<SDValue, 8> Ops;
7055  unsigned NumElts = VT.getVectorNumElements();
7056  for (unsigned i = 0; i < NumElts; ++i) {
7057    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7058    Ops.push_back(V);
7059    // Make the DAGCombiner fold the bitcast.
7060    DCI.AddToWorklist(V.getNode());
7061  }
7062  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7063  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7064  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7065}
7066
7067/// PerformInsertEltCombine - Target-specific dag combine xforms for
7068/// ISD::INSERT_VECTOR_ELT.
7069static SDValue PerformInsertEltCombine(SDNode *N,
7070                                       TargetLowering::DAGCombinerInfo &DCI) {
7071  // Bitcast an i64 load inserted into a vector to f64.
7072  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7073  EVT VT = N->getValueType(0);
7074  SDNode *Elt = N->getOperand(1).getNode();
7075  if (VT.getVectorElementType() != MVT::i64 ||
7076      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7077    return SDValue();
7078
7079  SelectionDAG &DAG = DCI.DAG;
7080  DebugLoc dl = N->getDebugLoc();
7081  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7082                                 VT.getVectorNumElements());
7083  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7084  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7085  // Make the DAGCombiner fold the bitcasts.
7086  DCI.AddToWorklist(Vec.getNode());
7087  DCI.AddToWorklist(V.getNode());
7088  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7089                               Vec, V, N->getOperand(2));
7090  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7091}
7092
7093/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7094/// ISD::VECTOR_SHUFFLE.
7095static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7096  // The LLVM shufflevector instruction does not require the shuffle mask
7097  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7098  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7099  // operands do not match the mask length, they are extended by concatenating
7100  // them with undef vectors.  That is probably the right thing for other
7101  // targets, but for NEON it is better to concatenate two double-register
7102  // size vector operands into a single quad-register size vector.  Do that
7103  // transformation here:
7104  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7105  //   shuffle(concat(v1, v2), undef)
7106  SDValue Op0 = N->getOperand(0);
7107  SDValue Op1 = N->getOperand(1);
7108  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7109      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7110      Op0.getNumOperands() != 2 ||
7111      Op1.getNumOperands() != 2)
7112    return SDValue();
7113  SDValue Concat0Op1 = Op0.getOperand(1);
7114  SDValue Concat1Op1 = Op1.getOperand(1);
7115  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7116      Concat1Op1.getOpcode() != ISD::UNDEF)
7117    return SDValue();
7118  // Skip the transformation if any of the types are illegal.
7119  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7120  EVT VT = N->getValueType(0);
7121  if (!TLI.isTypeLegal(VT) ||
7122      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7123      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7124    return SDValue();
7125
7126  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7127                                  Op0.getOperand(0), Op1.getOperand(0));
7128  // Translate the shuffle mask.
7129  SmallVector<int, 16> NewMask;
7130  unsigned NumElts = VT.getVectorNumElements();
7131  unsigned HalfElts = NumElts/2;
7132  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7133  for (unsigned n = 0; n < NumElts; ++n) {
7134    int MaskElt = SVN->getMaskElt(n);
7135    int NewElt = -1;
7136    if (MaskElt < (int)HalfElts)
7137      NewElt = MaskElt;
7138    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7139      NewElt = HalfElts + MaskElt - NumElts;
7140    NewMask.push_back(NewElt);
7141  }
7142  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7143                              DAG.getUNDEF(VT), NewMask.data());
7144}
7145
7146/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7147/// NEON load/store intrinsics to merge base address updates.
7148static SDValue CombineBaseUpdate(SDNode *N,
7149                                 TargetLowering::DAGCombinerInfo &DCI) {
7150  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7151    return SDValue();
7152
7153  SelectionDAG &DAG = DCI.DAG;
7154  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7155                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7156  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7157  SDValue Addr = N->getOperand(AddrOpIdx);
7158
7159  // Search for a use of the address operand that is an increment.
7160  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7161         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7162    SDNode *User = *UI;
7163    if (User->getOpcode() != ISD::ADD ||
7164        UI.getUse().getResNo() != Addr.getResNo())
7165      continue;
7166
7167    // Check that the add is independent of the load/store.  Otherwise, folding
7168    // it would create a cycle.
7169    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7170      continue;
7171
7172    // Find the new opcode for the updating load/store.
7173    bool isLoad = true;
7174    bool isLaneOp = false;
7175    unsigned NewOpc = 0;
7176    unsigned NumVecs = 0;
7177    if (isIntrinsic) {
7178      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7179      switch (IntNo) {
7180      default: assert(0 && "unexpected intrinsic for Neon base update");
7181      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7182        NumVecs = 1; break;
7183      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7184        NumVecs = 2; break;
7185      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7186        NumVecs = 3; break;
7187      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7188        NumVecs = 4; break;
7189      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7190        NumVecs = 2; isLaneOp = true; break;
7191      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7192        NumVecs = 3; isLaneOp = true; break;
7193      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7194        NumVecs = 4; isLaneOp = true; break;
7195      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7196        NumVecs = 1; isLoad = false; break;
7197      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7198        NumVecs = 2; isLoad = false; break;
7199      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7200        NumVecs = 3; isLoad = false; break;
7201      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7202        NumVecs = 4; isLoad = false; break;
7203      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7204        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7205      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7206        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7207      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7208        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7209      }
7210    } else {
7211      isLaneOp = true;
7212      switch (N->getOpcode()) {
7213      default: assert(0 && "unexpected opcode for Neon base update");
7214      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7215      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7216      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7217      }
7218    }
7219
7220    // Find the size of memory referenced by the load/store.
7221    EVT VecTy;
7222    if (isLoad)
7223      VecTy = N->getValueType(0);
7224    else
7225      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7226    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7227    if (isLaneOp)
7228      NumBytes /= VecTy.getVectorNumElements();
7229
7230    // If the increment is a constant, it must match the memory ref size.
7231    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7232    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7233      uint64_t IncVal = CInc->getZExtValue();
7234      if (IncVal != NumBytes)
7235        continue;
7236    } else if (NumBytes >= 3 * 16) {
7237      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7238      // separate instructions that make it harder to use a non-constant update.
7239      continue;
7240    }
7241
7242    // Create the new updating load/store node.
7243    EVT Tys[6];
7244    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7245    unsigned n;
7246    for (n = 0; n < NumResultVecs; ++n)
7247      Tys[n] = VecTy;
7248    Tys[n++] = MVT::i32;
7249    Tys[n] = MVT::Other;
7250    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7251    SmallVector<SDValue, 8> Ops;
7252    Ops.push_back(N->getOperand(0)); // incoming chain
7253    Ops.push_back(N->getOperand(AddrOpIdx));
7254    Ops.push_back(Inc);
7255    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7256      Ops.push_back(N->getOperand(i));
7257    }
7258    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7259    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7260                                           Ops.data(), Ops.size(),
7261                                           MemInt->getMemoryVT(),
7262                                           MemInt->getMemOperand());
7263
7264    // Update the uses.
7265    std::vector<SDValue> NewResults;
7266    for (unsigned i = 0; i < NumResultVecs; ++i) {
7267      NewResults.push_back(SDValue(UpdN.getNode(), i));
7268    }
7269    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7270    DCI.CombineTo(N, NewResults);
7271    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7272
7273    break;
7274  }
7275  return SDValue();
7276}
7277
7278/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7279/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7280/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7281/// return true.
7282static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7283  SelectionDAG &DAG = DCI.DAG;
7284  EVT VT = N->getValueType(0);
7285  // vldN-dup instructions only support 64-bit vectors for N > 1.
7286  if (!VT.is64BitVector())
7287    return false;
7288
7289  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7290  SDNode *VLD = N->getOperand(0).getNode();
7291  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7292    return false;
7293  unsigned NumVecs = 0;
7294  unsigned NewOpc = 0;
7295  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7296  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7297    NumVecs = 2;
7298    NewOpc = ARMISD::VLD2DUP;
7299  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7300    NumVecs = 3;
7301    NewOpc = ARMISD::VLD3DUP;
7302  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7303    NumVecs = 4;
7304    NewOpc = ARMISD::VLD4DUP;
7305  } else {
7306    return false;
7307  }
7308
7309  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7310  // numbers match the load.
7311  unsigned VLDLaneNo =
7312    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7313  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7314       UI != UE; ++UI) {
7315    // Ignore uses of the chain result.
7316    if (UI.getUse().getResNo() == NumVecs)
7317      continue;
7318    SDNode *User = *UI;
7319    if (User->getOpcode() != ARMISD::VDUPLANE ||
7320        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7321      return false;
7322  }
7323
7324  // Create the vldN-dup node.
7325  EVT Tys[5];
7326  unsigned n;
7327  for (n = 0; n < NumVecs; ++n)
7328    Tys[n] = VT;
7329  Tys[n] = MVT::Other;
7330  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7331  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7332  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7333  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7334                                           Ops, 2, VLDMemInt->getMemoryVT(),
7335                                           VLDMemInt->getMemOperand());
7336
7337  // Update the uses.
7338  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7339       UI != UE; ++UI) {
7340    unsigned ResNo = UI.getUse().getResNo();
7341    // Ignore uses of the chain result.
7342    if (ResNo == NumVecs)
7343      continue;
7344    SDNode *User = *UI;
7345    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7346  }
7347
7348  // Now the vldN-lane intrinsic is dead except for its chain result.
7349  // Update uses of the chain.
7350  std::vector<SDValue> VLDDupResults;
7351  for (unsigned n = 0; n < NumVecs; ++n)
7352    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7353  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7354  DCI.CombineTo(VLD, VLDDupResults);
7355
7356  return true;
7357}
7358
7359/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7360/// ARMISD::VDUPLANE.
7361static SDValue PerformVDUPLANECombine(SDNode *N,
7362                                      TargetLowering::DAGCombinerInfo &DCI) {
7363  SDValue Op = N->getOperand(0);
7364
7365  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7366  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7367  if (CombineVLDDUP(N, DCI))
7368    return SDValue(N, 0);
7369
7370  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7371  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7372  while (Op.getOpcode() == ISD::BITCAST)
7373    Op = Op.getOperand(0);
7374  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7375    return SDValue();
7376
7377  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7378  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7379  // The canonical VMOV for a zero vector uses a 32-bit element size.
7380  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7381  unsigned EltBits;
7382  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7383    EltSize = 8;
7384  EVT VT = N->getValueType(0);
7385  if (EltSize > VT.getVectorElementType().getSizeInBits())
7386    return SDValue();
7387
7388  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7389}
7390
7391// isConstVecPow2 - Return true if each vector element is a power of 2, all
7392// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7393static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7394{
7395  integerPart cN;
7396  integerPart c0 = 0;
7397  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7398       I != E; I++) {
7399    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7400    if (!C)
7401      return false;
7402
7403    bool isExact;
7404    APFloat APF = C->getValueAPF();
7405    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7406        != APFloat::opOK || !isExact)
7407      return false;
7408
7409    c0 = (I == 0) ? cN : c0;
7410    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7411      return false;
7412  }
7413  C = c0;
7414  return true;
7415}
7416
7417/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7418/// can replace combinations of VMUL and VCVT (floating-point to integer)
7419/// when the VMUL has a constant operand that is a power of 2.
7420///
7421/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7422///  vmul.f32        d16, d17, d16
7423///  vcvt.s32.f32    d16, d16
7424/// becomes:
7425///  vcvt.s32.f32    d16, d16, #3
7426static SDValue PerformVCVTCombine(SDNode *N,
7427                                  TargetLowering::DAGCombinerInfo &DCI,
7428                                  const ARMSubtarget *Subtarget) {
7429  SelectionDAG &DAG = DCI.DAG;
7430  SDValue Op = N->getOperand(0);
7431
7432  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7433      Op.getOpcode() != ISD::FMUL)
7434    return SDValue();
7435
7436  uint64_t C;
7437  SDValue N0 = Op->getOperand(0);
7438  SDValue ConstVec = Op->getOperand(1);
7439  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7440
7441  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7442      !isConstVecPow2(ConstVec, isSigned, C))
7443    return SDValue();
7444
7445  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7446    Intrinsic::arm_neon_vcvtfp2fxu;
7447  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7448                     N->getValueType(0),
7449                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7450                     DAG.getConstant(Log2_64(C), MVT::i32));
7451}
7452
7453/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7454/// can replace combinations of VCVT (integer to floating-point) and VDIV
7455/// when the VDIV has a constant operand that is a power of 2.
7456///
7457/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7458///  vcvt.f32.s32    d16, d16
7459///  vdiv.f32        d16, d17, d16
7460/// becomes:
7461///  vcvt.f32.s32    d16, d16, #3
7462static SDValue PerformVDIVCombine(SDNode *N,
7463                                  TargetLowering::DAGCombinerInfo &DCI,
7464                                  const ARMSubtarget *Subtarget) {
7465  SelectionDAG &DAG = DCI.DAG;
7466  SDValue Op = N->getOperand(0);
7467  unsigned OpOpcode = Op.getNode()->getOpcode();
7468
7469  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7470      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7471    return SDValue();
7472
7473  uint64_t C;
7474  SDValue ConstVec = N->getOperand(1);
7475  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7476
7477  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7478      !isConstVecPow2(ConstVec, isSigned, C))
7479    return SDValue();
7480
7481  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7482    Intrinsic::arm_neon_vcvtfxu2fp;
7483  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7484                     Op.getValueType(),
7485                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7486                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7487}
7488
7489/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7490/// operand of a vector shift operation, where all the elements of the
7491/// build_vector must have the same constant integer value.
7492static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7493  // Ignore bit_converts.
7494  while (Op.getOpcode() == ISD::BITCAST)
7495    Op = Op.getOperand(0);
7496  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7497  APInt SplatBits, SplatUndef;
7498  unsigned SplatBitSize;
7499  bool HasAnyUndefs;
7500  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7501                                      HasAnyUndefs, ElementBits) ||
7502      SplatBitSize > ElementBits)
7503    return false;
7504  Cnt = SplatBits.getSExtValue();
7505  return true;
7506}
7507
7508/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7509/// operand of a vector shift left operation.  That value must be in the range:
7510///   0 <= Value < ElementBits for a left shift; or
7511///   0 <= Value <= ElementBits for a long left shift.
7512static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7513  assert(VT.isVector() && "vector shift count is not a vector type");
7514  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7515  if (! getVShiftImm(Op, ElementBits, Cnt))
7516    return false;
7517  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7518}
7519
7520/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7521/// operand of a vector shift right operation.  For a shift opcode, the value
7522/// is positive, but for an intrinsic the value count must be negative. The
7523/// absolute value must be in the range:
7524///   1 <= |Value| <= ElementBits for a right shift; or
7525///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7526static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7527                         int64_t &Cnt) {
7528  assert(VT.isVector() && "vector shift count is not a vector type");
7529  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7530  if (! getVShiftImm(Op, ElementBits, Cnt))
7531    return false;
7532  if (isIntrinsic)
7533    Cnt = -Cnt;
7534  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7535}
7536
7537/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7538static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7539  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7540  switch (IntNo) {
7541  default:
7542    // Don't do anything for most intrinsics.
7543    break;
7544
7545  // Vector shifts: check for immediate versions and lower them.
7546  // Note: This is done during DAG combining instead of DAG legalizing because
7547  // the build_vectors for 64-bit vector element shift counts are generally
7548  // not legal, and it is hard to see their values after they get legalized to
7549  // loads from a constant pool.
7550  case Intrinsic::arm_neon_vshifts:
7551  case Intrinsic::arm_neon_vshiftu:
7552  case Intrinsic::arm_neon_vshiftls:
7553  case Intrinsic::arm_neon_vshiftlu:
7554  case Intrinsic::arm_neon_vshiftn:
7555  case Intrinsic::arm_neon_vrshifts:
7556  case Intrinsic::arm_neon_vrshiftu:
7557  case Intrinsic::arm_neon_vrshiftn:
7558  case Intrinsic::arm_neon_vqshifts:
7559  case Intrinsic::arm_neon_vqshiftu:
7560  case Intrinsic::arm_neon_vqshiftsu:
7561  case Intrinsic::arm_neon_vqshiftns:
7562  case Intrinsic::arm_neon_vqshiftnu:
7563  case Intrinsic::arm_neon_vqshiftnsu:
7564  case Intrinsic::arm_neon_vqrshiftns:
7565  case Intrinsic::arm_neon_vqrshiftnu:
7566  case Intrinsic::arm_neon_vqrshiftnsu: {
7567    EVT VT = N->getOperand(1).getValueType();
7568    int64_t Cnt;
7569    unsigned VShiftOpc = 0;
7570
7571    switch (IntNo) {
7572    case Intrinsic::arm_neon_vshifts:
7573    case Intrinsic::arm_neon_vshiftu:
7574      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7575        VShiftOpc = ARMISD::VSHL;
7576        break;
7577      }
7578      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7579        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7580                     ARMISD::VSHRs : ARMISD::VSHRu);
7581        break;
7582      }
7583      return SDValue();
7584
7585    case Intrinsic::arm_neon_vshiftls:
7586    case Intrinsic::arm_neon_vshiftlu:
7587      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7588        break;
7589      llvm_unreachable("invalid shift count for vshll intrinsic");
7590
7591    case Intrinsic::arm_neon_vrshifts:
7592    case Intrinsic::arm_neon_vrshiftu:
7593      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7594        break;
7595      return SDValue();
7596
7597    case Intrinsic::arm_neon_vqshifts:
7598    case Intrinsic::arm_neon_vqshiftu:
7599      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7600        break;
7601      return SDValue();
7602
7603    case Intrinsic::arm_neon_vqshiftsu:
7604      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7605        break;
7606      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7607
7608    case Intrinsic::arm_neon_vshiftn:
7609    case Intrinsic::arm_neon_vrshiftn:
7610    case Intrinsic::arm_neon_vqshiftns:
7611    case Intrinsic::arm_neon_vqshiftnu:
7612    case Intrinsic::arm_neon_vqshiftnsu:
7613    case Intrinsic::arm_neon_vqrshiftns:
7614    case Intrinsic::arm_neon_vqrshiftnu:
7615    case Intrinsic::arm_neon_vqrshiftnsu:
7616      // Narrowing shifts require an immediate right shift.
7617      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7618        break;
7619      llvm_unreachable("invalid shift count for narrowing vector shift "
7620                       "intrinsic");
7621
7622    default:
7623      llvm_unreachable("unhandled vector shift");
7624    }
7625
7626    switch (IntNo) {
7627    case Intrinsic::arm_neon_vshifts:
7628    case Intrinsic::arm_neon_vshiftu:
7629      // Opcode already set above.
7630      break;
7631    case Intrinsic::arm_neon_vshiftls:
7632    case Intrinsic::arm_neon_vshiftlu:
7633      if (Cnt == VT.getVectorElementType().getSizeInBits())
7634        VShiftOpc = ARMISD::VSHLLi;
7635      else
7636        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7637                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7638      break;
7639    case Intrinsic::arm_neon_vshiftn:
7640      VShiftOpc = ARMISD::VSHRN; break;
7641    case Intrinsic::arm_neon_vrshifts:
7642      VShiftOpc = ARMISD::VRSHRs; break;
7643    case Intrinsic::arm_neon_vrshiftu:
7644      VShiftOpc = ARMISD::VRSHRu; break;
7645    case Intrinsic::arm_neon_vrshiftn:
7646      VShiftOpc = ARMISD::VRSHRN; break;
7647    case Intrinsic::arm_neon_vqshifts:
7648      VShiftOpc = ARMISD::VQSHLs; break;
7649    case Intrinsic::arm_neon_vqshiftu:
7650      VShiftOpc = ARMISD::VQSHLu; break;
7651    case Intrinsic::arm_neon_vqshiftsu:
7652      VShiftOpc = ARMISD::VQSHLsu; break;
7653    case Intrinsic::arm_neon_vqshiftns:
7654      VShiftOpc = ARMISD::VQSHRNs; break;
7655    case Intrinsic::arm_neon_vqshiftnu:
7656      VShiftOpc = ARMISD::VQSHRNu; break;
7657    case Intrinsic::arm_neon_vqshiftnsu:
7658      VShiftOpc = ARMISD::VQSHRNsu; break;
7659    case Intrinsic::arm_neon_vqrshiftns:
7660      VShiftOpc = ARMISD::VQRSHRNs; break;
7661    case Intrinsic::arm_neon_vqrshiftnu:
7662      VShiftOpc = ARMISD::VQRSHRNu; break;
7663    case Intrinsic::arm_neon_vqrshiftnsu:
7664      VShiftOpc = ARMISD::VQRSHRNsu; break;
7665    }
7666
7667    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7668                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7669  }
7670
7671  case Intrinsic::arm_neon_vshiftins: {
7672    EVT VT = N->getOperand(1).getValueType();
7673    int64_t Cnt;
7674    unsigned VShiftOpc = 0;
7675
7676    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7677      VShiftOpc = ARMISD::VSLI;
7678    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7679      VShiftOpc = ARMISD::VSRI;
7680    else {
7681      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7682    }
7683
7684    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7685                       N->getOperand(1), N->getOperand(2),
7686                       DAG.getConstant(Cnt, MVT::i32));
7687  }
7688
7689  case Intrinsic::arm_neon_vqrshifts:
7690  case Intrinsic::arm_neon_vqrshiftu:
7691    // No immediate versions of these to check for.
7692    break;
7693  }
7694
7695  return SDValue();
7696}
7697
7698/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7699/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7700/// combining instead of DAG legalizing because the build_vectors for 64-bit
7701/// vector element shift counts are generally not legal, and it is hard to see
7702/// their values after they get legalized to loads from a constant pool.
7703static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7704                                   const ARMSubtarget *ST) {
7705  EVT VT = N->getValueType(0);
7706
7707  // Nothing to be done for scalar shifts.
7708  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7709  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7710    return SDValue();
7711
7712  assert(ST->hasNEON() && "unexpected vector shift");
7713  int64_t Cnt;
7714
7715  switch (N->getOpcode()) {
7716  default: llvm_unreachable("unexpected shift opcode");
7717
7718  case ISD::SHL:
7719    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7720      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7721                         DAG.getConstant(Cnt, MVT::i32));
7722    break;
7723
7724  case ISD::SRA:
7725  case ISD::SRL:
7726    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7727      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7728                            ARMISD::VSHRs : ARMISD::VSHRu);
7729      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7730                         DAG.getConstant(Cnt, MVT::i32));
7731    }
7732  }
7733  return SDValue();
7734}
7735
7736/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7737/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7738static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7739                                    const ARMSubtarget *ST) {
7740  SDValue N0 = N->getOperand(0);
7741
7742  // Check for sign- and zero-extensions of vector extract operations of 8-
7743  // and 16-bit vector elements.  NEON supports these directly.  They are
7744  // handled during DAG combining because type legalization will promote them
7745  // to 32-bit types and it is messy to recognize the operations after that.
7746  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7747    SDValue Vec = N0.getOperand(0);
7748    SDValue Lane = N0.getOperand(1);
7749    EVT VT = N->getValueType(0);
7750    EVT EltVT = N0.getValueType();
7751    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7752
7753    if (VT == MVT::i32 &&
7754        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7755        TLI.isTypeLegal(Vec.getValueType()) &&
7756        isa<ConstantSDNode>(Lane)) {
7757
7758      unsigned Opc = 0;
7759      switch (N->getOpcode()) {
7760      default: llvm_unreachable("unexpected opcode");
7761      case ISD::SIGN_EXTEND:
7762        Opc = ARMISD::VGETLANEs;
7763        break;
7764      case ISD::ZERO_EXTEND:
7765      case ISD::ANY_EXTEND:
7766        Opc = ARMISD::VGETLANEu;
7767        break;
7768      }
7769      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7770    }
7771  }
7772
7773  return SDValue();
7774}
7775
7776/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7777/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7778static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7779                                       const ARMSubtarget *ST) {
7780  // If the target supports NEON, try to use vmax/vmin instructions for f32
7781  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7782  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7783  // a NaN; only do the transformation when it matches that behavior.
7784
7785  // For now only do this when using NEON for FP operations; if using VFP, it
7786  // is not obvious that the benefit outweighs the cost of switching to the
7787  // NEON pipeline.
7788  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7789      N->getValueType(0) != MVT::f32)
7790    return SDValue();
7791
7792  SDValue CondLHS = N->getOperand(0);
7793  SDValue CondRHS = N->getOperand(1);
7794  SDValue LHS = N->getOperand(2);
7795  SDValue RHS = N->getOperand(3);
7796  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7797
7798  unsigned Opcode = 0;
7799  bool IsReversed;
7800  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7801    IsReversed = false; // x CC y ? x : y
7802  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7803    IsReversed = true ; // x CC y ? y : x
7804  } else {
7805    return SDValue();
7806  }
7807
7808  bool IsUnordered;
7809  switch (CC) {
7810  default: break;
7811  case ISD::SETOLT:
7812  case ISD::SETOLE:
7813  case ISD::SETLT:
7814  case ISD::SETLE:
7815  case ISD::SETULT:
7816  case ISD::SETULE:
7817    // If LHS is NaN, an ordered comparison will be false and the result will
7818    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7819    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7820    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7821    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7822      break;
7823    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7824    // will return -0, so vmin can only be used for unsafe math or if one of
7825    // the operands is known to be nonzero.
7826    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7827        !UnsafeFPMath &&
7828        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7829      break;
7830    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7831    break;
7832
7833  case ISD::SETOGT:
7834  case ISD::SETOGE:
7835  case ISD::SETGT:
7836  case ISD::SETGE:
7837  case ISD::SETUGT:
7838  case ISD::SETUGE:
7839    // If LHS is NaN, an ordered comparison will be false and the result will
7840    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7841    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7842    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7843    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7844      break;
7845    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7846    // will return +0, so vmax can only be used for unsafe math or if one of
7847    // the operands is known to be nonzero.
7848    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7849        !UnsafeFPMath &&
7850        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7851      break;
7852    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
7853    break;
7854  }
7855
7856  if (!Opcode)
7857    return SDValue();
7858  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
7859}
7860
7861/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
7862SDValue
7863ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
7864  SDValue Cmp = N->getOperand(4);
7865  if (Cmp.getOpcode() != ARMISD::CMPZ)
7866    // Only looking at EQ and NE cases.
7867    return SDValue();
7868
7869  EVT VT = N->getValueType(0);
7870  DebugLoc dl = N->getDebugLoc();
7871  SDValue LHS = Cmp.getOperand(0);
7872  SDValue RHS = Cmp.getOperand(1);
7873  SDValue FalseVal = N->getOperand(0);
7874  SDValue TrueVal = N->getOperand(1);
7875  SDValue ARMcc = N->getOperand(2);
7876  ARMCC::CondCodes CC =
7877    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
7878
7879  // Simplify
7880  //   mov     r1, r0
7881  //   cmp     r1, x
7882  //   mov     r0, y
7883  //   moveq   r0, x
7884  // to
7885  //   cmp     r0, x
7886  //   movne   r0, y
7887  //
7888  //   mov     r1, r0
7889  //   cmp     r1, x
7890  //   mov     r0, x
7891  //   movne   r0, y
7892  // to
7893  //   cmp     r0, x
7894  //   movne   r0, y
7895  /// FIXME: Turn this into a target neutral optimization?
7896  SDValue Res;
7897  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
7898    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
7899                      N->getOperand(3), Cmp);
7900  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
7901    SDValue ARMcc;
7902    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
7903    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
7904                      N->getOperand(3), NewCmp);
7905  }
7906
7907  if (Res.getNode()) {
7908    APInt KnownZero, KnownOne;
7909    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
7910    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
7911    // Capture demanded bits information that would be otherwise lost.
7912    if (KnownZero == 0xfffffffe)
7913      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7914                        DAG.getValueType(MVT::i1));
7915    else if (KnownZero == 0xffffff00)
7916      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7917                        DAG.getValueType(MVT::i8));
7918    else if (KnownZero == 0xffff0000)
7919      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7920                        DAG.getValueType(MVT::i16));
7921  }
7922
7923  return Res;
7924}
7925
7926SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
7927                                             DAGCombinerInfo &DCI) const {
7928  switch (N->getOpcode()) {
7929  default: break;
7930  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
7931  case ISD::SUB:        return PerformSUBCombine(N, DCI);
7932  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
7933  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
7934  case ISD::AND:        return PerformANDCombine(N, DCI);
7935  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
7936  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
7937  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
7938  case ISD::STORE:      return PerformSTORECombine(N, DCI);
7939  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
7940  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
7941  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
7942  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
7943  case ISD::FP_TO_SINT:
7944  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
7945  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
7946  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
7947  case ISD::SHL:
7948  case ISD::SRA:
7949  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
7950  case ISD::SIGN_EXTEND:
7951  case ISD::ZERO_EXTEND:
7952  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
7953  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
7954  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
7955  case ARMISD::VLD2DUP:
7956  case ARMISD::VLD3DUP:
7957  case ARMISD::VLD4DUP:
7958    return CombineBaseUpdate(N, DCI);
7959  case ISD::INTRINSIC_VOID:
7960  case ISD::INTRINSIC_W_CHAIN:
7961    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7962    case Intrinsic::arm_neon_vld1:
7963    case Intrinsic::arm_neon_vld2:
7964    case Intrinsic::arm_neon_vld3:
7965    case Intrinsic::arm_neon_vld4:
7966    case Intrinsic::arm_neon_vld2lane:
7967    case Intrinsic::arm_neon_vld3lane:
7968    case Intrinsic::arm_neon_vld4lane:
7969    case Intrinsic::arm_neon_vst1:
7970    case Intrinsic::arm_neon_vst2:
7971    case Intrinsic::arm_neon_vst3:
7972    case Intrinsic::arm_neon_vst4:
7973    case Intrinsic::arm_neon_vst2lane:
7974    case Intrinsic::arm_neon_vst3lane:
7975    case Intrinsic::arm_neon_vst4lane:
7976      return CombineBaseUpdate(N, DCI);
7977    default: break;
7978    }
7979    break;
7980  }
7981  return SDValue();
7982}
7983
7984bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
7985                                                          EVT VT) const {
7986  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
7987}
7988
7989bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
7990  if (!Subtarget->allowsUnalignedMem())
7991    return false;
7992
7993  switch (VT.getSimpleVT().SimpleTy) {
7994  default:
7995    return false;
7996  case MVT::i8:
7997  case MVT::i16:
7998  case MVT::i32:
7999    return true;
8000  // FIXME: VLD1 etc with standard alignment is legal.
8001  }
8002}
8003
8004static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8005  if (V < 0)
8006    return false;
8007
8008  unsigned Scale = 1;
8009  switch (VT.getSimpleVT().SimpleTy) {
8010  default: return false;
8011  case MVT::i1:
8012  case MVT::i8:
8013    // Scale == 1;
8014    break;
8015  case MVT::i16:
8016    // Scale == 2;
8017    Scale = 2;
8018    break;
8019  case MVT::i32:
8020    // Scale == 4;
8021    Scale = 4;
8022    break;
8023  }
8024
8025  if ((V & (Scale - 1)) != 0)
8026    return false;
8027  V /= Scale;
8028  return V == (V & ((1LL << 5) - 1));
8029}
8030
8031static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8032                                      const ARMSubtarget *Subtarget) {
8033  bool isNeg = false;
8034  if (V < 0) {
8035    isNeg = true;
8036    V = - V;
8037  }
8038
8039  switch (VT.getSimpleVT().SimpleTy) {
8040  default: return false;
8041  case MVT::i1:
8042  case MVT::i8:
8043  case MVT::i16:
8044  case MVT::i32:
8045    // + imm12 or - imm8
8046    if (isNeg)
8047      return V == (V & ((1LL << 8) - 1));
8048    return V == (V & ((1LL << 12) - 1));
8049  case MVT::f32:
8050  case MVT::f64:
8051    // Same as ARM mode. FIXME: NEON?
8052    if (!Subtarget->hasVFP2())
8053      return false;
8054    if ((V & 3) != 0)
8055      return false;
8056    V >>= 2;
8057    return V == (V & ((1LL << 8) - 1));
8058  }
8059}
8060
8061/// isLegalAddressImmediate - Return true if the integer value can be used
8062/// as the offset of the target addressing mode for load / store of the
8063/// given type.
8064static bool isLegalAddressImmediate(int64_t V, EVT VT,
8065                                    const ARMSubtarget *Subtarget) {
8066  if (V == 0)
8067    return true;
8068
8069  if (!VT.isSimple())
8070    return false;
8071
8072  if (Subtarget->isThumb1Only())
8073    return isLegalT1AddressImmediate(V, VT);
8074  else if (Subtarget->isThumb2())
8075    return isLegalT2AddressImmediate(V, VT, Subtarget);
8076
8077  // ARM mode.
8078  if (V < 0)
8079    V = - V;
8080  switch (VT.getSimpleVT().SimpleTy) {
8081  default: return false;
8082  case MVT::i1:
8083  case MVT::i8:
8084  case MVT::i32:
8085    // +- imm12
8086    return V == (V & ((1LL << 12) - 1));
8087  case MVT::i16:
8088    // +- imm8
8089    return V == (V & ((1LL << 8) - 1));
8090  case MVT::f32:
8091  case MVT::f64:
8092    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8093      return false;
8094    if ((V & 3) != 0)
8095      return false;
8096    V >>= 2;
8097    return V == (V & ((1LL << 8) - 1));
8098  }
8099}
8100
8101bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8102                                                      EVT VT) const {
8103  int Scale = AM.Scale;
8104  if (Scale < 0)
8105    return false;
8106
8107  switch (VT.getSimpleVT().SimpleTy) {
8108  default: return false;
8109  case MVT::i1:
8110  case MVT::i8:
8111  case MVT::i16:
8112  case MVT::i32:
8113    if (Scale == 1)
8114      return true;
8115    // r + r << imm
8116    Scale = Scale & ~1;
8117    return Scale == 2 || Scale == 4 || Scale == 8;
8118  case MVT::i64:
8119    // r + r
8120    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8121      return true;
8122    return false;
8123  case MVT::isVoid:
8124    // Note, we allow "void" uses (basically, uses that aren't loads or
8125    // stores), because arm allows folding a scale into many arithmetic
8126    // operations.  This should be made more precise and revisited later.
8127
8128    // Allow r << imm, but the imm has to be a multiple of two.
8129    if (Scale & 1) return false;
8130    return isPowerOf2_32(Scale);
8131  }
8132}
8133
8134/// isLegalAddressingMode - Return true if the addressing mode represented
8135/// by AM is legal for this target, for a load/store of the specified type.
8136bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8137                                              Type *Ty) const {
8138  EVT VT = getValueType(Ty, true);
8139  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8140    return false;
8141
8142  // Can never fold addr of global into load/store.
8143  if (AM.BaseGV)
8144    return false;
8145
8146  switch (AM.Scale) {
8147  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8148    break;
8149  case 1:
8150    if (Subtarget->isThumb1Only())
8151      return false;
8152    // FALL THROUGH.
8153  default:
8154    // ARM doesn't support any R+R*scale+imm addr modes.
8155    if (AM.BaseOffs)
8156      return false;
8157
8158    if (!VT.isSimple())
8159      return false;
8160
8161    if (Subtarget->isThumb2())
8162      return isLegalT2ScaledAddressingMode(AM, VT);
8163
8164    int Scale = AM.Scale;
8165    switch (VT.getSimpleVT().SimpleTy) {
8166    default: return false;
8167    case MVT::i1:
8168    case MVT::i8:
8169    case MVT::i32:
8170      if (Scale < 0) Scale = -Scale;
8171      if (Scale == 1)
8172        return true;
8173      // r + r << imm
8174      return isPowerOf2_32(Scale & ~1);
8175    case MVT::i16:
8176    case MVT::i64:
8177      // r + r
8178      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8179        return true;
8180      return false;
8181
8182    case MVT::isVoid:
8183      // Note, we allow "void" uses (basically, uses that aren't loads or
8184      // stores), because arm allows folding a scale into many arithmetic
8185      // operations.  This should be made more precise and revisited later.
8186
8187      // Allow r << imm, but the imm has to be a multiple of two.
8188      if (Scale & 1) return false;
8189      return isPowerOf2_32(Scale);
8190    }
8191    break;
8192  }
8193  return true;
8194}
8195
8196/// isLegalICmpImmediate - Return true if the specified immediate is legal
8197/// icmp immediate, that is the target has icmp instructions which can compare
8198/// a register against the immediate without having to materialize the
8199/// immediate into a register.
8200bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8201  if (!Subtarget->isThumb())
8202    return ARM_AM::getSOImmVal(Imm) != -1;
8203  if (Subtarget->isThumb2())
8204    return ARM_AM::getT2SOImmVal(Imm) != -1;
8205  return Imm >= 0 && Imm <= 255;
8206}
8207
8208/// isLegalAddImmediate - Return true if the specified immediate is legal
8209/// add immediate, that is the target has add instructions which can add
8210/// a register with the immediate without having to materialize the
8211/// immediate into a register.
8212bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8213  return ARM_AM::getSOImmVal(Imm) != -1;
8214}
8215
8216static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8217                                      bool isSEXTLoad, SDValue &Base,
8218                                      SDValue &Offset, bool &isInc,
8219                                      SelectionDAG &DAG) {
8220  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8221    return false;
8222
8223  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8224    // AddressingMode 3
8225    Base = Ptr->getOperand(0);
8226    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8227      int RHSC = (int)RHS->getZExtValue();
8228      if (RHSC < 0 && RHSC > -256) {
8229        assert(Ptr->getOpcode() == ISD::ADD);
8230        isInc = false;
8231        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8232        return true;
8233      }
8234    }
8235    isInc = (Ptr->getOpcode() == ISD::ADD);
8236    Offset = Ptr->getOperand(1);
8237    return true;
8238  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8239    // AddressingMode 2
8240    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8241      int RHSC = (int)RHS->getZExtValue();
8242      if (RHSC < 0 && RHSC > -0x1000) {
8243        assert(Ptr->getOpcode() == ISD::ADD);
8244        isInc = false;
8245        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8246        Base = Ptr->getOperand(0);
8247        return true;
8248      }
8249    }
8250
8251    if (Ptr->getOpcode() == ISD::ADD) {
8252      isInc = true;
8253      ARM_AM::ShiftOpc ShOpcVal=
8254        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8255      if (ShOpcVal != ARM_AM::no_shift) {
8256        Base = Ptr->getOperand(1);
8257        Offset = Ptr->getOperand(0);
8258      } else {
8259        Base = Ptr->getOperand(0);
8260        Offset = Ptr->getOperand(1);
8261      }
8262      return true;
8263    }
8264
8265    isInc = (Ptr->getOpcode() == ISD::ADD);
8266    Base = Ptr->getOperand(0);
8267    Offset = Ptr->getOperand(1);
8268    return true;
8269  }
8270
8271  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8272  return false;
8273}
8274
8275static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8276                                     bool isSEXTLoad, SDValue &Base,
8277                                     SDValue &Offset, bool &isInc,
8278                                     SelectionDAG &DAG) {
8279  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8280    return false;
8281
8282  Base = Ptr->getOperand(0);
8283  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8284    int RHSC = (int)RHS->getZExtValue();
8285    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8286      assert(Ptr->getOpcode() == ISD::ADD);
8287      isInc = false;
8288      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8289      return true;
8290    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8291      isInc = Ptr->getOpcode() == ISD::ADD;
8292      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8293      return true;
8294    }
8295  }
8296
8297  return false;
8298}
8299
8300/// getPreIndexedAddressParts - returns true by value, base pointer and
8301/// offset pointer and addressing mode by reference if the node's address
8302/// can be legally represented as pre-indexed load / store address.
8303bool
8304ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8305                                             SDValue &Offset,
8306                                             ISD::MemIndexedMode &AM,
8307                                             SelectionDAG &DAG) const {
8308  if (Subtarget->isThumb1Only())
8309    return false;
8310
8311  EVT VT;
8312  SDValue Ptr;
8313  bool isSEXTLoad = false;
8314  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8315    Ptr = LD->getBasePtr();
8316    VT  = LD->getMemoryVT();
8317    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8318  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8319    Ptr = ST->getBasePtr();
8320    VT  = ST->getMemoryVT();
8321  } else
8322    return false;
8323
8324  bool isInc;
8325  bool isLegal = false;
8326  if (Subtarget->isThumb2())
8327    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8328                                       Offset, isInc, DAG);
8329  else
8330    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8331                                        Offset, isInc, DAG);
8332  if (!isLegal)
8333    return false;
8334
8335  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8336  return true;
8337}
8338
8339/// getPostIndexedAddressParts - returns true by value, base pointer and
8340/// offset pointer and addressing mode by reference if this node can be
8341/// combined with a load / store to form a post-indexed load / store.
8342bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8343                                                   SDValue &Base,
8344                                                   SDValue &Offset,
8345                                                   ISD::MemIndexedMode &AM,
8346                                                   SelectionDAG &DAG) const {
8347  if (Subtarget->isThumb1Only())
8348    return false;
8349
8350  EVT VT;
8351  SDValue Ptr;
8352  bool isSEXTLoad = false;
8353  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8354    VT  = LD->getMemoryVT();
8355    Ptr = LD->getBasePtr();
8356    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8357  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8358    VT  = ST->getMemoryVT();
8359    Ptr = ST->getBasePtr();
8360  } else
8361    return false;
8362
8363  bool isInc;
8364  bool isLegal = false;
8365  if (Subtarget->isThumb2())
8366    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8367                                       isInc, DAG);
8368  else
8369    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8370                                        isInc, DAG);
8371  if (!isLegal)
8372    return false;
8373
8374  if (Ptr != Base) {
8375    // Swap base ptr and offset to catch more post-index load / store when
8376    // it's legal. In Thumb2 mode, offset must be an immediate.
8377    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8378        !Subtarget->isThumb2())
8379      std::swap(Base, Offset);
8380
8381    // Post-indexed load / store update the base pointer.
8382    if (Ptr != Base)
8383      return false;
8384  }
8385
8386  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8387  return true;
8388}
8389
8390void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8391                                                       const APInt &Mask,
8392                                                       APInt &KnownZero,
8393                                                       APInt &KnownOne,
8394                                                       const SelectionDAG &DAG,
8395                                                       unsigned Depth) const {
8396  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8397  switch (Op.getOpcode()) {
8398  default: break;
8399  case ARMISD::CMOV: {
8400    // Bits are known zero/one if known on the LHS and RHS.
8401    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8402    if (KnownZero == 0 && KnownOne == 0) return;
8403
8404    APInt KnownZeroRHS, KnownOneRHS;
8405    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8406                          KnownZeroRHS, KnownOneRHS, Depth+1);
8407    KnownZero &= KnownZeroRHS;
8408    KnownOne  &= KnownOneRHS;
8409    return;
8410  }
8411  }
8412}
8413
8414//===----------------------------------------------------------------------===//
8415//                           ARM Inline Assembly Support
8416//===----------------------------------------------------------------------===//
8417
8418bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8419  // Looking for "rev" which is V6+.
8420  if (!Subtarget->hasV6Ops())
8421    return false;
8422
8423  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8424  std::string AsmStr = IA->getAsmString();
8425  SmallVector<StringRef, 4> AsmPieces;
8426  SplitString(AsmStr, AsmPieces, ";\n");
8427
8428  switch (AsmPieces.size()) {
8429  default: return false;
8430  case 1:
8431    AsmStr = AsmPieces[0];
8432    AsmPieces.clear();
8433    SplitString(AsmStr, AsmPieces, " \t,");
8434
8435    // rev $0, $1
8436    if (AsmPieces.size() == 3 &&
8437        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8438        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8439      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8440      if (Ty && Ty->getBitWidth() == 32)
8441        return IntrinsicLowering::LowerToByteSwap(CI);
8442    }
8443    break;
8444  }
8445
8446  return false;
8447}
8448
8449/// getConstraintType - Given a constraint letter, return the type of
8450/// constraint it is for this target.
8451ARMTargetLowering::ConstraintType
8452ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8453  if (Constraint.size() == 1) {
8454    switch (Constraint[0]) {
8455    default:  break;
8456    case 'l': return C_RegisterClass;
8457    case 'w': return C_RegisterClass;
8458    case 'h': return C_RegisterClass;
8459    case 'x': return C_RegisterClass;
8460    case 't': return C_RegisterClass;
8461    case 'j': return C_Other; // Constant for movw.
8462      // An address with a single base register. Due to the way we
8463      // currently handle addresses it is the same as an 'r' memory constraint.
8464    case 'Q': return C_Memory;
8465    }
8466  } else if (Constraint.size() == 2) {
8467    switch (Constraint[0]) {
8468    default: break;
8469    // All 'U+' constraints are addresses.
8470    case 'U': return C_Memory;
8471    }
8472  }
8473  return TargetLowering::getConstraintType(Constraint);
8474}
8475
8476/// Examine constraint type and operand type and determine a weight value.
8477/// This object must already have been set up with the operand type
8478/// and the current alternative constraint selected.
8479TargetLowering::ConstraintWeight
8480ARMTargetLowering::getSingleConstraintMatchWeight(
8481    AsmOperandInfo &info, const char *constraint) const {
8482  ConstraintWeight weight = CW_Invalid;
8483  Value *CallOperandVal = info.CallOperandVal;
8484    // If we don't have a value, we can't do a match,
8485    // but allow it at the lowest weight.
8486  if (CallOperandVal == NULL)
8487    return CW_Default;
8488  Type *type = CallOperandVal->getType();
8489  // Look at the constraint type.
8490  switch (*constraint) {
8491  default:
8492    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8493    break;
8494  case 'l':
8495    if (type->isIntegerTy()) {
8496      if (Subtarget->isThumb())
8497        weight = CW_SpecificReg;
8498      else
8499        weight = CW_Register;
8500    }
8501    break;
8502  case 'w':
8503    if (type->isFloatingPointTy())
8504      weight = CW_Register;
8505    break;
8506  }
8507  return weight;
8508}
8509
8510typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8511RCPair
8512ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8513                                                EVT VT) const {
8514  if (Constraint.size() == 1) {
8515    // GCC ARM Constraint Letters
8516    switch (Constraint[0]) {
8517    case 'l': // Low regs or general regs.
8518      if (Subtarget->isThumb())
8519        return RCPair(0U, ARM::tGPRRegisterClass);
8520      else
8521        return RCPair(0U, ARM::GPRRegisterClass);
8522    case 'h': // High regs or no regs.
8523      if (Subtarget->isThumb())
8524        return RCPair(0U, ARM::hGPRRegisterClass);
8525      break;
8526    case 'r':
8527      return RCPair(0U, ARM::GPRRegisterClass);
8528    case 'w':
8529      if (VT == MVT::f32)
8530        return RCPair(0U, ARM::SPRRegisterClass);
8531      if (VT.getSizeInBits() == 64)
8532        return RCPair(0U, ARM::DPRRegisterClass);
8533      if (VT.getSizeInBits() == 128)
8534        return RCPair(0U, ARM::QPRRegisterClass);
8535      break;
8536    case 'x':
8537      if (VT == MVT::f32)
8538        return RCPair(0U, ARM::SPR_8RegisterClass);
8539      if (VT.getSizeInBits() == 64)
8540        return RCPair(0U, ARM::DPR_8RegisterClass);
8541      if (VT.getSizeInBits() == 128)
8542        return RCPair(0U, ARM::QPR_8RegisterClass);
8543      break;
8544    case 't':
8545      if (VT == MVT::f32)
8546        return RCPair(0U, ARM::SPRRegisterClass);
8547      break;
8548    }
8549  }
8550  if (StringRef("{cc}").equals_lower(Constraint))
8551    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8552
8553  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8554}
8555
8556/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8557/// vector.  If it is invalid, don't add anything to Ops.
8558void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8559                                                     std::string &Constraint,
8560                                                     std::vector<SDValue>&Ops,
8561                                                     SelectionDAG &DAG) const {
8562  SDValue Result(0, 0);
8563
8564  // Currently only support length 1 constraints.
8565  if (Constraint.length() != 1) return;
8566
8567  char ConstraintLetter = Constraint[0];
8568  switch (ConstraintLetter) {
8569  default: break;
8570  case 'j':
8571  case 'I': case 'J': case 'K': case 'L':
8572  case 'M': case 'N': case 'O':
8573    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8574    if (!C)
8575      return;
8576
8577    int64_t CVal64 = C->getSExtValue();
8578    int CVal = (int) CVal64;
8579    // None of these constraints allow values larger than 32 bits.  Check
8580    // that the value fits in an int.
8581    if (CVal != CVal64)
8582      return;
8583
8584    switch (ConstraintLetter) {
8585      case 'j':
8586        // Constant suitable for movw, must be between 0 and
8587        // 65535.
8588        if (Subtarget->hasV6T2Ops())
8589          if (CVal >= 0 && CVal <= 65535)
8590            break;
8591        return;
8592      case 'I':
8593        if (Subtarget->isThumb1Only()) {
8594          // This must be a constant between 0 and 255, for ADD
8595          // immediates.
8596          if (CVal >= 0 && CVal <= 255)
8597            break;
8598        } else if (Subtarget->isThumb2()) {
8599          // A constant that can be used as an immediate value in a
8600          // data-processing instruction.
8601          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8602            break;
8603        } else {
8604          // A constant that can be used as an immediate value in a
8605          // data-processing instruction.
8606          if (ARM_AM::getSOImmVal(CVal) != -1)
8607            break;
8608        }
8609        return;
8610
8611      case 'J':
8612        if (Subtarget->isThumb()) {  // FIXME thumb2
8613          // This must be a constant between -255 and -1, for negated ADD
8614          // immediates. This can be used in GCC with an "n" modifier that
8615          // prints the negated value, for use with SUB instructions. It is
8616          // not useful otherwise but is implemented for compatibility.
8617          if (CVal >= -255 && CVal <= -1)
8618            break;
8619        } else {
8620          // This must be a constant between -4095 and 4095. It is not clear
8621          // what this constraint is intended for. Implemented for
8622          // compatibility with GCC.
8623          if (CVal >= -4095 && CVal <= 4095)
8624            break;
8625        }
8626        return;
8627
8628      case 'K':
8629        if (Subtarget->isThumb1Only()) {
8630          // A 32-bit value where only one byte has a nonzero value. Exclude
8631          // zero to match GCC. This constraint is used by GCC internally for
8632          // constants that can be loaded with a move/shift combination.
8633          // It is not useful otherwise but is implemented for compatibility.
8634          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8635            break;
8636        } else if (Subtarget->isThumb2()) {
8637          // A constant whose bitwise inverse can be used as an immediate
8638          // value in a data-processing instruction. This can be used in GCC
8639          // with a "B" modifier that prints the inverted value, for use with
8640          // BIC and MVN instructions. It is not useful otherwise but is
8641          // implemented for compatibility.
8642          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8643            break;
8644        } else {
8645          // A constant whose bitwise inverse can be used as an immediate
8646          // value in a data-processing instruction. This can be used in GCC
8647          // with a "B" modifier that prints the inverted value, for use with
8648          // BIC and MVN instructions. It is not useful otherwise but is
8649          // implemented for compatibility.
8650          if (ARM_AM::getSOImmVal(~CVal) != -1)
8651            break;
8652        }
8653        return;
8654
8655      case 'L':
8656        if (Subtarget->isThumb1Only()) {
8657          // This must be a constant between -7 and 7,
8658          // for 3-operand ADD/SUB immediate instructions.
8659          if (CVal >= -7 && CVal < 7)
8660            break;
8661        } else if (Subtarget->isThumb2()) {
8662          // A constant whose negation can be used as an immediate value in a
8663          // data-processing instruction. This can be used in GCC with an "n"
8664          // modifier that prints the negated value, for use with SUB
8665          // instructions. It is not useful otherwise but is implemented for
8666          // compatibility.
8667          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8668            break;
8669        } else {
8670          // A constant whose negation can be used as an immediate value in a
8671          // data-processing instruction. This can be used in GCC with an "n"
8672          // modifier that prints the negated value, for use with SUB
8673          // instructions. It is not useful otherwise but is implemented for
8674          // compatibility.
8675          if (ARM_AM::getSOImmVal(-CVal) != -1)
8676            break;
8677        }
8678        return;
8679
8680      case 'M':
8681        if (Subtarget->isThumb()) { // FIXME thumb2
8682          // This must be a multiple of 4 between 0 and 1020, for
8683          // ADD sp + immediate.
8684          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8685            break;
8686        } else {
8687          // A power of two or a constant between 0 and 32.  This is used in
8688          // GCC for the shift amount on shifted register operands, but it is
8689          // useful in general for any shift amounts.
8690          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8691            break;
8692        }
8693        return;
8694
8695      case 'N':
8696        if (Subtarget->isThumb()) {  // FIXME thumb2
8697          // This must be a constant between 0 and 31, for shift amounts.
8698          if (CVal >= 0 && CVal <= 31)
8699            break;
8700        }
8701        return;
8702
8703      case 'O':
8704        if (Subtarget->isThumb()) {  // FIXME thumb2
8705          // This must be a multiple of 4 between -508 and 508, for
8706          // ADD/SUB sp = sp + immediate.
8707          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8708            break;
8709        }
8710        return;
8711    }
8712    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8713    break;
8714  }
8715
8716  if (Result.getNode()) {
8717    Ops.push_back(Result);
8718    return;
8719  }
8720  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8721}
8722
8723bool
8724ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8725  // The ARM target isn't yet aware of offsets.
8726  return false;
8727}
8728
8729bool ARM::isBitFieldInvertedMask(unsigned v) {
8730  if (v == 0xffffffff)
8731    return 0;
8732  // there can be 1's on either or both "outsides", all the "inside"
8733  // bits must be 0's
8734  unsigned int lsb = 0, msb = 31;
8735  while (v & (1 << msb)) --msb;
8736  while (v & (1 << lsb)) ++lsb;
8737  for (unsigned int i = lsb; i <= msb; ++i) {
8738    if (v & (1 << i))
8739      return 0;
8740  }
8741  return 1;
8742}
8743
8744/// isFPImmLegal - Returns true if the target can instruction select the
8745/// specified FP immediate natively. If false, the legalizer will
8746/// materialize the FP immediate as a load from a constant pool.
8747bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8748  if (!Subtarget->hasVFP3())
8749    return false;
8750  if (VT == MVT::f32)
8751    return ARM_AM::getFP32Imm(Imm) != -1;
8752  if (VT == MVT::f64)
8753    return ARM_AM::getFP64Imm(Imm) != -1;
8754  return false;
8755}
8756
8757/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8758/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8759/// specified in the intrinsic calls.
8760bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8761                                           const CallInst &I,
8762                                           unsigned Intrinsic) const {
8763  switch (Intrinsic) {
8764  case Intrinsic::arm_neon_vld1:
8765  case Intrinsic::arm_neon_vld2:
8766  case Intrinsic::arm_neon_vld3:
8767  case Intrinsic::arm_neon_vld4:
8768  case Intrinsic::arm_neon_vld2lane:
8769  case Intrinsic::arm_neon_vld3lane:
8770  case Intrinsic::arm_neon_vld4lane: {
8771    Info.opc = ISD::INTRINSIC_W_CHAIN;
8772    // Conservatively set memVT to the entire set of vectors loaded.
8773    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8774    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8775    Info.ptrVal = I.getArgOperand(0);
8776    Info.offset = 0;
8777    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8778    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8779    Info.vol = false; // volatile loads with NEON intrinsics not supported
8780    Info.readMem = true;
8781    Info.writeMem = false;
8782    return true;
8783  }
8784  case Intrinsic::arm_neon_vst1:
8785  case Intrinsic::arm_neon_vst2:
8786  case Intrinsic::arm_neon_vst3:
8787  case Intrinsic::arm_neon_vst4:
8788  case Intrinsic::arm_neon_vst2lane:
8789  case Intrinsic::arm_neon_vst3lane:
8790  case Intrinsic::arm_neon_vst4lane: {
8791    Info.opc = ISD::INTRINSIC_VOID;
8792    // Conservatively set memVT to the entire set of vectors stored.
8793    unsigned NumElts = 0;
8794    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8795      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8796      if (!ArgTy->isVectorTy())
8797        break;
8798      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8799    }
8800    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8801    Info.ptrVal = I.getArgOperand(0);
8802    Info.offset = 0;
8803    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8804    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8805    Info.vol = false; // volatile stores with NEON intrinsics not supported
8806    Info.readMem = false;
8807    Info.writeMem = true;
8808    return true;
8809  }
8810  case Intrinsic::arm_strexd: {
8811    Info.opc = ISD::INTRINSIC_W_CHAIN;
8812    Info.memVT = MVT::i64;
8813    Info.ptrVal = I.getArgOperand(2);
8814    Info.offset = 0;
8815    Info.align = 8;
8816    Info.vol = true;
8817    Info.readMem = false;
8818    Info.writeMem = true;
8819    return true;
8820  }
8821  case Intrinsic::arm_ldrexd: {
8822    Info.opc = ISD::INTRINSIC_W_CHAIN;
8823    Info.memVT = MVT::i64;
8824    Info.ptrVal = I.getArgOperand(0);
8825    Info.offset = 0;
8826    Info.align = 8;
8827    Info.vol = true;
8828    Info.readMem = true;
8829    Info.writeMem = false;
8830    return true;
8831  }
8832  default:
8833    break;
8834  }
8835
8836  return false;
8837}
8838