1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "LLVMContextImpl.h"
16#include "ConstantFold.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalValue.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/ADT/FoldingSet.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43bool Constant::isNegativeZeroValue() const {
44  // Floating point values have an explicit -0.0 value.
45  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
46    return CFP->isZero() && CFP->isNegative();
47
48  // Otherwise, just use +0.0.
49  return isNullValue();
50}
51
52bool Constant::isNullValue() const {
53  // 0 is null.
54  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
55    return CI->isZero();
56
57  // +0.0 is null.
58  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
59    return CFP->isZero() && !CFP->isNegative();
60
61  // constant zero is zero for aggregates and cpnull is null for pointers.
62  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
63}
64
65bool Constant::isAllOnesValue() const {
66  // Check for -1 integers
67  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
68    return CI->isMinusOne();
69
70  // Check for FP which are bitcasted from -1 integers
71  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
72    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
73
74  // Check for constant vectors
75  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
76    return CV->isAllOnesValue();
77
78  return false;
79}
80// Constructor to create a '0' constant of arbitrary type...
81Constant *Constant::getNullValue(Type *Ty) {
82  switch (Ty->getTypeID()) {
83  case Type::IntegerTyID:
84    return ConstantInt::get(Ty, 0);
85  case Type::FloatTyID:
86    return ConstantFP::get(Ty->getContext(),
87                           APFloat::getZero(APFloat::IEEEsingle));
88  case Type::DoubleTyID:
89    return ConstantFP::get(Ty->getContext(),
90                           APFloat::getZero(APFloat::IEEEdouble));
91  case Type::X86_FP80TyID:
92    return ConstantFP::get(Ty->getContext(),
93                           APFloat::getZero(APFloat::x87DoubleExtended));
94  case Type::FP128TyID:
95    return ConstantFP::get(Ty->getContext(),
96                           APFloat::getZero(APFloat::IEEEquad));
97  case Type::PPC_FP128TyID:
98    return ConstantFP::get(Ty->getContext(),
99                           APFloat(APInt::getNullValue(128)));
100  case Type::PointerTyID:
101    return ConstantPointerNull::get(cast<PointerType>(Ty));
102  case Type::StructTyID:
103  case Type::ArrayTyID:
104  case Type::VectorTyID:
105    return ConstantAggregateZero::get(Ty);
106  default:
107    // Function, Label, or Opaque type?
108    assert(0 && "Cannot create a null constant of that type!");
109    return 0;
110  }
111}
112
113Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
114  Type *ScalarTy = Ty->getScalarType();
115
116  // Create the base integer constant.
117  Constant *C = ConstantInt::get(Ty->getContext(), V);
118
119  // Convert an integer to a pointer, if necessary.
120  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
121    C = ConstantExpr::getIntToPtr(C, PTy);
122
123  // Broadcast a scalar to a vector, if necessary.
124  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
125    C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
126
127  return C;
128}
129
130Constant *Constant::getAllOnesValue(Type *Ty) {
131  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
132    return ConstantInt::get(Ty->getContext(),
133                            APInt::getAllOnesValue(ITy->getBitWidth()));
134
135  if (Ty->isFloatingPointTy()) {
136    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
137                                          !Ty->isPPC_FP128Ty());
138    return ConstantFP::get(Ty->getContext(), FL);
139  }
140
141  SmallVector<Constant*, 16> Elts;
142  VectorType *VTy = cast<VectorType>(Ty);
143  Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
144  assert(Elts[0] && "Invalid AllOnes value!");
145  return cast<ConstantVector>(ConstantVector::get(Elts));
146}
147
148void Constant::destroyConstantImpl() {
149  // When a Constant is destroyed, there may be lingering
150  // references to the constant by other constants in the constant pool.  These
151  // constants are implicitly dependent on the module that is being deleted,
152  // but they don't know that.  Because we only find out when the CPV is
153  // deleted, we must now notify all of our users (that should only be
154  // Constants) that they are, in fact, invalid now and should be deleted.
155  //
156  while (!use_empty()) {
157    Value *V = use_back();
158#ifndef NDEBUG      // Only in -g mode...
159    if (!isa<Constant>(V)) {
160      dbgs() << "While deleting: " << *this
161             << "\n\nUse still stuck around after Def is destroyed: "
162             << *V << "\n\n";
163    }
164#endif
165    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
166    Constant *CV = cast<Constant>(V);
167    CV->destroyConstant();
168
169    // The constant should remove itself from our use list...
170    assert((use_empty() || use_back() != V) && "Constant not removed!");
171  }
172
173  // Value has no outstanding references it is safe to delete it now...
174  delete this;
175}
176
177/// canTrap - Return true if evaluation of this constant could trap.  This is
178/// true for things like constant expressions that could divide by zero.
179bool Constant::canTrap() const {
180  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
181  // The only thing that could possibly trap are constant exprs.
182  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
183  if (!CE) return false;
184
185  // ConstantExpr traps if any operands can trap.
186  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
187    if (CE->getOperand(i)->canTrap())
188      return true;
189
190  // Otherwise, only specific operations can trap.
191  switch (CE->getOpcode()) {
192  default:
193    return false;
194  case Instruction::UDiv:
195  case Instruction::SDiv:
196  case Instruction::FDiv:
197  case Instruction::URem:
198  case Instruction::SRem:
199  case Instruction::FRem:
200    // Div and rem can trap if the RHS is not known to be non-zero.
201    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
202      return true;
203    return false;
204  }
205}
206
207/// isConstantUsed - Return true if the constant has users other than constant
208/// exprs and other dangling things.
209bool Constant::isConstantUsed() const {
210  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
211    const Constant *UC = dyn_cast<Constant>(*UI);
212    if (UC == 0 || isa<GlobalValue>(UC))
213      return true;
214
215    if (UC->isConstantUsed())
216      return true;
217  }
218  return false;
219}
220
221
222
223/// getRelocationInfo - This method classifies the entry according to
224/// whether or not it may generate a relocation entry.  This must be
225/// conservative, so if it might codegen to a relocatable entry, it should say
226/// so.  The return values are:
227///
228///  NoRelocation: This constant pool entry is guaranteed to never have a
229///     relocation applied to it (because it holds a simple constant like
230///     '4').
231///  LocalRelocation: This entry has relocations, but the entries are
232///     guaranteed to be resolvable by the static linker, so the dynamic
233///     linker will never see them.
234///  GlobalRelocations: This entry may have arbitrary relocations.
235///
236/// FIXME: This really should not be in VMCore.
237Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
238  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
239    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
240      return LocalRelocation;  // Local to this file/library.
241    return GlobalRelocations;    // Global reference.
242  }
243
244  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
245    return BA->getFunction()->getRelocationInfo();
246
247  // While raw uses of blockaddress need to be relocated, differences between
248  // two of them don't when they are for labels in the same function.  This is a
249  // common idiom when creating a table for the indirect goto extension, so we
250  // handle it efficiently here.
251  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
252    if (CE->getOpcode() == Instruction::Sub) {
253      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
254      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
255      if (LHS && RHS &&
256          LHS->getOpcode() == Instruction::PtrToInt &&
257          RHS->getOpcode() == Instruction::PtrToInt &&
258          isa<BlockAddress>(LHS->getOperand(0)) &&
259          isa<BlockAddress>(RHS->getOperand(0)) &&
260          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
261            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
262        return NoRelocation;
263    }
264
265  PossibleRelocationsTy Result = NoRelocation;
266  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
267    Result = std::max(Result,
268                      cast<Constant>(getOperand(i))->getRelocationInfo());
269
270  return Result;
271}
272
273
274/// getVectorElements - This method, which is only valid on constant of vector
275/// type, returns the elements of the vector in the specified smallvector.
276/// This handles breaking down a vector undef into undef elements, etc.  For
277/// constant exprs and other cases we can't handle, we return an empty vector.
278void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
279  assert(getType()->isVectorTy() && "Not a vector constant!");
280
281  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
282    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
283      Elts.push_back(CV->getOperand(i));
284    return;
285  }
286
287  VectorType *VT = cast<VectorType>(getType());
288  if (isa<ConstantAggregateZero>(this)) {
289    Elts.assign(VT->getNumElements(),
290                Constant::getNullValue(VT->getElementType()));
291    return;
292  }
293
294  if (isa<UndefValue>(this)) {
295    Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
296    return;
297  }
298
299  // Unknown type, must be constant expr etc.
300}
301
302
303/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
304/// it.  This involves recursively eliminating any dead users of the
305/// constantexpr.
306static bool removeDeadUsersOfConstant(const Constant *C) {
307  if (isa<GlobalValue>(C)) return false; // Cannot remove this
308
309  while (!C->use_empty()) {
310    const Constant *User = dyn_cast<Constant>(C->use_back());
311    if (!User) return false; // Non-constant usage;
312    if (!removeDeadUsersOfConstant(User))
313      return false; // Constant wasn't dead
314  }
315
316  const_cast<Constant*>(C)->destroyConstant();
317  return true;
318}
319
320
321/// removeDeadConstantUsers - If there are any dead constant users dangling
322/// off of this constant, remove them.  This method is useful for clients
323/// that want to check to see if a global is unused, but don't want to deal
324/// with potentially dead constants hanging off of the globals.
325void Constant::removeDeadConstantUsers() const {
326  Value::const_use_iterator I = use_begin(), E = use_end();
327  Value::const_use_iterator LastNonDeadUser = E;
328  while (I != E) {
329    const Constant *User = dyn_cast<Constant>(*I);
330    if (User == 0) {
331      LastNonDeadUser = I;
332      ++I;
333      continue;
334    }
335
336    if (!removeDeadUsersOfConstant(User)) {
337      // If the constant wasn't dead, remember that this was the last live use
338      // and move on to the next constant.
339      LastNonDeadUser = I;
340      ++I;
341      continue;
342    }
343
344    // If the constant was dead, then the iterator is invalidated.
345    if (LastNonDeadUser == E) {
346      I = use_begin();
347      if (I == E) break;
348    } else {
349      I = LastNonDeadUser;
350      ++I;
351    }
352  }
353}
354
355
356
357//===----------------------------------------------------------------------===//
358//                                ConstantInt
359//===----------------------------------------------------------------------===//
360
361ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
362  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
363  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
364}
365
366ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
367  LLVMContextImpl *pImpl = Context.pImpl;
368  if (!pImpl->TheTrueVal)
369    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
370  return pImpl->TheTrueVal;
371}
372
373ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
374  LLVMContextImpl *pImpl = Context.pImpl;
375  if (!pImpl->TheFalseVal)
376    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
377  return pImpl->TheFalseVal;
378}
379
380Constant *ConstantInt::getTrue(Type *Ty) {
381  VectorType *VTy = dyn_cast<VectorType>(Ty);
382  if (!VTy) {
383    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
384    return ConstantInt::getTrue(Ty->getContext());
385  }
386  assert(VTy->getElementType()->isIntegerTy(1) &&
387         "True must be vector of i1 or i1.");
388  SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
389                                   ConstantInt::getTrue(Ty->getContext()));
390  return ConstantVector::get(Splat);
391}
392
393Constant *ConstantInt::getFalse(Type *Ty) {
394  VectorType *VTy = dyn_cast<VectorType>(Ty);
395  if (!VTy) {
396    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
397    return ConstantInt::getFalse(Ty->getContext());
398  }
399  assert(VTy->getElementType()->isIntegerTy(1) &&
400         "False must be vector of i1 or i1.");
401  SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
402                                   ConstantInt::getFalse(Ty->getContext()));
403  return ConstantVector::get(Splat);
404}
405
406
407// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
408// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
409// operator== and operator!= to ensure that the DenseMap doesn't attempt to
410// compare APInt's of different widths, which would violate an APInt class
411// invariant which generates an assertion.
412ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
413  // Get the corresponding integer type for the bit width of the value.
414  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
415  // get an existing value or the insertion position
416  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
417  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
418  if (!Slot) Slot = new ConstantInt(ITy, V);
419  return Slot;
420}
421
422Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
423  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
424
425  // For vectors, broadcast the value.
426  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
427    return ConstantVector::get(SmallVector<Constant*,
428                                           16>(VTy->getNumElements(), C));
429
430  return C;
431}
432
433ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V,
434                              bool isSigned) {
435  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
436}
437
438ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) {
439  return get(Ty, V, true);
440}
441
442Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
443  return get(Ty, V, true);
444}
445
446Constant *ConstantInt::get(Type* Ty, const APInt& V) {
447  ConstantInt *C = get(Ty->getContext(), V);
448  assert(C->getType() == Ty->getScalarType() &&
449         "ConstantInt type doesn't match the type implied by its value!");
450
451  // For vectors, broadcast the value.
452  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
453    return ConstantVector::get(
454      SmallVector<Constant *, 16>(VTy->getNumElements(), C));
455
456  return C;
457}
458
459ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str,
460                              uint8_t radix) {
461  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
462}
463
464//===----------------------------------------------------------------------===//
465//                                ConstantFP
466//===----------------------------------------------------------------------===//
467
468static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
469  if (Ty->isFloatTy())
470    return &APFloat::IEEEsingle;
471  if (Ty->isDoubleTy())
472    return &APFloat::IEEEdouble;
473  if (Ty->isX86_FP80Ty())
474    return &APFloat::x87DoubleExtended;
475  else if (Ty->isFP128Ty())
476    return &APFloat::IEEEquad;
477
478  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
479  return &APFloat::PPCDoubleDouble;
480}
481
482/// get() - This returns a constant fp for the specified value in the
483/// specified type.  This should only be used for simple constant values like
484/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
485Constant *ConstantFP::get(Type* Ty, double V) {
486  LLVMContext &Context = Ty->getContext();
487
488  APFloat FV(V);
489  bool ignored;
490  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
491             APFloat::rmNearestTiesToEven, &ignored);
492  Constant *C = get(Context, FV);
493
494  // For vectors, broadcast the value.
495  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
496    return ConstantVector::get(
497      SmallVector<Constant *, 16>(VTy->getNumElements(), C));
498
499  return C;
500}
501
502
503Constant *ConstantFP::get(Type* Ty, StringRef Str) {
504  LLVMContext &Context = Ty->getContext();
505
506  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
507  Constant *C = get(Context, FV);
508
509  // For vectors, broadcast the value.
510  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
511    return ConstantVector::get(
512      SmallVector<Constant *, 16>(VTy->getNumElements(), C));
513
514  return C;
515}
516
517
518ConstantFP* ConstantFP::getNegativeZero(Type* Ty) {
519  LLVMContext &Context = Ty->getContext();
520  APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
521  apf.changeSign();
522  return get(Context, apf);
523}
524
525
526Constant *ConstantFP::getZeroValueForNegation(Type* Ty) {
527  if (VectorType *PTy = dyn_cast<VectorType>(Ty))
528    if (PTy->getElementType()->isFloatingPointTy()) {
529      SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
530                           getNegativeZero(PTy->getElementType()));
531      return ConstantVector::get(zeros);
532    }
533
534  if (Ty->isFloatingPointTy())
535    return getNegativeZero(Ty);
536
537  return Constant::getNullValue(Ty);
538}
539
540
541// ConstantFP accessors.
542ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
543  DenseMapAPFloatKeyInfo::KeyTy Key(V);
544
545  LLVMContextImpl* pImpl = Context.pImpl;
546
547  ConstantFP *&Slot = pImpl->FPConstants[Key];
548
549  if (!Slot) {
550    Type *Ty;
551    if (&V.getSemantics() == &APFloat::IEEEsingle)
552      Ty = Type::getFloatTy(Context);
553    else if (&V.getSemantics() == &APFloat::IEEEdouble)
554      Ty = Type::getDoubleTy(Context);
555    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
556      Ty = Type::getX86_FP80Ty(Context);
557    else if (&V.getSemantics() == &APFloat::IEEEquad)
558      Ty = Type::getFP128Ty(Context);
559    else {
560      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
561             "Unknown FP format");
562      Ty = Type::getPPC_FP128Ty(Context);
563    }
564    Slot = new ConstantFP(Ty, V);
565  }
566
567  return Slot;
568}
569
570ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
571  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
572  return ConstantFP::get(Ty->getContext(),
573                         APFloat::getInf(Semantics, Negative));
574}
575
576ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
577  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
578  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
579         "FP type Mismatch");
580}
581
582bool ConstantFP::isExactlyValue(const APFloat &V) const {
583  return Val.bitwiseIsEqual(V);
584}
585
586//===----------------------------------------------------------------------===//
587//                            ConstantXXX Classes
588//===----------------------------------------------------------------------===//
589
590
591ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
592  : Constant(T, ConstantArrayVal,
593             OperandTraits<ConstantArray>::op_end(this) - V.size(),
594             V.size()) {
595  assert(V.size() == T->getNumElements() &&
596         "Invalid initializer vector for constant array");
597  for (unsigned i = 0, e = V.size(); i != e; ++i)
598    assert(V[i]->getType() == T->getElementType() &&
599           "Initializer for array element doesn't match array element type!");
600  std::copy(V.begin(), V.end(), op_begin());
601}
602
603Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
604  for (unsigned i = 0, e = V.size(); i != e; ++i) {
605    assert(V[i]->getType() == Ty->getElementType() &&
606           "Wrong type in array element initializer");
607  }
608  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
609  // If this is an all-zero array, return a ConstantAggregateZero object
610  if (!V.empty()) {
611    Constant *C = V[0];
612    if (!C->isNullValue())
613      return pImpl->ArrayConstants.getOrCreate(Ty, V);
614
615    for (unsigned i = 1, e = V.size(); i != e; ++i)
616      if (V[i] != C)
617        return pImpl->ArrayConstants.getOrCreate(Ty, V);
618  }
619
620  return ConstantAggregateZero::get(Ty);
621}
622
623/// ConstantArray::get(const string&) - Return an array that is initialized to
624/// contain the specified string.  If length is zero then a null terminator is
625/// added to the specified string so that it may be used in a natural way.
626/// Otherwise, the length parameter specifies how much of the string to use
627/// and it won't be null terminated.
628///
629Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
630                             bool AddNull) {
631  std::vector<Constant*> ElementVals;
632  ElementVals.reserve(Str.size() + size_t(AddNull));
633  for (unsigned i = 0; i < Str.size(); ++i)
634    ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
635
636  // Add a null terminator to the string...
637  if (AddNull) {
638    ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
639  }
640
641  ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
642  return get(ATy, ElementVals);
643}
644
645/// getTypeForElements - Return an anonymous struct type to use for a constant
646/// with the specified set of elements.  The list must not be empty.
647StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
648                                               ArrayRef<Constant*> V,
649                                               bool Packed) {
650  SmallVector<Type*, 16> EltTypes;
651  for (unsigned i = 0, e = V.size(); i != e; ++i)
652    EltTypes.push_back(V[i]->getType());
653
654  return StructType::get(Context, EltTypes, Packed);
655}
656
657
658StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
659                                               bool Packed) {
660  assert(!V.empty() &&
661         "ConstantStruct::getTypeForElements cannot be called on empty list");
662  return getTypeForElements(V[0]->getContext(), V, Packed);
663}
664
665
666ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
667  : Constant(T, ConstantStructVal,
668             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
669             V.size()) {
670  assert(V.size() == T->getNumElements() &&
671         "Invalid initializer vector for constant structure");
672  for (unsigned i = 0, e = V.size(); i != e; ++i)
673    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
674           "Initializer for struct element doesn't match struct element type!");
675  std::copy(V.begin(), V.end(), op_begin());
676}
677
678// ConstantStruct accessors.
679Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
680  // Create a ConstantAggregateZero value if all elements are zeros.
681  for (unsigned i = 0, e = V.size(); i != e; ++i)
682    if (!V[i]->isNullValue())
683      return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
684
685  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
686         "Incorrect # elements specified to ConstantStruct::get");
687  return ConstantAggregateZero::get(ST);
688}
689
690Constant *ConstantStruct::get(StructType *T, ...) {
691  va_list ap;
692  SmallVector<Constant*, 8> Values;
693  va_start(ap, T);
694  while (Constant *Val = va_arg(ap, llvm::Constant*))
695    Values.push_back(Val);
696  va_end(ap);
697  return get(T, Values);
698}
699
700ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
701  : Constant(T, ConstantVectorVal,
702             OperandTraits<ConstantVector>::op_end(this) - V.size(),
703             V.size()) {
704  for (size_t i = 0, e = V.size(); i != e; i++)
705    assert(V[i]->getType() == T->getElementType() &&
706           "Initializer for vector element doesn't match vector element type!");
707  std::copy(V.begin(), V.end(), op_begin());
708}
709
710// ConstantVector accessors.
711Constant *ConstantVector::get(ArrayRef<Constant*> V) {
712  assert(!V.empty() && "Vectors can't be empty");
713  VectorType *T = VectorType::get(V.front()->getType(), V.size());
714  LLVMContextImpl *pImpl = T->getContext().pImpl;
715
716  // If this is an all-undef or all-zero vector, return a
717  // ConstantAggregateZero or UndefValue.
718  Constant *C = V[0];
719  bool isZero = C->isNullValue();
720  bool isUndef = isa<UndefValue>(C);
721
722  if (isZero || isUndef) {
723    for (unsigned i = 1, e = V.size(); i != e; ++i)
724      if (V[i] != C) {
725        isZero = isUndef = false;
726        break;
727      }
728  }
729
730  if (isZero)
731    return ConstantAggregateZero::get(T);
732  if (isUndef)
733    return UndefValue::get(T);
734
735  return pImpl->VectorConstants.getOrCreate(T, V);
736}
737
738// Utility function for determining if a ConstantExpr is a CastOp or not. This
739// can't be inline because we don't want to #include Instruction.h into
740// Constant.h
741bool ConstantExpr::isCast() const {
742  return Instruction::isCast(getOpcode());
743}
744
745bool ConstantExpr::isCompare() const {
746  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
747}
748
749bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
750  if (getOpcode() != Instruction::GetElementPtr) return false;
751
752  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
753  User::const_op_iterator OI = llvm::next(this->op_begin());
754
755  // Skip the first index, as it has no static limit.
756  ++GEPI;
757  ++OI;
758
759  // The remaining indices must be compile-time known integers within the
760  // bounds of the corresponding notional static array types.
761  for (; GEPI != E; ++GEPI, ++OI) {
762    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
763    if (!CI) return false;
764    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
765      if (CI->getValue().getActiveBits() > 64 ||
766          CI->getZExtValue() >= ATy->getNumElements())
767        return false;
768  }
769
770  // All the indices checked out.
771  return true;
772}
773
774bool ConstantExpr::hasIndices() const {
775  return getOpcode() == Instruction::ExtractValue ||
776         getOpcode() == Instruction::InsertValue;
777}
778
779ArrayRef<unsigned> ConstantExpr::getIndices() const {
780  if (const ExtractValueConstantExpr *EVCE =
781        dyn_cast<ExtractValueConstantExpr>(this))
782    return EVCE->Indices;
783
784  return cast<InsertValueConstantExpr>(this)->Indices;
785}
786
787unsigned ConstantExpr::getPredicate() const {
788  assert(isCompare());
789  return ((const CompareConstantExpr*)this)->predicate;
790}
791
792/// getWithOperandReplaced - Return a constant expression identical to this
793/// one, but with the specified operand set to the specified value.
794Constant *
795ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
796  assert(OpNo < getNumOperands() && "Operand num is out of range!");
797  assert(Op->getType() == getOperand(OpNo)->getType() &&
798         "Replacing operand with value of different type!");
799  if (getOperand(OpNo) == Op)
800    return const_cast<ConstantExpr*>(this);
801
802  Constant *Op0, *Op1, *Op2;
803  switch (getOpcode()) {
804  case Instruction::Trunc:
805  case Instruction::ZExt:
806  case Instruction::SExt:
807  case Instruction::FPTrunc:
808  case Instruction::FPExt:
809  case Instruction::UIToFP:
810  case Instruction::SIToFP:
811  case Instruction::FPToUI:
812  case Instruction::FPToSI:
813  case Instruction::PtrToInt:
814  case Instruction::IntToPtr:
815  case Instruction::BitCast:
816    return ConstantExpr::getCast(getOpcode(), Op, getType());
817  case Instruction::Select:
818    Op0 = (OpNo == 0) ? Op : getOperand(0);
819    Op1 = (OpNo == 1) ? Op : getOperand(1);
820    Op2 = (OpNo == 2) ? Op : getOperand(2);
821    return ConstantExpr::getSelect(Op0, Op1, Op2);
822  case Instruction::InsertElement:
823    Op0 = (OpNo == 0) ? Op : getOperand(0);
824    Op1 = (OpNo == 1) ? Op : getOperand(1);
825    Op2 = (OpNo == 2) ? Op : getOperand(2);
826    return ConstantExpr::getInsertElement(Op0, Op1, Op2);
827  case Instruction::ExtractElement:
828    Op0 = (OpNo == 0) ? Op : getOperand(0);
829    Op1 = (OpNo == 1) ? Op : getOperand(1);
830    return ConstantExpr::getExtractElement(Op0, Op1);
831  case Instruction::ShuffleVector:
832    Op0 = (OpNo == 0) ? Op : getOperand(0);
833    Op1 = (OpNo == 1) ? Op : getOperand(1);
834    Op2 = (OpNo == 2) ? Op : getOperand(2);
835    return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
836  case Instruction::GetElementPtr: {
837    SmallVector<Constant*, 8> Ops;
838    Ops.resize(getNumOperands()-1);
839    for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
840      Ops[i-1] = getOperand(i);
841    if (OpNo == 0)
842      return
843        ConstantExpr::getGetElementPtr(Op, Ops,
844                                       cast<GEPOperator>(this)->isInBounds());
845    Ops[OpNo-1] = Op;
846    return
847      ConstantExpr::getGetElementPtr(getOperand(0), Ops,
848                                     cast<GEPOperator>(this)->isInBounds());
849  }
850  default:
851    assert(getNumOperands() == 2 && "Must be binary operator?");
852    Op0 = (OpNo == 0) ? Op : getOperand(0);
853    Op1 = (OpNo == 1) ? Op : getOperand(1);
854    return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
855  }
856}
857
858/// getWithOperands - This returns the current constant expression with the
859/// operands replaced with the specified values.  The specified array must
860/// have the same number of operands as our current one.
861Constant *ConstantExpr::
862getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
863  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
864  bool AnyChange = Ty != getType();
865  for (unsigned i = 0; i != Ops.size(); ++i)
866    AnyChange |= Ops[i] != getOperand(i);
867
868  if (!AnyChange)  // No operands changed, return self.
869    return const_cast<ConstantExpr*>(this);
870
871  switch (getOpcode()) {
872  case Instruction::Trunc:
873  case Instruction::ZExt:
874  case Instruction::SExt:
875  case Instruction::FPTrunc:
876  case Instruction::FPExt:
877  case Instruction::UIToFP:
878  case Instruction::SIToFP:
879  case Instruction::FPToUI:
880  case Instruction::FPToSI:
881  case Instruction::PtrToInt:
882  case Instruction::IntToPtr:
883  case Instruction::BitCast:
884    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
885  case Instruction::Select:
886    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
887  case Instruction::InsertElement:
888    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
889  case Instruction::ExtractElement:
890    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
891  case Instruction::ShuffleVector:
892    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
893  case Instruction::GetElementPtr:
894    return
895      ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
896                                     cast<GEPOperator>(this)->isInBounds());
897  case Instruction::ICmp:
898  case Instruction::FCmp:
899    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
900  default:
901    assert(getNumOperands() == 2 && "Must be binary operator?");
902    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
903  }
904}
905
906
907//===----------------------------------------------------------------------===//
908//                      isValueValidForType implementations
909
910bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
911  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
912  if (Ty == Type::getInt1Ty(Ty->getContext()))
913    return Val == 0 || Val == 1;
914  if (NumBits >= 64)
915    return true; // always true, has to fit in largest type
916  uint64_t Max = (1ll << NumBits) - 1;
917  return Val <= Max;
918}
919
920bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
921  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
922  if (Ty == Type::getInt1Ty(Ty->getContext()))
923    return Val == 0 || Val == 1 || Val == -1;
924  if (NumBits >= 64)
925    return true; // always true, has to fit in largest type
926  int64_t Min = -(1ll << (NumBits-1));
927  int64_t Max = (1ll << (NumBits-1)) - 1;
928  return (Val >= Min && Val <= Max);
929}
930
931bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
932  // convert modifies in place, so make a copy.
933  APFloat Val2 = APFloat(Val);
934  bool losesInfo;
935  switch (Ty->getTypeID()) {
936  default:
937    return false;         // These can't be represented as floating point!
938
939  // FIXME rounding mode needs to be more flexible
940  case Type::FloatTyID: {
941    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
942      return true;
943    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
944    return !losesInfo;
945  }
946  case Type::DoubleTyID: {
947    if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
948        &Val2.getSemantics() == &APFloat::IEEEdouble)
949      return true;
950    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
951    return !losesInfo;
952  }
953  case Type::X86_FP80TyID:
954    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
955           &Val2.getSemantics() == &APFloat::IEEEdouble ||
956           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
957  case Type::FP128TyID:
958    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
959           &Val2.getSemantics() == &APFloat::IEEEdouble ||
960           &Val2.getSemantics() == &APFloat::IEEEquad;
961  case Type::PPC_FP128TyID:
962    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
963           &Val2.getSemantics() == &APFloat::IEEEdouble ||
964           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
965  }
966}
967
968//===----------------------------------------------------------------------===//
969//                      Factory Function Implementation
970
971ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) {
972  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
973         "Cannot create an aggregate zero of non-aggregate type!");
974
975  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
976  return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
977}
978
979/// destroyConstant - Remove the constant from the constant table...
980///
981void ConstantAggregateZero::destroyConstant() {
982  getType()->getContext().pImpl->AggZeroConstants.remove(this);
983  destroyConstantImpl();
984}
985
986/// destroyConstant - Remove the constant from the constant table...
987///
988void ConstantArray::destroyConstant() {
989  getType()->getContext().pImpl->ArrayConstants.remove(this);
990  destroyConstantImpl();
991}
992
993/// isString - This method returns true if the array is an array of i8, and
994/// if the elements of the array are all ConstantInt's.
995bool ConstantArray::isString() const {
996  // Check the element type for i8...
997  if (!getType()->getElementType()->isIntegerTy(8))
998    return false;
999  // Check the elements to make sure they are all integers, not constant
1000  // expressions.
1001  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1002    if (!isa<ConstantInt>(getOperand(i)))
1003      return false;
1004  return true;
1005}
1006
1007/// isCString - This method returns true if the array is a string (see
1008/// isString) and it ends in a null byte \\0 and does not contains any other
1009/// null bytes except its terminator.
1010bool ConstantArray::isCString() const {
1011  // Check the element type for i8...
1012  if (!getType()->getElementType()->isIntegerTy(8))
1013    return false;
1014
1015  // Last element must be a null.
1016  if (!getOperand(getNumOperands()-1)->isNullValue())
1017    return false;
1018  // Other elements must be non-null integers.
1019  for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1020    if (!isa<ConstantInt>(getOperand(i)))
1021      return false;
1022    if (getOperand(i)->isNullValue())
1023      return false;
1024  }
1025  return true;
1026}
1027
1028
1029/// convertToString - Helper function for getAsString() and getAsCString().
1030static std::string convertToString(const User *U, unsigned len) {
1031  std::string Result;
1032  Result.reserve(len);
1033  for (unsigned i = 0; i != len; ++i)
1034    Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
1035  return Result;
1036}
1037
1038/// getAsString - If this array is isString(), then this method converts the
1039/// array to an std::string and returns it.  Otherwise, it asserts out.
1040///
1041std::string ConstantArray::getAsString() const {
1042  assert(isString() && "Not a string!");
1043  return convertToString(this, getNumOperands());
1044}
1045
1046
1047/// getAsCString - If this array is isCString(), then this method converts the
1048/// array (without the trailing null byte) to an std::string and returns it.
1049/// Otherwise, it asserts out.
1050///
1051std::string ConstantArray::getAsCString() const {
1052  assert(isCString() && "Not a string!");
1053  return convertToString(this, getNumOperands() - 1);
1054}
1055
1056
1057//---- ConstantStruct::get() implementation...
1058//
1059
1060// destroyConstant - Remove the constant from the constant table...
1061//
1062void ConstantStruct::destroyConstant() {
1063  getType()->getContext().pImpl->StructConstants.remove(this);
1064  destroyConstantImpl();
1065}
1066
1067// destroyConstant - Remove the constant from the constant table...
1068//
1069void ConstantVector::destroyConstant() {
1070  getType()->getContext().pImpl->VectorConstants.remove(this);
1071  destroyConstantImpl();
1072}
1073
1074/// This function will return true iff every element in this vector constant
1075/// is set to all ones.
1076/// @returns true iff this constant's elements are all set to all ones.
1077/// @brief Determine if the value is all ones.
1078bool ConstantVector::isAllOnesValue() const {
1079  // Check out first element.
1080  const Constant *Elt = getOperand(0);
1081  const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1082  const ConstantFP *CF = dyn_cast<ConstantFP>(Elt);
1083
1084  // Then make sure all remaining elements point to the same value.
1085  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1086    if (getOperand(I) != Elt)
1087      return false;
1088
1089  // First value is all-ones.
1090  return (CI && CI->isAllOnesValue()) ||
1091         (CF && CF->isAllOnesValue());
1092}
1093
1094/// getSplatValue - If this is a splat constant, where all of the
1095/// elements have the same value, return that value. Otherwise return null.
1096Constant *ConstantVector::getSplatValue() const {
1097  // Check out first element.
1098  Constant *Elt = getOperand(0);
1099  // Then make sure all remaining elements point to the same value.
1100  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1101    if (getOperand(I) != Elt)
1102      return 0;
1103  return Elt;
1104}
1105
1106//---- ConstantPointerNull::get() implementation.
1107//
1108
1109ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1110  return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1111}
1112
1113// destroyConstant - Remove the constant from the constant table...
1114//
1115void ConstantPointerNull::destroyConstant() {
1116  getType()->getContext().pImpl->NullPtrConstants.remove(this);
1117  destroyConstantImpl();
1118}
1119
1120
1121//---- UndefValue::get() implementation.
1122//
1123
1124UndefValue *UndefValue::get(Type *Ty) {
1125  return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1126}
1127
1128// destroyConstant - Remove the constant from the constant table.
1129//
1130void UndefValue::destroyConstant() {
1131  getType()->getContext().pImpl->UndefValueConstants.remove(this);
1132  destroyConstantImpl();
1133}
1134
1135//---- BlockAddress::get() implementation.
1136//
1137
1138BlockAddress *BlockAddress::get(BasicBlock *BB) {
1139  assert(BB->getParent() != 0 && "Block must have a parent");
1140  return get(BB->getParent(), BB);
1141}
1142
1143BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1144  BlockAddress *&BA =
1145    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1146  if (BA == 0)
1147    BA = new BlockAddress(F, BB);
1148
1149  assert(BA->getFunction() == F && "Basic block moved between functions");
1150  return BA;
1151}
1152
1153BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1154: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1155           &Op<0>(), 2) {
1156  setOperand(0, F);
1157  setOperand(1, BB);
1158  BB->AdjustBlockAddressRefCount(1);
1159}
1160
1161
1162// destroyConstant - Remove the constant from the constant table.
1163//
1164void BlockAddress::destroyConstant() {
1165  getFunction()->getType()->getContext().pImpl
1166    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1167  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1168  destroyConstantImpl();
1169}
1170
1171void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1172  // This could be replacing either the Basic Block or the Function.  In either
1173  // case, we have to remove the map entry.
1174  Function *NewF = getFunction();
1175  BasicBlock *NewBB = getBasicBlock();
1176
1177  if (U == &Op<0>())
1178    NewF = cast<Function>(To);
1179  else
1180    NewBB = cast<BasicBlock>(To);
1181
1182  // See if the 'new' entry already exists, if not, just update this in place
1183  // and return early.
1184  BlockAddress *&NewBA =
1185    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1186  if (NewBA == 0) {
1187    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1188
1189    // Remove the old entry, this can't cause the map to rehash (just a
1190    // tombstone will get added).
1191    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1192                                                            getBasicBlock()));
1193    NewBA = this;
1194    setOperand(0, NewF);
1195    setOperand(1, NewBB);
1196    getBasicBlock()->AdjustBlockAddressRefCount(1);
1197    return;
1198  }
1199
1200  // Otherwise, I do need to replace this with an existing value.
1201  assert(NewBA != this && "I didn't contain From!");
1202
1203  // Everyone using this now uses the replacement.
1204  replaceAllUsesWith(NewBA);
1205
1206  destroyConstant();
1207}
1208
1209//---- ConstantExpr::get() implementations.
1210//
1211
1212/// This is a utility function to handle folding of casts and lookup of the
1213/// cast in the ExprConstants map. It is used by the various get* methods below.
1214static inline Constant *getFoldedCast(
1215  Instruction::CastOps opc, Constant *C, Type *Ty) {
1216  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1217  // Fold a few common cases
1218  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1219    return FC;
1220
1221  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1222
1223  // Look up the constant in the table first to ensure uniqueness
1224  std::vector<Constant*> argVec(1, C);
1225  ExprMapKeyType Key(opc, argVec);
1226
1227  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1228}
1229
1230Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1231  Instruction::CastOps opc = Instruction::CastOps(oc);
1232  assert(Instruction::isCast(opc) && "opcode out of range");
1233  assert(C && Ty && "Null arguments to getCast");
1234  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1235
1236  switch (opc) {
1237  default:
1238    llvm_unreachable("Invalid cast opcode");
1239    break;
1240  case Instruction::Trunc:    return getTrunc(C, Ty);
1241  case Instruction::ZExt:     return getZExt(C, Ty);
1242  case Instruction::SExt:     return getSExt(C, Ty);
1243  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1244  case Instruction::FPExt:    return getFPExtend(C, Ty);
1245  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1246  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1247  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1248  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1249  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1250  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1251  case Instruction::BitCast:  return getBitCast(C, Ty);
1252  }
1253  return 0;
1254}
1255
1256Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1257  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1258    return getBitCast(C, Ty);
1259  return getZExt(C, Ty);
1260}
1261
1262Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1263  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1264    return getBitCast(C, Ty);
1265  return getSExt(C, Ty);
1266}
1267
1268Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1269  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1270    return getBitCast(C, Ty);
1271  return getTrunc(C, Ty);
1272}
1273
1274Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1275  assert(S->getType()->isPointerTy() && "Invalid cast");
1276  assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1277
1278  if (Ty->isIntegerTy())
1279    return getPtrToInt(S, Ty);
1280  return getBitCast(S, Ty);
1281}
1282
1283Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1284                                       bool isSigned) {
1285  assert(C->getType()->isIntOrIntVectorTy() &&
1286         Ty->isIntOrIntVectorTy() && "Invalid cast");
1287  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1288  unsigned DstBits = Ty->getScalarSizeInBits();
1289  Instruction::CastOps opcode =
1290    (SrcBits == DstBits ? Instruction::BitCast :
1291     (SrcBits > DstBits ? Instruction::Trunc :
1292      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1293  return getCast(opcode, C, Ty);
1294}
1295
1296Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1297  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1298         "Invalid cast");
1299  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1300  unsigned DstBits = Ty->getScalarSizeInBits();
1301  if (SrcBits == DstBits)
1302    return C; // Avoid a useless cast
1303  Instruction::CastOps opcode =
1304    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1305  return getCast(opcode, C, Ty);
1306}
1307
1308Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1309#ifndef NDEBUG
1310  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1311  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1312#endif
1313  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1314  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1315  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1316  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1317         "SrcTy must be larger than DestTy for Trunc!");
1318
1319  return getFoldedCast(Instruction::Trunc, C, Ty);
1320}
1321
1322Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1323#ifndef NDEBUG
1324  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1325  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1326#endif
1327  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1328  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1329  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1330  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1331         "SrcTy must be smaller than DestTy for SExt!");
1332
1333  return getFoldedCast(Instruction::SExt, C, Ty);
1334}
1335
1336Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1337#ifndef NDEBUG
1338  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1339  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1340#endif
1341  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1342  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1343  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1344  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1345         "SrcTy must be smaller than DestTy for ZExt!");
1346
1347  return getFoldedCast(Instruction::ZExt, C, Ty);
1348}
1349
1350Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1351#ifndef NDEBUG
1352  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1353  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1354#endif
1355  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1356  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1357         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1358         "This is an illegal floating point truncation!");
1359  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1360}
1361
1362Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1363#ifndef NDEBUG
1364  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1365  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1366#endif
1367  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1368  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1369         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1370         "This is an illegal floating point extension!");
1371  return getFoldedCast(Instruction::FPExt, C, Ty);
1372}
1373
1374Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1375#ifndef NDEBUG
1376  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1377  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1378#endif
1379  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1380  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1381         "This is an illegal uint to floating point cast!");
1382  return getFoldedCast(Instruction::UIToFP, C, Ty);
1383}
1384
1385Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1386#ifndef NDEBUG
1387  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1388  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1389#endif
1390  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1391  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1392         "This is an illegal sint to floating point cast!");
1393  return getFoldedCast(Instruction::SIToFP, C, Ty);
1394}
1395
1396Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1397#ifndef NDEBUG
1398  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1399  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1400#endif
1401  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1402  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1403         "This is an illegal floating point to uint cast!");
1404  return getFoldedCast(Instruction::FPToUI, C, Ty);
1405}
1406
1407Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1408#ifndef NDEBUG
1409  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1410  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1411#endif
1412  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1413  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1414         "This is an illegal floating point to sint cast!");
1415  return getFoldedCast(Instruction::FPToSI, C, Ty);
1416}
1417
1418Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1419  assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
1420  assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
1421  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1422}
1423
1424Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1425  assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
1426  assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
1427  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1428}
1429
1430Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1431  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1432         "Invalid constantexpr bitcast!");
1433
1434  // It is common to ask for a bitcast of a value to its own type, handle this
1435  // speedily.
1436  if (C->getType() == DstTy) return C;
1437
1438  return getFoldedCast(Instruction::BitCast, C, DstTy);
1439}
1440
1441Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1442                            unsigned Flags) {
1443  // Check the operands for consistency first.
1444  assert(Opcode >= Instruction::BinaryOpsBegin &&
1445         Opcode <  Instruction::BinaryOpsEnd   &&
1446         "Invalid opcode in binary constant expression");
1447  assert(C1->getType() == C2->getType() &&
1448         "Operand types in binary constant expression should match");
1449
1450#ifndef NDEBUG
1451  switch (Opcode) {
1452  case Instruction::Add:
1453  case Instruction::Sub:
1454  case Instruction::Mul:
1455    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1456    assert(C1->getType()->isIntOrIntVectorTy() &&
1457           "Tried to create an integer operation on a non-integer type!");
1458    break;
1459  case Instruction::FAdd:
1460  case Instruction::FSub:
1461  case Instruction::FMul:
1462    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1463    assert(C1->getType()->isFPOrFPVectorTy() &&
1464           "Tried to create a floating-point operation on a "
1465           "non-floating-point type!");
1466    break;
1467  case Instruction::UDiv:
1468  case Instruction::SDiv:
1469    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1470    assert(C1->getType()->isIntOrIntVectorTy() &&
1471           "Tried to create an arithmetic operation on a non-arithmetic type!");
1472    break;
1473  case Instruction::FDiv:
1474    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1475    assert(C1->getType()->isFPOrFPVectorTy() &&
1476           "Tried to create an arithmetic operation on a non-arithmetic type!");
1477    break;
1478  case Instruction::URem:
1479  case Instruction::SRem:
1480    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1481    assert(C1->getType()->isIntOrIntVectorTy() &&
1482           "Tried to create an arithmetic operation on a non-arithmetic type!");
1483    break;
1484  case Instruction::FRem:
1485    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1486    assert(C1->getType()->isFPOrFPVectorTy() &&
1487           "Tried to create an arithmetic operation on a non-arithmetic type!");
1488    break;
1489  case Instruction::And:
1490  case Instruction::Or:
1491  case Instruction::Xor:
1492    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1493    assert(C1->getType()->isIntOrIntVectorTy() &&
1494           "Tried to create a logical operation on a non-integral type!");
1495    break;
1496  case Instruction::Shl:
1497  case Instruction::LShr:
1498  case Instruction::AShr:
1499    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1500    assert(C1->getType()->isIntOrIntVectorTy() &&
1501           "Tried to create a shift operation on a non-integer type!");
1502    break;
1503  default:
1504    break;
1505  }
1506#endif
1507
1508  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1509    return FC;          // Fold a few common cases.
1510
1511  std::vector<Constant*> argVec(1, C1);
1512  argVec.push_back(C2);
1513  ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1514
1515  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1516  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1517}
1518
1519Constant *ConstantExpr::getSizeOf(Type* Ty) {
1520  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1521  // Note that a non-inbounds gep is used, as null isn't within any object.
1522  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1523  Constant *GEP = getGetElementPtr(
1524                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1525  return getPtrToInt(GEP,
1526                     Type::getInt64Ty(Ty->getContext()));
1527}
1528
1529Constant *ConstantExpr::getAlignOf(Type* Ty) {
1530  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1531  // Note that a non-inbounds gep is used, as null isn't within any object.
1532  Type *AligningTy =
1533    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1534  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1535  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1536  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1537  Constant *Indices[2] = { Zero, One };
1538  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1539  return getPtrToInt(GEP,
1540                     Type::getInt64Ty(Ty->getContext()));
1541}
1542
1543Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1544  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1545                                           FieldNo));
1546}
1547
1548Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1549  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1550  // Note that a non-inbounds gep is used, as null isn't within any object.
1551  Constant *GEPIdx[] = {
1552    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1553    FieldNo
1554  };
1555  Constant *GEP = getGetElementPtr(
1556                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1557  return getPtrToInt(GEP,
1558                     Type::getInt64Ty(Ty->getContext()));
1559}
1560
1561Constant *ConstantExpr::getCompare(unsigned short Predicate,
1562                                   Constant *C1, Constant *C2) {
1563  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1564
1565  switch (Predicate) {
1566  default: llvm_unreachable("Invalid CmpInst predicate");
1567  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1568  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1569  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1570  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1571  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1572  case CmpInst::FCMP_TRUE:
1573    return getFCmp(Predicate, C1, C2);
1574
1575  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1576  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1577  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1578  case CmpInst::ICMP_SLE:
1579    return getICmp(Predicate, C1, C2);
1580  }
1581}
1582
1583Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1584  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1585
1586  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1587    return SC;        // Fold common cases
1588
1589  std::vector<Constant*> argVec(3, C);
1590  argVec[1] = V1;
1591  argVec[2] = V2;
1592  ExprMapKeyType Key(Instruction::Select, argVec);
1593
1594  LLVMContextImpl *pImpl = C->getContext().pImpl;
1595  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1596}
1597
1598Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1599                                         bool InBounds) {
1600  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1601    return FC;          // Fold a few common cases.
1602
1603  // Get the result type of the getelementptr!
1604  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1605  assert(Ty && "GEP indices invalid!");
1606  unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
1607  Type *ReqTy = Ty->getPointerTo(AS);
1608
1609  assert(C->getType()->isPointerTy() &&
1610         "Non-pointer type for constant GetElementPtr expression");
1611  // Look up the constant in the table first to ensure uniqueness
1612  std::vector<Constant*> ArgVec;
1613  ArgVec.reserve(1 + Idxs.size());
1614  ArgVec.push_back(C);
1615  for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1616    ArgVec.push_back(cast<Constant>(Idxs[i]));
1617  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1618                           InBounds ? GEPOperator::IsInBounds : 0);
1619
1620  LLVMContextImpl *pImpl = C->getContext().pImpl;
1621  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1622}
1623
1624Constant *
1625ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1626  assert(LHS->getType() == RHS->getType());
1627  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1628         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1629
1630  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1631    return FC;          // Fold a few common cases...
1632
1633  // Look up the constant in the table first to ensure uniqueness
1634  std::vector<Constant*> ArgVec;
1635  ArgVec.push_back(LHS);
1636  ArgVec.push_back(RHS);
1637  // Get the key type with both the opcode and predicate
1638  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1639
1640  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1641  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1642    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1643
1644  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1645  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1646}
1647
1648Constant *
1649ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1650  assert(LHS->getType() == RHS->getType());
1651  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1652
1653  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1654    return FC;          // Fold a few common cases...
1655
1656  // Look up the constant in the table first to ensure uniqueness
1657  std::vector<Constant*> ArgVec;
1658  ArgVec.push_back(LHS);
1659  ArgVec.push_back(RHS);
1660  // Get the key type with both the opcode and predicate
1661  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1662
1663  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1664  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1665    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1666
1667  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1668  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1669}
1670
1671Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1672  assert(Val->getType()->isVectorTy() &&
1673         "Tried to create extractelement operation on non-vector type!");
1674  assert(Idx->getType()->isIntegerTy(32) &&
1675         "Extractelement index must be i32 type!");
1676
1677  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1678    return FC;          // Fold a few common cases.
1679
1680  // Look up the constant in the table first to ensure uniqueness
1681  std::vector<Constant*> ArgVec(1, Val);
1682  ArgVec.push_back(Idx);
1683  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1684
1685  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1686  Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
1687  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1688}
1689
1690Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1691                                         Constant *Idx) {
1692  assert(Val->getType()->isVectorTy() &&
1693         "Tried to create insertelement operation on non-vector type!");
1694  assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1695         && "Insertelement types must match!");
1696  assert(Idx->getType()->isIntegerTy(32) &&
1697         "Insertelement index must be i32 type!");
1698
1699  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1700    return FC;          // Fold a few common cases.
1701  // Look up the constant in the table first to ensure uniqueness
1702  std::vector<Constant*> ArgVec(1, Val);
1703  ArgVec.push_back(Elt);
1704  ArgVec.push_back(Idx);
1705  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1706
1707  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1708  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1709}
1710
1711Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1712                                         Constant *Mask) {
1713  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1714         "Invalid shuffle vector constant expr operands!");
1715
1716  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1717    return FC;          // Fold a few common cases.
1718
1719  unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1720  Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1721  Type *ShufTy = VectorType::get(EltTy, NElts);
1722
1723  // Look up the constant in the table first to ensure uniqueness
1724  std::vector<Constant*> ArgVec(1, V1);
1725  ArgVec.push_back(V2);
1726  ArgVec.push_back(Mask);
1727  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1728
1729  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1730  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1731}
1732
1733Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1734                                       ArrayRef<unsigned> Idxs) {
1735  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1736                                          Idxs) == Val->getType() &&
1737         "insertvalue indices invalid!");
1738  assert(Agg->getType()->isFirstClassType() &&
1739         "Non-first-class type for constant insertvalue expression");
1740  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1741  assert(FC && "insertvalue constant expr couldn't be folded!");
1742  return FC;
1743}
1744
1745Constant *ConstantExpr::getExtractValue(Constant *Agg,
1746                                        ArrayRef<unsigned> Idxs) {
1747  assert(Agg->getType()->isFirstClassType() &&
1748         "Tried to create extractelement operation on non-first-class type!");
1749
1750  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1751  (void)ReqTy;
1752  assert(ReqTy && "extractvalue indices invalid!");
1753
1754  assert(Agg->getType()->isFirstClassType() &&
1755         "Non-first-class type for constant extractvalue expression");
1756  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1757  assert(FC && "ExtractValue constant expr couldn't be folded!");
1758  return FC;
1759}
1760
1761Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1762  assert(C->getType()->isIntOrIntVectorTy() &&
1763         "Cannot NEG a nonintegral value!");
1764  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1765                C, HasNUW, HasNSW);
1766}
1767
1768Constant *ConstantExpr::getFNeg(Constant *C) {
1769  assert(C->getType()->isFPOrFPVectorTy() &&
1770         "Cannot FNEG a non-floating-point value!");
1771  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1772}
1773
1774Constant *ConstantExpr::getNot(Constant *C) {
1775  assert(C->getType()->isIntOrIntVectorTy() &&
1776         "Cannot NOT a nonintegral value!");
1777  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1778}
1779
1780Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1781                               bool HasNUW, bool HasNSW) {
1782  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1783                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1784  return get(Instruction::Add, C1, C2, Flags);
1785}
1786
1787Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1788  return get(Instruction::FAdd, C1, C2);
1789}
1790
1791Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1792                               bool HasNUW, bool HasNSW) {
1793  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1794                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1795  return get(Instruction::Sub, C1, C2, Flags);
1796}
1797
1798Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1799  return get(Instruction::FSub, C1, C2);
1800}
1801
1802Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1803                               bool HasNUW, bool HasNSW) {
1804  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1805                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1806  return get(Instruction::Mul, C1, C2, Flags);
1807}
1808
1809Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1810  return get(Instruction::FMul, C1, C2);
1811}
1812
1813Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1814  return get(Instruction::UDiv, C1, C2,
1815             isExact ? PossiblyExactOperator::IsExact : 0);
1816}
1817
1818Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1819  return get(Instruction::SDiv, C1, C2,
1820             isExact ? PossiblyExactOperator::IsExact : 0);
1821}
1822
1823Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1824  return get(Instruction::FDiv, C1, C2);
1825}
1826
1827Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1828  return get(Instruction::URem, C1, C2);
1829}
1830
1831Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1832  return get(Instruction::SRem, C1, C2);
1833}
1834
1835Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1836  return get(Instruction::FRem, C1, C2);
1837}
1838
1839Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1840  return get(Instruction::And, C1, C2);
1841}
1842
1843Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1844  return get(Instruction::Or, C1, C2);
1845}
1846
1847Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1848  return get(Instruction::Xor, C1, C2);
1849}
1850
1851Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1852                               bool HasNUW, bool HasNSW) {
1853  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1854                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1855  return get(Instruction::Shl, C1, C2, Flags);
1856}
1857
1858Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
1859  return get(Instruction::LShr, C1, C2,
1860             isExact ? PossiblyExactOperator::IsExact : 0);
1861}
1862
1863Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
1864  return get(Instruction::AShr, C1, C2,
1865             isExact ? PossiblyExactOperator::IsExact : 0);
1866}
1867
1868// destroyConstant - Remove the constant from the constant table...
1869//
1870void ConstantExpr::destroyConstant() {
1871  getType()->getContext().pImpl->ExprConstants.remove(this);
1872  destroyConstantImpl();
1873}
1874
1875const char *ConstantExpr::getOpcodeName() const {
1876  return Instruction::getOpcodeName(getOpcode());
1877}
1878
1879
1880
1881GetElementPtrConstantExpr::
1882GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
1883                          Type *DestTy)
1884  : ConstantExpr(DestTy, Instruction::GetElementPtr,
1885                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
1886                 - (IdxList.size()+1), IdxList.size()+1) {
1887  OperandList[0] = C;
1888  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
1889    OperandList[i+1] = IdxList[i];
1890}
1891
1892
1893//===----------------------------------------------------------------------===//
1894//                replaceUsesOfWithOnConstant implementations
1895
1896/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1897/// 'From' to be uses of 'To'.  This must update the uniquing data structures
1898/// etc.
1899///
1900/// Note that we intentionally replace all uses of From with To here.  Consider
1901/// a large array that uses 'From' 1000 times.  By handling this case all here,
1902/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1903/// single invocation handles all 1000 uses.  Handling them one at a time would
1904/// work, but would be really slow because it would have to unique each updated
1905/// array instance.
1906///
1907void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1908                                                Use *U) {
1909  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1910  Constant *ToC = cast<Constant>(To);
1911
1912  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1913
1914  std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1915  Lookup.first.first = cast<ArrayType>(getType());
1916  Lookup.second = this;
1917
1918  std::vector<Constant*> &Values = Lookup.first.second;
1919  Values.reserve(getNumOperands());  // Build replacement array.
1920
1921  // Fill values with the modified operands of the constant array.  Also,
1922  // compute whether this turns into an all-zeros array.
1923  bool isAllZeros = false;
1924  unsigned NumUpdated = 0;
1925  if (!ToC->isNullValue()) {
1926    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1927      Constant *Val = cast<Constant>(O->get());
1928      if (Val == From) {
1929        Val = ToC;
1930        ++NumUpdated;
1931      }
1932      Values.push_back(Val);
1933    }
1934  } else {
1935    isAllZeros = true;
1936    for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1937      Constant *Val = cast<Constant>(O->get());
1938      if (Val == From) {
1939        Val = ToC;
1940        ++NumUpdated;
1941      }
1942      Values.push_back(Val);
1943      if (isAllZeros) isAllZeros = Val->isNullValue();
1944    }
1945  }
1946
1947  Constant *Replacement = 0;
1948  if (isAllZeros) {
1949    Replacement = ConstantAggregateZero::get(getType());
1950  } else {
1951    // Check to see if we have this array type already.
1952    bool Exists;
1953    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1954      pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1955
1956    if (Exists) {
1957      Replacement = I->second;
1958    } else {
1959      // Okay, the new shape doesn't exist in the system yet.  Instead of
1960      // creating a new constant array, inserting it, replaceallusesof'ing the
1961      // old with the new, then deleting the old... just update the current one
1962      // in place!
1963      pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1964
1965      // Update to the new value.  Optimize for the case when we have a single
1966      // operand that we're changing, but handle bulk updates efficiently.
1967      if (NumUpdated == 1) {
1968        unsigned OperandToUpdate = U - OperandList;
1969        assert(getOperand(OperandToUpdate) == From &&
1970               "ReplaceAllUsesWith broken!");
1971        setOperand(OperandToUpdate, ToC);
1972      } else {
1973        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1974          if (getOperand(i) == From)
1975            setOperand(i, ToC);
1976      }
1977      return;
1978    }
1979  }
1980
1981  // Otherwise, I do need to replace this with an existing value.
1982  assert(Replacement != this && "I didn't contain From!");
1983
1984  // Everyone using this now uses the replacement.
1985  replaceAllUsesWith(Replacement);
1986
1987  // Delete the old constant!
1988  destroyConstant();
1989}
1990
1991void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1992                                                 Use *U) {
1993  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1994  Constant *ToC = cast<Constant>(To);
1995
1996  unsigned OperandToUpdate = U-OperandList;
1997  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1998
1999  std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
2000  Lookup.first.first = cast<StructType>(getType());
2001  Lookup.second = this;
2002  std::vector<Constant*> &Values = Lookup.first.second;
2003  Values.reserve(getNumOperands());  // Build replacement struct.
2004
2005
2006  // Fill values with the modified operands of the constant struct.  Also,
2007  // compute whether this turns into an all-zeros struct.
2008  bool isAllZeros = false;
2009  if (!ToC->isNullValue()) {
2010    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2011      Values.push_back(cast<Constant>(O->get()));
2012  } else {
2013    isAllZeros = true;
2014    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2015      Constant *Val = cast<Constant>(O->get());
2016      Values.push_back(Val);
2017      if (isAllZeros) isAllZeros = Val->isNullValue();
2018    }
2019  }
2020  Values[OperandToUpdate] = ToC;
2021
2022  LLVMContextImpl *pImpl = getContext().pImpl;
2023
2024  Constant *Replacement = 0;
2025  if (isAllZeros) {
2026    Replacement = ConstantAggregateZero::get(getType());
2027  } else {
2028    // Check to see if we have this struct type already.
2029    bool Exists;
2030    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2031      pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
2032
2033    if (Exists) {
2034      Replacement = I->second;
2035    } else {
2036      // Okay, the new shape doesn't exist in the system yet.  Instead of
2037      // creating a new constant struct, inserting it, replaceallusesof'ing the
2038      // old with the new, then deleting the old... just update the current one
2039      // in place!
2040      pImpl->StructConstants.MoveConstantToNewSlot(this, I);
2041
2042      // Update to the new value.
2043      setOperand(OperandToUpdate, ToC);
2044      return;
2045    }
2046  }
2047
2048  assert(Replacement != this && "I didn't contain From!");
2049
2050  // Everyone using this now uses the replacement.
2051  replaceAllUsesWith(Replacement);
2052
2053  // Delete the old constant!
2054  destroyConstant();
2055}
2056
2057void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2058                                                 Use *U) {
2059  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2060
2061  std::vector<Constant*> Values;
2062  Values.reserve(getNumOperands());  // Build replacement array...
2063  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2064    Constant *Val = getOperand(i);
2065    if (Val == From) Val = cast<Constant>(To);
2066    Values.push_back(Val);
2067  }
2068
2069  Constant *Replacement = get(Values);
2070  assert(Replacement != this && "I didn't contain From!");
2071
2072  // Everyone using this now uses the replacement.
2073  replaceAllUsesWith(Replacement);
2074
2075  // Delete the old constant!
2076  destroyConstant();
2077}
2078
2079void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2080                                               Use *U) {
2081  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2082  Constant *To = cast<Constant>(ToV);
2083
2084  Constant *Replacement = 0;
2085  if (getOpcode() == Instruction::GetElementPtr) {
2086    SmallVector<Constant*, 8> Indices;
2087    Constant *Pointer = getOperand(0);
2088    Indices.reserve(getNumOperands()-1);
2089    if (Pointer == From) Pointer = To;
2090
2091    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2092      Constant *Val = getOperand(i);
2093      if (Val == From) Val = To;
2094      Indices.push_back(Val);
2095    }
2096    Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices,
2097                                         cast<GEPOperator>(this)->isInBounds());
2098  } else if (getOpcode() == Instruction::ExtractValue) {
2099    Constant *Agg = getOperand(0);
2100    if (Agg == From) Agg = To;
2101
2102    ArrayRef<unsigned> Indices = getIndices();
2103    Replacement = ConstantExpr::getExtractValue(Agg, Indices);
2104  } else if (getOpcode() == Instruction::InsertValue) {
2105    Constant *Agg = getOperand(0);
2106    Constant *Val = getOperand(1);
2107    if (Agg == From) Agg = To;
2108    if (Val == From) Val = To;
2109
2110    ArrayRef<unsigned> Indices = getIndices();
2111    Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices);
2112  } else if (isCast()) {
2113    assert(getOperand(0) == From && "Cast only has one use!");
2114    Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2115  } else if (getOpcode() == Instruction::Select) {
2116    Constant *C1 = getOperand(0);
2117    Constant *C2 = getOperand(1);
2118    Constant *C3 = getOperand(2);
2119    if (C1 == From) C1 = To;
2120    if (C2 == From) C2 = To;
2121    if (C3 == From) C3 = To;
2122    Replacement = ConstantExpr::getSelect(C1, C2, C3);
2123  } else if (getOpcode() == Instruction::ExtractElement) {
2124    Constant *C1 = getOperand(0);
2125    Constant *C2 = getOperand(1);
2126    if (C1 == From) C1 = To;
2127    if (C2 == From) C2 = To;
2128    Replacement = ConstantExpr::getExtractElement(C1, C2);
2129  } else if (getOpcode() == Instruction::InsertElement) {
2130    Constant *C1 = getOperand(0);
2131    Constant *C2 = getOperand(1);
2132    Constant *C3 = getOperand(1);
2133    if (C1 == From) C1 = To;
2134    if (C2 == From) C2 = To;
2135    if (C3 == From) C3 = To;
2136    Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2137  } else if (getOpcode() == Instruction::ShuffleVector) {
2138    Constant *C1 = getOperand(0);
2139    Constant *C2 = getOperand(1);
2140    Constant *C3 = getOperand(2);
2141    if (C1 == From) C1 = To;
2142    if (C2 == From) C2 = To;
2143    if (C3 == From) C3 = To;
2144    Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2145  } else if (isCompare()) {
2146    Constant *C1 = getOperand(0);
2147    Constant *C2 = getOperand(1);
2148    if (C1 == From) C1 = To;
2149    if (C2 == From) C2 = To;
2150    if (getOpcode() == Instruction::ICmp)
2151      Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2152    else {
2153      assert(getOpcode() == Instruction::FCmp);
2154      Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2155    }
2156  } else if (getNumOperands() == 2) {
2157    Constant *C1 = getOperand(0);
2158    Constant *C2 = getOperand(1);
2159    if (C1 == From) C1 = To;
2160    if (C2 == From) C2 = To;
2161    Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
2162  } else {
2163    llvm_unreachable("Unknown ConstantExpr type!");
2164    return;
2165  }
2166
2167  assert(Replacement != this && "I didn't contain From!");
2168
2169  // Everyone using this now uses the replacement.
2170  replaceAllUsesWith(Replacement);
2171
2172  // Delete the old constant!
2173  destroyConstant();
2174}
2175