1/*
2 * gPXE driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Derived from Linux skge driver (v1.13), which was
4 * based on earlier sk98lin, e100 and FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features of the
7 * original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * Modified for gPXE, July 2008 by Michael Decker <mrd999@gmail.com>
13 * Tested and Modified in December 2009 by
14 *    Thomas Miletich <thomas.miletich@gmail.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 */
29
30FILE_LICENCE ( GPL2_ONLY );
31
32#include <stdint.h>
33#include <errno.h>
34#include <stdio.h>
35#include <unistd.h>
36#include <gpxe/netdevice.h>
37#include <gpxe/ethernet.h>
38#include <gpxe/if_ether.h>
39#include <gpxe/iobuf.h>
40#include <gpxe/malloc.h>
41#include <gpxe/pci.h>
42
43#include "skge.h"
44
45static struct pci_device_id skge_id_table[] = {
46	PCI_ROM(0x10b7, 0x1700,     "3C940",     "3COM 3C940", 0),
47	PCI_ROM(0x10b7, 0x80eb,     "3C940B",    "3COM 3C940", 0),
48	PCI_ROM(0x1148, 0x4300,     "GE",        "Syskonnect GE", 0),
49	PCI_ROM(0x1148, 0x4320,     "YU",        "Syskonnect YU", 0),
50	PCI_ROM(0x1186, 0x4C00,     "DGE510T",   "DLink DGE-510T", 0),
51	PCI_ROM(0x1186, 0x4b01,     "DGE530T",   "DLink DGE-530T", 0),
52	PCI_ROM(0x11ab, 0x4320,     "id4320",    "Marvell id4320", 0),
53	PCI_ROM(0x11ab, 0x5005,     "id5005",    "Marvell id5005", 0), /* Belkin */
54	PCI_ROM(0x1371, 0x434e,     "Gigacard",  "CNET Gigacard", 0),
55	PCI_ROM(0x1737, 0x1064,     "EG1064",    "Linksys EG1064", 0),
56	PCI_ROM(0x1737, 0xffff,     "id_any",    "Linksys [any]", 0)
57};
58
59static int skge_up(struct net_device *dev);
60static void skge_down(struct net_device *dev);
61static void skge_tx_clean(struct net_device *dev);
62static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
63static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
64static void yukon_init(struct skge_hw *hw, int port);
65static void genesis_mac_init(struct skge_hw *hw, int port);
66static void genesis_link_up(struct skge_port *skge);
67
68static void skge_phyirq(struct skge_hw *hw);
69static void skge_poll(struct net_device *dev);
70static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob);
71static void skge_net_irq ( struct net_device *dev, int enable );
72
73static void skge_rx_refill(struct net_device *dev);
74
75static struct net_device_operations skge_operations = {
76	.open     = skge_up,
77	.close    = skge_down,
78	.transmit = skge_xmit_frame,
79	.poll     = skge_poll,
80	.irq      = skge_net_irq
81};
82
83/* Avoid conditionals by using array */
84static const int txqaddr[] = { Q_XA1, Q_XA2 };
85static const int rxqaddr[] = { Q_R1, Q_R2 };
86static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
87static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
88static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
89static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
90
91/* Determine supported/advertised modes based on hardware.
92 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
93 */
94static u32 skge_supported_modes(const struct skge_hw *hw)
95{
96	u32 supported;
97
98	if (hw->copper) {
99		supported = SUPPORTED_10baseT_Half
100			| SUPPORTED_10baseT_Full
101			| SUPPORTED_100baseT_Half
102			| SUPPORTED_100baseT_Full
103			| SUPPORTED_1000baseT_Half
104			| SUPPORTED_1000baseT_Full
105			| SUPPORTED_Autoneg| SUPPORTED_TP;
106
107		if (hw->chip_id == CHIP_ID_GENESIS)
108			supported &= ~(SUPPORTED_10baseT_Half
109					     | SUPPORTED_10baseT_Full
110					     | SUPPORTED_100baseT_Half
111					     | SUPPORTED_100baseT_Full);
112
113		else if (hw->chip_id == CHIP_ID_YUKON)
114			supported &= ~SUPPORTED_1000baseT_Half;
115	} else
116		supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
117			| SUPPORTED_FIBRE | SUPPORTED_Autoneg;
118
119	return supported;
120}
121
122/* Chip internal frequency for clock calculations */
123static inline u32 hwkhz(const struct skge_hw *hw)
124{
125	return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
126}
127
128/* Microseconds to chip HZ */
129static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
130{
131	return hwkhz(hw) * usec / 1000;
132}
133
134enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
135static void skge_led(struct skge_port *skge, enum led_mode mode)
136{
137	struct skge_hw *hw = skge->hw;
138	int port = skge->port;
139
140	if (hw->chip_id == CHIP_ID_GENESIS) {
141		switch (mode) {
142		case LED_MODE_OFF:
143			if (hw->phy_type == SK_PHY_BCOM)
144				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
145			else {
146				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
147				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
148			}
149			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
150			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
151			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
152			break;
153
154		case LED_MODE_ON:
155			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
156			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
157
158			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
159			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
160
161			break;
162
163		case LED_MODE_TST:
164			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
165			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
166			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
167
168			if (hw->phy_type == SK_PHY_BCOM)
169				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
170			else {
171				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
172				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
173				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
174			}
175
176		}
177	} else {
178		switch (mode) {
179		case LED_MODE_OFF:
180			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
181			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
182				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
183				     PHY_M_LED_MO_10(MO_LED_OFF)   |
184				     PHY_M_LED_MO_100(MO_LED_OFF)  |
185				     PHY_M_LED_MO_1000(MO_LED_OFF) |
186				     PHY_M_LED_MO_RX(MO_LED_OFF));
187			break;
188		case LED_MODE_ON:
189			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
190				     PHY_M_LED_PULS_DUR(PULS_170MS) |
191				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
192				     PHY_M_LEDC_TX_CTRL |
193				     PHY_M_LEDC_DP_CTRL);
194
195			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
196				     PHY_M_LED_MO_RX(MO_LED_OFF) |
197				     (skge->speed == SPEED_100 ?
198				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
199			break;
200		case LED_MODE_TST:
201			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
202			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
203				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
204				     PHY_M_LED_MO_10(MO_LED_ON)   |
205				     PHY_M_LED_MO_100(MO_LED_ON)  |
206				     PHY_M_LED_MO_1000(MO_LED_ON) |
207				     PHY_M_LED_MO_RX(MO_LED_ON));
208		}
209	}
210}
211
212/*
213 * I've left in these EEPROM and VPD functions, as someone may desire to
214 * integrate them in the future. -mdeck
215 *
216 * static int skge_get_eeprom_len(struct net_device *dev)
217 * {
218 * 	struct skge_port *skge = netdev_priv(dev);
219 * 	u32 reg2;
220 *
221 * 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
222 * 	return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
223 * }
224 *
225 * static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
226 * {
227 * 	u32 val;
228 *
229 * 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
230 *
231 * 	do {
232 * 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
233 * 	} while (!(offset & PCI_VPD_ADDR_F));
234 *
235 * 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
236 * 	return val;
237 * }
238 *
239 * static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
240 * {
241 * 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
242 * 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
243 * 			      offset | PCI_VPD_ADDR_F);
244 *
245 * 	do {
246 * 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
247 * 	} while (offset & PCI_VPD_ADDR_F);
248 * }
249 *
250 * static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
251 * 			   u8 *data)
252 * {
253 * 	struct skge_port *skge = netdev_priv(dev);
254 * 	struct pci_dev *pdev = skge->hw->pdev;
255 * 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
256 * 	int length = eeprom->len;
257 * 	u16 offset = eeprom->offset;
258 *
259 * 	if (!cap)
260 * 		return -EINVAL;
261 *
262 * 	eeprom->magic = SKGE_EEPROM_MAGIC;
263 *
264 * 	while (length > 0) {
265 * 		u32 val = skge_vpd_read(pdev, cap, offset);
266 * 		int n = min_t(int, length, sizeof(val));
267 *
268 * 		memcpy(data, &val, n);
269 * 		length -= n;
270 * 		data += n;
271 * 		offset += n;
272 * 	}
273 * 	return 0;
274 * }
275 *
276 * static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
277 * 			   u8 *data)
278 * {
279 * 	struct skge_port *skge = netdev_priv(dev);
280 * 	struct pci_dev *pdev = skge->hw->pdev;
281 * 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
282 * 	int length = eeprom->len;
283 * 	u16 offset = eeprom->offset;
284 *
285 * 	if (!cap)
286 * 		return -EINVAL;
287 *
288 * 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
289 * 		return -EINVAL;
290 *
291 * 	while (length > 0) {
292 * 		u32 val;
293 * 		int n = min_t(int, length, sizeof(val));
294 *
295 * 		if (n < sizeof(val))
296 * 			val = skge_vpd_read(pdev, cap, offset);
297 * 		memcpy(&val, data, n);
298 *
299 * 		skge_vpd_write(pdev, cap, offset, val);
300 *
301 * 		length -= n;
302 * 		data += n;
303 * 		offset += n;
304 * 	}
305 * 	return 0;
306 * }
307 */
308
309/*
310 * Allocate ring elements and chain them together
311 * One-to-one association of board descriptors with ring elements
312 */
313static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base,
314                           size_t num)
315{
316	struct skge_tx_desc *d;
317	struct skge_element *e;
318	unsigned int i;
319
320	ring->start = zalloc(num*sizeof(*e));
321	if (!ring->start)
322		return -ENOMEM;
323
324	for (i = 0, e = ring->start, d = vaddr; i < num; i++, e++, d++) {
325		e->desc = d;
326		if (i == num - 1) {
327			e->next = ring->start;
328			d->next_offset = base;
329		} else {
330			e->next = e + 1;
331			d->next_offset = base + (i+1) * sizeof(*d);
332		}
333	}
334	ring->to_use = ring->to_clean = ring->start;
335
336	return 0;
337}
338
339/* Allocate and setup a new buffer for receiving */
340static void skge_rx_setup(struct skge_port *skge __unused,
341			  struct skge_element *e,
342			  struct io_buffer *iob, unsigned int bufsize)
343{
344	struct skge_rx_desc *rd = e->desc;
345	u64 map;
346
347	map = ( iob != NULL ) ? virt_to_bus(iob->data) : 0;
348
349	rd->dma_lo = map;
350	rd->dma_hi = map >> 32;
351	e->iob = iob;
352	rd->csum1_start = ETH_HLEN;
353	rd->csum2_start = ETH_HLEN;
354	rd->csum1 = 0;
355	rd->csum2 = 0;
356
357	wmb();
358
359	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
360}
361
362/* Resume receiving using existing skb,
363 * Note: DMA address is not changed by chip.
364 * 	 MTU not changed while receiver active.
365 */
366static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
367{
368	struct skge_rx_desc *rd = e->desc;
369
370	rd->csum2 = 0;
371	rd->csum2_start = ETH_HLEN;
372
373	wmb();
374
375	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
376}
377
378
379/* Free all  buffers in receive ring, assumes receiver stopped */
380static void skge_rx_clean(struct skge_port *skge)
381{
382	struct skge_ring *ring = &skge->rx_ring;
383	struct skge_element *e;
384
385	e = ring->start;
386	do {
387		struct skge_rx_desc *rd = e->desc;
388		rd->control = 0;
389		if (e->iob) {
390			free_iob(e->iob);
391			e->iob = NULL;
392		}
393	} while ((e = e->next) != ring->start);
394}
395
396static void skge_link_up(struct skge_port *skge)
397{
398	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
399		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
400
401	netdev_link_up(skge->netdev);
402
403	DBG2(PFX "%s: Link is up at %d Mbps, %s duplex\n",
404	     skge->netdev->name, skge->speed,
405	     skge->duplex == DUPLEX_FULL ? "full" : "half");
406}
407
408static void skge_link_down(struct skge_port *skge)
409{
410	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
411	netdev_link_down(skge->netdev);
412
413	DBG2(PFX "%s: Link is down.\n", skge->netdev->name);
414}
415
416
417static void xm_link_down(struct skge_hw *hw, int port)
418{
419	struct net_device *dev = hw->dev[port];
420	struct skge_port *skge = netdev_priv(dev);
421
422	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
423
424	if (netdev_link_ok(dev))
425		skge_link_down(skge);
426}
427
428static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
429{
430	int i;
431
432	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
433	*val = xm_read16(hw, port, XM_PHY_DATA);
434
435	if (hw->phy_type == SK_PHY_XMAC)
436		goto ready;
437
438	for (i = 0; i < PHY_RETRIES; i++) {
439		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
440			goto ready;
441		udelay(1);
442	}
443
444	return -ETIMEDOUT;
445 ready:
446	*val = xm_read16(hw, port, XM_PHY_DATA);
447
448	return 0;
449}
450
451static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
452{
453	u16 v = 0;
454	if (__xm_phy_read(hw, port, reg, &v))
455		DBG(PFX "%s: phy read timed out\n",
456		       hw->dev[port]->name);
457	return v;
458}
459
460static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
461{
462	int i;
463
464	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
465	for (i = 0; i < PHY_RETRIES; i++) {
466		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
467			goto ready;
468		udelay(1);
469	}
470	return -EIO;
471
472 ready:
473	xm_write16(hw, port, XM_PHY_DATA, val);
474	for (i = 0; i < PHY_RETRIES; i++) {
475		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
476			return 0;
477		udelay(1);
478	}
479	return -ETIMEDOUT;
480}
481
482static void genesis_init(struct skge_hw *hw)
483{
484	/* set blink source counter */
485	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
486	skge_write8(hw, B2_BSC_CTRL, BSC_START);
487
488	/* configure mac arbiter */
489	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
490
491	/* configure mac arbiter timeout values */
492	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
493	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
494	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
495	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
496
497	skge_write8(hw, B3_MA_RCINI_RX1, 0);
498	skge_write8(hw, B3_MA_RCINI_RX2, 0);
499	skge_write8(hw, B3_MA_RCINI_TX1, 0);
500	skge_write8(hw, B3_MA_RCINI_TX2, 0);
501
502	/* configure packet arbiter timeout */
503	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
504	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
505	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
506	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
507	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
508}
509
510static void genesis_reset(struct skge_hw *hw, int port)
511{
512	const u8 zero[8]  = { 0 };
513	u32 reg;
514
515	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
516
517	/* reset the statistics module */
518	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
519	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
520	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
521	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
522	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
523
524	/* disable Broadcom PHY IRQ */
525	if (hw->phy_type == SK_PHY_BCOM)
526		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
527
528	xm_outhash(hw, port, XM_HSM, zero);
529
530	/* Flush TX and RX fifo */
531	reg = xm_read32(hw, port, XM_MODE);
532	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
533	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
534}
535
536
537/* Convert mode to MII values  */
538static const u16 phy_pause_map[] = {
539	[FLOW_MODE_NONE] =	0,
540	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
541	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
542	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
543};
544
545/* special defines for FIBER (88E1011S only) */
546static const u16 fiber_pause_map[] = {
547	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
548	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
549	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
550	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
551};
552
553
554/* Check status of Broadcom phy link */
555static void bcom_check_link(struct skge_hw *hw, int port)
556{
557	struct net_device *dev = hw->dev[port];
558	struct skge_port *skge = netdev_priv(dev);
559	u16 status;
560
561	/* read twice because of latch */
562	xm_phy_read(hw, port, PHY_BCOM_STAT);
563	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
564
565	if ((status & PHY_ST_LSYNC) == 0) {
566		xm_link_down(hw, port);
567		return;
568	}
569
570	if (skge->autoneg == AUTONEG_ENABLE) {
571		u16 lpa, aux;
572
573		if (!(status & PHY_ST_AN_OVER))
574			return;
575
576		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
577		if (lpa & PHY_B_AN_RF) {
578			DBG(PFX "%s: remote fault\n",
579			       dev->name);
580			return;
581		}
582
583		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
584
585		/* Check Duplex mismatch */
586		switch (aux & PHY_B_AS_AN_RES_MSK) {
587		case PHY_B_RES_1000FD:
588			skge->duplex = DUPLEX_FULL;
589			break;
590		case PHY_B_RES_1000HD:
591			skge->duplex = DUPLEX_HALF;
592			break;
593		default:
594			DBG(PFX "%s: duplex mismatch\n",
595			       dev->name);
596			return;
597		}
598
599		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
600		switch (aux & PHY_B_AS_PAUSE_MSK) {
601		case PHY_B_AS_PAUSE_MSK:
602			skge->flow_status = FLOW_STAT_SYMMETRIC;
603			break;
604		case PHY_B_AS_PRR:
605			skge->flow_status = FLOW_STAT_REM_SEND;
606			break;
607		case PHY_B_AS_PRT:
608			skge->flow_status = FLOW_STAT_LOC_SEND;
609			break;
610		default:
611			skge->flow_status = FLOW_STAT_NONE;
612		}
613		skge->speed = SPEED_1000;
614	}
615
616	if (!netdev_link_ok(dev))
617		genesis_link_up(skge);
618}
619
620/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
621 * Phy on for 100 or 10Mbit operation
622 */
623static void bcom_phy_init(struct skge_port *skge)
624{
625	struct skge_hw *hw = skge->hw;
626	int port = skge->port;
627	unsigned int i;
628	u16 id1, r, ext, ctl;
629
630	/* magic workaround patterns for Broadcom */
631	static const struct {
632		u16 reg;
633		u16 val;
634	} A1hack[] = {
635		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
636		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
637		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
638		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
639	}, C0hack[] = {
640		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
641		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
642	};
643
644	/* read Id from external PHY (all have the same address) */
645	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
646
647	/* Optimize MDIO transfer by suppressing preamble. */
648	r = xm_read16(hw, port, XM_MMU_CMD);
649	r |=  XM_MMU_NO_PRE;
650	xm_write16(hw, port, XM_MMU_CMD,r);
651
652	switch (id1) {
653	case PHY_BCOM_ID1_C0:
654		/*
655		 * Workaround BCOM Errata for the C0 type.
656		 * Write magic patterns to reserved registers.
657		 */
658		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
659			xm_phy_write(hw, port,
660				     C0hack[i].reg, C0hack[i].val);
661
662		break;
663	case PHY_BCOM_ID1_A1:
664		/*
665		 * Workaround BCOM Errata for the A1 type.
666		 * Write magic patterns to reserved registers.
667		 */
668		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
669			xm_phy_write(hw, port,
670				     A1hack[i].reg, A1hack[i].val);
671		break;
672	}
673
674	/*
675	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
676	 * Disable Power Management after reset.
677	 */
678	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
679	r |= PHY_B_AC_DIS_PM;
680	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
681
682	/* Dummy read */
683	xm_read16(hw, port, XM_ISRC);
684
685	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
686	ctl = PHY_CT_SP1000;	/* always 1000mbit */
687
688	if (skge->autoneg == AUTONEG_ENABLE) {
689		/*
690		 * Workaround BCOM Errata #1 for the C5 type.
691		 * 1000Base-T Link Acquisition Failure in Slave Mode
692		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
693		 */
694		u16 adv = PHY_B_1000C_RD;
695		if (skge->advertising & ADVERTISED_1000baseT_Half)
696			adv |= PHY_B_1000C_AHD;
697		if (skge->advertising & ADVERTISED_1000baseT_Full)
698			adv |= PHY_B_1000C_AFD;
699		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
700
701		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
702	} else {
703		if (skge->duplex == DUPLEX_FULL)
704			ctl |= PHY_CT_DUP_MD;
705		/* Force to slave */
706		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
707	}
708
709	/* Set autonegotiation pause parameters */
710	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
711		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
712
713	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
714	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
715
716	/* Use link status change interrupt */
717	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
718}
719
720static void xm_phy_init(struct skge_port *skge)
721{
722	struct skge_hw *hw = skge->hw;
723	int port = skge->port;
724	u16 ctrl = 0;
725
726	if (skge->autoneg == AUTONEG_ENABLE) {
727		if (skge->advertising & ADVERTISED_1000baseT_Half)
728			ctrl |= PHY_X_AN_HD;
729		if (skge->advertising & ADVERTISED_1000baseT_Full)
730			ctrl |= PHY_X_AN_FD;
731
732		ctrl |= fiber_pause_map[skge->flow_control];
733
734		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
735
736		/* Restart Auto-negotiation */
737		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
738	} else {
739		/* Set DuplexMode in Config register */
740		if (skge->duplex == DUPLEX_FULL)
741			ctrl |= PHY_CT_DUP_MD;
742		/*
743		 * Do NOT enable Auto-negotiation here. This would hold
744		 * the link down because no IDLEs are transmitted
745		 */
746	}
747
748	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
749
750	/* Poll PHY for status changes */
751	skge->use_xm_link_timer = 1;
752}
753
754static int xm_check_link(struct net_device *dev)
755{
756	struct skge_port *skge = netdev_priv(dev);
757	struct skge_hw *hw = skge->hw;
758	int port = skge->port;
759	u16 status;
760
761	/* read twice because of latch */
762	xm_phy_read(hw, port, PHY_XMAC_STAT);
763	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
764
765	if ((status & PHY_ST_LSYNC) == 0) {
766		xm_link_down(hw, port);
767		return 0;
768	}
769
770	if (skge->autoneg == AUTONEG_ENABLE) {
771		u16 lpa, res;
772
773		if (!(status & PHY_ST_AN_OVER))
774			return 0;
775
776		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
777		if (lpa & PHY_B_AN_RF) {
778			DBG(PFX "%s: remote fault\n",
779			       dev->name);
780			return 0;
781		}
782
783		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
784
785		/* Check Duplex mismatch */
786		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
787		case PHY_X_RS_FD:
788			skge->duplex = DUPLEX_FULL;
789			break;
790		case PHY_X_RS_HD:
791			skge->duplex = DUPLEX_HALF;
792			break;
793		default:
794			DBG(PFX "%s: duplex mismatch\n",
795			       dev->name);
796			return 0;
797		}
798
799		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
800		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
801		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
802		    (lpa & PHY_X_P_SYM_MD))
803			skge->flow_status = FLOW_STAT_SYMMETRIC;
804		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
805			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
806			/* Enable PAUSE receive, disable PAUSE transmit */
807			skge->flow_status  = FLOW_STAT_REM_SEND;
808		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
809			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
810			/* Disable PAUSE receive, enable PAUSE transmit */
811			skge->flow_status = FLOW_STAT_LOC_SEND;
812		else
813			skge->flow_status = FLOW_STAT_NONE;
814
815		skge->speed = SPEED_1000;
816	}
817
818	if (!netdev_link_ok(dev))
819		genesis_link_up(skge);
820	return 1;
821}
822
823/* Poll to check for link coming up.
824 *
825 * Since internal PHY is wired to a level triggered pin, can't
826 * get an interrupt when carrier is detected, need to poll for
827 * link coming up.
828 */
829static void xm_link_timer(struct skge_port *skge)
830{
831	struct net_device *dev = skge->netdev;
832	struct skge_hw *hw = skge->hw;
833	int port = skge->port;
834	int i;
835
836	/*
837	 * Verify that the link by checking GPIO register three times.
838	 * This pin has the signal from the link_sync pin connected to it.
839	 */
840	for (i = 0; i < 3; i++) {
841		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
842			return;
843	}
844
845        /* Re-enable interrupt to detect link down */
846	if (xm_check_link(dev)) {
847		u16 msk = xm_read16(hw, port, XM_IMSK);
848		msk &= ~XM_IS_INP_ASS;
849		xm_write16(hw, port, XM_IMSK, msk);
850		xm_read16(hw, port, XM_ISRC);
851	}
852}
853
854static void genesis_mac_init(struct skge_hw *hw, int port)
855{
856	struct net_device *dev = hw->dev[port];
857	struct skge_port *skge = netdev_priv(dev);
858	int i;
859	u32 r;
860	const u8 zero[6]  = { 0 };
861
862	for (i = 0; i < 10; i++) {
863		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
864			     MFF_SET_MAC_RST);
865		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
866			goto reset_ok;
867		udelay(1);
868	}
869
870	DBG(PFX "%s: genesis reset failed\n", dev->name);
871
872 reset_ok:
873	/* Unreset the XMAC. */
874	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
875
876	/*
877	 * Perform additional initialization for external PHYs,
878	 * namely for the 1000baseTX cards that use the XMAC's
879	 * GMII mode.
880	 */
881	if (hw->phy_type != SK_PHY_XMAC) {
882		/* Take external Phy out of reset */
883		r = skge_read32(hw, B2_GP_IO);
884		if (port == 0)
885			r |= GP_DIR_0|GP_IO_0;
886		else
887			r |= GP_DIR_2|GP_IO_2;
888
889		skge_write32(hw, B2_GP_IO, r);
890
891		/* Enable GMII interface */
892		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
893	}
894
895
896	switch(hw->phy_type) {
897	case SK_PHY_XMAC:
898		xm_phy_init(skge);
899		break;
900	case SK_PHY_BCOM:
901		bcom_phy_init(skge);
902		bcom_check_link(hw, port);
903	}
904
905	/* Set Station Address */
906	xm_outaddr(hw, port, XM_SA, dev->ll_addr);
907
908	/* We don't use match addresses so clear */
909	for (i = 1; i < 16; i++)
910		xm_outaddr(hw, port, XM_EXM(i), zero);
911
912	/* Clear MIB counters */
913	xm_write16(hw, port, XM_STAT_CMD,
914			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
915	/* Clear two times according to Errata #3 */
916	xm_write16(hw, port, XM_STAT_CMD,
917			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
918
919	/* configure Rx High Water Mark (XM_RX_HI_WM) */
920	xm_write16(hw, port, XM_RX_HI_WM, 1450);
921
922	/* We don't need the FCS appended to the packet. */
923	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
924
925	if (skge->duplex == DUPLEX_HALF) {
926		/*
927		 * If in manual half duplex mode the other side might be in
928		 * full duplex mode, so ignore if a carrier extension is not seen
929		 * on frames received
930		 */
931		r |= XM_RX_DIS_CEXT;
932	}
933	xm_write16(hw, port, XM_RX_CMD, r);
934
935	/* We want short frames padded to 60 bytes. */
936	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
937
938	xm_write16(hw, port, XM_TX_THR, 512);
939
940	/*
941	 * Enable the reception of all error frames. This is is
942	 * a necessary evil due to the design of the XMAC. The
943	 * XMAC's receive FIFO is only 8K in size, however jumbo
944	 * frames can be up to 9000 bytes in length. When bad
945	 * frame filtering is enabled, the XMAC's RX FIFO operates
946	 * in 'store and forward' mode. For this to work, the
947	 * entire frame has to fit into the FIFO, but that means
948	 * that jumbo frames larger than 8192 bytes will be
949	 * truncated. Disabling all bad frame filtering causes
950	 * the RX FIFO to operate in streaming mode, in which
951	 * case the XMAC will start transferring frames out of the
952	 * RX FIFO as soon as the FIFO threshold is reached.
953	 */
954	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
955
956
957	/*
958	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
959	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
960	 *	  and 'Octets Rx OK Hi Cnt Ov'.
961	 */
962	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
963
964	/*
965	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
966	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
967	 *	  and 'Octets Tx OK Hi Cnt Ov'.
968	 */
969	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
970
971	/* Configure MAC arbiter */
972	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
973
974	/* configure timeout values */
975	skge_write8(hw, B3_MA_TOINI_RX1, 72);
976	skge_write8(hw, B3_MA_TOINI_RX2, 72);
977	skge_write8(hw, B3_MA_TOINI_TX1, 72);
978	skge_write8(hw, B3_MA_TOINI_TX2, 72);
979
980	skge_write8(hw, B3_MA_RCINI_RX1, 0);
981	skge_write8(hw, B3_MA_RCINI_RX2, 0);
982	skge_write8(hw, B3_MA_RCINI_TX1, 0);
983	skge_write8(hw, B3_MA_RCINI_TX2, 0);
984
985	/* Configure Rx MAC FIFO */
986	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
987	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
988	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
989
990	/* Configure Tx MAC FIFO */
991	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
992	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
993	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
994
995	/* enable timeout timers */
996	skge_write16(hw, B3_PA_CTRL,
997		     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
998}
999
1000static void genesis_stop(struct skge_port *skge)
1001{
1002	struct skge_hw *hw = skge->hw;
1003	int port = skge->port;
1004	unsigned retries = 1000;
1005	u16 cmd;
1006
1007	/* Disable Tx and Rx */
1008	cmd = xm_read16(hw, port, XM_MMU_CMD);
1009	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1010	xm_write16(hw, port, XM_MMU_CMD, cmd);
1011
1012	genesis_reset(hw, port);
1013
1014	/* Clear Tx packet arbiter timeout IRQ */
1015	skge_write16(hw, B3_PA_CTRL,
1016		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1017
1018	/* Reset the MAC */
1019	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1020	do {
1021		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1022		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1023			break;
1024	} while (--retries > 0);
1025
1026	/* For external PHYs there must be special handling */
1027	if (hw->phy_type != SK_PHY_XMAC) {
1028		u32 reg = skge_read32(hw, B2_GP_IO);
1029		if (port == 0) {
1030			reg |= GP_DIR_0;
1031			reg &= ~GP_IO_0;
1032		} else {
1033			reg |= GP_DIR_2;
1034			reg &= ~GP_IO_2;
1035		}
1036		skge_write32(hw, B2_GP_IO, reg);
1037		skge_read32(hw, B2_GP_IO);
1038	}
1039
1040	xm_write16(hw, port, XM_MMU_CMD,
1041			xm_read16(hw, port, XM_MMU_CMD)
1042			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1043
1044	xm_read16(hw, port, XM_MMU_CMD);
1045}
1046
1047static void genesis_link_up(struct skge_port *skge)
1048{
1049	struct skge_hw *hw = skge->hw;
1050	int port = skge->port;
1051	u16 cmd, msk;
1052	u32 mode;
1053
1054	cmd = xm_read16(hw, port, XM_MMU_CMD);
1055
1056	/*
1057	 * enabling pause frame reception is required for 1000BT
1058	 * because the XMAC is not reset if the link is going down
1059	 */
1060	if (skge->flow_status == FLOW_STAT_NONE ||
1061	    skge->flow_status == FLOW_STAT_LOC_SEND)
1062		/* Disable Pause Frame Reception */
1063		cmd |= XM_MMU_IGN_PF;
1064	else
1065		/* Enable Pause Frame Reception */
1066		cmd &= ~XM_MMU_IGN_PF;
1067
1068	xm_write16(hw, port, XM_MMU_CMD, cmd);
1069
1070	mode = xm_read32(hw, port, XM_MODE);
1071	if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1072	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1073		/*
1074		 * Configure Pause Frame Generation
1075		 * Use internal and external Pause Frame Generation.
1076		 * Sending pause frames is edge triggered.
1077		 * Send a Pause frame with the maximum pause time if
1078		 * internal oder external FIFO full condition occurs.
1079		 * Send a zero pause time frame to re-start transmission.
1080		 */
1081		/* XM_PAUSE_DA = '010000C28001' (default) */
1082		/* XM_MAC_PTIME = 0xffff (maximum) */
1083		/* remember this value is defined in big endian (!) */
1084		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1085
1086		mode |= XM_PAUSE_MODE;
1087		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1088	} else {
1089		/*
1090		 * disable pause frame generation is required for 1000BT
1091		 * because the XMAC is not reset if the link is going down
1092		 */
1093		/* Disable Pause Mode in Mode Register */
1094		mode &= ~XM_PAUSE_MODE;
1095
1096		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1097	}
1098
1099	xm_write32(hw, port, XM_MODE, mode);
1100
1101	/* Turn on detection of Tx underrun */
1102	msk = xm_read16(hw, port, XM_IMSK);
1103	msk &= ~XM_IS_TXF_UR;
1104	xm_write16(hw, port, XM_IMSK, msk);
1105
1106	xm_read16(hw, port, XM_ISRC);
1107
1108	/* get MMU Command Reg. */
1109	cmd = xm_read16(hw, port, XM_MMU_CMD);
1110	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1111		cmd |= XM_MMU_GMII_FD;
1112
1113	/*
1114	 * Workaround BCOM Errata (#10523) for all BCom Phys
1115	 * Enable Power Management after link up
1116	 */
1117	if (hw->phy_type == SK_PHY_BCOM) {
1118		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1119			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1120			     & ~PHY_B_AC_DIS_PM);
1121		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1122	}
1123
1124	/* enable Rx/Tx */
1125	xm_write16(hw, port, XM_MMU_CMD,
1126			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1127	skge_link_up(skge);
1128}
1129
1130
1131static inline void bcom_phy_intr(struct skge_port *skge)
1132{
1133	struct skge_hw *hw = skge->hw;
1134	int port = skge->port;
1135	u16 isrc;
1136
1137	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1138	DBGIO(PFX "%s: phy interrupt status 0x%x\n",
1139	     skge->netdev->name, isrc);
1140
1141	if (isrc & PHY_B_IS_PSE)
1142		DBG(PFX "%s: uncorrectable pair swap error\n",
1143		    hw->dev[port]->name);
1144
1145	/* Workaround BCom Errata:
1146	 *	enable and disable loopback mode if "NO HCD" occurs.
1147	 */
1148	if (isrc & PHY_B_IS_NO_HDCL) {
1149		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1150		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1151				  ctrl | PHY_CT_LOOP);
1152		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1153				  ctrl & ~PHY_CT_LOOP);
1154	}
1155
1156	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1157		bcom_check_link(hw, port);
1158
1159}
1160
1161static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1162{
1163	int i;
1164
1165	gma_write16(hw, port, GM_SMI_DATA, val);
1166	gma_write16(hw, port, GM_SMI_CTRL,
1167			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1168	for (i = 0; i < PHY_RETRIES; i++) {
1169		udelay(1);
1170
1171		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1172			return 0;
1173	}
1174
1175	DBG(PFX "%s: phy write timeout port %x reg %x val %x\n",
1176	    hw->dev[port]->name,
1177	    port, reg, val);
1178	return -EIO;
1179}
1180
1181static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1182{
1183	int i;
1184
1185	gma_write16(hw, port, GM_SMI_CTRL,
1186			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1187			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1188
1189	for (i = 0; i < PHY_RETRIES; i++) {
1190		udelay(1);
1191		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1192			goto ready;
1193	}
1194
1195	return -ETIMEDOUT;
1196 ready:
1197	*val = gma_read16(hw, port, GM_SMI_DATA);
1198	return 0;
1199}
1200
1201static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1202{
1203	u16 v = 0;
1204	if (__gm_phy_read(hw, port, reg, &v))
1205		DBG(PFX "%s: phy read timeout port %x reg %x val %x\n",
1206	       hw->dev[port]->name,
1207	       port, reg, v);
1208	return v;
1209}
1210
1211/* Marvell Phy Initialization */
1212static void yukon_init(struct skge_hw *hw, int port)
1213{
1214	struct skge_port *skge = netdev_priv(hw->dev[port]);
1215	u16 ctrl, ct1000, adv;
1216
1217	if (skge->autoneg == AUTONEG_ENABLE) {
1218		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1219
1220		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1221			  PHY_M_EC_MAC_S_MSK);
1222		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1223
1224		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1225
1226		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1227	}
1228
1229	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1230	if (skge->autoneg == AUTONEG_DISABLE)
1231		ctrl &= ~PHY_CT_ANE;
1232
1233	ctrl |= PHY_CT_RESET;
1234	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1235
1236	ctrl = 0;
1237	ct1000 = 0;
1238	adv = PHY_AN_CSMA;
1239
1240	if (skge->autoneg == AUTONEG_ENABLE) {
1241		if (hw->copper) {
1242			if (skge->advertising & ADVERTISED_1000baseT_Full)
1243				ct1000 |= PHY_M_1000C_AFD;
1244			if (skge->advertising & ADVERTISED_1000baseT_Half)
1245				ct1000 |= PHY_M_1000C_AHD;
1246			if (skge->advertising & ADVERTISED_100baseT_Full)
1247				adv |= PHY_M_AN_100_FD;
1248			if (skge->advertising & ADVERTISED_100baseT_Half)
1249				adv |= PHY_M_AN_100_HD;
1250			if (skge->advertising & ADVERTISED_10baseT_Full)
1251				adv |= PHY_M_AN_10_FD;
1252			if (skge->advertising & ADVERTISED_10baseT_Half)
1253				adv |= PHY_M_AN_10_HD;
1254
1255			/* Set Flow-control capabilities */
1256			adv |= phy_pause_map[skge->flow_control];
1257		} else {
1258			if (skge->advertising & ADVERTISED_1000baseT_Full)
1259				adv |= PHY_M_AN_1000X_AFD;
1260			if (skge->advertising & ADVERTISED_1000baseT_Half)
1261				adv |= PHY_M_AN_1000X_AHD;
1262
1263			adv |= fiber_pause_map[skge->flow_control];
1264		}
1265
1266		/* Restart Auto-negotiation */
1267		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1268	} else {
1269		/* forced speed/duplex settings */
1270		ct1000 = PHY_M_1000C_MSE;
1271
1272		if (skge->duplex == DUPLEX_FULL)
1273			ctrl |= PHY_CT_DUP_MD;
1274
1275		switch (skge->speed) {
1276		case SPEED_1000:
1277			ctrl |= PHY_CT_SP1000;
1278			break;
1279		case SPEED_100:
1280			ctrl |= PHY_CT_SP100;
1281			break;
1282		}
1283
1284		ctrl |= PHY_CT_RESET;
1285	}
1286
1287	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1288
1289	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1290	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1291
1292	/* Enable phy interrupt on autonegotiation complete (or link up) */
1293	if (skge->autoneg == AUTONEG_ENABLE)
1294		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1295	else
1296		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1297}
1298
1299static void yukon_reset(struct skge_hw *hw, int port)
1300{
1301	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1302	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
1303	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1304	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1305	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1306
1307	gma_write16(hw, port, GM_RX_CTRL,
1308			 gma_read16(hw, port, GM_RX_CTRL)
1309			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1310}
1311
1312/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1313static int is_yukon_lite_a0(struct skge_hw *hw)
1314{
1315	u32 reg;
1316	int ret;
1317
1318	if (hw->chip_id != CHIP_ID_YUKON)
1319		return 0;
1320
1321	reg = skge_read32(hw, B2_FAR);
1322	skge_write8(hw, B2_FAR + 3, 0xff);
1323	ret = (skge_read8(hw, B2_FAR + 3) != 0);
1324	skge_write32(hw, B2_FAR, reg);
1325	return ret;
1326}
1327
1328static void yukon_mac_init(struct skge_hw *hw, int port)
1329{
1330	struct skge_port *skge = netdev_priv(hw->dev[port]);
1331	int i;
1332	u32 reg;
1333	const u8 *addr = hw->dev[port]->ll_addr;
1334
1335	/* WA code for COMA mode -- set PHY reset */
1336	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1337	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1338		reg = skge_read32(hw, B2_GP_IO);
1339		reg |= GP_DIR_9 | GP_IO_9;
1340		skge_write32(hw, B2_GP_IO, reg);
1341	}
1342
1343	/* hard reset */
1344	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1345	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1346
1347	/* WA code for COMA mode -- clear PHY reset */
1348	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1349	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1350		reg = skge_read32(hw, B2_GP_IO);
1351		reg |= GP_DIR_9;
1352		reg &= ~GP_IO_9;
1353		skge_write32(hw, B2_GP_IO, reg);
1354	}
1355
1356	/* Set hardware config mode */
1357	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1358		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1359	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1360
1361	/* Clear GMC reset */
1362	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1363	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1364	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1365
1366	if (skge->autoneg == AUTONEG_DISABLE) {
1367		reg = GM_GPCR_AU_ALL_DIS;
1368		gma_write16(hw, port, GM_GP_CTRL,
1369				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1370
1371		switch (skge->speed) {
1372		case SPEED_1000:
1373			reg &= ~GM_GPCR_SPEED_100;
1374			reg |= GM_GPCR_SPEED_1000;
1375			break;
1376		case SPEED_100:
1377			reg &= ~GM_GPCR_SPEED_1000;
1378			reg |= GM_GPCR_SPEED_100;
1379			break;
1380		case SPEED_10:
1381			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1382			break;
1383		}
1384
1385		if (skge->duplex == DUPLEX_FULL)
1386			reg |= GM_GPCR_DUP_FULL;
1387	} else
1388		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1389
1390	switch (skge->flow_control) {
1391	case FLOW_MODE_NONE:
1392		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1393		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1394		break;
1395	case FLOW_MODE_LOC_SEND:
1396		/* disable Rx flow-control */
1397		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1398		break;
1399	case FLOW_MODE_SYMMETRIC:
1400	case FLOW_MODE_SYM_OR_REM:
1401		/* enable Tx & Rx flow-control */
1402		break;
1403	}
1404
1405	gma_write16(hw, port, GM_GP_CTRL, reg);
1406	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1407
1408	yukon_init(hw, port);
1409
1410	/* MIB clear */
1411	reg = gma_read16(hw, port, GM_PHY_ADDR);
1412	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1413
1414	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1415		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1416	gma_write16(hw, port, GM_PHY_ADDR, reg);
1417
1418	/* transmit control */
1419	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1420
1421	/* receive control reg: unicast + multicast + no FCS  */
1422	gma_write16(hw, port, GM_RX_CTRL,
1423			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1424
1425	/* transmit flow control */
1426	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1427
1428	/* transmit parameter */
1429	gma_write16(hw, port, GM_TX_PARAM,
1430			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1431			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1432			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1433
1434	/* configure the Serial Mode Register */
1435	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
1436		| GM_SMOD_VLAN_ENA
1437		| IPG_DATA_VAL(IPG_DATA_DEF);
1438
1439	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1440
1441	/* physical address: used for pause frames */
1442	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1443	/* virtual address for data */
1444	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1445
1446	/* enable interrupt mask for counter overflows */
1447	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1448	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1449	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1450
1451	/* Initialize Mac Fifo */
1452
1453	/* Configure Rx MAC FIFO */
1454	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1455	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1456
1457	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1458	if (is_yukon_lite_a0(hw))
1459		reg &= ~GMF_RX_F_FL_ON;
1460
1461	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1462	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1463	/*
1464	 * because Pause Packet Truncation in GMAC is not working
1465	 * we have to increase the Flush Threshold to 64 bytes
1466	 * in order to flush pause packets in Rx FIFO on Yukon-1
1467	 */
1468	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1469
1470	/* Configure Tx MAC FIFO */
1471	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1472	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1473}
1474
1475/* Go into power down mode */
1476static void yukon_suspend(struct skge_hw *hw, int port)
1477{
1478	u16 ctrl;
1479
1480	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1481	ctrl |= PHY_M_PC_POL_R_DIS;
1482	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1483
1484	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1485	ctrl |= PHY_CT_RESET;
1486	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1487
1488	/* switch IEEE compatible power down mode on */
1489	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1490	ctrl |= PHY_CT_PDOWN;
1491	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1492}
1493
1494static void yukon_stop(struct skge_port *skge)
1495{
1496	struct skge_hw *hw = skge->hw;
1497	int port = skge->port;
1498
1499	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1500	yukon_reset(hw, port);
1501
1502	gma_write16(hw, port, GM_GP_CTRL,
1503			 gma_read16(hw, port, GM_GP_CTRL)
1504			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1505	gma_read16(hw, port, GM_GP_CTRL);
1506
1507	yukon_suspend(hw, port);
1508
1509	/* set GPHY Control reset */
1510	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1511	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1512}
1513
1514static u16 yukon_speed(const struct skge_hw *hw __unused, u16 aux)
1515{
1516	switch (aux & PHY_M_PS_SPEED_MSK) {
1517	case PHY_M_PS_SPEED_1000:
1518		return SPEED_1000;
1519	case PHY_M_PS_SPEED_100:
1520		return SPEED_100;
1521	default:
1522		return SPEED_10;
1523	}
1524}
1525
1526static void yukon_link_up(struct skge_port *skge)
1527{
1528	struct skge_hw *hw = skge->hw;
1529	int port = skge->port;
1530	u16 reg;
1531
1532	/* Enable Transmit FIFO Underrun */
1533	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1534
1535	reg = gma_read16(hw, port, GM_GP_CTRL);
1536	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1537		reg |= GM_GPCR_DUP_FULL;
1538
1539	/* enable Rx/Tx */
1540	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1541	gma_write16(hw, port, GM_GP_CTRL, reg);
1542
1543	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1544	skge_link_up(skge);
1545}
1546
1547static void yukon_link_down(struct skge_port *skge)
1548{
1549	struct skge_hw *hw = skge->hw;
1550	int port = skge->port;
1551	u16 ctrl;
1552
1553	ctrl = gma_read16(hw, port, GM_GP_CTRL);
1554	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1555	gma_write16(hw, port, GM_GP_CTRL, ctrl);
1556
1557	if (skge->flow_status == FLOW_STAT_REM_SEND) {
1558		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
1559		ctrl |= PHY_M_AN_ASP;
1560		/* restore Asymmetric Pause bit */
1561		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
1562	}
1563
1564	skge_link_down(skge);
1565
1566	yukon_init(hw, port);
1567}
1568
1569static void yukon_phy_intr(struct skge_port *skge)
1570{
1571	struct skge_hw *hw = skge->hw;
1572	int port = skge->port;
1573	const char *reason = NULL;
1574	u16 istatus, phystat;
1575
1576	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1577	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1578
1579	DBGIO(PFX "%s: phy interrupt status 0x%x 0x%x\n",
1580	     skge->netdev->name, istatus, phystat);
1581
1582	if (istatus & PHY_M_IS_AN_COMPL) {
1583		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1584		    & PHY_M_AN_RF) {
1585			reason = "remote fault";
1586			goto failed;
1587		}
1588
1589		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1590			reason = "master/slave fault";
1591			goto failed;
1592		}
1593
1594		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1595			reason = "speed/duplex";
1596			goto failed;
1597		}
1598
1599		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1600			? DUPLEX_FULL : DUPLEX_HALF;
1601		skge->speed = yukon_speed(hw, phystat);
1602
1603		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1604		switch (phystat & PHY_M_PS_PAUSE_MSK) {
1605		case PHY_M_PS_PAUSE_MSK:
1606			skge->flow_status = FLOW_STAT_SYMMETRIC;
1607			break;
1608		case PHY_M_PS_RX_P_EN:
1609			skge->flow_status = FLOW_STAT_REM_SEND;
1610			break;
1611		case PHY_M_PS_TX_P_EN:
1612			skge->flow_status = FLOW_STAT_LOC_SEND;
1613			break;
1614		default:
1615			skge->flow_status = FLOW_STAT_NONE;
1616		}
1617
1618		if (skge->flow_status == FLOW_STAT_NONE ||
1619		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
1620			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1621		else
1622			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
1623		yukon_link_up(skge);
1624		return;
1625	}
1626
1627	if (istatus & PHY_M_IS_LSP_CHANGE)
1628		skge->speed = yukon_speed(hw, phystat);
1629
1630	if (istatus & PHY_M_IS_DUP_CHANGE)
1631		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
1632	if (istatus & PHY_M_IS_LST_CHANGE) {
1633		if (phystat & PHY_M_PS_LINK_UP)
1634			yukon_link_up(skge);
1635		else
1636			yukon_link_down(skge);
1637	}
1638	return;
1639 failed:
1640	DBG(PFX "%s: autonegotiation failed (%s)\n",
1641	       skge->netdev->name, reason);
1642
1643	/* XXX restart autonegotiation? */
1644}
1645
1646static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
1647{
1648	u32 end;
1649
1650	start /= 8;
1651	len /= 8;
1652	end = start + len - 1;
1653
1654	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
1655	skge_write32(hw, RB_ADDR(q, RB_START), start);
1656	skge_write32(hw, RB_ADDR(q, RB_WP), start);
1657	skge_write32(hw, RB_ADDR(q, RB_RP), start);
1658	skge_write32(hw, RB_ADDR(q, RB_END), end);
1659
1660	if (q == Q_R1 || q == Q_R2) {
1661		/* Set thresholds on receive queue's */
1662		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
1663			     start + (2*len)/3);
1664		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
1665			     start + (len/3));
1666	} else {
1667		/* Enable store & forward on Tx queue's because
1668		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
1669		 */
1670		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
1671	}
1672
1673	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
1674}
1675
1676/* Setup Bus Memory Interface */
1677static void skge_qset(struct skge_port *skge, u16 q,
1678		      const struct skge_element *e)
1679{
1680	struct skge_hw *hw = skge->hw;
1681	u32 watermark = 0x600;
1682	u64 base = skge->dma + (e->desc - skge->mem);
1683
1684	/* optimization to reduce window on 32bit/33mhz */
1685	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
1686		watermark /= 2;
1687
1688	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
1689	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
1690	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
1691	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
1692}
1693
1694void skge_free(struct net_device *dev)
1695{
1696	struct skge_port *skge = netdev_priv(dev);
1697
1698	free(skge->rx_ring.start);
1699	skge->rx_ring.start = NULL;
1700
1701	free(skge->tx_ring.start);
1702	skge->tx_ring.start = NULL;
1703
1704	free_dma(skge->mem, RING_SIZE);
1705	skge->mem = NULL;
1706	skge->dma = 0;
1707}
1708
1709static int skge_up(struct net_device *dev)
1710{
1711	struct skge_port *skge = netdev_priv(dev);
1712	struct skge_hw *hw = skge->hw;
1713	int port = skge->port;
1714	u32 chunk, ram_addr;
1715	int err;
1716
1717	DBG2(PFX "%s: enabling interface\n", dev->name);
1718
1719	skge->mem = malloc_dma(RING_SIZE, SKGE_RING_ALIGN);
1720	skge->dma = virt_to_bus(skge->mem);
1721	if (!skge->mem)
1722		return -ENOMEM;
1723	memset(skge->mem, 0, RING_SIZE);
1724
1725	assert(!(skge->dma & 7));
1726
1727	/* FIXME: find out whether 64 bit gPXE will be loaded > 4GB */
1728	if ((u64)skge->dma >> 32 != ((u64) skge->dma + RING_SIZE) >> 32) {
1729		DBG(PFX "pci_alloc_consistent region crosses 4G boundary\n");
1730		err = -EINVAL;
1731		goto err;
1732	}
1733
1734	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma, NUM_RX_DESC);
1735	if (err)
1736		goto err;
1737
1738	/* this call relies on e->iob and d->control to be 0
1739	 * This is assured by calling memset() on skge->mem and using zalloc()
1740	 * for the skge_element structures.
1741	 */
1742	skge_rx_refill(dev);
1743
1744	err = skge_ring_alloc(&skge->tx_ring, skge->mem + RX_RING_SIZE,
1745			      skge->dma + RX_RING_SIZE, NUM_TX_DESC);
1746	if (err)
1747		goto err;
1748
1749	/* Initialize MAC */
1750	if (hw->chip_id == CHIP_ID_GENESIS)
1751		genesis_mac_init(hw, port);
1752	else
1753		yukon_mac_init(hw, port);
1754
1755	/* Configure RAMbuffers - equally between ports and tx/rx */
1756	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
1757	ram_addr = hw->ram_offset + 2 * chunk * port;
1758
1759	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
1760	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
1761
1762	assert(!(skge->tx_ring.to_use != skge->tx_ring.to_clean));
1763	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
1764	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
1765
1766	/* Start receiver BMU */
1767	wmb();
1768	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
1769	skge_led(skge, LED_MODE_ON);
1770
1771	hw->intr_mask |= portmask[port];
1772	skge_write32(hw, B0_IMSK, hw->intr_mask);
1773
1774	return 0;
1775
1776 err:
1777	skge_rx_clean(skge);
1778	skge_free(dev);
1779
1780	return err;
1781}
1782
1783/* stop receiver */
1784static void skge_rx_stop(struct skge_hw *hw, int port)
1785{
1786	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
1787	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
1788		     RB_RST_SET|RB_DIS_OP_MD);
1789	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
1790}
1791
1792static void skge_down(struct net_device *dev)
1793{
1794	struct skge_port *skge = netdev_priv(dev);
1795	struct skge_hw *hw = skge->hw;
1796	int port = skge->port;
1797
1798	if (skge->mem == NULL)
1799		return;
1800
1801	DBG2(PFX "%s: disabling interface\n", dev->name);
1802
1803	if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
1804		skge->use_xm_link_timer = 0;
1805
1806	netdev_link_down(dev);
1807
1808	hw->intr_mask &= ~portmask[port];
1809	skge_write32(hw, B0_IMSK, hw->intr_mask);
1810
1811	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1812	if (hw->chip_id == CHIP_ID_GENESIS)
1813		genesis_stop(skge);
1814	else
1815		yukon_stop(skge);
1816
1817	/* Stop transmitter */
1818	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
1819	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
1820		     RB_RST_SET|RB_DIS_OP_MD);
1821
1822
1823	/* Disable Force Sync bit and Enable Alloc bit */
1824	skge_write8(hw, SK_REG(port, TXA_CTRL),
1825		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
1826
1827	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
1828	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
1829	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
1830
1831	/* Reset PCI FIFO */
1832	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
1833	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
1834
1835	/* Reset the RAM Buffer async Tx queue */
1836	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
1837
1838	skge_rx_stop(hw, port);
1839
1840	if (hw->chip_id == CHIP_ID_GENESIS) {
1841		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
1842		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
1843	} else {
1844		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
1845		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
1846	}
1847
1848	skge_led(skge, LED_MODE_OFF);
1849
1850	skge_tx_clean(dev);
1851
1852	skge_rx_clean(skge);
1853
1854	skge_free(dev);
1855	return;
1856}
1857
1858static inline int skge_tx_avail(const struct skge_ring *ring)
1859{
1860	mb();
1861	return ((ring->to_clean > ring->to_use) ? 0 : NUM_TX_DESC)
1862		+ (ring->to_clean - ring->to_use) - 1;
1863}
1864
1865static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob)
1866{
1867	struct skge_port *skge = netdev_priv(dev);
1868	struct skge_hw *hw = skge->hw;
1869	struct skge_element *e;
1870	struct skge_tx_desc *td;
1871	u32 control, len;
1872	u64 map;
1873
1874	if (skge_tx_avail(&skge->tx_ring) < 1)
1875		return -EBUSY;
1876
1877	e = skge->tx_ring.to_use;
1878	td = e->desc;
1879	assert(!(td->control & BMU_OWN));
1880	e->iob = iob;
1881	len = iob_len(iob);
1882	map = virt_to_bus(iob->data);
1883
1884	td->dma_lo = map;
1885	td->dma_hi = map >> 32;
1886
1887	control = BMU_CHECK;
1888
1889	control |= BMU_EOF| BMU_IRQ_EOF;
1890	/* Make sure all the descriptors written */
1891	wmb();
1892	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
1893	wmb();
1894
1895	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
1896
1897	DBGIO(PFX "%s: tx queued, slot %td, len %d\n",
1898	     dev->name, e - skge->tx_ring.start, (unsigned int)len);
1899
1900	skge->tx_ring.to_use = e->next;
1901	wmb();
1902
1903	if (skge_tx_avail(&skge->tx_ring) <= 1) {
1904		DBG(PFX "%s: transmit queue full\n", dev->name);
1905	}
1906
1907	return 0;
1908}
1909
1910/* Free all buffers in transmit ring */
1911static void skge_tx_clean(struct net_device *dev)
1912{
1913	struct skge_port *skge = netdev_priv(dev);
1914	struct skge_element *e;
1915
1916	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
1917		struct skge_tx_desc *td = e->desc;
1918		td->control = 0;
1919	}
1920
1921	skge->tx_ring.to_clean = e;
1922}
1923
1924static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
1925
1926static inline u16 phy_length(const struct skge_hw *hw, u32 status)
1927{
1928	if (hw->chip_id == CHIP_ID_GENESIS)
1929		return status >> XMR_FS_LEN_SHIFT;
1930	else
1931		return status >> GMR_FS_LEN_SHIFT;
1932}
1933
1934static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
1935{
1936	if (hw->chip_id == CHIP_ID_GENESIS)
1937		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
1938	else
1939		return (status & GMR_FS_ANY_ERR) ||
1940			(status & GMR_FS_RX_OK) == 0;
1941}
1942
1943/* Free all buffers in Tx ring which are no longer owned by device */
1944static void skge_tx_done(struct net_device *dev)
1945{
1946	struct skge_port *skge = netdev_priv(dev);
1947	struct skge_ring *ring = &skge->tx_ring;
1948	struct skge_element *e;
1949
1950	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
1951
1952	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
1953		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
1954
1955		if (control & BMU_OWN)
1956			break;
1957
1958		netdev_tx_complete(dev, e->iob);
1959	}
1960	skge->tx_ring.to_clean = e;
1961
1962	/* Can run lockless until we need to synchronize to restart queue. */
1963	mb();
1964}
1965
1966static void skge_rx_refill(struct net_device *dev)
1967{
1968	struct skge_port *skge = netdev_priv(dev);
1969	struct skge_ring *ring = &skge->rx_ring;
1970	struct skge_element *e;
1971	struct io_buffer *iob;
1972	struct skge_rx_desc *rd;
1973	u32 control;
1974	int i;
1975
1976	for (i = 0; i < NUM_RX_DESC; i++) {
1977		e = ring->to_clean;
1978		rd = e->desc;
1979		iob = e->iob;
1980		control = rd->control;
1981
1982		/* nothing to do here */
1983		if (iob || (control & BMU_OWN))
1984			continue;
1985
1986		DBG2("refilling rx desc %d: ", (ring->to_clean - ring->start));
1987
1988		iob = alloc_iob(RX_BUF_SIZE);
1989		if (iob) {
1990			skge_rx_setup(skge, e, iob, RX_BUF_SIZE);
1991		} else {
1992			DBG("descr %d: alloc_iob() failed\n",
1993			     (ring->to_clean - ring->start));
1994			/* We pass the descriptor to the NIC even if the
1995			 * allocation failed. The card will stop as soon as it
1996			 * encounters a descriptor with the OWN bit set to 0,
1997			 * thus never getting to the next descriptor that might
1998			 * contain a valid io_buffer. This would effectively
1999			 * stall the receive.
2000			 */
2001			skge_rx_setup(skge, e, NULL, 0);
2002		}
2003
2004		ring->to_clean = e->next;
2005	}
2006}
2007
2008static void skge_rx_done(struct net_device *dev)
2009{
2010	struct skge_port *skge = netdev_priv(dev);
2011	struct skge_ring *ring = &skge->rx_ring;
2012	struct skge_rx_desc *rd;
2013	struct skge_element *e;
2014	struct io_buffer *iob;
2015	u32 control;
2016	u16 len;
2017	int i;
2018
2019	e = ring->to_clean;
2020	for (i = 0; i < NUM_RX_DESC; i++) {
2021		iob = e->iob;
2022		rd = e->desc;
2023
2024		rmb();
2025		control = rd->control;
2026
2027		if ((control & BMU_OWN))
2028			break;
2029
2030		if (!iob)
2031			continue;
2032
2033		len = control & BMU_BBC;
2034
2035		/* catch RX errors */
2036		if ((bad_phy_status(skge->hw, rd->status)) ||
2037		   (phy_length(skge->hw, rd->status) != len)) {
2038			/* report receive errors */
2039			DBG("rx error\n");
2040			netdev_rx_err(dev, iob, -EIO);
2041		} else {
2042			DBG2("received packet, len %d\n", len);
2043			iob_put(iob, len);
2044			netdev_rx(dev, iob);
2045		}
2046
2047		/* io_buffer passed to core, make sure we don't reuse it */
2048		e->iob = NULL;
2049
2050		e = e->next;
2051	}
2052	skge_rx_refill(dev);
2053}
2054
2055static void skge_poll(struct net_device *dev)
2056{
2057	struct skge_port *skge = netdev_priv(dev);
2058	struct skge_hw *hw = skge->hw;
2059	u32 status;
2060
2061	/* reading this register ACKs interrupts */
2062	status = skge_read32(hw, B0_SP_ISRC);
2063
2064	/* Link event? */
2065	if (status & IS_EXT_REG) {
2066		skge_phyirq(hw);
2067		if (skge->use_xm_link_timer)
2068			xm_link_timer(skge);
2069	}
2070
2071	skge_tx_done(dev);
2072
2073	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2074
2075	skge_rx_done(dev);
2076
2077	/* restart receiver */
2078	wmb();
2079	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2080
2081	skge_read32(hw, B0_IMSK);
2082
2083	return;
2084}
2085
2086static void skge_phyirq(struct skge_hw *hw)
2087{
2088	int port;
2089
2090	for (port = 0; port < hw->ports; port++) {
2091		struct net_device *dev = hw->dev[port];
2092		struct skge_port *skge = netdev_priv(dev);
2093
2094		if (hw->chip_id != CHIP_ID_GENESIS)
2095			yukon_phy_intr(skge);
2096		else if (hw->phy_type == SK_PHY_BCOM)
2097			bcom_phy_intr(skge);
2098	}
2099
2100	hw->intr_mask |= IS_EXT_REG;
2101	skge_write32(hw, B0_IMSK, hw->intr_mask);
2102	skge_read32(hw, B0_IMSK);
2103}
2104
2105static const struct {
2106	u8 id;
2107	const char *name;
2108} skge_chips[] = {
2109	{ CHIP_ID_GENESIS,	"Genesis" },
2110	{ CHIP_ID_YUKON,	 "Yukon" },
2111	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
2112	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
2113};
2114
2115static const char *skge_board_name(const struct skge_hw *hw)
2116{
2117	unsigned int i;
2118	static char buf[16];
2119
2120	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2121		if (skge_chips[i].id == hw->chip_id)
2122			return skge_chips[i].name;
2123
2124	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2125	return buf;
2126}
2127
2128
2129/*
2130 * Setup the board data structure, but don't bring up
2131 * the port(s)
2132 */
2133static int skge_reset(struct skge_hw *hw)
2134{
2135	u32 reg;
2136	u16 ctst, pci_status;
2137	u8 t8, mac_cfg, pmd_type;
2138	int i;
2139
2140	ctst = skge_read16(hw, B0_CTST);
2141
2142	/* do a SW reset */
2143	skge_write8(hw, B0_CTST, CS_RST_SET);
2144	skge_write8(hw, B0_CTST, CS_RST_CLR);
2145
2146	/* clear PCI errors, if any */
2147	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2148	skge_write8(hw, B2_TST_CTRL2, 0);
2149
2150	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2151	pci_write_config_word(hw->pdev, PCI_STATUS,
2152			      pci_status | PCI_STATUS_ERROR_BITS);
2153	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2154	skge_write8(hw, B0_CTST, CS_MRST_CLR);
2155
2156	/* restore CLK_RUN bits (for Yukon-Lite) */
2157	skge_write16(hw, B0_CTST,
2158		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
2159
2160	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
2161	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
2162	pmd_type = skge_read8(hw, B2_PMD_TYP);
2163	hw->copper = (pmd_type == 'T' || pmd_type == '1');
2164
2165	switch (hw->chip_id) {
2166	case CHIP_ID_GENESIS:
2167		switch (hw->phy_type) {
2168		case SK_PHY_XMAC:
2169			hw->phy_addr = PHY_ADDR_XMAC;
2170			break;
2171		case SK_PHY_BCOM:
2172			hw->phy_addr = PHY_ADDR_BCOM;
2173			break;
2174		default:
2175			DBG(PFX "unsupported phy type 0x%x\n",
2176			       hw->phy_type);
2177			return -EOPNOTSUPP;
2178		}
2179		break;
2180
2181	case CHIP_ID_YUKON:
2182	case CHIP_ID_YUKON_LITE:
2183	case CHIP_ID_YUKON_LP:
2184		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
2185			hw->copper = 1;
2186
2187		hw->phy_addr = PHY_ADDR_MARV;
2188		break;
2189
2190	default:
2191		DBG(PFX "unsupported chip type 0x%x\n",
2192		       hw->chip_id);
2193		return -EOPNOTSUPP;
2194	}
2195
2196	mac_cfg = skge_read8(hw, B2_MAC_CFG);
2197	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
2198	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
2199
2200	/* read the adapters RAM size */
2201	t8 = skge_read8(hw, B2_E_0);
2202	if (hw->chip_id == CHIP_ID_GENESIS) {
2203		if (t8 == 3) {
2204			/* special case: 4 x 64k x 36, offset = 0x80000 */
2205			hw->ram_size = 0x100000;
2206			hw->ram_offset = 0x80000;
2207		} else
2208			hw->ram_size = t8 * 512;
2209	}
2210	else if (t8 == 0)
2211		hw->ram_size = 0x20000;
2212	else
2213		hw->ram_size = t8 * 4096;
2214
2215	hw->intr_mask = IS_HW_ERR;
2216
2217	/* Use PHY IRQ for all but fiber based Genesis board */
2218	if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
2219		hw->intr_mask |= IS_EXT_REG;
2220
2221	if (hw->chip_id == CHIP_ID_GENESIS)
2222		genesis_init(hw);
2223	else {
2224		/* switch power to VCC (WA for VAUX problem) */
2225		skge_write8(hw, B0_POWER_CTRL,
2226			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
2227
2228		/* avoid boards with stuck Hardware error bits */
2229		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
2230		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
2231			DBG(PFX "stuck hardware sensor bit\n");
2232			hw->intr_mask &= ~IS_HW_ERR;
2233		}
2234
2235		/* Clear PHY COMA */
2236		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2237		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
2238		reg &= ~PCI_PHY_COMA;
2239		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
2240		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2241
2242
2243		for (i = 0; i < hw->ports; i++) {
2244			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
2245			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
2246		}
2247	}
2248
2249	/* turn off hardware timer (unused) */
2250	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
2251	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
2252	skge_write8(hw, B0_LED, LED_STAT_ON);
2253
2254	/* enable the Tx Arbiters */
2255	for (i = 0; i < hw->ports; i++)
2256		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
2257
2258	/* Initialize ram interface */
2259	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
2260
2261	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
2262	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
2263	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
2264	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
2265	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
2266	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
2267	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
2268	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
2269	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
2270	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
2271	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
2272	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
2273
2274	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
2275
2276	/* Set interrupt moderation for Transmit only
2277	 * Receive interrupts avoided by NAPI
2278	 */
2279	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
2280	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
2281	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
2282
2283	skge_write32(hw, B0_IMSK, hw->intr_mask);
2284
2285	for (i = 0; i < hw->ports; i++) {
2286		if (hw->chip_id == CHIP_ID_GENESIS)
2287			genesis_reset(hw, i);
2288		else
2289			yukon_reset(hw, i);
2290	}
2291
2292	return 0;
2293}
2294
2295/* Initialize network device */
2296static struct net_device *skge_devinit(struct skge_hw *hw, int port,
2297				       int highmem __unused)
2298{
2299	struct skge_port *skge;
2300	struct net_device *dev = alloc_etherdev(sizeof(*skge));
2301
2302	if (!dev) {
2303		DBG(PFX "etherdev alloc failed\n");
2304		return NULL;
2305	}
2306
2307	dev->dev = &hw->pdev->dev;
2308
2309	skge = netdev_priv(dev);
2310	skge->netdev = dev;
2311	skge->hw = hw;
2312
2313	/* Auto speed and flow control */
2314	skge->autoneg = AUTONEG_ENABLE;
2315	skge->flow_control = FLOW_MODE_SYM_OR_REM;
2316	skge->duplex = -1;
2317	skge->speed = -1;
2318	skge->advertising = skge_supported_modes(hw);
2319
2320	hw->dev[port] = dev;
2321
2322	skge->port = port;
2323
2324	/* read the mac address */
2325	memcpy(dev->hw_addr, (void *) (hw->regs + B2_MAC_1 + port*8), ETH_ALEN);
2326
2327	/* device is off until link detection */
2328	netdev_link_down(dev);
2329
2330	return dev;
2331}
2332
2333static void skge_show_addr(struct net_device *dev)
2334{
2335	DBG2(PFX "%s: addr %s\n",
2336	     dev->name, netdev_addr(dev));
2337}
2338
2339static int skge_probe(struct pci_device *pdev,
2340				const struct pci_device_id *ent __unused)
2341{
2342	struct net_device *dev, *dev1;
2343	struct skge_hw *hw;
2344	int err, using_dac = 0;
2345
2346	adjust_pci_device(pdev);
2347
2348	err = -ENOMEM;
2349	hw = zalloc(sizeof(*hw));
2350	if (!hw) {
2351		DBG(PFX "cannot allocate hardware struct\n");
2352		goto err_out_free_regions;
2353	}
2354
2355	hw->pdev = pdev;
2356
2357	hw->regs = (u32)ioremap(pci_bar_start(pdev, PCI_BASE_ADDRESS_0),
2358				SKGE_REG_SIZE);
2359	if (!hw->regs) {
2360		DBG(PFX "cannot map device registers\n");
2361		goto err_out_free_hw;
2362	}
2363
2364	err = skge_reset(hw);
2365	if (err)
2366		goto err_out_iounmap;
2367
2368	DBG(PFX " addr 0x%llx irq %d chip %s rev %d\n",
2369	    (unsigned long long)pdev->ioaddr, pdev->irq,
2370	    skge_board_name(hw), hw->chip_rev);
2371
2372	dev = skge_devinit(hw, 0, using_dac);
2373	if (!dev)
2374		goto err_out_led_off;
2375
2376	netdev_init ( dev, &skge_operations );
2377
2378	err = register_netdev(dev);
2379	if (err) {
2380		DBG(PFX "cannot register net device\n");
2381		goto err_out_free_netdev;
2382	}
2383
2384	skge_show_addr(dev);
2385
2386	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
2387		if (register_netdev(dev1) == 0)
2388			skge_show_addr(dev1);
2389		else {
2390			/* Failure to register second port need not be fatal */
2391			DBG(PFX "register of second port failed\n");
2392			hw->dev[1] = NULL;
2393			netdev_nullify(dev1);
2394			netdev_put(dev1);
2395		}
2396	}
2397	pci_set_drvdata(pdev, hw);
2398
2399	return 0;
2400
2401err_out_free_netdev:
2402	netdev_nullify(dev);
2403	netdev_put(dev);
2404err_out_led_off:
2405	skge_write16(hw, B0_LED, LED_STAT_OFF);
2406err_out_iounmap:
2407	iounmap((void*)hw->regs);
2408err_out_free_hw:
2409	free(hw);
2410err_out_free_regions:
2411	pci_set_drvdata(pdev, NULL);
2412	return err;
2413}
2414
2415static void skge_remove(struct pci_device *pdev)
2416{
2417	struct skge_hw *hw  = pci_get_drvdata(pdev);
2418	struct net_device *dev0, *dev1;
2419
2420	if (!hw)
2421		return;
2422
2423	if ((dev1 = hw->dev[1]))
2424		unregister_netdev(dev1);
2425	dev0 = hw->dev[0];
2426	unregister_netdev(dev0);
2427
2428	hw->intr_mask = 0;
2429	skge_write32(hw, B0_IMSK, 0);
2430	skge_read32(hw, B0_IMSK);
2431
2432	skge_write16(hw, B0_LED, LED_STAT_OFF);
2433	skge_write8(hw, B0_CTST, CS_RST_SET);
2434
2435	if (dev1) {
2436		netdev_nullify(dev1);
2437		netdev_put(dev1);
2438	}
2439	netdev_nullify(dev0);
2440	netdev_put(dev0);
2441
2442	iounmap((void*)hw->regs);
2443	free(hw);
2444	pci_set_drvdata(pdev, NULL);
2445}
2446
2447/*
2448 * Enable or disable IRQ masking.
2449 *
2450 * @v netdev		Device to control.
2451 * @v enable		Zero to mask off IRQ, non-zero to enable IRQ.
2452 *
2453 * This is a gPXE Network Driver API function.
2454 */
2455static void skge_net_irq ( struct net_device *dev, int enable ) {
2456	struct skge_port *skge = netdev_priv(dev);
2457	struct skge_hw *hw = skge->hw;
2458
2459	if (enable)
2460		hw->intr_mask |= portmask[skge->port];
2461	else
2462		hw->intr_mask &= ~portmask[skge->port];
2463	skge_write32(hw, B0_IMSK, hw->intr_mask);
2464}
2465
2466struct pci_driver skge_driver __pci_driver = {
2467	.ids      = skge_id_table,
2468	.id_count = ( sizeof (skge_id_table) / sizeof (skge_id_table[0]) ),
2469	.probe    = skge_probe,
2470	.remove   = skge_remove
2471};
2472
2473