1#define DEBG(x)
2#define DEBG1(x)
3/* inflate.c -- Not copyrighted 1992 by Mark Adler
4   version c10p1, 10 January 1993 */
5
6/*
7 * Adapted for booting Linux by Hannu Savolainen 1993
8 * based on gzip-1.0.3
9 *
10 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
11 *   Little mods for all variable to reside either into rodata or bss segments
12 *   by marking constant variables with 'const' and initializing all the others
13 *   at run-time only.  This allows for the kernel uncompressor to run
14 *   directly from Flash or ROM memory on embedded systems.
15 *
16 * Adapted for MEMDISK by H. Peter Anvin, April 2003
17 */
18
19/*
20   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
21   method searches for as much of the current string of bytes (up to a
22   length of 258) in the previous 32 K bytes.  If it doesn't find any
23   matches (of at least length 3), it codes the next byte.  Otherwise, it
24   codes the length of the matched string and its distance backwards from
25   the current position.  There is a single Huffman code that codes both
26   single bytes (called "literals") and match lengths.  A second Huffman
27   code codes the distance information, which follows a length code.  Each
28   length or distance code actually represents a base value and a number
29   of "extra" (sometimes zero) bits to get to add to the base value.  At
30   the end of each deflated block is a special end-of-block (EOB) literal/
31   length code.  The decoding process is basically: get a literal/length
32   code; if EOB then done; if a literal, emit the decoded byte; if a
33   length then get the distance and emit the referred-to bytes from the
34   sliding window of previously emitted data.
35
36   There are (currently) three kinds of inflate blocks: stored, fixed, and
37   dynamic.  The compressor deals with some chunk of data at a time, and
38   decides which method to use on a chunk-by-chunk basis.  A chunk might
39   typically be 32 K or 64 K.  If the chunk is incompressible, then the
40   "stored" method is used.  In this case, the bytes are simply stored as
41   is, eight bits per byte, with none of the above coding.  The bytes are
42   preceded by a count, since there is no longer an EOB code.
43
44   If the data is compressible, then either the fixed or dynamic methods
45   are used.  In the dynamic method, the compressed data is preceded by
46   an encoding of the literal/length and distance Huffman codes that are
47   to be used to decode this block.  The representation is itself Huffman
48   coded, and so is preceded by a description of that code.  These code
49   descriptions take up a little space, and so for small blocks, there is
50   a predefined set of codes, called the fixed codes.  The fixed method is
51   used if the block codes up smaller that way (usually for quite small
52   chunks), otherwise the dynamic method is used.  In the latter case, the
53   codes are customized to the probabilities in the current block, and so
54   can code it much better than the pre-determined fixed codes.
55
56   The Huffman codes themselves are decoded using a multi-level table
57   lookup, in order to maximize the speed of decoding plus the speed of
58   building the decoding tables.  See the comments below that precede the
59   lbits and dbits tuning parameters.
60 */
61
62/*
63   Notes beyond the 1.93a appnote.txt:
64
65   1. Distance pointers never point before the beginning of the output
66      stream.
67   2. Distance pointers can point back across blocks, up to 32k away.
68   3. There is an implied maximum of 7 bits for the bit length table and
69      15 bits for the actual data.
70   4. If only one code exists, then it is encoded using one bit.  (Zero
71      would be more efficient, but perhaps a little confusing.)  If two
72      codes exist, they are coded using one bit each (0 and 1).
73   5. There is no way of sending zero distance codes--a dummy must be
74      sent if there are none.  (History: a pre 2.0 version of PKZIP would
75      store blocks with no distance codes, but this was discovered to be
76      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
77      zero distance codes, which is sent as one code of zero bits in
78      length.
79   6. There are up to 286 literal/length codes.  Code 256 represents the
80      end-of-block.  Note however that the static length tree defines
81      288 codes just to fill out the Huffman codes.  Codes 286 and 287
82      cannot be used though, since there is no length base or extra bits
83      defined for them.  Similarly, there are up to 30 distance codes.
84      However, static trees define 32 codes (all 5 bits) to fill out the
85      Huffman codes, but the last two had better not show up in the data.
86   7. Unzip can check dynamic Huffman blocks for complete code sets.
87      The exception is that a single code would not be complete (see #4).
88   8. The five bits following the block type is really the number of
89      literal codes sent minus 257.
90   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
91      (1+6+6).  Therefore, to output three times the length, you output
92      three codes (1+1+1), whereas to output four times the same length,
93      you only need two codes (1+3).  Hmm.
94  10. In the tree reconstruction algorithm, Code = Code + Increment
95      only if BitLength(i) is not zero.  (Pretty obvious.)
96  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
97  12. Note: length code 284 can represent 227-258, but length code 285
98      really is 258.  The last length deserves its own, short code
99      since it gets used a lot in very redundant files.  The length
100      258 is special since 258 - 3 (the min match length) is 255.
101  13. The literal/length and distance code bit lengths are read as a
102      single stream of lengths.  It is possible (and advantageous) for
103      a repeat code (16, 17, or 18) to go across the boundary between
104      the two sets of lengths.
105 */
106
107#ifdef RCSID
108static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
109#endif
110
111#define slide window
112
113/* Huffman code lookup table entry--this entry is four bytes for machines
114   that have 16-bit pointers (e.g. PC's in the small or medium model).
115   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
116   means that v is a literal, 16 < e < 32 means that v is a pointer to
117   the next table, which codes e - 16 bits, and lastly e == 99 indicates
118   an unused code.  If a code with e == 99 is looked up, this implies an
119   error in the data. */
120struct huft {
121    uch e;			/* number of extra bits or operation */
122    uch b;			/* number of bits in this code or subcode */
123    union {
124	ush n;			/* literal, length base, or distance base */
125	struct huft *t;		/* pointer to next level of table */
126    } v;
127};
128
129/* Function prototypes */
130STATIC int huft_build OF((unsigned *, unsigned, unsigned,
131			  const ush *, const ush *, struct huft **, int *));
132STATIC int huft_free OF((struct huft *));
133STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
134STATIC int inflate_stored OF((void));
135STATIC int inflate_fixed OF((void));
136STATIC int inflate_dynamic OF((void));
137STATIC int inflate_block OF((int *));
138STATIC int inflate OF((void));
139
140/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
141   stream to find repeated byte strings.  This is implemented here as a
142   circular buffer.  The index is updated simply by incrementing and then
143   ANDing with 0x7fff (32K-1). */
144/* It is left to other modules to supply the 32 K area.  It is assumed
145   to be usable as if it were declared "uch slide[32768];" or as just
146   "uch *slide;" and then malloc'ed in the latter case.  The definition
147   must be in unzip.h, included above. */
148/* unsigned wp;             current position in slide */
149#define wp outcnt
150#define flush_output(w) (wp=(w),flush_window())
151
152/* Tables for deflate from PKZIP's appnote.txt. */
153static const unsigned border[] = {	/* Order of the bit length code lengths */
154    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
155};
156
157static const ush cplens[] = {	/* Copy lengths for literal codes 257..285 */
158    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
159    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
160};
161
162	/* note: see note #13 above about the 258 in this list. */
163static const ush cplext[] = {	/* Extra bits for literal codes 257..285 */
164    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
165    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99
166};				/* 99==invalid */
167
168static const ush cpdist[] = {	/* Copy offsets for distance codes 0..29 */
169    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
170    257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
171    8193, 12289, 16385, 24577
172};
173
174static const ush cpdext[] = {	/* Extra bits for distance codes */
175    0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
176    7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
177    12, 12, 13, 13
178};
179
180/* Macros for inflate() bit peeking and grabbing.
181   The usage is:
182
183        NEEDBITS(j)
184        x = b & mask_bits[j];
185        DUMPBITS(j)
186
187   where NEEDBITS makes sure that b has at least j bits in it, and
188   DUMPBITS removes the bits from b.  The macros use the variable k
189   for the number of bits in b.  Normally, b and k are register
190   variables for speed, and are initialized at the beginning of a
191   routine that uses these macros from a global bit buffer and count.
192
193   If we assume that EOB will be the longest code, then we will never
194   ask for bits with NEEDBITS that are beyond the end of the stream.
195   So, NEEDBITS should not read any more bytes than are needed to
196   meet the request.  Then no bytes need to be "returned" to the buffer
197   at the end of the last block.
198
199   However, this assumption is not true for fixed blocks--the EOB code
200   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
201   (The EOB code is shorter than other codes because fixed blocks are
202   generally short.  So, while a block always has an EOB, many other
203   literal/length codes have a significantly lower probability of
204   showing up at all.)  However, by making the first table have a
205   lookup of seven bits, the EOB code will be found in that first
206   lookup, and so will not require that too many bits be pulled from
207   the stream.
208 */
209
210STATIC ulg bb;			/* bit buffer */
211STATIC unsigned bk;		/* bits in bit buffer */
212
213STATIC const ush mask_bits[] = {
214    0x0000,
215    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
216    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
217};
218
219#define NEXTBYTE()  (uch)get_byte()
220#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
221#define DUMPBITS(n) {b>>=(n);k-=(n);}
222
223/*
224   Huffman code decoding is performed using a multi-level table lookup.
225   The fastest way to decode is to simply build a lookup table whose
226   size is determined by the longest code.  However, the time it takes
227   to build this table can also be a factor if the data being decoded
228   is not very long.  The most common codes are necessarily the
229   shortest codes, so those codes dominate the decoding time, and hence
230   the speed.  The idea is you can have a shorter table that decodes the
231   shorter, more probable codes, and then point to subsidiary tables for
232   the longer codes.  The time it costs to decode the longer codes is
233   then traded against the time it takes to make longer tables.
234
235   This results of this trade are in the variables lbits and dbits
236   below.  lbits is the number of bits the first level table for literal/
237   length codes can decode in one step, and dbits is the same thing for
238   the distance codes.  Subsequent tables are also less than or equal to
239   those sizes.  These values may be adjusted either when all of the
240   codes are shorter than that, in which case the longest code length in
241   bits is used, or when the shortest code is *longer* than the requested
242   table size, in which case the length of the shortest code in bits is
243   used.
244
245   There are two different values for the two tables, since they code a
246   different number of possibilities each.  The literal/length table
247   codes 286 possible values, or in a flat code, a little over eight
248   bits.  The distance table codes 30 possible values, or a little less
249   than five bits, flat.  The optimum values for speed end up being
250   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
251   The optimum values may differ though from machine to machine, and
252   possibly even between compilers.  Your mileage may vary.
253 */
254
255STATIC const int lbits = 9;	/* bits in base literal/length lookup table */
256STATIC const int dbits = 6;	/* bits in base distance lookup table */
257
258/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
259#define BMAX 16			/* maximum bit length of any code (16 for explode) */
260#define N_MAX 288		/* maximum number of codes in any set */
261
262STATIC unsigned hufts;		/* track memory usage */
263
264STATIC int huft_build(b, n, s, d, e, t, m)
265unsigned *b;			/* code lengths in bits (all assumed <= BMAX) */
266unsigned n;			/* number of codes (assumed <= N_MAX) */
267unsigned s;			/* number of simple-valued codes (0..s-1) */
268const ush *d;			/* list of base values for non-simple codes */
269const ush *e;			/* list of extra bits for non-simple codes */
270struct huft **t;		/* result: starting table */
271int *m;				/* maximum lookup bits, returns actual */
272/* Given a list of code lengths and a maximum table size, make a set of
273   tables to decode that set of codes.  Return zero on success, one if
274   the given code set is incomplete (the tables are still built in this
275   case), two if the input is invalid (all zero length codes or an
276   oversubscribed set of lengths), and three if not enough memory. */
277{
278    unsigned a;			/* counter for codes of length k */
279    unsigned c[BMAX + 1];	/* bit length count table */
280    unsigned f;			/* i repeats in table every f entries */
281    int g;			/* maximum code length */
282    int h;			/* table level */
283    register unsigned i;	/* counter, current code */
284    register unsigned j;	/* counter */
285    register int k;		/* number of bits in current code */
286    int l;			/* bits per table (returned in m) */
287    register unsigned *p;	/* pointer into c[], b[], or v[] */
288    register struct huft *q;	/* points to current table */
289    struct huft r;		/* table entry for structure assignment */
290    struct huft *u[BMAX];	/* table stack */
291    unsigned v[N_MAX];		/* values in order of bit length */
292    register int w;		/* bits before this table == (l * h) */
293    unsigned x[BMAX + 1];	/* bit offsets, then code stack */
294    unsigned *xp;		/* pointer into x */
295    int y;			/* number of dummy codes added */
296    unsigned z;			/* number of entries in current table */
297
298    DEBG("huft1 ");
299
300    /* Generate counts for each bit length */
301    memzero(c, sizeof(c));
302    p = b;
303    i = n;
304    do {
305	Tracecv(*p,
306		(stderr,
307		 (n - i >= ' '
308		  && n - i <= '~' ? "%c %d\n" : "0x%x %d\n"), n - i, *p));
309	c[*p]++;		/* assume all entries <= BMAX */
310	p++;			/* Can't combine with above line (Solaris bug) */
311    } while (--i);
312    if (c[0] == n) {		/* null input--all zero length codes */
313	*t = (struct huft *)NULL;
314	*m = 0;
315	return 0;
316    }
317
318    DEBG("huft2 ");
319
320    /* Find minimum and maximum length, bound *m by those */
321    l = *m;
322    for (j = 1; j <= BMAX; j++)
323	if (c[j])
324	    break;
325    k = j;			/* minimum code length */
326    if ((unsigned)l < j)
327	l = j;
328    for (i = BMAX; i; i--)
329	if (c[i])
330	    break;
331    g = i;			/* maximum code length */
332    if ((unsigned)l > i)
333	l = i;
334    *m = l;
335
336    DEBG("huft3 ");
337
338    /* Adjust last length count to fill out codes, if needed */
339    for (y = 1 << j; j < i; j++, y <<= 1)
340	if ((y -= c[j]) < 0)
341	    return 2;		/* bad input: more codes than bits */
342    if ((y -= c[i]) < 0)
343	return 2;
344    c[i] += y;
345
346    DEBG("huft4 ");
347
348    /* Generate starting offsets into the value table for each length */
349    x[1] = j = 0;
350    p = c + 1;
351    xp = x + 2;
352    while (--i) {		/* note that i == g from above */
353	*xp++ = (j += *p++);
354    }
355
356    DEBG("huft5 ");
357
358    /* Make a table of values in order of bit lengths */
359    p = b;
360    i = 0;
361    do {
362	if ((j = *p++) != 0)
363	    v[x[j]++] = i;
364    } while (++i < n);
365
366    DEBG("h6 ");
367
368    /* Generate the Huffman codes and for each, make the table entries */
369    x[0] = i = 0;		/* first Huffman code is zero */
370    p = v;			/* grab values in bit order */
371    h = -1;			/* no tables yet--level -1 */
372    w = -l;			/* bits decoded == (l * h) */
373    u[0] = (struct huft *)NULL;	/* just to keep compilers happy */
374    q = (struct huft *)NULL;	/* ditto */
375    z = 0;			/* ditto */
376    DEBG("h6a ");
377
378    /* go through the bit lengths (k already is bits in shortest code) */
379    for (; k <= g; k++) {
380	DEBG("h6b ");
381	a = c[k];
382	while (a--) {
383	    DEBG("h6b1 ");
384	    /* here i is the Huffman code of length k bits for value *p */
385	    /* make tables up to required level */
386	    while (k > w + l) {
387		DEBG1("1 ");
388		h++;
389		w += l;		/* previous table always l bits */
390
391		/* compute minimum size table less than or equal to l bits */
392		z = (z = g - w) > (unsigned)l ? l : z;	/* upper limit on table size */
393		if ((f = 1 << (j = k - w)) > a + 1) {	/* try a k-w bit table *//* too few codes for k-w bit table */
394		    DEBG1("2 ");
395		    f -= a + 1;	/* deduct codes from patterns left */
396		    xp = c + k;
397		    while (++j < z) {	/* try smaller tables up to z bits */
398			if ((f <<= 1) <= *++xp)
399			    break;	/* enough codes to use up j bits */
400			f -= *xp;	/* else deduct codes from patterns */
401		    }
402		}
403		DEBG1("3 ");
404		z = 1 << j;	/* table entries for j-bit table */
405
406		/* allocate and link in new table */
407		if ((q =
408		     (struct huft *)malloc((z + 1) * sizeof(struct huft))) ==
409		    (struct huft *)NULL) {
410		    if (h)
411			huft_free(u[0]);
412		    return 3;	/* not enough memory */
413		}
414		DEBG1("4 ");
415		hufts += z + 1;	/* track memory usage */
416		*t = q + 1;	/* link to list for huft_free() */
417		*(t = &(q->v.t)) = (struct huft *)NULL;
418		u[h] = ++q;	/* table starts after link */
419
420		DEBG1("5 ");
421		/* connect to last table, if there is one */
422		if (h) {
423		    x[h] = i;	/* save pattern for backing up */
424		    r.b = (uch) l;	/* bits to dump before this table */
425		    r.e = (uch) (16 + j);	/* bits in this table */
426		    r.v.t = q;	/* pointer to this table */
427		    j = i >> (w - l);	/* (get around Turbo C bug) */
428		    u[h - 1][j] = r;	/* connect to last table */
429		}
430		DEBG1("6 ");
431	    }
432	    DEBG("h6c ");
433
434	    /* set up table entry in r */
435	    r.b = (uch) (k - w);
436	    if (p >= v + n)
437		r.e = 99;	/* out of values--invalid code */
438	    else if (*p < s) {
439		r.e = (uch) (*p < 256 ? 16 : 15);	/* 256 is end-of-block code */
440		r.v.n = (ush) (*p);	/* simple code is just the value */
441		p++;		/* one compiler does not like *p++ */
442	    } else {
443		r.e = (uch) e[*p - s];	/* non-simple--look up in lists */
444		r.v.n = d[*p++ - s];
445	    }
446	    DEBG("h6d ");
447
448	    /* fill code-like entries with r */
449	    f = 1 << (k - w);
450	    for (j = i >> w; j < z; j += f)
451		q[j] = r;
452
453	    /* backwards increment the k-bit code i */
454	    for (j = 1 << (k - 1); i & j; j >>= 1)
455		i ^= j;
456	    i ^= j;
457
458	    /* backup over finished tables */
459	    while ((i & ((1 << w) - 1)) != x[h]) {
460		h--;		/* don't need to update q */
461		w -= l;
462	    }
463	    DEBG("h6e ");
464	}
465	DEBG("h6f ");
466    }
467
468    DEBG("huft7 ");
469
470    /* Return true (1) if we were given an incomplete table */
471    return y != 0 && g != 1;
472}
473
474STATIC int huft_free(t)
475struct huft *t;			/* table to free */
476/* Free the malloc'ed tables built by huft_build(), which makes a linked
477   list of the tables it made, with the links in a dummy first entry of
478   each table. */
479{
480    register struct huft *p, *q;
481
482    /* Go through linked list, freeing from the malloced (t[-1]) address. */
483    p = t;
484    while (p != (struct huft *)NULL) {
485	q = (--p)->v.t;
486	free((char *)p);
487	p = q;
488    }
489    return 0;
490}
491
492STATIC int inflate_codes(tl, td, bl, bd)
493struct huft *tl, *td;		/* literal/length and distance decoder tables */
494int bl, bd;			/* number of bits decoded by tl[] and td[] */
495/* inflate (decompress) the codes in a deflated (compressed) block.
496   Return an error code or zero if it all goes ok. */
497{
498    register unsigned e;	/* table entry flag/number of extra bits */
499    unsigned n, d;		/* length and index for copy */
500    unsigned w;			/* current window position */
501    struct huft *t;		/* pointer to table entry */
502    unsigned ml, md;		/* masks for bl and bd bits */
503    register ulg b;		/* bit buffer */
504    register unsigned k;	/* number of bits in bit buffer */
505
506    /* make local copies of globals */
507    b = bb;			/* initialize bit buffer */
508    k = bk;
509    w = wp;			/* initialize window position */
510
511    /* inflate the coded data */
512    ml = mask_bits[bl];		/* precompute masks for speed */
513    md = mask_bits[bd];
514    for (;;) {			/* do until end of block */
515	NEEDBITS((unsigned)bl)
516	    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
517	    do {
518		if (e == 99)
519		    return 1;
520		DUMPBITS(t->b)
521		    e -= 16;
522		NEEDBITS(e)
523	    } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
524	DUMPBITS(t->b)
525	    if (e == 16) {	/* then it's a literal */
526	    slide[w++] = (uch) t->v.n;
527	    Tracevv((stderr, "%c", slide[w - 1]));
528	    if (w == WSIZE) {
529		flush_output(w);
530		w = 0;
531	    }
532	} else {		/* it's an EOB or a length */
533
534	    /* exit if end of block */
535	    if (e == 15)
536		break;
537
538	    /* get length of block to copy */
539	    NEEDBITS(e)
540		n = t->v.n + ((unsigned)b & mask_bits[e]);
541	    DUMPBITS(e);
542
543	    /* decode distance of block to copy */
544	    NEEDBITS((unsigned)bd)
545		if ((e = (t = td + ((unsigned)b & md))->e) > 16)
546		do {
547		    if (e == 99)
548			return 1;
549		    DUMPBITS(t->b)
550			e -= 16;
551		    NEEDBITS(e)
552		} while ((e =
553			  (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
554	    DUMPBITS(t->b)
555		NEEDBITS(e)
556		d = w - t->v.n - ((unsigned)b & mask_bits[e]);
557	    DUMPBITS(e)
558		Tracevv((stderr, "\\[%d,%d]", w - d, n));
559
560	    /* do the copy */
561	    do {
562		n -= (e =
563		      (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n : e);
564#if !defined(NOMEMCPY) && !defined(DEBUG)
565		if (w - d >= e) {	/* (this test assumes unsigned comparison) */
566		    memcpy(slide + w, slide + d, e);
567		    w += e;
568		    d += e;
569		} else		/* do it slow to avoid memcpy() overlap */
570#endif /* !NOMEMCPY */
571		    do {
572			slide[w++] = slide[d++];
573			Tracevv((stderr, "%c", slide[w - 1]));
574		    } while (--e);
575		if (w == WSIZE) {
576		    flush_output(w);
577		    w = 0;
578		}
579	    } while (n);
580	}
581    }
582
583    /* restore the globals from the locals */
584    wp = w;			/* restore global window pointer */
585    bb = b;			/* restore global bit buffer */
586    bk = k;
587
588    /* done */
589    return 0;
590}
591
592STATIC int inflate_stored()
593/* "decompress" an inflated type 0 (stored) block. */
594{
595    unsigned n;			/* number of bytes in block */
596    unsigned w;			/* current window position */
597    register ulg b;		/* bit buffer */
598    register unsigned k;	/* number of bits in bit buffer */
599
600    DEBG("<stor");
601
602    /* make local copies of globals */
603    b = bb;			/* initialize bit buffer */
604    k = bk;
605    w = wp;			/* initialize window position */
606
607    /* go to byte boundary */
608    n = k & 7;
609    DUMPBITS(n);
610
611    /* get the length and its complement */
612    NEEDBITS(16)
613	n = ((unsigned)b & 0xffff);
614    DUMPBITS(16)
615	NEEDBITS(16)
616	if (n != (unsigned)((~b) & 0xffff))
617	return 1;		/* error in compressed data */
618    DUMPBITS(16)
619
620	/* read and output the compressed data */
621	while (n--) {
622	NEEDBITS(8)
623	    slide[w++] = (uch) b;
624	if (w == WSIZE) {
625	    flush_output(w);
626	    w = 0;
627	}
628	DUMPBITS(8)
629    }
630
631    /* restore the globals from the locals */
632    wp = w;			/* restore global window pointer */
633    bb = b;			/* restore global bit buffer */
634    bk = k;
635
636    DEBG(">");
637    return 0;
638}
639
640STATIC int inflate_fixed()
641/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
642   either replace this with a custom decoder, or at least precompute the
643   Huffman tables. */
644{
645    int i;			/* temporary variable */
646    struct huft *tl;		/* literal/length code table */
647    struct huft *td;		/* distance code table */
648    int bl;			/* lookup bits for tl */
649    int bd;			/* lookup bits for td */
650    unsigned l[288];		/* length list for huft_build */
651
652    DEBG("<fix");
653
654    /* set up literal table */
655    for (i = 0; i < 144; i++)
656	l[i] = 8;
657    for (; i < 256; i++)
658	l[i] = 9;
659    for (; i < 280; i++)
660	l[i] = 7;
661    for (; i < 288; i++)	/* make a complete, but wrong code set */
662	l[i] = 8;
663    bl = 7;
664    if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
665	return i;
666
667    /* set up distance table */
668    for (i = 0; i < 30; i++)	/* make an incomplete code set */
669	l[i] = 5;
670    bd = 5;
671    if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) {
672	huft_free(tl);
673
674	DEBG(">");
675	return i;
676    }
677
678    /* decompress until an end-of-block code */
679    if (inflate_codes(tl, td, bl, bd))
680	return 1;
681
682    /* free the decoding tables, return */
683    huft_free(tl);
684    huft_free(td);
685    return 0;
686}
687
688STATIC int inflate_dynamic()
689/* decompress an inflated type 2 (dynamic Huffman codes) block. */
690{
691    int i;			/* temporary variables */
692    unsigned j;
693    unsigned l;			/* last length */
694    unsigned m;			/* mask for bit lengths table */
695    unsigned n;			/* number of lengths to get */
696    struct huft *tl;		/* literal/length code table */
697    struct huft *td;		/* distance code table */
698    int bl;			/* lookup bits for tl */
699    int bd;			/* lookup bits for td */
700    unsigned nb;		/* number of bit length codes */
701    unsigned nl;		/* number of literal/length codes */
702    unsigned nd;		/* number of distance codes */
703#ifdef PKZIP_BUG_WORKAROUND
704    unsigned ll[288 + 32];	/* literal/length and distance code lengths */
705#else
706    unsigned ll[286 + 30];	/* literal/length and distance code lengths */
707#endif
708    register ulg b;		/* bit buffer */
709    register unsigned k;	/* number of bits in bit buffer */
710
711    DEBG("<dyn");
712
713    /* make local bit buffer */
714    b = bb;
715    k = bk;
716
717    /* read in table lengths */
718    NEEDBITS(5)
719	nl = 257 + ((unsigned)b & 0x1f);	/* number of literal/length codes */
720    DUMPBITS(5)
721	NEEDBITS(5)
722	nd = 1 + ((unsigned)b & 0x1f);	/* number of distance codes */
723    DUMPBITS(5)
724	NEEDBITS(4)
725	nb = 4 + ((unsigned)b & 0xf);	/* number of bit length codes */
726    DUMPBITS(4)
727#ifdef PKZIP_BUG_WORKAROUND
728	if (nl > 288 || nd > 32)
729#else
730	if (nl > 286 || nd > 30)
731#endif
732	return 1;		/* bad lengths */
733
734    DEBG("dyn1 ");
735
736    /* read in bit-length-code lengths */
737    for (j = 0; j < nb; j++) {
738	NEEDBITS(3)
739	    ll[border[j]] = (unsigned)b & 7;
740	DUMPBITS(3)
741    }
742    for (; j < 19; j++)
743	ll[border[j]] = 0;
744
745    DEBG("dyn2 ");
746
747    /* build decoding table for trees--single level, 7 bit lookup */
748    bl = 7;
749    if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) {
750	if (i == 1)
751	    huft_free(tl);
752	return i;		/* incomplete code set */
753    }
754
755    DEBG("dyn3 ");
756
757    /* read in literal and distance code lengths */
758    n = nl + nd;
759    m = mask_bits[bl];
760    i = l = 0;
761    while ((unsigned)i < n) {
762	NEEDBITS((unsigned)bl)
763	    j = (td = tl + ((unsigned)b & m))->b;
764	DUMPBITS(j)
765	    j = td->v.n;
766	if (j < 16)		/* length of code in bits (0..15) */
767	    ll[i++] = l = j;	/* save last length in l */
768	else if (j == 16) {	/* repeat last length 3 to 6 times */
769	    NEEDBITS(2)
770		j = 3 + ((unsigned)b & 3);
771	    DUMPBITS(2)
772		if ((unsigned)i + j > n)
773		return 1;
774	    while (j--)
775		ll[i++] = l;
776	} else if (j == 17) {	/* 3 to 10 zero length codes */
777	    NEEDBITS(3)
778		j = 3 + ((unsigned)b & 7);
779	    DUMPBITS(3)
780		if ((unsigned)i + j > n)
781		return 1;
782	    while (j--)
783		ll[i++] = 0;
784	    l = 0;
785	} else {		/* j == 18: 11 to 138 zero length codes */
786
787	    NEEDBITS(7)
788		j = 11 + ((unsigned)b & 0x7f);
789	    DUMPBITS(7)
790		if ((unsigned)i + j > n)
791		return 1;
792	    while (j--)
793		ll[i++] = 0;
794	    l = 0;
795	}
796    }
797
798    DEBG("dyn4 ");
799
800    /* free decoding table for trees */
801    huft_free(tl);
802
803    DEBG("dyn5 ");
804
805    /* restore the global bit buffer */
806    bb = b;
807    bk = k;
808
809    DEBG("dyn5a ");
810
811    /* build the decoding tables for literal/length and distance codes */
812    bl = lbits;
813    if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) {
814	DEBG("dyn5b ");
815	if (i == 1) {
816	    error(" incomplete literal tree");
817	    huft_free(tl);
818	}
819	return i;		/* incomplete code set */
820    }
821    DEBG("dyn5c ");
822    bd = dbits;
823    if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) {
824	DEBG("dyn5d ");
825	if (i == 1) {
826	    error(" incomplete distance tree");
827#ifdef PKZIP_BUG_WORKAROUND
828	    i = 0;
829	}
830#else
831	    huft_free(td);
832	}
833	huft_free(tl);
834	return i;		/* incomplete code set */
835#endif
836    }
837
838    DEBG("dyn6 ");
839
840    /* decompress until an end-of-block code */
841    if (inflate_codes(tl, td, bl, bd))
842	return 1;
843
844    DEBG("dyn7 ");
845
846    /* free the decoding tables, return */
847    huft_free(tl);
848    huft_free(td);
849
850    DEBG(">");
851    return 0;
852}
853
854STATIC int inflate_block(e)
855int *e;				/* last block flag */
856/* decompress an inflated block */
857{
858    unsigned t;			/* block type */
859    register ulg b;		/* bit buffer */
860    register unsigned k;	/* number of bits in bit buffer */
861
862    DEBG("<blk");
863
864    /* make local bit buffer */
865    b = bb;
866    k = bk;
867
868    /* read in last block bit */
869    NEEDBITS(1)
870	* e = (int)b & 1;
871    DUMPBITS(1)
872
873	/* read in block type */
874	NEEDBITS(2)
875	t = (unsigned)b & 3;
876    DUMPBITS(2)
877
878	/* restore the global bit buffer */
879	bb = b;
880    bk = k;
881
882    /* inflate that block type */
883    if (t == 2)
884	return inflate_dynamic();
885    if (t == 0)
886	return inflate_stored();
887    if (t == 1)
888	return inflate_fixed();
889
890    DEBG(">");
891
892    /* bad block type */
893    return 2;
894}
895
896STATIC int inflate()
897/* decompress an inflated entry */
898{
899    int e;			/* last block flag */
900    int r;			/* result code */
901    unsigned h;			/* maximum struct huft's malloc'ed */
902    void *ptr;
903
904    /* initialize window, bit buffer */
905    wp = 0;
906    bk = 0;
907    bb = 0;
908
909    /* decompress until the last block */
910    h = 0;
911    do {
912	hufts = 0;
913	gzip_mark(&ptr);
914	if ((r = inflate_block(&e)) != 0) {
915	    gzip_release(&ptr);
916	    return r;
917	}
918	gzip_release(&ptr);
919	if (hufts > h)
920	    h = hufts;
921    } while (!e);
922
923    /* Undo too much lookahead. The next read will be byte aligned so we
924     * can discard unused bits in the last meaningful byte.
925     */
926    while (bk >= 8) {
927	bk -= 8;
928	unget_byte();
929    }
930
931    /* flush out slide */
932    flush_output(wp);
933
934    /* return success */
935#ifdef DEBUG
936    fprintf(stderr, "<%u> ", h);
937#endif /* DEBUG */
938    return 0;
939}
940
941/**********************************************************************
942 *
943 * The following are support routines for inflate.c
944 *
945 **********************************************************************/
946
947static ulg crc_32_tab[256];
948static ulg crc;			/* initialized in makecrc() so it'll reside in bss */
949#define CRC_VALUE (crc ^ 0xffffffffL)
950
951/*
952 * Code to compute the CRC-32 table. Borrowed from
953 * gzip-1.0.3/makecrc.c.
954 */
955
956static void makecrc(void)
957{
958/* Not copyrighted 1990 Mark Adler	*/
959
960    unsigned long c;		/* crc shift register */
961    unsigned long e;		/* polynomial exclusive-or pattern */
962    int i;			/* counter for all possible eight bit values */
963    int k;			/* byte being shifted into crc apparatus */
964
965    /* terms of polynomial defining this crc (except x^32): */
966    static const int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
967
968    /* Make exclusive-or pattern from polynomial */
969    e = 0;
970    for (i = 0; i < sizeof(p) / sizeof(int); i++)
971	e |= 1L << (31 - p[i]);
972
973    crc_32_tab[0] = 0;
974
975    for (i = 1; i < 256; i++) {
976	c = 0;
977	for (k = i | 256; k != 1; k >>= 1) {
978	    c = c & 1 ? (c >> 1) ^ e : c >> 1;
979	    if (k & 1)
980		c ^= e;
981	}
982	crc_32_tab[i] = c;
983    }
984
985    /* this is initialized here so this code could reside in ROM */
986    crc = (ulg) 0xffffffffL;	/* shift register contents */
987}
988
989/* gzip flag byte */
990#define ASCII_FLAG   0x01	/* bit 0 set: file probably ASCII text */
991#define CONTINUATION 0x02	/* bit 1 set: continuation of multi-part gzip file */
992#define EXTRA_FIELD  0x04	/* bit 2 set: extra field present */
993#define ORIG_NAME    0x08	/* bit 3 set: original file name present */
994#define COMMENT      0x10	/* bit 4 set: file comment present */
995#define ENCRYPTED    0x20	/* bit 5 set: file is encrypted */
996#define RESERVED     0xC0	/* bit 6,7:   reserved */
997
998/*
999 * Do the uncompression!
1000 */
1001int gunzip(void)
1002{
1003    int res;
1004
1005    /* Decompress */
1006    if ((res = inflate())) {
1007	switch (res) {
1008	case 0:
1009	    break;
1010	case 1:
1011	    error("invalid compressed format (err=1)");
1012	    break;
1013	case 2:
1014	    error("invalid compressed format (err=2)");
1015	    break;
1016	case 3:
1017	    error("out of memory");
1018	    break;
1019	default:
1020	    error("invalid compressed format (other)");
1021	}
1022	return -1;
1023    }
1024
1025    return 0;
1026}
1027