1# Copyright 2016 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14"""Example of DNNClassifier for Iris plant dataset, hdf5 format.""" 15 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21from sklearn import datasets 22from sklearn import metrics 23from sklearn import model_selection 24import tensorflow as tf 25import h5py # pylint: disable=g-bad-import-order 26 27 28X_FEATURE = 'x' # Name of the input feature. 29 30 31def main(unused_argv): 32 # Load dataset. 33 iris = datasets.load_iris() 34 x_train, x_test, y_train, y_test = model_selection.train_test_split( 35 iris.data, iris.target, test_size=0.2, random_state=42) 36 37 # Note that we are saving and load iris data as h5 format as a simple 38 # demonstration here. 39 h5f = h5py.File('/tmp/test_hdf5.h5', 'w') 40 h5f.create_dataset('X_train', data=x_train) 41 h5f.create_dataset('X_test', data=x_test) 42 h5f.create_dataset('y_train', data=y_train) 43 h5f.create_dataset('y_test', data=y_test) 44 h5f.close() 45 46 h5f = h5py.File('/tmp/test_hdf5.h5', 'r') 47 x_train = np.array(h5f['X_train']) 48 x_test = np.array(h5f['X_test']) 49 y_train = np.array(h5f['y_train']) 50 y_test = np.array(h5f['y_test']) 51 52 # Build 3 layer DNN with 10, 20, 10 units respectively. 53 feature_columns = [ 54 tf.feature_column.numeric_column( 55 X_FEATURE, shape=np.array(x_train).shape[1:])] 56 classifier = tf.estimator.DNNClassifier( 57 feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) 58 59 # Train. 60 train_input_fn = tf.estimator.inputs.numpy_input_fn( 61 x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) 62 classifier.train(input_fn=train_input_fn, steps=200) 63 64 # Predict. 65 test_input_fn = tf.estimator.inputs.numpy_input_fn( 66 x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) 67 predictions = classifier.predict(input_fn=test_input_fn) 68 y_predicted = np.array(list(p['class_ids'] for p in predictions)) 69 y_predicted = y_predicted.reshape(np.array(y_test).shape) 70 71 # Score with sklearn. 72 score = metrics.accuracy_score(y_test, y_predicted) 73 print('Accuracy (sklearn): {0:f}'.format(score)) 74 75 # Score with tensorflow. 76 scores = classifier.evaluate(input_fn=test_input_fn) 77 print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) 78 79 80if __name__ == '__main__': 81 tf.app.run() 82