1// Copyright 2013 the V8 project authors. All rights reserved.
2//
3// Redistribution and use in source and binary forms, with or without
4// modification, are permitted provided that the following conditions are
5// met:
6//
7//     * Redistributions of source code must retain the above copyright
8//       notice, this list of conditions and the following disclaimer.
9//     * Redistributions in binary form must reproduce the above
10//       copyright notice, this list of conditions and the following
11//       disclaimer in the documentation and/or other materials provided
12//       with the distribution.
13//     * Neither the name of Google Inc. nor the names of its
14//       contributors may be used to endorse or promote products derived
15//       from this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29#if V8_TARGET_ARCH_ARM64
30
31#define ARM64_DEFINE_REG_STATICS
32#include "src/arm64/assembler-arm64.h"
33
34#include "src/arm64/assembler-arm64-inl.h"
35#include "src/arm64/frames-arm64.h"
36#include "src/base/bits.h"
37#include "src/base/cpu.h"
38#include "src/register-configuration.h"
39
40namespace v8 {
41namespace internal {
42
43
44// -----------------------------------------------------------------------------
45// CpuFeatures implementation.
46
47void CpuFeatures::ProbeImpl(bool cross_compile) {
48  // AArch64 has no configuration options, no further probing is required.
49  supported_ = 0;
50
51  // Only use statically determined features for cross compile (snapshot).
52  if (cross_compile) return;
53
54  // We used to probe for coherent cache support, but on older CPUs it
55  // causes crashes (crbug.com/524337), and newer CPUs don't even have
56  // the feature any more.
57}
58
59void CpuFeatures::PrintTarget() { }
60void CpuFeatures::PrintFeatures() {}
61
62// -----------------------------------------------------------------------------
63// CPURegList utilities.
64
65CPURegister CPURegList::PopLowestIndex() {
66  DCHECK(IsValid());
67  if (IsEmpty()) {
68    return NoCPUReg;
69  }
70  int index = CountTrailingZeros(list_, kRegListSizeInBits);
71  DCHECK((1 << index) & list_);
72  Remove(index);
73  return CPURegister::Create(index, size_, type_);
74}
75
76
77CPURegister CPURegList::PopHighestIndex() {
78  DCHECK(IsValid());
79  if (IsEmpty()) {
80    return NoCPUReg;
81  }
82  int index = CountLeadingZeros(list_, kRegListSizeInBits);
83  index = kRegListSizeInBits - 1 - index;
84  DCHECK((1 << index) & list_);
85  Remove(index);
86  return CPURegister::Create(index, size_, type_);
87}
88
89
90void CPURegList::RemoveCalleeSaved() {
91  if (type() == CPURegister::kRegister) {
92    Remove(GetCalleeSaved(RegisterSizeInBits()));
93  } else if (type() == CPURegister::kFPRegister) {
94    Remove(GetCalleeSavedFP(RegisterSizeInBits()));
95  } else {
96    DCHECK(type() == CPURegister::kNoRegister);
97    DCHECK(IsEmpty());
98    // The list must already be empty, so do nothing.
99  }
100}
101
102
103CPURegList CPURegList::GetCalleeSaved(int size) {
104  return CPURegList(CPURegister::kRegister, size, 19, 29);
105}
106
107
108CPURegList CPURegList::GetCalleeSavedFP(int size) {
109  return CPURegList(CPURegister::kFPRegister, size, 8, 15);
110}
111
112
113CPURegList CPURegList::GetCallerSaved(int size) {
114  // Registers x0-x18 and lr (x30) are caller-saved.
115  CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
116  list.Combine(lr);
117  return list;
118}
119
120
121CPURegList CPURegList::GetCallerSavedFP(int size) {
122  // Registers d0-d7 and d16-d31 are caller-saved.
123  CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
124  list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
125  return list;
126}
127
128
129// This function defines the list of registers which are associated with a
130// safepoint slot. Safepoint register slots are saved contiguously on the stack.
131// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
132// code to index in the safepoint register slots. Any change here can affect
133// this mapping.
134CPURegList CPURegList::GetSafepointSavedRegisters() {
135  CPURegList list = CPURegList::GetCalleeSaved();
136  list.Combine(
137      CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
138
139  // Note that unfortunately we can't use symbolic names for registers and have
140  // to directly use register codes. This is because this function is used to
141  // initialize some static variables and we can't rely on register variables
142  // to be initialized due to static initialization order issues in C++.
143
144  // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
145  // preserved outside of the macro assembler.
146  list.Remove(16);
147  list.Remove(17);
148
149  // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
150  // is a caller-saved register according to the procedure call standard.
151  list.Combine(18);
152
153  // Drop jssp as the stack pointer doesn't need to be included.
154  list.Remove(28);
155
156  // Add the link register (x30) to the safepoint list.
157  list.Combine(30);
158
159  return list;
160}
161
162
163// -----------------------------------------------------------------------------
164// Implementation of RelocInfo
165
166const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
167
168
169bool RelocInfo::IsCodedSpecially() {
170  // The deserializer needs to know whether a pointer is specially coded. Being
171  // specially coded on ARM64 means that it is a movz/movk sequence. We don't
172  // generate those for relocatable pointers.
173  return false;
174}
175
176
177bool RelocInfo::IsInConstantPool() {
178  Instruction* instr = reinterpret_cast<Instruction*>(pc_);
179  return instr->IsLdrLiteralX();
180}
181
182Address RelocInfo::wasm_memory_reference() {
183  DCHECK(IsWasmMemoryReference(rmode_));
184  return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
185}
186
187uint32_t RelocInfo::wasm_memory_size_reference() {
188  DCHECK(IsWasmMemorySizeReference(rmode_));
189  return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
190}
191
192Address RelocInfo::wasm_global_reference() {
193  DCHECK(IsWasmGlobalReference(rmode_));
194  return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
195}
196
197uint32_t RelocInfo::wasm_function_table_size_reference() {
198  DCHECK(IsWasmFunctionTableSizeReference(rmode_));
199  return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
200}
201
202void RelocInfo::unchecked_update_wasm_memory_reference(
203    Address address, ICacheFlushMode flush_mode) {
204  Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
205}
206
207void RelocInfo::unchecked_update_wasm_size(uint32_t size,
208                                           ICacheFlushMode flush_mode) {
209  Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
210}
211
212Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
213                                              Register reg3, Register reg4) {
214  CPURegList regs(reg1, reg2, reg3, reg4);
215  const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
216  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
217    int code = config->GetAllocatableDoubleCode(i);
218    Register candidate = Register::from_code(code);
219    if (regs.IncludesAliasOf(candidate)) continue;
220    return candidate;
221  }
222  UNREACHABLE();
223  return NoReg;
224}
225
226
227bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
228                const CPURegister& reg3, const CPURegister& reg4,
229                const CPURegister& reg5, const CPURegister& reg6,
230                const CPURegister& reg7, const CPURegister& reg8) {
231  int number_of_valid_regs = 0;
232  int number_of_valid_fpregs = 0;
233
234  RegList unique_regs = 0;
235  RegList unique_fpregs = 0;
236
237  const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
238
239  for (unsigned i = 0; i < arraysize(regs); i++) {
240    if (regs[i].IsRegister()) {
241      number_of_valid_regs++;
242      unique_regs |= regs[i].Bit();
243    } else if (regs[i].IsFPRegister()) {
244      number_of_valid_fpregs++;
245      unique_fpregs |= regs[i].Bit();
246    } else {
247      DCHECK(!regs[i].IsValid());
248    }
249  }
250
251  int number_of_unique_regs =
252    CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
253  int number_of_unique_fpregs =
254    CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
255
256  DCHECK(number_of_valid_regs >= number_of_unique_regs);
257  DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
258
259  return (number_of_valid_regs != number_of_unique_regs) ||
260         (number_of_valid_fpregs != number_of_unique_fpregs);
261}
262
263
264bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
265                        const CPURegister& reg3, const CPURegister& reg4,
266                        const CPURegister& reg5, const CPURegister& reg6,
267                        const CPURegister& reg7, const CPURegister& reg8) {
268  DCHECK(reg1.IsValid());
269  bool match = true;
270  match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
271  match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
272  match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
273  match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
274  match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
275  match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
276  match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
277  return match;
278}
279
280
281void Immediate::InitializeHandle(Handle<Object> handle) {
282  AllowDeferredHandleDereference using_raw_address;
283
284  // Verify all Objects referred by code are NOT in new space.
285  Object* obj = *handle;
286  if (obj->IsHeapObject()) {
287    value_ = reinterpret_cast<intptr_t>(handle.location());
288    rmode_ = RelocInfo::EMBEDDED_OBJECT;
289  } else {
290    STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
291    value_ = reinterpret_cast<intptr_t>(obj);
292    rmode_ = RelocInfo::NONE64;
293  }
294}
295
296
297bool Operand::NeedsRelocation(const Assembler* assembler) const {
298  RelocInfo::Mode rmode = immediate_.rmode();
299
300  if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
301    return assembler->serializer_enabled();
302  }
303
304  return !RelocInfo::IsNone(rmode);
305}
306
307
308// Constant Pool.
309void ConstPool::RecordEntry(intptr_t data,
310                            RelocInfo::Mode mode) {
311  DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
312         mode != RelocInfo::VENEER_POOL &&
313         mode != RelocInfo::CODE_AGE_SEQUENCE &&
314         mode != RelocInfo::DEOPT_SCRIPT_OFFSET &&
315         mode != RelocInfo::DEOPT_INLINING_ID &&
316         mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
317  uint64_t raw_data = static_cast<uint64_t>(data);
318  int offset = assm_->pc_offset();
319  if (IsEmpty()) {
320    first_use_ = offset;
321  }
322
323  std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
324  if (CanBeShared(mode)) {
325    shared_entries_.insert(entry);
326    if (shared_entries_.count(entry.first) == 1) {
327      shared_entries_count++;
328    }
329  } else {
330    unique_entries_.push_back(entry);
331  }
332
333  if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
334    // Request constant pool emission after the next instruction.
335    assm_->SetNextConstPoolCheckIn(1);
336  }
337}
338
339
340int ConstPool::DistanceToFirstUse() {
341  DCHECK(first_use_ >= 0);
342  return assm_->pc_offset() - first_use_;
343}
344
345
346int ConstPool::MaxPcOffset() {
347  // There are no pending entries in the pool so we can never get out of
348  // range.
349  if (IsEmpty()) return kMaxInt;
350
351  // Entries are not necessarily emitted in the order they are added so in the
352  // worst case the first constant pool use will be accessing the last entry.
353  return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
354}
355
356
357int ConstPool::WorstCaseSize() {
358  if (IsEmpty()) return 0;
359
360  // Max size prologue:
361  //   b   over
362  //   ldr xzr, #pool_size
363  //   blr xzr
364  //   nop
365  // All entries are 64-bit for now.
366  return 4 * kInstructionSize + EntryCount() * kPointerSize;
367}
368
369
370int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
371  if (IsEmpty()) return 0;
372
373  // Prologue is:
374  //   b   over  ;; if require_jump
375  //   ldr xzr, #pool_size
376  //   blr xzr
377  //   nop       ;; if not 64-bit aligned
378  int prologue_size = require_jump ? kInstructionSize : 0;
379  prologue_size += 2 * kInstructionSize;
380  prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
381                   0 : kInstructionSize;
382
383  // All entries are 64-bit for now.
384  return prologue_size + EntryCount() * kPointerSize;
385}
386
387
388void ConstPool::Emit(bool require_jump) {
389  DCHECK(!assm_->is_const_pool_blocked());
390  // Prevent recursive pool emission and protect from veneer pools.
391  Assembler::BlockPoolsScope block_pools(assm_);
392
393  int size = SizeIfEmittedAtCurrentPc(require_jump);
394  Label size_check;
395  assm_->bind(&size_check);
396
397  assm_->RecordConstPool(size);
398  // Emit the constant pool. It is preceded by an optional branch if
399  // require_jump and a header which will:
400  //  1) Encode the size of the constant pool, for use by the disassembler.
401  //  2) Terminate the program, to try to prevent execution from accidentally
402  //     flowing into the constant pool.
403  //  3) align the pool entries to 64-bit.
404  // The header is therefore made of up to three arm64 instructions:
405  //   ldr xzr, #<size of the constant pool in 32-bit words>
406  //   blr xzr
407  //   nop
408  //
409  // If executed, the header will likely segfault and lr will point to the
410  // instruction following the offending blr.
411  // TODO(all): Make the alignment part less fragile. Currently code is
412  // allocated as a byte array so there are no guarantees the alignment will
413  // be preserved on compaction. Currently it works as allocation seems to be
414  // 64-bit aligned.
415
416  // Emit branch if required
417  Label after_pool;
418  if (require_jump) {
419    assm_->b(&after_pool);
420  }
421
422  // Emit the header.
423  assm_->RecordComment("[ Constant Pool");
424  EmitMarker();
425  EmitGuard();
426  assm_->Align(8);
427
428  // Emit constant pool entries.
429  // TODO(all): currently each relocated constant is 64 bits, consider adding
430  // support for 32-bit entries.
431  EmitEntries();
432  assm_->RecordComment("]");
433
434  if (after_pool.is_linked()) {
435    assm_->bind(&after_pool);
436  }
437
438  DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
439         static_cast<unsigned>(size));
440}
441
442
443void ConstPool::Clear() {
444  shared_entries_.clear();
445  shared_entries_count = 0;
446  unique_entries_.clear();
447  first_use_ = -1;
448}
449
450
451bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
452  // Constant pool currently does not support 32-bit entries.
453  DCHECK(mode != RelocInfo::NONE32);
454
455  return RelocInfo::IsNone(mode) ||
456         (!assm_->serializer_enabled() &&
457          (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
458}
459
460
461void ConstPool::EmitMarker() {
462  // A constant pool size is expressed in number of 32-bits words.
463  // Currently all entries are 64-bit.
464  // + 1 is for the crash guard.
465  // + 0/1 for alignment.
466  int word_count = EntryCount() * 2 + 1 +
467                   (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
468  assm_->Emit(LDR_x_lit                          |
469              Assembler::ImmLLiteral(word_count) |
470              Assembler::Rt(xzr));
471}
472
473
474MemOperand::PairResult MemOperand::AreConsistentForPair(
475    const MemOperand& operandA,
476    const MemOperand& operandB,
477    int access_size_log2) {
478  DCHECK(access_size_log2 >= 0);
479  DCHECK(access_size_log2 <= 3);
480  // Step one: check that they share the same base, that the mode is Offset
481  // and that the offset is a multiple of access size.
482  if (!operandA.base().Is(operandB.base()) ||
483      (operandA.addrmode() != Offset) ||
484      (operandB.addrmode() != Offset) ||
485      ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
486    return kNotPair;
487  }
488  // Step two: check that the offsets are contiguous and that the range
489  // is OK for ldp/stp.
490  if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
491      is_int7(operandA.offset() >> access_size_log2)) {
492    return kPairAB;
493  }
494  if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
495      is_int7(operandB.offset() >> access_size_log2)) {
496    return kPairBA;
497  }
498  return kNotPair;
499}
500
501
502void ConstPool::EmitGuard() {
503#ifdef DEBUG
504  Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
505  DCHECK(instr->preceding()->IsLdrLiteralX() &&
506         instr->preceding()->Rt() == xzr.code());
507#endif
508  assm_->EmitPoolGuard();
509}
510
511
512void ConstPool::EmitEntries() {
513  DCHECK(IsAligned(assm_->pc_offset(), 8));
514
515  typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
516  SharedEntriesIterator value_it;
517  // Iterate through the keys (constant pool values).
518  for (value_it = shared_entries_.begin();
519       value_it != shared_entries_.end();
520       value_it = shared_entries_.upper_bound(value_it->first)) {
521    std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
522    uint64_t data = value_it->first;
523    range = shared_entries_.equal_range(data);
524    SharedEntriesIterator offset_it;
525    // Iterate through the offsets of a given key.
526    for (offset_it = range.first; offset_it != range.second; offset_it++) {
527      Instruction* instr = assm_->InstructionAt(offset_it->second);
528
529      // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
530      DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
531      instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
532    }
533    assm_->dc64(data);
534  }
535  shared_entries_.clear();
536  shared_entries_count = 0;
537
538  // Emit unique entries.
539  std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
540  for (unique_it = unique_entries_.begin();
541       unique_it != unique_entries_.end();
542       unique_it++) {
543    Instruction* instr = assm_->InstructionAt(unique_it->second);
544
545    // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
546    DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
547    instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
548    assm_->dc64(unique_it->first);
549  }
550  unique_entries_.clear();
551  first_use_ = -1;
552}
553
554
555// Assembler
556Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
557    : AssemblerBase(isolate, buffer, buffer_size),
558      constpool_(this),
559      recorded_ast_id_(TypeFeedbackId::None()),
560      unresolved_branches_() {
561  const_pool_blocked_nesting_ = 0;
562  veneer_pool_blocked_nesting_ = 0;
563  Reset();
564}
565
566
567Assembler::~Assembler() {
568  DCHECK(constpool_.IsEmpty());
569  DCHECK(const_pool_blocked_nesting_ == 0);
570  DCHECK(veneer_pool_blocked_nesting_ == 0);
571}
572
573
574void Assembler::Reset() {
575#ifdef DEBUG
576  DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
577  DCHECK(const_pool_blocked_nesting_ == 0);
578  DCHECK(veneer_pool_blocked_nesting_ == 0);
579  DCHECK(unresolved_branches_.empty());
580  memset(buffer_, 0, pc_ - buffer_);
581#endif
582  pc_ = buffer_;
583  reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
584                               reinterpret_cast<byte*>(pc_));
585  constpool_.Clear();
586  next_constant_pool_check_ = 0;
587  next_veneer_pool_check_ = kMaxInt;
588  no_const_pool_before_ = 0;
589  ClearRecordedAstId();
590}
591
592
593void Assembler::GetCode(CodeDesc* desc) {
594  // Emit constant pool if necessary.
595  CheckConstPool(true, false);
596  DCHECK(constpool_.IsEmpty());
597
598  // Set up code descriptor.
599  if (desc) {
600    desc->buffer = reinterpret_cast<byte*>(buffer_);
601    desc->buffer_size = buffer_size_;
602    desc->instr_size = pc_offset();
603    desc->reloc_size =
604        static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
605                         reloc_info_writer.pos());
606    desc->origin = this;
607    desc->constant_pool_size = 0;
608    desc->unwinding_info_size = 0;
609    desc->unwinding_info = nullptr;
610  }
611}
612
613
614void Assembler::Align(int m) {
615  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
616  while ((pc_offset() & (m - 1)) != 0) {
617    nop();
618  }
619}
620
621
622void Assembler::CheckLabelLinkChain(Label const * label) {
623#ifdef DEBUG
624  if (label->is_linked()) {
625    static const int kMaxLinksToCheck = 64;  // Avoid O(n2) behaviour.
626    int links_checked = 0;
627    int64_t linkoffset = label->pos();
628    bool end_of_chain = false;
629    while (!end_of_chain) {
630      if (++links_checked > kMaxLinksToCheck) break;
631      Instruction * link = InstructionAt(linkoffset);
632      int64_t linkpcoffset = link->ImmPCOffset();
633      int64_t prevlinkoffset = linkoffset + linkpcoffset;
634
635      end_of_chain = (linkoffset == prevlinkoffset);
636      linkoffset = linkoffset + linkpcoffset;
637    }
638  }
639#endif
640}
641
642
643void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
644                                               Label* label,
645                                               Instruction* label_veneer) {
646  DCHECK(label->is_linked());
647
648  CheckLabelLinkChain(label);
649
650  Instruction* link = InstructionAt(label->pos());
651  Instruction* prev_link = link;
652  Instruction* next_link;
653  bool end_of_chain = false;
654
655  while (link != branch && !end_of_chain) {
656    next_link = link->ImmPCOffsetTarget();
657    end_of_chain = (link == next_link);
658    prev_link = link;
659    link = next_link;
660  }
661
662  DCHECK(branch == link);
663  next_link = branch->ImmPCOffsetTarget();
664
665  if (branch == prev_link) {
666    // The branch is the first instruction in the chain.
667    if (branch == next_link) {
668      // It is also the last instruction in the chain, so it is the only branch
669      // currently referring to this label.
670      label->Unuse();
671    } else {
672      label->link_to(
673          static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
674    }
675
676  } else if (branch == next_link) {
677    // The branch is the last (but not also the first) instruction in the chain.
678    prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
679
680  } else {
681    // The branch is in the middle of the chain.
682    if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
683      prev_link->SetImmPCOffsetTarget(isolate(), next_link);
684    } else if (label_veneer != NULL) {
685      // Use the veneer for all previous links in the chain.
686      prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
687
688      end_of_chain = false;
689      link = next_link;
690      while (!end_of_chain) {
691        next_link = link->ImmPCOffsetTarget();
692        end_of_chain = (link == next_link);
693        link->SetImmPCOffsetTarget(isolate(), label_veneer);
694        link = next_link;
695      }
696    } else {
697      // The assert below will fire.
698      // Some other work could be attempted to fix up the chain, but it would be
699      // rather complicated. If we crash here, we may want to consider using an
700      // other mechanism than a chain of branches.
701      //
702      // Note that this situation currently should not happen, as we always call
703      // this function with a veneer to the target label.
704      // However this could happen with a MacroAssembler in the following state:
705      //    [previous code]
706      //    B(label);
707      //    [20KB code]
708      //    Tbz(label);   // First tbz. Pointing to unconditional branch.
709      //    [20KB code]
710      //    Tbz(label);   // Second tbz. Pointing to the first tbz.
711      //    [more code]
712      // and this function is called to remove the first tbz from the label link
713      // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
714      // the unconditional branch.
715      CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
716      UNREACHABLE();
717    }
718  }
719
720  CheckLabelLinkChain(label);
721}
722
723
724void Assembler::bind(Label* label) {
725  // Bind label to the address at pc_. All instructions (most likely branches)
726  // that are linked to this label will be updated to point to the newly-bound
727  // label.
728
729  DCHECK(!label->is_near_linked());
730  DCHECK(!label->is_bound());
731
732  DeleteUnresolvedBranchInfoForLabel(label);
733
734  // If the label is linked, the link chain looks something like this:
735  //
736  // |--I----I-------I-------L
737  // |---------------------->| pc_offset
738  // |-------------->|         linkoffset = label->pos()
739  //         |<------|         link->ImmPCOffset()
740  // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
741  //
742  // On each iteration, the last link is updated and then removed from the
743  // chain until only one remains. At that point, the label is bound.
744  //
745  // If the label is not linked, no preparation is required before binding.
746  while (label->is_linked()) {
747    int linkoffset = label->pos();
748    Instruction* link = InstructionAt(linkoffset);
749    int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
750
751    CheckLabelLinkChain(label);
752
753    DCHECK(linkoffset >= 0);
754    DCHECK(linkoffset < pc_offset());
755    DCHECK((linkoffset > prevlinkoffset) ||
756           (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
757    DCHECK(prevlinkoffset >= 0);
758
759    // Update the link to point to the label.
760    if (link->IsUnresolvedInternalReference()) {
761      // Internal references do not get patched to an instruction but directly
762      // to an address.
763      internal_reference_positions_.push_back(linkoffset);
764      PatchingAssembler patcher(isolate(), link, 2);
765      patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
766    } else {
767      link->SetImmPCOffsetTarget(isolate(),
768                                 reinterpret_cast<Instruction*>(pc_));
769    }
770
771    // Link the label to the previous link in the chain.
772    if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
773      // We hit kStartOfLabelLinkChain, so the chain is fully processed.
774      label->Unuse();
775    } else {
776      // Update the label for the next iteration.
777      label->link_to(prevlinkoffset);
778    }
779  }
780  label->bind_to(pc_offset());
781
782  DCHECK(label->is_bound());
783  DCHECK(!label->is_linked());
784}
785
786
787int Assembler::LinkAndGetByteOffsetTo(Label* label) {
788  DCHECK(sizeof(*pc_) == 1);
789  CheckLabelLinkChain(label);
790
791  int offset;
792  if (label->is_bound()) {
793    // The label is bound, so it does not need to be updated. Referring
794    // instructions must link directly to the label as they will not be
795    // updated.
796    //
797    // In this case, label->pos() returns the offset of the label from the
798    // start of the buffer.
799    //
800    // Note that offset can be zero for self-referential instructions. (This
801    // could be useful for ADR, for example.)
802    offset = label->pos() - pc_offset();
803    DCHECK(offset <= 0);
804  } else {
805    if (label->is_linked()) {
806      // The label is linked, so the referring instruction should be added onto
807      // the end of the label's link chain.
808      //
809      // In this case, label->pos() returns the offset of the last linked
810      // instruction from the start of the buffer.
811      offset = label->pos() - pc_offset();
812      DCHECK(offset != kStartOfLabelLinkChain);
813      // Note that the offset here needs to be PC-relative only so that the
814      // first instruction in a buffer can link to an unbound label. Otherwise,
815      // the offset would be 0 for this case, and 0 is reserved for
816      // kStartOfLabelLinkChain.
817    } else {
818      // The label is unused, so it now becomes linked and the referring
819      // instruction is at the start of the new link chain.
820      offset = kStartOfLabelLinkChain;
821    }
822    // The instruction at pc is now the last link in the label's chain.
823    label->link_to(pc_offset());
824  }
825
826  return offset;
827}
828
829
830void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
831  DCHECK(label->is_linked());
832  CheckLabelLinkChain(label);
833
834  int link_offset = label->pos();
835  int link_pcoffset;
836  bool end_of_chain = false;
837
838  while (!end_of_chain) {
839    Instruction * link = InstructionAt(link_offset);
840    link_pcoffset = static_cast<int>(link->ImmPCOffset());
841
842    // ADR instructions are not handled by veneers.
843    if (link->IsImmBranch()) {
844      int max_reachable_pc =
845          static_cast<int>(InstructionOffset(link) +
846                           Instruction::ImmBranchRange(link->BranchType()));
847      typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
848      std::pair<unresolved_info_it, unresolved_info_it> range;
849      range = unresolved_branches_.equal_range(max_reachable_pc);
850      unresolved_info_it it;
851      for (it = range.first; it != range.second; ++it) {
852        if (it->second.pc_offset_ == link_offset) {
853          unresolved_branches_.erase(it);
854          break;
855        }
856      }
857    }
858
859    end_of_chain = (link_pcoffset == 0);
860    link_offset = link_offset + link_pcoffset;
861  }
862}
863
864
865void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
866  if (unresolved_branches_.empty()) {
867    DCHECK(next_veneer_pool_check_ == kMaxInt);
868    return;
869  }
870
871  if (label->is_linked()) {
872    // Branches to this label will be resolved when the label is bound, normally
873    // just after all the associated info has been deleted.
874    DeleteUnresolvedBranchInfoForLabelTraverse(label);
875  }
876  if (unresolved_branches_.empty()) {
877    next_veneer_pool_check_ = kMaxInt;
878  } else {
879    next_veneer_pool_check_ =
880      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
881  }
882}
883
884
885void Assembler::StartBlockConstPool() {
886  if (const_pool_blocked_nesting_++ == 0) {
887    // Prevent constant pool checks happening by setting the next check to
888    // the biggest possible offset.
889    next_constant_pool_check_ = kMaxInt;
890  }
891}
892
893
894void Assembler::EndBlockConstPool() {
895  if (--const_pool_blocked_nesting_ == 0) {
896    // Check the constant pool hasn't been blocked for too long.
897    DCHECK(pc_offset() < constpool_.MaxPcOffset());
898    // Two cases:
899    //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
900    //    still blocked
901    //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
902    //    will trigger a check.
903    next_constant_pool_check_ = no_const_pool_before_;
904  }
905}
906
907
908bool Assembler::is_const_pool_blocked() const {
909  return (const_pool_blocked_nesting_ > 0) ||
910         (pc_offset() < no_const_pool_before_);
911}
912
913
914bool Assembler::IsConstantPoolAt(Instruction* instr) {
915  // The constant pool marker is made of two instructions. These instructions
916  // will never be emitted by the JIT, so checking for the first one is enough:
917  // 0: ldr xzr, #<size of pool>
918  bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
919
920  // It is still worth asserting the marker is complete.
921  // 4: blr xzr
922  DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
923                     instr->following()->Rn() == kZeroRegCode));
924
925  return result;
926}
927
928
929int Assembler::ConstantPoolSizeAt(Instruction* instr) {
930#ifdef USE_SIMULATOR
931  // Assembler::debug() embeds constants directly into the instruction stream.
932  // Although this is not a genuine constant pool, treat it like one to avoid
933  // disassembling the constants.
934  if ((instr->Mask(ExceptionMask) == HLT) &&
935      (instr->ImmException() == kImmExceptionIsDebug)) {
936    const char* message =
937        reinterpret_cast<const char*>(
938            instr->InstructionAtOffset(kDebugMessageOffset));
939    int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
940    return RoundUp(size, kInstructionSize) / kInstructionSize;
941  }
942  // Same for printf support, see MacroAssembler::CallPrintf().
943  if ((instr->Mask(ExceptionMask) == HLT) &&
944      (instr->ImmException() == kImmExceptionIsPrintf)) {
945    return kPrintfLength / kInstructionSize;
946  }
947#endif
948  if (IsConstantPoolAt(instr)) {
949    return instr->ImmLLiteral();
950  } else {
951    return -1;
952  }
953}
954
955
956void Assembler::EmitPoolGuard() {
957  // We must generate only one instruction as this is used in scopes that
958  // control the size of the code generated.
959  Emit(BLR | Rn(xzr));
960}
961
962
963void Assembler::StartBlockVeneerPool() {
964  ++veneer_pool_blocked_nesting_;
965}
966
967
968void Assembler::EndBlockVeneerPool() {
969  if (--veneer_pool_blocked_nesting_ == 0) {
970    // Check the veneer pool hasn't been blocked for too long.
971    DCHECK(unresolved_branches_.empty() ||
972           (pc_offset() < unresolved_branches_first_limit()));
973  }
974}
975
976
977void Assembler::br(const Register& xn) {
978  DCHECK(xn.Is64Bits());
979  Emit(BR | Rn(xn));
980}
981
982
983void Assembler::blr(const Register& xn) {
984  DCHECK(xn.Is64Bits());
985  // The pattern 'blr xzr' is used as a guard to detect when execution falls
986  // through the constant pool. It should not be emitted.
987  DCHECK(!xn.Is(xzr));
988  Emit(BLR | Rn(xn));
989}
990
991
992void Assembler::ret(const Register& xn) {
993  DCHECK(xn.Is64Bits());
994  Emit(RET | Rn(xn));
995}
996
997
998void Assembler::b(int imm26) {
999  Emit(B | ImmUncondBranch(imm26));
1000}
1001
1002
1003void Assembler::b(Label* label) {
1004  b(LinkAndGetInstructionOffsetTo(label));
1005}
1006
1007
1008void Assembler::b(int imm19, Condition cond) {
1009  Emit(B_cond | ImmCondBranch(imm19) | cond);
1010}
1011
1012
1013void Assembler::b(Label* label, Condition cond) {
1014  b(LinkAndGetInstructionOffsetTo(label), cond);
1015}
1016
1017
1018void Assembler::bl(int imm26) {
1019  Emit(BL | ImmUncondBranch(imm26));
1020}
1021
1022
1023void Assembler::bl(Label* label) {
1024  bl(LinkAndGetInstructionOffsetTo(label));
1025}
1026
1027
1028void Assembler::cbz(const Register& rt,
1029                    int imm19) {
1030  Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1031}
1032
1033
1034void Assembler::cbz(const Register& rt,
1035                    Label* label) {
1036  cbz(rt, LinkAndGetInstructionOffsetTo(label));
1037}
1038
1039
1040void Assembler::cbnz(const Register& rt,
1041                     int imm19) {
1042  Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1043}
1044
1045
1046void Assembler::cbnz(const Register& rt,
1047                     Label* label) {
1048  cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1049}
1050
1051
1052void Assembler::tbz(const Register& rt,
1053                    unsigned bit_pos,
1054                    int imm14) {
1055  DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1056  Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1057}
1058
1059
1060void Assembler::tbz(const Register& rt,
1061                    unsigned bit_pos,
1062                    Label* label) {
1063  tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1064}
1065
1066
1067void Assembler::tbnz(const Register& rt,
1068                     unsigned bit_pos,
1069                     int imm14) {
1070  DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1071  Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1072}
1073
1074
1075void Assembler::tbnz(const Register& rt,
1076                     unsigned bit_pos,
1077                     Label* label) {
1078  tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1079}
1080
1081
1082void Assembler::adr(const Register& rd, int imm21) {
1083  DCHECK(rd.Is64Bits());
1084  Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1085}
1086
1087
1088void Assembler::adr(const Register& rd, Label* label) {
1089  adr(rd, LinkAndGetByteOffsetTo(label));
1090}
1091
1092
1093void Assembler::add(const Register& rd,
1094                    const Register& rn,
1095                    const Operand& operand) {
1096  AddSub(rd, rn, operand, LeaveFlags, ADD);
1097}
1098
1099
1100void Assembler::adds(const Register& rd,
1101                     const Register& rn,
1102                     const Operand& operand) {
1103  AddSub(rd, rn, operand, SetFlags, ADD);
1104}
1105
1106
1107void Assembler::cmn(const Register& rn,
1108                    const Operand& operand) {
1109  Register zr = AppropriateZeroRegFor(rn);
1110  adds(zr, rn, operand);
1111}
1112
1113
1114void Assembler::sub(const Register& rd,
1115                    const Register& rn,
1116                    const Operand& operand) {
1117  AddSub(rd, rn, operand, LeaveFlags, SUB);
1118}
1119
1120
1121void Assembler::subs(const Register& rd,
1122                     const Register& rn,
1123                     const Operand& operand) {
1124  AddSub(rd, rn, operand, SetFlags, SUB);
1125}
1126
1127
1128void Assembler::cmp(const Register& rn, const Operand& operand) {
1129  Register zr = AppropriateZeroRegFor(rn);
1130  subs(zr, rn, operand);
1131}
1132
1133
1134void Assembler::neg(const Register& rd, const Operand& operand) {
1135  Register zr = AppropriateZeroRegFor(rd);
1136  sub(rd, zr, operand);
1137}
1138
1139
1140void Assembler::negs(const Register& rd, const Operand& operand) {
1141  Register zr = AppropriateZeroRegFor(rd);
1142  subs(rd, zr, operand);
1143}
1144
1145
1146void Assembler::adc(const Register& rd,
1147                    const Register& rn,
1148                    const Operand& operand) {
1149  AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1150}
1151
1152
1153void Assembler::adcs(const Register& rd,
1154                     const Register& rn,
1155                     const Operand& operand) {
1156  AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1157}
1158
1159
1160void Assembler::sbc(const Register& rd,
1161                    const Register& rn,
1162                    const Operand& operand) {
1163  AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1164}
1165
1166
1167void Assembler::sbcs(const Register& rd,
1168                     const Register& rn,
1169                     const Operand& operand) {
1170  AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1171}
1172
1173
1174void Assembler::ngc(const Register& rd, const Operand& operand) {
1175  Register zr = AppropriateZeroRegFor(rd);
1176  sbc(rd, zr, operand);
1177}
1178
1179
1180void Assembler::ngcs(const Register& rd, const Operand& operand) {
1181  Register zr = AppropriateZeroRegFor(rd);
1182  sbcs(rd, zr, operand);
1183}
1184
1185
1186// Logical instructions.
1187void Assembler::and_(const Register& rd,
1188                     const Register& rn,
1189                     const Operand& operand) {
1190  Logical(rd, rn, operand, AND);
1191}
1192
1193
1194void Assembler::ands(const Register& rd,
1195                     const Register& rn,
1196                     const Operand& operand) {
1197  Logical(rd, rn, operand, ANDS);
1198}
1199
1200
1201void Assembler::tst(const Register& rn,
1202                    const Operand& operand) {
1203  ands(AppropriateZeroRegFor(rn), rn, operand);
1204}
1205
1206
1207void Assembler::bic(const Register& rd,
1208                    const Register& rn,
1209                    const Operand& operand) {
1210  Logical(rd, rn, operand, BIC);
1211}
1212
1213
1214void Assembler::bics(const Register& rd,
1215                     const Register& rn,
1216                     const Operand& operand) {
1217  Logical(rd, rn, operand, BICS);
1218}
1219
1220
1221void Assembler::orr(const Register& rd,
1222                    const Register& rn,
1223                    const Operand& operand) {
1224  Logical(rd, rn, operand, ORR);
1225}
1226
1227
1228void Assembler::orn(const Register& rd,
1229                    const Register& rn,
1230                    const Operand& operand) {
1231  Logical(rd, rn, operand, ORN);
1232}
1233
1234
1235void Assembler::eor(const Register& rd,
1236                    const Register& rn,
1237                    const Operand& operand) {
1238  Logical(rd, rn, operand, EOR);
1239}
1240
1241
1242void Assembler::eon(const Register& rd,
1243                    const Register& rn,
1244                    const Operand& operand) {
1245  Logical(rd, rn, operand, EON);
1246}
1247
1248
1249void Assembler::lslv(const Register& rd,
1250                     const Register& rn,
1251                     const Register& rm) {
1252  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1253  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1254  Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1255}
1256
1257
1258void Assembler::lsrv(const Register& rd,
1259                     const Register& rn,
1260                     const Register& rm) {
1261  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1262  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1263  Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1264}
1265
1266
1267void Assembler::asrv(const Register& rd,
1268                     const Register& rn,
1269                     const Register& rm) {
1270  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1271  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1272  Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1273}
1274
1275
1276void Assembler::rorv(const Register& rd,
1277                     const Register& rn,
1278                     const Register& rm) {
1279  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1280  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1281  Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1282}
1283
1284
1285// Bitfield operations.
1286void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1287                    int imms) {
1288  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1289  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1290  Emit(SF(rd) | BFM | N |
1291       ImmR(immr, rd.SizeInBits()) |
1292       ImmS(imms, rn.SizeInBits()) |
1293       Rn(rn) | Rd(rd));
1294}
1295
1296
1297void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1298                     int imms) {
1299  DCHECK(rd.Is64Bits() || rn.Is32Bits());
1300  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1301  Emit(SF(rd) | SBFM | N |
1302       ImmR(immr, rd.SizeInBits()) |
1303       ImmS(imms, rn.SizeInBits()) |
1304       Rn(rn) | Rd(rd));
1305}
1306
1307
1308void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1309                     int imms) {
1310  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1311  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1312  Emit(SF(rd) | UBFM | N |
1313       ImmR(immr, rd.SizeInBits()) |
1314       ImmS(imms, rn.SizeInBits()) |
1315       Rn(rn) | Rd(rd));
1316}
1317
1318
1319void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1320                     int lsb) {
1321  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1322  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1323  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1324  Emit(SF(rd) | EXTR | N | Rm(rm) |
1325       ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1326}
1327
1328
1329void Assembler::csel(const Register& rd,
1330                     const Register& rn,
1331                     const Register& rm,
1332                     Condition cond) {
1333  ConditionalSelect(rd, rn, rm, cond, CSEL);
1334}
1335
1336
1337void Assembler::csinc(const Register& rd,
1338                      const Register& rn,
1339                      const Register& rm,
1340                      Condition cond) {
1341  ConditionalSelect(rd, rn, rm, cond, CSINC);
1342}
1343
1344
1345void Assembler::csinv(const Register& rd,
1346                      const Register& rn,
1347                      const Register& rm,
1348                      Condition cond) {
1349  ConditionalSelect(rd, rn, rm, cond, CSINV);
1350}
1351
1352
1353void Assembler::csneg(const Register& rd,
1354                      const Register& rn,
1355                      const Register& rm,
1356                      Condition cond) {
1357  ConditionalSelect(rd, rn, rm, cond, CSNEG);
1358}
1359
1360
1361void Assembler::cset(const Register &rd, Condition cond) {
1362  DCHECK((cond != al) && (cond != nv));
1363  Register zr = AppropriateZeroRegFor(rd);
1364  csinc(rd, zr, zr, NegateCondition(cond));
1365}
1366
1367
1368void Assembler::csetm(const Register &rd, Condition cond) {
1369  DCHECK((cond != al) && (cond != nv));
1370  Register zr = AppropriateZeroRegFor(rd);
1371  csinv(rd, zr, zr, NegateCondition(cond));
1372}
1373
1374
1375void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1376  DCHECK((cond != al) && (cond != nv));
1377  csinc(rd, rn, rn, NegateCondition(cond));
1378}
1379
1380
1381void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1382  DCHECK((cond != al) && (cond != nv));
1383  csinv(rd, rn, rn, NegateCondition(cond));
1384}
1385
1386
1387void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1388  DCHECK((cond != al) && (cond != nv));
1389  csneg(rd, rn, rn, NegateCondition(cond));
1390}
1391
1392
1393void Assembler::ConditionalSelect(const Register& rd,
1394                                  const Register& rn,
1395                                  const Register& rm,
1396                                  Condition cond,
1397                                  ConditionalSelectOp op) {
1398  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1399  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1400  Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1401}
1402
1403
1404void Assembler::ccmn(const Register& rn,
1405                     const Operand& operand,
1406                     StatusFlags nzcv,
1407                     Condition cond) {
1408  ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1409}
1410
1411
1412void Assembler::ccmp(const Register& rn,
1413                     const Operand& operand,
1414                     StatusFlags nzcv,
1415                     Condition cond) {
1416  ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1417}
1418
1419
1420void Assembler::DataProcessing3Source(const Register& rd,
1421                                      const Register& rn,
1422                                      const Register& rm,
1423                                      const Register& ra,
1424                                      DataProcessing3SourceOp op) {
1425  Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1426}
1427
1428
1429void Assembler::mul(const Register& rd,
1430                    const Register& rn,
1431                    const Register& rm) {
1432  DCHECK(AreSameSizeAndType(rd, rn, rm));
1433  Register zr = AppropriateZeroRegFor(rn);
1434  DataProcessing3Source(rd, rn, rm, zr, MADD);
1435}
1436
1437
1438void Assembler::madd(const Register& rd,
1439                     const Register& rn,
1440                     const Register& rm,
1441                     const Register& ra) {
1442  DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1443  DataProcessing3Source(rd, rn, rm, ra, MADD);
1444}
1445
1446
1447void Assembler::mneg(const Register& rd,
1448                     const Register& rn,
1449                     const Register& rm) {
1450  DCHECK(AreSameSizeAndType(rd, rn, rm));
1451  Register zr = AppropriateZeroRegFor(rn);
1452  DataProcessing3Source(rd, rn, rm, zr, MSUB);
1453}
1454
1455
1456void Assembler::msub(const Register& rd,
1457                     const Register& rn,
1458                     const Register& rm,
1459                     const Register& ra) {
1460  DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1461  DataProcessing3Source(rd, rn, rm, ra, MSUB);
1462}
1463
1464
1465void Assembler::smaddl(const Register& rd,
1466                       const Register& rn,
1467                       const Register& rm,
1468                       const Register& ra) {
1469  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1470  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1471  DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1472}
1473
1474
1475void Assembler::smsubl(const Register& rd,
1476                       const Register& rn,
1477                       const Register& rm,
1478                       const Register& ra) {
1479  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1480  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1481  DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1482}
1483
1484
1485void Assembler::umaddl(const Register& rd,
1486                       const Register& rn,
1487                       const Register& rm,
1488                       const Register& ra) {
1489  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1490  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1491  DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1492}
1493
1494
1495void Assembler::umsubl(const Register& rd,
1496                       const Register& rn,
1497                       const Register& rm,
1498                       const Register& ra) {
1499  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1500  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1501  DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1502}
1503
1504
1505void Assembler::smull(const Register& rd,
1506                      const Register& rn,
1507                      const Register& rm) {
1508  DCHECK(rd.Is64Bits());
1509  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1510  DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1511}
1512
1513
1514void Assembler::smulh(const Register& rd,
1515                      const Register& rn,
1516                      const Register& rm) {
1517  DCHECK(AreSameSizeAndType(rd, rn, rm));
1518  DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1519}
1520
1521
1522void Assembler::sdiv(const Register& rd,
1523                     const Register& rn,
1524                     const Register& rm) {
1525  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1526  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1527  Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1528}
1529
1530
1531void Assembler::udiv(const Register& rd,
1532                     const Register& rn,
1533                     const Register& rm) {
1534  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1535  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1536  Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1537}
1538
1539
1540void Assembler::rbit(const Register& rd,
1541                     const Register& rn) {
1542  DataProcessing1Source(rd, rn, RBIT);
1543}
1544
1545
1546void Assembler::rev16(const Register& rd,
1547                      const Register& rn) {
1548  DataProcessing1Source(rd, rn, REV16);
1549}
1550
1551
1552void Assembler::rev32(const Register& rd,
1553                      const Register& rn) {
1554  DCHECK(rd.Is64Bits());
1555  DataProcessing1Source(rd, rn, REV);
1556}
1557
1558
1559void Assembler::rev(const Register& rd,
1560                    const Register& rn) {
1561  DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1562}
1563
1564
1565void Assembler::clz(const Register& rd,
1566                    const Register& rn) {
1567  DataProcessing1Source(rd, rn, CLZ);
1568}
1569
1570
1571void Assembler::cls(const Register& rd,
1572                    const Register& rn) {
1573  DataProcessing1Source(rd, rn, CLS);
1574}
1575
1576
1577void Assembler::ldp(const CPURegister& rt,
1578                    const CPURegister& rt2,
1579                    const MemOperand& src) {
1580  LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1581}
1582
1583
1584void Assembler::stp(const CPURegister& rt,
1585                    const CPURegister& rt2,
1586                    const MemOperand& dst) {
1587  LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1588}
1589
1590
1591void Assembler::ldpsw(const Register& rt,
1592                      const Register& rt2,
1593                      const MemOperand& src) {
1594  DCHECK(rt.Is64Bits());
1595  LoadStorePair(rt, rt2, src, LDPSW_x);
1596}
1597
1598
1599void Assembler::LoadStorePair(const CPURegister& rt,
1600                              const CPURegister& rt2,
1601                              const MemOperand& addr,
1602                              LoadStorePairOp op) {
1603  // 'rt' and 'rt2' can only be aliased for stores.
1604  DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1605  DCHECK(AreSameSizeAndType(rt, rt2));
1606  DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1607  int offset = static_cast<int>(addr.offset());
1608
1609  Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1610                ImmLSPair(offset, CalcLSPairDataSize(op));
1611
1612  Instr addrmodeop;
1613  if (addr.IsImmediateOffset()) {
1614    addrmodeop = LoadStorePairOffsetFixed;
1615  } else {
1616    // Pre-index and post-index modes.
1617    DCHECK(!rt.Is(addr.base()));
1618    DCHECK(!rt2.Is(addr.base()));
1619    DCHECK(addr.offset() != 0);
1620    if (addr.IsPreIndex()) {
1621      addrmodeop = LoadStorePairPreIndexFixed;
1622    } else {
1623      DCHECK(addr.IsPostIndex());
1624      addrmodeop = LoadStorePairPostIndexFixed;
1625    }
1626  }
1627  Emit(addrmodeop | memop);
1628}
1629
1630
1631// Memory instructions.
1632void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1633  LoadStore(rt, src, LDRB_w);
1634}
1635
1636
1637void Assembler::strb(const Register& rt, const MemOperand& dst) {
1638  LoadStore(rt, dst, STRB_w);
1639}
1640
1641
1642void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1643  LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1644}
1645
1646
1647void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1648  LoadStore(rt, src, LDRH_w);
1649}
1650
1651
1652void Assembler::strh(const Register& rt, const MemOperand& dst) {
1653  LoadStore(rt, dst, STRH_w);
1654}
1655
1656
1657void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1658  LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1659}
1660
1661
1662void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1663  LoadStore(rt, src, LoadOpFor(rt));
1664}
1665
1666
1667void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1668  LoadStore(rt, src, StoreOpFor(rt));
1669}
1670
1671
1672void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1673  DCHECK(rt.Is64Bits());
1674  LoadStore(rt, src, LDRSW_x);
1675}
1676
1677
1678void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1679  // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1680  // constant pool. It should not be emitted.
1681  DCHECK(!rt.IsZero());
1682  Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1683}
1684
1685
1686void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1687  // Currently we only support 64-bit literals.
1688  DCHECK(rt.Is64Bits());
1689
1690  RecordRelocInfo(imm.rmode(), imm.value());
1691  BlockConstPoolFor(1);
1692  // The load will be patched when the constpool is emitted, patching code
1693  // expect a load literal with offset 0.
1694  ldr_pcrel(rt, 0);
1695}
1696
1697void Assembler::ldar(const Register& rt, const Register& rn) {
1698  DCHECK(rn.Is64Bits());
1699  LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
1700  Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1701}
1702
1703void Assembler::ldaxr(const Register& rt, const Register& rn) {
1704  DCHECK(rn.Is64Bits());
1705  LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
1706  Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1707}
1708
1709void Assembler::stlr(const Register& rt, const Register& rn) {
1710  DCHECK(rn.Is64Bits());
1711  LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
1712  Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1713}
1714
1715void Assembler::stlxr(const Register& rs, const Register& rt,
1716                      const Register& rn) {
1717  DCHECK(rs.Is32Bits());
1718  DCHECK(rn.Is64Bits());
1719  LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
1720  Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1721}
1722
1723void Assembler::ldarb(const Register& rt, const Register& rn) {
1724  DCHECK(rt.Is32Bits());
1725  DCHECK(rn.Is64Bits());
1726  Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1727}
1728
1729void Assembler::ldaxrb(const Register& rt, const Register& rn) {
1730  DCHECK(rt.Is32Bits());
1731  DCHECK(rn.Is64Bits());
1732  Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1733}
1734
1735void Assembler::stlrb(const Register& rt, const Register& rn) {
1736  DCHECK(rt.Is32Bits());
1737  DCHECK(rn.Is64Bits());
1738  Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1739}
1740
1741void Assembler::stlxrb(const Register& rs, const Register& rt,
1742                       const Register& rn) {
1743  DCHECK(rs.Is32Bits());
1744  DCHECK(rt.Is32Bits());
1745  DCHECK(rn.Is64Bits());
1746  Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1747}
1748
1749void Assembler::ldarh(const Register& rt, const Register& rn) {
1750  DCHECK(rt.Is32Bits());
1751  DCHECK(rn.Is64Bits());
1752  Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1753}
1754
1755void Assembler::ldaxrh(const Register& rt, const Register& rn) {
1756  DCHECK(rt.Is32Bits());
1757  DCHECK(rn.Is64Bits());
1758  Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1759}
1760
1761void Assembler::stlrh(const Register& rt, const Register& rn) {
1762  DCHECK(rt.Is32Bits());
1763  DCHECK(rn.Is64Bits());
1764  Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1765}
1766
1767void Assembler::stlxrh(const Register& rs, const Register& rt,
1768                       const Register& rn) {
1769  DCHECK(rs.Is32Bits());
1770  DCHECK(rt.Is32Bits());
1771  DCHECK(rn.Is64Bits());
1772  Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1773}
1774
1775void Assembler::mov(const Register& rd, const Register& rm) {
1776  // Moves involving the stack pointer are encoded as add immediate with
1777  // second operand of zero. Otherwise, orr with first operand zr is
1778  // used.
1779  if (rd.IsSP() || rm.IsSP()) {
1780    add(rd, rm, 0);
1781  } else {
1782    orr(rd, AppropriateZeroRegFor(rd), rm);
1783  }
1784}
1785
1786
1787void Assembler::mvn(const Register& rd, const Operand& operand) {
1788  orn(rd, AppropriateZeroRegFor(rd), operand);
1789}
1790
1791
1792void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1793  DCHECK(rt.Is64Bits());
1794  Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1795}
1796
1797
1798void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1799  DCHECK(rt.Is64Bits());
1800  Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1801}
1802
1803
1804void Assembler::hint(SystemHint code) {
1805  Emit(HINT | ImmHint(code) | Rt(xzr));
1806}
1807
1808
1809void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1810  Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1811}
1812
1813
1814void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1815  Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1816}
1817
1818
1819void Assembler::isb() {
1820  Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1821}
1822
1823
1824void Assembler::fmov(FPRegister fd, double imm) {
1825  DCHECK(fd.Is64Bits());
1826  DCHECK(IsImmFP64(imm));
1827  Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1828}
1829
1830
1831void Assembler::fmov(FPRegister fd, float imm) {
1832  DCHECK(fd.Is32Bits());
1833  DCHECK(IsImmFP32(imm));
1834  Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1835}
1836
1837
1838void Assembler::fmov(Register rd, FPRegister fn) {
1839  DCHECK(rd.SizeInBits() == fn.SizeInBits());
1840  FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1841  Emit(op | Rd(rd) | Rn(fn));
1842}
1843
1844
1845void Assembler::fmov(FPRegister fd, Register rn) {
1846  DCHECK(fd.SizeInBits() == rn.SizeInBits());
1847  FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1848  Emit(op | Rd(fd) | Rn(rn));
1849}
1850
1851
1852void Assembler::fmov(FPRegister fd, FPRegister fn) {
1853  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1854  Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1855}
1856
1857
1858void Assembler::fadd(const FPRegister& fd,
1859                     const FPRegister& fn,
1860                     const FPRegister& fm) {
1861  FPDataProcessing2Source(fd, fn, fm, FADD);
1862}
1863
1864
1865void Assembler::fsub(const FPRegister& fd,
1866                     const FPRegister& fn,
1867                     const FPRegister& fm) {
1868  FPDataProcessing2Source(fd, fn, fm, FSUB);
1869}
1870
1871
1872void Assembler::fmul(const FPRegister& fd,
1873                     const FPRegister& fn,
1874                     const FPRegister& fm) {
1875  FPDataProcessing2Source(fd, fn, fm, FMUL);
1876}
1877
1878
1879void Assembler::fmadd(const FPRegister& fd,
1880                      const FPRegister& fn,
1881                      const FPRegister& fm,
1882                      const FPRegister& fa) {
1883  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1884}
1885
1886
1887void Assembler::fmsub(const FPRegister& fd,
1888                      const FPRegister& fn,
1889                      const FPRegister& fm,
1890                      const FPRegister& fa) {
1891  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1892}
1893
1894
1895void Assembler::fnmadd(const FPRegister& fd,
1896                       const FPRegister& fn,
1897                       const FPRegister& fm,
1898                       const FPRegister& fa) {
1899  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1900}
1901
1902
1903void Assembler::fnmsub(const FPRegister& fd,
1904                       const FPRegister& fn,
1905                       const FPRegister& fm,
1906                       const FPRegister& fa) {
1907  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1908}
1909
1910
1911void Assembler::fdiv(const FPRegister& fd,
1912                     const FPRegister& fn,
1913                     const FPRegister& fm) {
1914  FPDataProcessing2Source(fd, fn, fm, FDIV);
1915}
1916
1917
1918void Assembler::fmax(const FPRegister& fd,
1919                     const FPRegister& fn,
1920                     const FPRegister& fm) {
1921  FPDataProcessing2Source(fd, fn, fm, FMAX);
1922}
1923
1924
1925void Assembler::fmaxnm(const FPRegister& fd,
1926                       const FPRegister& fn,
1927                       const FPRegister& fm) {
1928  FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1929}
1930
1931
1932void Assembler::fmin(const FPRegister& fd,
1933                     const FPRegister& fn,
1934                     const FPRegister& fm) {
1935  FPDataProcessing2Source(fd, fn, fm, FMIN);
1936}
1937
1938
1939void Assembler::fminnm(const FPRegister& fd,
1940                       const FPRegister& fn,
1941                       const FPRegister& fm) {
1942  FPDataProcessing2Source(fd, fn, fm, FMINNM);
1943}
1944
1945
1946void Assembler::fabs(const FPRegister& fd,
1947                     const FPRegister& fn) {
1948  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1949  FPDataProcessing1Source(fd, fn, FABS);
1950}
1951
1952
1953void Assembler::fneg(const FPRegister& fd,
1954                     const FPRegister& fn) {
1955  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1956  FPDataProcessing1Source(fd, fn, FNEG);
1957}
1958
1959
1960void Assembler::fsqrt(const FPRegister& fd,
1961                      const FPRegister& fn) {
1962  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1963  FPDataProcessing1Source(fd, fn, FSQRT);
1964}
1965
1966
1967void Assembler::frinta(const FPRegister& fd,
1968                       const FPRegister& fn) {
1969  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1970  FPDataProcessing1Source(fd, fn, FRINTA);
1971}
1972
1973
1974void Assembler::frintm(const FPRegister& fd,
1975                       const FPRegister& fn) {
1976  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1977  FPDataProcessing1Source(fd, fn, FRINTM);
1978}
1979
1980
1981void Assembler::frintn(const FPRegister& fd,
1982                       const FPRegister& fn) {
1983  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1984  FPDataProcessing1Source(fd, fn, FRINTN);
1985}
1986
1987
1988void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1989  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1990  FPDataProcessing1Source(fd, fn, FRINTP);
1991}
1992
1993
1994void Assembler::frintz(const FPRegister& fd,
1995                       const FPRegister& fn) {
1996  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1997  FPDataProcessing1Source(fd, fn, FRINTZ);
1998}
1999
2000
2001void Assembler::fcmp(const FPRegister& fn,
2002                     const FPRegister& fm) {
2003  DCHECK(fn.SizeInBits() == fm.SizeInBits());
2004  Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
2005}
2006
2007
2008void Assembler::fcmp(const FPRegister& fn,
2009                     double value) {
2010  USE(value);
2011  // Although the fcmp instruction can strictly only take an immediate value of
2012  // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
2013  // affect the result of the comparison.
2014  DCHECK(value == 0.0);
2015  Emit(FPType(fn) | FCMP_zero | Rn(fn));
2016}
2017
2018
2019void Assembler::fccmp(const FPRegister& fn,
2020                      const FPRegister& fm,
2021                      StatusFlags nzcv,
2022                      Condition cond) {
2023  DCHECK(fn.SizeInBits() == fm.SizeInBits());
2024  Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
2025}
2026
2027
2028void Assembler::fcsel(const FPRegister& fd,
2029                      const FPRegister& fn,
2030                      const FPRegister& fm,
2031                      Condition cond) {
2032  DCHECK(fd.SizeInBits() == fn.SizeInBits());
2033  DCHECK(fd.SizeInBits() == fm.SizeInBits());
2034  Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
2035}
2036
2037
2038void Assembler::FPConvertToInt(const Register& rd,
2039                               const FPRegister& fn,
2040                               FPIntegerConvertOp op) {
2041  Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
2042}
2043
2044
2045void Assembler::fcvt(const FPRegister& fd,
2046                     const FPRegister& fn) {
2047  if (fd.Is64Bits()) {
2048    // Convert float to double.
2049    DCHECK(fn.Is32Bits());
2050    FPDataProcessing1Source(fd, fn, FCVT_ds);
2051  } else {
2052    // Convert double to float.
2053    DCHECK(fn.Is64Bits());
2054    FPDataProcessing1Source(fd, fn, FCVT_sd);
2055  }
2056}
2057
2058
2059void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
2060  FPConvertToInt(rd, fn, FCVTAU);
2061}
2062
2063
2064void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
2065  FPConvertToInt(rd, fn, FCVTAS);
2066}
2067
2068
2069void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
2070  FPConvertToInt(rd, fn, FCVTMU);
2071}
2072
2073
2074void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
2075  FPConvertToInt(rd, fn, FCVTMS);
2076}
2077
2078
2079void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2080  FPConvertToInt(rd, fn, FCVTNU);
2081}
2082
2083
2084void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2085  FPConvertToInt(rd, fn, FCVTNS);
2086}
2087
2088
2089void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2090  FPConvertToInt(rd, fn, FCVTZU);
2091}
2092
2093
2094void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2095  FPConvertToInt(rd, fn, FCVTZS);
2096}
2097
2098
2099void Assembler::scvtf(const FPRegister& fd,
2100                      const Register& rn,
2101                      unsigned fbits) {
2102  if (fbits == 0) {
2103    Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2104  } else {
2105    Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2106         Rd(fd));
2107  }
2108}
2109
2110
2111void Assembler::ucvtf(const FPRegister& fd,
2112                      const Register& rn,
2113                      unsigned fbits) {
2114  if (fbits == 0) {
2115    Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2116  } else {
2117    Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2118         Rd(fd));
2119  }
2120}
2121
2122
2123void Assembler::dcptr(Label* label) {
2124  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2125  if (label->is_bound()) {
2126    // The label is bound, so it does not need to be updated and the internal
2127    // reference should be emitted.
2128    //
2129    // In this case, label->pos() returns the offset of the label from the
2130    // start of the buffer.
2131    internal_reference_positions_.push_back(pc_offset());
2132    dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2133  } else {
2134    int32_t offset;
2135    if (label->is_linked()) {
2136      // The label is linked, so the internal reference should be added
2137      // onto the end of the label's link chain.
2138      //
2139      // In this case, label->pos() returns the offset of the last linked
2140      // instruction from the start of the buffer.
2141      offset = label->pos() - pc_offset();
2142      DCHECK(offset != kStartOfLabelLinkChain);
2143    } else {
2144      // The label is unused, so it now becomes linked and the internal
2145      // reference is at the start of the new link chain.
2146      offset = kStartOfLabelLinkChain;
2147    }
2148    // The instruction at pc is now the last link in the label's chain.
2149    label->link_to(pc_offset());
2150
2151    // Traditionally the offset to the previous instruction in the chain is
2152    // encoded in the instruction payload (e.g. branch range) but internal
2153    // references are not instructions so while unbound they are encoded as
2154    // two consecutive brk instructions. The two 16-bit immediates are used
2155    // to encode the offset.
2156    offset >>= kInstructionSizeLog2;
2157    DCHECK(is_int32(offset));
2158    uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2159    uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2160
2161    brk(high16);
2162    brk(low16);
2163  }
2164}
2165
2166
2167// Note:
2168// Below, a difference in case for the same letter indicates a
2169// negated bit.
2170// If b is 1, then B is 0.
2171Instr Assembler::ImmFP32(float imm) {
2172  DCHECK(IsImmFP32(imm));
2173  // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2174  uint32_t bits = float_to_rawbits(imm);
2175  // bit7: a000.0000
2176  uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2177  // bit6: 0b00.0000
2178  uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2179  // bit5_to_0: 00cd.efgh
2180  uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2181
2182  return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2183}
2184
2185
2186Instr Assembler::ImmFP64(double imm) {
2187  DCHECK(IsImmFP64(imm));
2188  // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2189  //       0000.0000.0000.0000.0000.0000.0000.0000
2190  uint64_t bits = double_to_rawbits(imm);
2191  // bit7: a000.0000
2192  uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
2193  // bit6: 0b00.0000
2194  uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
2195  // bit5_to_0: 00cd.efgh
2196  uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
2197
2198  return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
2199}
2200
2201
2202// Code generation helpers.
2203void Assembler::MoveWide(const Register& rd,
2204                         uint64_t imm,
2205                         int shift,
2206                         MoveWideImmediateOp mov_op) {
2207  // Ignore the top 32 bits of an immediate if we're moving to a W register.
2208  if (rd.Is32Bits()) {
2209    // Check that the top 32 bits are zero (a positive 32-bit number) or top
2210    // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2211    DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2212           ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2213    imm &= kWRegMask;
2214  }
2215
2216  if (shift >= 0) {
2217    // Explicit shift specified.
2218    DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2219    DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2220    shift /= 16;
2221  } else {
2222    // Calculate a new immediate and shift combination to encode the immediate
2223    // argument.
2224    shift = 0;
2225    if ((imm & ~0xffffUL) == 0) {
2226      // Nothing to do.
2227    } else if ((imm & ~(0xffffUL << 16)) == 0) {
2228      imm >>= 16;
2229      shift = 1;
2230    } else if ((imm & ~(0xffffUL << 32)) == 0) {
2231      DCHECK(rd.Is64Bits());
2232      imm >>= 32;
2233      shift = 2;
2234    } else if ((imm & ~(0xffffUL << 48)) == 0) {
2235      DCHECK(rd.Is64Bits());
2236      imm >>= 48;
2237      shift = 3;
2238    }
2239  }
2240
2241  DCHECK(is_uint16(imm));
2242
2243  Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2244       ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
2245}
2246
2247
2248void Assembler::AddSub(const Register& rd,
2249                       const Register& rn,
2250                       const Operand& operand,
2251                       FlagsUpdate S,
2252                       AddSubOp op) {
2253  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2254  DCHECK(!operand.NeedsRelocation(this));
2255  if (operand.IsImmediate()) {
2256    int64_t immediate = operand.ImmediateValue();
2257    DCHECK(IsImmAddSub(immediate));
2258    Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2259    Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2260         ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
2261  } else if (operand.IsShiftedRegister()) {
2262    DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2263    DCHECK(operand.shift() != ROR);
2264
2265    // For instructions of the form:
2266    //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
2267    //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
2268    //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
2269    //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2270    // or their 64-bit register equivalents, convert the operand from shifted to
2271    // extended register mode, and emit an add/sub extended instruction.
2272    if (rn.IsSP() || rd.IsSP()) {
2273      DCHECK(!(rd.IsSP() && (S == SetFlags)));
2274      DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2275                               AddSubExtendedFixed | op);
2276    } else {
2277      DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2278    }
2279  } else {
2280    DCHECK(operand.IsExtendedRegister());
2281    DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2282  }
2283}
2284
2285
2286void Assembler::AddSubWithCarry(const Register& rd,
2287                                const Register& rn,
2288                                const Operand& operand,
2289                                FlagsUpdate S,
2290                                AddSubWithCarryOp op) {
2291  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2292  DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2293  DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2294  DCHECK(!operand.NeedsRelocation(this));
2295  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2296}
2297
2298
2299void Assembler::hlt(int code) {
2300  DCHECK(is_uint16(code));
2301  Emit(HLT | ImmException(code));
2302}
2303
2304
2305void Assembler::brk(int code) {
2306  DCHECK(is_uint16(code));
2307  Emit(BRK | ImmException(code));
2308}
2309
2310
2311void Assembler::EmitStringData(const char* string) {
2312  size_t len = strlen(string) + 1;
2313  DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2314  EmitData(string, static_cast<int>(len));
2315  // Pad with NULL characters until pc_ is aligned.
2316  const char pad[] = {'\0', '\0', '\0', '\0'};
2317  STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2318  EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2319}
2320
2321
2322void Assembler::debug(const char* message, uint32_t code, Instr params) {
2323#ifdef USE_SIMULATOR
2324  // Don't generate simulator specific code if we are building a snapshot, which
2325  // might be run on real hardware.
2326  if (!serializer_enabled()) {
2327    // The arguments to the debug marker need to be contiguous in memory, so
2328    // make sure we don't try to emit pools.
2329    BlockPoolsScope scope(this);
2330
2331    Label start;
2332    bind(&start);
2333
2334    // Refer to instructions-arm64.h for a description of the marker and its
2335    // arguments.
2336    hlt(kImmExceptionIsDebug);
2337    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2338    dc32(code);
2339    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2340    dc32(params);
2341    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2342    EmitStringData(message);
2343    hlt(kImmExceptionIsUnreachable);
2344
2345    return;
2346  }
2347  // Fall through if Serializer is enabled.
2348#endif
2349
2350  if (params & BREAK) {
2351    hlt(kImmExceptionIsDebug);
2352  }
2353}
2354
2355
2356void Assembler::Logical(const Register& rd,
2357                        const Register& rn,
2358                        const Operand& operand,
2359                        LogicalOp op) {
2360  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2361  DCHECK(!operand.NeedsRelocation(this));
2362  if (operand.IsImmediate()) {
2363    int64_t immediate = operand.ImmediateValue();
2364    unsigned reg_size = rd.SizeInBits();
2365
2366    DCHECK(immediate != 0);
2367    DCHECK(immediate != -1);
2368    DCHECK(rd.Is64Bits() || is_uint32(immediate));
2369
2370    // If the operation is NOT, invert the operation and immediate.
2371    if ((op & NOT) == NOT) {
2372      op = static_cast<LogicalOp>(op & ~NOT);
2373      immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2374    }
2375
2376    unsigned n, imm_s, imm_r;
2377    if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2378      // Immediate can be encoded in the instruction.
2379      LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2380    } else {
2381      // This case is handled in the macro assembler.
2382      UNREACHABLE();
2383    }
2384  } else {
2385    DCHECK(operand.IsShiftedRegister());
2386    DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2387    Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2388    DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2389  }
2390}
2391
2392
2393void Assembler::LogicalImmediate(const Register& rd,
2394                                 const Register& rn,
2395                                 unsigned n,
2396                                 unsigned imm_s,
2397                                 unsigned imm_r,
2398                                 LogicalOp op) {
2399  unsigned reg_size = rd.SizeInBits();
2400  Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2401  Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2402       ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2403       Rn(rn));
2404}
2405
2406
2407void Assembler::ConditionalCompare(const Register& rn,
2408                                   const Operand& operand,
2409                                   StatusFlags nzcv,
2410                                   Condition cond,
2411                                   ConditionalCompareOp op) {
2412  Instr ccmpop;
2413  DCHECK(!operand.NeedsRelocation(this));
2414  if (operand.IsImmediate()) {
2415    int64_t immediate = operand.ImmediateValue();
2416    DCHECK(IsImmConditionalCompare(immediate));
2417    ccmpop = ConditionalCompareImmediateFixed | op |
2418             ImmCondCmp(static_cast<unsigned>(immediate));
2419  } else {
2420    DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2421    ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2422  }
2423  Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2424}
2425
2426
2427void Assembler::DataProcessing1Source(const Register& rd,
2428                                      const Register& rn,
2429                                      DataProcessing1SourceOp op) {
2430  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2431  Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2432}
2433
2434
2435void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2436                                        const FPRegister& fn,
2437                                        FPDataProcessing1SourceOp op) {
2438  Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2439}
2440
2441
2442void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2443                                        const FPRegister& fn,
2444                                        const FPRegister& fm,
2445                                        FPDataProcessing2SourceOp op) {
2446  DCHECK(fd.SizeInBits() == fn.SizeInBits());
2447  DCHECK(fd.SizeInBits() == fm.SizeInBits());
2448  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2449}
2450
2451
2452void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2453                                        const FPRegister& fn,
2454                                        const FPRegister& fm,
2455                                        const FPRegister& fa,
2456                                        FPDataProcessing3SourceOp op) {
2457  DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2458  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2459}
2460
2461
2462void Assembler::EmitShift(const Register& rd,
2463                          const Register& rn,
2464                          Shift shift,
2465                          unsigned shift_amount) {
2466  switch (shift) {
2467    case LSL:
2468      lsl(rd, rn, shift_amount);
2469      break;
2470    case LSR:
2471      lsr(rd, rn, shift_amount);
2472      break;
2473    case ASR:
2474      asr(rd, rn, shift_amount);
2475      break;
2476    case ROR:
2477      ror(rd, rn, shift_amount);
2478      break;
2479    default:
2480      UNREACHABLE();
2481  }
2482}
2483
2484
2485void Assembler::EmitExtendShift(const Register& rd,
2486                                const Register& rn,
2487                                Extend extend,
2488                                unsigned left_shift) {
2489  DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2490  unsigned reg_size = rd.SizeInBits();
2491  // Use the correct size of register.
2492  Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2493  // Bits extracted are high_bit:0.
2494  unsigned high_bit = (8 << (extend & 0x3)) - 1;
2495  // Number of bits left in the result that are not introduced by the shift.
2496  unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2497
2498  if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2499    switch (extend) {
2500      case UXTB:
2501      case UXTH:
2502      case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2503      case SXTB:
2504      case SXTH:
2505      case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2506      case UXTX:
2507      case SXTX: {
2508        DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2509        // Nothing to extend. Just shift.
2510        lsl(rd, rn_, left_shift);
2511        break;
2512      }
2513      default: UNREACHABLE();
2514    }
2515  } else {
2516    // No need to extend as the extended bits would be shifted away.
2517    lsl(rd, rn_, left_shift);
2518  }
2519}
2520
2521
2522void Assembler::DataProcShiftedRegister(const Register& rd,
2523                                        const Register& rn,
2524                                        const Operand& operand,
2525                                        FlagsUpdate S,
2526                                        Instr op) {
2527  DCHECK(operand.IsShiftedRegister());
2528  DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2529  DCHECK(!operand.NeedsRelocation(this));
2530  Emit(SF(rd) | op | Flags(S) |
2531       ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2532       Rm(operand.reg()) | Rn(rn) | Rd(rd));
2533}
2534
2535
2536void Assembler::DataProcExtendedRegister(const Register& rd,
2537                                         const Register& rn,
2538                                         const Operand& operand,
2539                                         FlagsUpdate S,
2540                                         Instr op) {
2541  DCHECK(!operand.NeedsRelocation(this));
2542  Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2543  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2544       ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2545       dest_reg | RnSP(rn));
2546}
2547
2548
2549bool Assembler::IsImmAddSub(int64_t immediate) {
2550  return is_uint12(immediate) ||
2551         (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2552}
2553
2554void Assembler::LoadStore(const CPURegister& rt,
2555                          const MemOperand& addr,
2556                          LoadStoreOp op) {
2557  Instr memop = op | Rt(rt) | RnSP(addr.base());
2558
2559  if (addr.IsImmediateOffset()) {
2560    LSDataSize size = CalcLSDataSize(op);
2561    if (IsImmLSScaled(addr.offset(), size)) {
2562      int offset = static_cast<int>(addr.offset());
2563      // Use the scaled addressing mode.
2564      Emit(LoadStoreUnsignedOffsetFixed | memop |
2565           ImmLSUnsigned(offset >> size));
2566    } else if (IsImmLSUnscaled(addr.offset())) {
2567      int offset = static_cast<int>(addr.offset());
2568      // Use the unscaled addressing mode.
2569      Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2570    } else {
2571      // This case is handled in the macro assembler.
2572      UNREACHABLE();
2573    }
2574  } else if (addr.IsRegisterOffset()) {
2575    Extend ext = addr.extend();
2576    Shift shift = addr.shift();
2577    unsigned shift_amount = addr.shift_amount();
2578
2579    // LSL is encoded in the option field as UXTX.
2580    if (shift == LSL) {
2581      ext = UXTX;
2582    }
2583
2584    // Shifts are encoded in one bit, indicating a left shift by the memory
2585    // access size.
2586    DCHECK((shift_amount == 0) ||
2587           (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2588    Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2589         ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2590  } else {
2591    // Pre-index and post-index modes.
2592    DCHECK(!rt.Is(addr.base()));
2593    if (IsImmLSUnscaled(addr.offset())) {
2594      int offset = static_cast<int>(addr.offset());
2595      if (addr.IsPreIndex()) {
2596        Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2597      } else {
2598        DCHECK(addr.IsPostIndex());
2599        Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2600      }
2601    } else {
2602      // This case is handled in the macro assembler.
2603      UNREACHABLE();
2604    }
2605  }
2606}
2607
2608
2609bool Assembler::IsImmLSUnscaled(int64_t offset) {
2610  return is_int9(offset);
2611}
2612
2613
2614bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2615  bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2616  return offset_is_size_multiple && is_uint12(offset >> size);
2617}
2618
2619
2620bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2621  bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2622  return offset_is_size_multiple && is_int7(offset >> size);
2623}
2624
2625
2626bool Assembler::IsImmLLiteral(int64_t offset) {
2627  int inst_size = static_cast<int>(kInstructionSizeLog2);
2628  bool offset_is_inst_multiple =
2629      (((offset >> inst_size) << inst_size) == offset);
2630  return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2631}
2632
2633
2634// Test if a given value can be encoded in the immediate field of a logical
2635// instruction.
2636// If it can be encoded, the function returns true, and values pointed to by n,
2637// imm_s and imm_r are updated with immediates encoded in the format required
2638// by the corresponding fields in the logical instruction.
2639// If it can not be encoded, the function returns false, and the values pointed
2640// to by n, imm_s and imm_r are undefined.
2641bool Assembler::IsImmLogical(uint64_t value,
2642                             unsigned width,
2643                             unsigned* n,
2644                             unsigned* imm_s,
2645                             unsigned* imm_r) {
2646  DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2647  DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2648
2649  bool negate = false;
2650
2651  // Logical immediates are encoded using parameters n, imm_s and imm_r using
2652  // the following table:
2653  //
2654  //    N   imms    immr    size        S             R
2655  //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
2656  //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
2657  //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
2658  //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
2659  //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
2660  //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
2661  // (s bits must not be all set)
2662  //
2663  // A pattern is constructed of size bits, where the least significant S+1 bits
2664  // are set. The pattern is rotated right by R, and repeated across a 32 or
2665  // 64-bit value, depending on destination register width.
2666  //
2667  // Put another way: the basic format of a logical immediate is a single
2668  // contiguous stretch of 1 bits, repeated across the whole word at intervals
2669  // given by a power of 2. To identify them quickly, we first locate the
2670  // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2671  // is different for every logical immediate, so it gives us all the
2672  // information we need to identify the only logical immediate that our input
2673  // could be, and then we simply check if that's the value we actually have.
2674  //
2675  // (The rotation parameter does give the possibility of the stretch of 1 bits
2676  // going 'round the end' of the word. To deal with that, we observe that in
2677  // any situation where that happens the bitwise NOT of the value is also a
2678  // valid logical immediate. So we simply invert the input whenever its low bit
2679  // is set, and then we know that the rotated case can't arise.)
2680
2681  if (value & 1) {
2682    // If the low bit is 1, negate the value, and set a flag to remember that we
2683    // did (so that we can adjust the return values appropriately).
2684    negate = true;
2685    value = ~value;
2686  }
2687
2688  if (width == kWRegSizeInBits) {
2689    // To handle 32-bit logical immediates, the very easiest thing is to repeat
2690    // the input value twice to make a 64-bit word. The correct encoding of that
2691    // as a logical immediate will also be the correct encoding of the 32-bit
2692    // value.
2693
2694    // The most-significant 32 bits may not be zero (ie. negate is true) so
2695    // shift the value left before duplicating it.
2696    value <<= kWRegSizeInBits;
2697    value |= value >> kWRegSizeInBits;
2698  }
2699
2700  // The basic analysis idea: imagine our input word looks like this.
2701  //
2702  //    0011111000111110001111100011111000111110001111100011111000111110
2703  //                                                          c  b    a
2704  //                                                          |<--d-->|
2705  //
2706  // We find the lowest set bit (as an actual power-of-2 value, not its index)
2707  // and call it a. Then we add a to our original number, which wipes out the
2708  // bottommost stretch of set bits and replaces it with a 1 carried into the
2709  // next zero bit. Then we look for the new lowest set bit, which is in
2710  // position b, and subtract it, so now our number is just like the original
2711  // but with the lowest stretch of set bits completely gone. Now we find the
2712  // lowest set bit again, which is position c in the diagram above. Then we'll
2713  // measure the distance d between bit positions a and c (using CLZ), and that
2714  // tells us that the only valid logical immediate that could possibly be equal
2715  // to this number is the one in which a stretch of bits running from a to just
2716  // below b is replicated every d bits.
2717  uint64_t a = LargestPowerOf2Divisor(value);
2718  uint64_t value_plus_a = value + a;
2719  uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2720  uint64_t value_plus_a_minus_b = value_plus_a - b;
2721  uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2722
2723  int d, clz_a, out_n;
2724  uint64_t mask;
2725
2726  if (c != 0) {
2727    // The general case, in which there is more than one stretch of set bits.
2728    // Compute the repeat distance d, and set up a bitmask covering the basic
2729    // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2730    // of these cases the N bit of the output will be zero.
2731    clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2732    int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2733    d = clz_a - clz_c;
2734    mask = ((V8_UINT64_C(1) << d) - 1);
2735    out_n = 0;
2736  } else {
2737    // Handle degenerate cases.
2738    //
2739    // If any of those 'find lowest set bit' operations didn't find a set bit at
2740    // all, then the word will have been zero thereafter, so in particular the
2741    // last lowest_set_bit operation will have returned zero. So we can test for
2742    // all the special case conditions in one go by seeing if c is zero.
2743    if (a == 0) {
2744      // The input was zero (or all 1 bits, which will come to here too after we
2745      // inverted it at the start of the function), for which we just return
2746      // false.
2747      return false;
2748    } else {
2749      // Otherwise, if c was zero but a was not, then there's just one stretch
2750      // of set bits in our word, meaning that we have the trivial case of
2751      // d == 64 and only one 'repetition'. Set up all the same variables as in
2752      // the general case above, and set the N bit in the output.
2753      clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2754      d = 64;
2755      mask = ~V8_UINT64_C(0);
2756      out_n = 1;
2757    }
2758  }
2759
2760  // If the repeat period d is not a power of two, it can't be encoded.
2761  if (!IS_POWER_OF_TWO(d)) {
2762    return false;
2763  }
2764
2765  if (((b - a) & ~mask) != 0) {
2766    // If the bit stretch (b - a) does not fit within the mask derived from the
2767    // repeat period, then fail.
2768    return false;
2769  }
2770
2771  // The only possible option is b - a repeated every d bits. Now we're going to
2772  // actually construct the valid logical immediate derived from that
2773  // specification, and see if it equals our original input.
2774  //
2775  // To repeat a value every d bits, we multiply it by a number of the form
2776  // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2777  // be derived using a table lookup on CLZ(d).
2778  static const uint64_t multipliers[] = {
2779    0x0000000000000001UL,
2780    0x0000000100000001UL,
2781    0x0001000100010001UL,
2782    0x0101010101010101UL,
2783    0x1111111111111111UL,
2784    0x5555555555555555UL,
2785  };
2786  int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2787  // Ensure that the index to the multipliers array is within bounds.
2788  DCHECK((multiplier_idx >= 0) &&
2789         (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2790  uint64_t multiplier = multipliers[multiplier_idx];
2791  uint64_t candidate = (b - a) * multiplier;
2792
2793  if (value != candidate) {
2794    // The candidate pattern doesn't match our input value, so fail.
2795    return false;
2796  }
2797
2798  // We have a match! This is a valid logical immediate, so now we have to
2799  // construct the bits and pieces of the instruction encoding that generates
2800  // it.
2801
2802  // Count the set bits in our basic stretch. The special case of clz(0) == -1
2803  // makes the answer come out right for stretches that reach the very top of
2804  // the word (e.g. numbers like 0xffffc00000000000).
2805  int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2806  int s = clz_a - clz_b;
2807
2808  // Decide how many bits to rotate right by, to put the low bit of that basic
2809  // stretch in position a.
2810  int r;
2811  if (negate) {
2812    // If we inverted the input right at the start of this function, here's
2813    // where we compensate: the number of set bits becomes the number of clear
2814    // bits, and the rotation count is based on position b rather than position
2815    // a (since b is the location of the 'lowest' 1 bit after inversion).
2816    s = d - s;
2817    r = (clz_b + 1) & (d - 1);
2818  } else {
2819    r = (clz_a + 1) & (d - 1);
2820  }
2821
2822  // Now we're done, except for having to encode the S output in such a way that
2823  // it gives both the number of set bits and the length of the repeated
2824  // segment. The s field is encoded like this:
2825  //
2826  //     imms    size        S
2827  //    ssssss    64    UInt(ssssss)
2828  //    0sssss    32    UInt(sssss)
2829  //    10ssss    16    UInt(ssss)
2830  //    110sss     8    UInt(sss)
2831  //    1110ss     4    UInt(ss)
2832  //    11110s     2    UInt(s)
2833  //
2834  // So we 'or' (-d << 1) with our computed s to form imms.
2835  *n = out_n;
2836  *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2837  *imm_r = r;
2838
2839  return true;
2840}
2841
2842
2843bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2844  return is_uint5(immediate);
2845}
2846
2847
2848bool Assembler::IsImmFP32(float imm) {
2849  // Valid values will have the form:
2850  // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2851  uint32_t bits = float_to_rawbits(imm);
2852  // bits[19..0] are cleared.
2853  if ((bits & 0x7ffff) != 0) {
2854    return false;
2855  }
2856
2857  // bits[29..25] are all set or all cleared.
2858  uint32_t b_pattern = (bits >> 16) & 0x3e00;
2859  if (b_pattern != 0 && b_pattern != 0x3e00) {
2860    return false;
2861  }
2862
2863  // bit[30] and bit[29] are opposite.
2864  if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2865    return false;
2866  }
2867
2868  return true;
2869}
2870
2871
2872bool Assembler::IsImmFP64(double imm) {
2873  // Valid values will have the form:
2874  // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2875  // 0000.0000.0000.0000.0000.0000.0000.0000
2876  uint64_t bits = double_to_rawbits(imm);
2877  // bits[47..0] are cleared.
2878  if ((bits & 0xffffffffffffL) != 0) {
2879    return false;
2880  }
2881
2882  // bits[61..54] are all set or all cleared.
2883  uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2884  if (b_pattern != 0 && b_pattern != 0x3fc0) {
2885    return false;
2886  }
2887
2888  // bit[62] and bit[61] are opposite.
2889  if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2890    return false;
2891  }
2892
2893  return true;
2894}
2895
2896
2897void Assembler::GrowBuffer() {
2898  if (!own_buffer_) FATAL("external code buffer is too small");
2899
2900  // Compute new buffer size.
2901  CodeDesc desc;  // the new buffer
2902  if (buffer_size_ < 1 * MB) {
2903    desc.buffer_size = 2 * buffer_size_;
2904  } else {
2905    desc.buffer_size = buffer_size_ + 1 * MB;
2906  }
2907  CHECK_GT(desc.buffer_size, 0);  // No overflow.
2908
2909  byte* buffer = reinterpret_cast<byte*>(buffer_);
2910
2911  // Set up new buffer.
2912  desc.buffer = NewArray<byte>(desc.buffer_size);
2913  desc.origin = this;
2914
2915  desc.instr_size = pc_offset();
2916  desc.reloc_size =
2917      static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
2918
2919  // Copy the data.
2920  intptr_t pc_delta = desc.buffer - buffer;
2921  intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2922                      (buffer + buffer_size_);
2923  memmove(desc.buffer, buffer, desc.instr_size);
2924  memmove(reloc_info_writer.pos() + rc_delta,
2925          reloc_info_writer.pos(), desc.reloc_size);
2926
2927  // Switch buffers.
2928  DeleteArray(buffer_);
2929  buffer_ = desc.buffer;
2930  buffer_size_ = desc.buffer_size;
2931  pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2932  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2933                               reloc_info_writer.last_pc() + pc_delta);
2934
2935  // None of our relocation types are pc relative pointing outside the code
2936  // buffer nor pc absolute pointing inside the code buffer, so there is no need
2937  // to relocate any emitted relocation entries.
2938
2939  // Relocate internal references.
2940  for (auto pos : internal_reference_positions_) {
2941    intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2942    *p += pc_delta;
2943  }
2944
2945  // Pending relocation entries are also relative, no need to relocate.
2946}
2947
2948
2949void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2950  // We do not try to reuse pool constants.
2951  RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2952  if (((rmode >= RelocInfo::COMMENT) &&
2953       (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
2954      (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2955      (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2956      (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) ||
2957      (rmode == RelocInfo::DEOPT_INLINING_ID) ||
2958      (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID)) {
2959    // Adjust code for new modes.
2960    DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2961           RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
2962           RelocInfo::IsDeoptPosition(rmode) ||
2963           RelocInfo::IsInternalReference(rmode) ||
2964           RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode));
2965    // These modes do not need an entry in the constant pool.
2966  } else {
2967    constpool_.RecordEntry(data, rmode);
2968    // Make sure the constant pool is not emitted in place of the next
2969    // instruction for which we just recorded relocation info.
2970    BlockConstPoolFor(1);
2971  }
2972
2973  if (!RelocInfo::IsNone(rmode)) {
2974    // Don't record external references unless the heap will be serialized.
2975    if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2976        !serializer_enabled() && !emit_debug_code()) {
2977      return;
2978    }
2979    DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
2980    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2981      RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2982                                       rmode, RecordedAstId().ToInt(), NULL);
2983      ClearRecordedAstId();
2984      reloc_info_writer.Write(&reloc_info_with_ast_id);
2985    } else {
2986      reloc_info_writer.Write(&rinfo);
2987    }
2988  }
2989}
2990
2991
2992void Assembler::BlockConstPoolFor(int instructions) {
2993  int pc_limit = pc_offset() + instructions * kInstructionSize;
2994  if (no_const_pool_before_ < pc_limit) {
2995    no_const_pool_before_ = pc_limit;
2996    // Make sure the pool won't be blocked for too long.
2997    DCHECK(pc_limit < constpool_.MaxPcOffset());
2998  }
2999
3000  if (next_constant_pool_check_ < no_const_pool_before_) {
3001    next_constant_pool_check_ = no_const_pool_before_;
3002  }
3003}
3004
3005
3006void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3007  // Some short sequence of instruction mustn't be broken up by constant pool
3008  // emission, such sequences are protected by calls to BlockConstPoolFor and
3009  // BlockConstPoolScope.
3010  if (is_const_pool_blocked()) {
3011    // Something is wrong if emission is forced and blocked at the same time.
3012    DCHECK(!force_emit);
3013    return;
3014  }
3015
3016  // There is nothing to do if there are no pending constant pool entries.
3017  if (constpool_.IsEmpty())  {
3018    // Calculate the offset of the next check.
3019    SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3020    return;
3021  }
3022
3023  // We emit a constant pool when:
3024  //  * requested to do so by parameter force_emit (e.g. after each function).
3025  //  * the distance to the first instruction accessing the constant pool is
3026  //    kApproxMaxDistToConstPool or more.
3027  //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
3028  int dist = constpool_.DistanceToFirstUse();
3029  int count = constpool_.EntryCount();
3030  if (!force_emit &&
3031      (dist < kApproxMaxDistToConstPool) &&
3032      (count < kApproxMaxPoolEntryCount)) {
3033    return;
3034  }
3035
3036
3037  // Emit veneers for branches that would go out of range during emission of the
3038  // constant pool.
3039  int worst_case_size = constpool_.WorstCaseSize();
3040  CheckVeneerPool(false, require_jump,
3041                  kVeneerDistanceMargin + worst_case_size);
3042
3043  // Check that the code buffer is large enough before emitting the constant
3044  // pool (this includes the gap to the relocation information).
3045  int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
3046  while (buffer_space() <= needed_space) {
3047    GrowBuffer();
3048  }
3049
3050  Label size_check;
3051  bind(&size_check);
3052  constpool_.Emit(require_jump);
3053  DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
3054         static_cast<unsigned>(worst_case_size));
3055
3056  // Since a constant pool was just emitted, move the check offset forward by
3057  // the standard interval.
3058  SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3059}
3060
3061
3062bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
3063  // Account for the branch around the veneers and the guard.
3064  int protection_offset = 2 * kInstructionSize;
3065  return pc_offset() > max_reachable_pc - margin - protection_offset -
3066    static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
3067}
3068
3069
3070void Assembler::RecordVeneerPool(int location_offset, int size) {
3071  RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
3072                  static_cast<intptr_t>(size), NULL);
3073  reloc_info_writer.Write(&rinfo);
3074}
3075
3076
3077void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
3078  BlockPoolsScope scope(this);
3079  RecordComment("[ Veneers");
3080
3081  // The exact size of the veneer pool must be recorded (see the comment at the
3082  // declaration site of RecordConstPool()), but computing the number of
3083  // veneers that will be generated is not obvious. So instead we remember the
3084  // current position and will record the size after the pool has been
3085  // generated.
3086  Label size_check;
3087  bind(&size_check);
3088  int veneer_pool_relocinfo_loc = pc_offset();
3089
3090  Label end;
3091  if (need_protection) {
3092    b(&end);
3093  }
3094
3095  EmitVeneersGuard();
3096
3097  Label veneer_size_check;
3098
3099  std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3100
3101  it = unresolved_branches_.begin();
3102  while (it != unresolved_branches_.end()) {
3103    if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3104      Instruction* branch = InstructionAt(it->second.pc_offset_);
3105      Label* label = it->second.label_;
3106
3107#ifdef DEBUG
3108      bind(&veneer_size_check);
3109#endif
3110      // Patch the branch to point to the current position, and emit a branch
3111      // to the label.
3112      Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3113      RemoveBranchFromLabelLinkChain(branch, label, veneer);
3114      branch->SetImmPCOffsetTarget(isolate(), veneer);
3115      b(label);
3116#ifdef DEBUG
3117      DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3118             static_cast<uint64_t>(kMaxVeneerCodeSize));
3119      veneer_size_check.Unuse();
3120#endif
3121
3122      it_to_delete = it++;
3123      unresolved_branches_.erase(it_to_delete);
3124    } else {
3125      ++it;
3126    }
3127  }
3128
3129  // Record the veneer pool size.
3130  int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
3131  RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3132
3133  if (unresolved_branches_.empty()) {
3134    next_veneer_pool_check_ = kMaxInt;
3135  } else {
3136    next_veneer_pool_check_ =
3137      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3138  }
3139
3140  bind(&end);
3141
3142  RecordComment("]");
3143}
3144
3145
3146void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3147                                int margin) {
3148  // There is nothing to do if there are no pending veneer pool entries.
3149  if (unresolved_branches_.empty())  {
3150    DCHECK(next_veneer_pool_check_ == kMaxInt);
3151    return;
3152  }
3153
3154  DCHECK(pc_offset() < unresolved_branches_first_limit());
3155
3156  // Some short sequence of instruction mustn't be broken up by veneer pool
3157  // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3158  // BlockVeneerPoolScope.
3159  if (is_veneer_pool_blocked()) {
3160    DCHECK(!force_emit);
3161    return;
3162  }
3163
3164  if (!require_jump) {
3165    // Prefer emitting veneers protected by an existing instruction.
3166    margin *= kVeneerNoProtectionFactor;
3167  }
3168  if (force_emit || ShouldEmitVeneers(margin)) {
3169    EmitVeneers(force_emit, require_jump, margin);
3170  } else {
3171    next_veneer_pool_check_ =
3172      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3173  }
3174}
3175
3176
3177int Assembler::buffer_space() const {
3178  return static_cast<int>(reloc_info_writer.pos() -
3179                          reinterpret_cast<byte*>(pc_));
3180}
3181
3182
3183void Assembler::RecordConstPool(int size) {
3184  // We only need this for debugger support, to correctly compute offsets in the
3185  // code.
3186  RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3187}
3188
3189
3190void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3191  // The code at the current instruction should be:
3192  //   adr  rd, 0
3193  //   nop  (adr_far)
3194  //   nop  (adr_far)
3195  //   movz scratch, 0
3196
3197  // Verify the expected code.
3198  Instruction* expected_adr = InstructionAt(0);
3199  CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3200  int rd_code = expected_adr->Rd();
3201  for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3202    CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3203  }
3204  Instruction* expected_movz =
3205      InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3206  CHECK(expected_movz->IsMovz() &&
3207        (expected_movz->ImmMoveWide() == 0) &&
3208        (expected_movz->ShiftMoveWide() == 0));
3209  int scratch_code = expected_movz->Rd();
3210
3211  // Patch to load the correct address.
3212  Register rd = Register::XRegFromCode(rd_code);
3213  Register scratch = Register::XRegFromCode(scratch_code);
3214  // Addresses are only 48 bits.
3215  adr(rd, target_offset & 0xFFFF);
3216  movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3217  movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3218  DCHECK((target_offset >> 48) == 0);
3219  add(rd, rd, scratch);
3220}
3221
3222
3223}  // namespace internal
3224}  // namespace v8
3225
3226#endif  // V8_TARGET_ARCH_ARM64
3227