1// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
6#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
7
8#include <vector>
9
10#include "src/arm64/assembler-arm64.h"
11#include "src/bailout-reason.h"
12#include "src/base/bits.h"
13#include "src/globals.h"
14
15// Simulator specific helpers.
16#if USE_SIMULATOR
17  // TODO(all): If possible automatically prepend an indicator like
18  // UNIMPLEMENTED or LOCATION.
19  #define ASM_UNIMPLEMENTED(message)                                         \
20  __ Debug(message, __LINE__, NO_PARAM)
21  #define ASM_UNIMPLEMENTED_BREAK(message)                                   \
22  __ Debug(message, __LINE__,                                                \
23           FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
24#if DEBUG
25#define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
26#else
27#define ASM_LOCATION(message)
28#endif
29#else
30#define ASM_UNIMPLEMENTED(message)
31#define ASM_UNIMPLEMENTED_BREAK(message)
32#define ASM_LOCATION(message)
33#endif
34
35
36namespace v8 {
37namespace internal {
38
39// Give alias names to registers for calling conventions.
40#define kReturnRegister0 x0
41#define kReturnRegister1 x1
42#define kReturnRegister2 x2
43#define kJSFunctionRegister x1
44#define kContextRegister cp
45#define kAllocateSizeRegister x1
46#define kInterpreterAccumulatorRegister x0
47#define kInterpreterBytecodeOffsetRegister x19
48#define kInterpreterBytecodeArrayRegister x20
49#define kInterpreterDispatchTableRegister x21
50#define kJavaScriptCallArgCountRegister x0
51#define kJavaScriptCallNewTargetRegister x3
52#define kRuntimeCallFunctionRegister x1
53#define kRuntimeCallArgCountRegister x0
54
55#define LS_MACRO_LIST(V)                                      \
56  V(Ldrb, Register&, rt, LDRB_w)                              \
57  V(Strb, Register&, rt, STRB_w)                              \
58  V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w)  \
59  V(Ldrh, Register&, rt, LDRH_w)                              \
60  V(Strh, Register&, rt, STRH_w)                              \
61  V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w)  \
62  V(Ldr, CPURegister&, rt, LoadOpFor(rt))                     \
63  V(Str, CPURegister&, rt, StoreOpFor(rt))                    \
64  V(Ldrsw, Register&, rt, LDRSW_x)
65
66#define LSPAIR_MACRO_LIST(V)                             \
67  V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2))  \
68  V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
69  V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
70
71#define LDA_STL_MACRO_LIST(V) \
72  V(Ldarb, ldarb)             \
73  V(Ldarh, ldarh)             \
74  V(Ldar, ldar)               \
75  V(Ldaxrb, ldaxrb)           \
76  V(Ldaxrh, ldaxrh)           \
77  V(Ldaxr, ldaxr)             \
78  V(Stlrb, stlrb)             \
79  V(Stlrh, stlrh)             \
80  V(Stlr, stlr)
81
82#define STLX_MACRO_LIST(V) \
83  V(Stlxrb, stlxrb)        \
84  V(Stlxrh, stlxrh)        \
85  V(Stlxr, stlxr)
86
87// ----------------------------------------------------------------------------
88// Static helper functions
89
90// Generate a MemOperand for loading a field from an object.
91inline MemOperand FieldMemOperand(Register object, int offset);
92inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
93
94// Generate a MemOperand for loading a SMI from memory.
95inline MemOperand UntagSmiMemOperand(Register object, int offset);
96
97
98// ----------------------------------------------------------------------------
99// MacroAssembler
100
101enum BranchType {
102  // Copies of architectural conditions.
103  // The associated conditions can be used in place of those, the code will
104  // take care of reinterpreting them with the correct type.
105  integer_eq = eq,
106  integer_ne = ne,
107  integer_hs = hs,
108  integer_lo = lo,
109  integer_mi = mi,
110  integer_pl = pl,
111  integer_vs = vs,
112  integer_vc = vc,
113  integer_hi = hi,
114  integer_ls = ls,
115  integer_ge = ge,
116  integer_lt = lt,
117  integer_gt = gt,
118  integer_le = le,
119  integer_al = al,
120  integer_nv = nv,
121
122  // These two are *different* from the architectural codes al and nv.
123  // 'always' is used to generate unconditional branches.
124  // 'never' is used to not generate a branch (generally as the inverse
125  // branch type of 'always).
126  always, never,
127  // cbz and cbnz
128  reg_zero, reg_not_zero,
129  // tbz and tbnz
130  reg_bit_clear, reg_bit_set,
131
132  // Aliases.
133  kBranchTypeFirstCondition = eq,
134  kBranchTypeLastCondition = nv,
135  kBranchTypeFirstUsingReg = reg_zero,
136  kBranchTypeFirstUsingBit = reg_bit_clear
137};
138
139inline BranchType InvertBranchType(BranchType type) {
140  if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
141    return static_cast<BranchType>(
142        NegateCondition(static_cast<Condition>(type)));
143  } else {
144    return static_cast<BranchType>(type ^ 1);
145  }
146}
147
148enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
149enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
150enum PointersToHereCheck {
151  kPointersToHereMaybeInteresting,
152  kPointersToHereAreAlwaysInteresting
153};
154enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
155enum TargetAddressStorageMode {
156  CAN_INLINE_TARGET_ADDRESS,
157  NEVER_INLINE_TARGET_ADDRESS
158};
159enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
160enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
161enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
162enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
163enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
164
165class MacroAssembler : public Assembler {
166 public:
167  MacroAssembler(Isolate* isolate, byte* buffer, unsigned buffer_size,
168                 CodeObjectRequired create_code_object);
169
170  inline Handle<Object> CodeObject();
171
172  // Instruction set functions ------------------------------------------------
173  // Logical macros.
174  inline void And(const Register& rd,
175                  const Register& rn,
176                  const Operand& operand);
177  inline void Ands(const Register& rd,
178                   const Register& rn,
179                   const Operand& operand);
180  inline void Bic(const Register& rd,
181                  const Register& rn,
182                  const Operand& operand);
183  inline void Bics(const Register& rd,
184                   const Register& rn,
185                   const Operand& operand);
186  inline void Orr(const Register& rd,
187                  const Register& rn,
188                  const Operand& operand);
189  inline void Orn(const Register& rd,
190                  const Register& rn,
191                  const Operand& operand);
192  inline void Eor(const Register& rd,
193                  const Register& rn,
194                  const Operand& operand);
195  inline void Eon(const Register& rd,
196                  const Register& rn,
197                  const Operand& operand);
198  inline void Tst(const Register& rn, const Operand& operand);
199  void LogicalMacro(const Register& rd,
200                    const Register& rn,
201                    const Operand& operand,
202                    LogicalOp op);
203
204  // Add and sub macros.
205  inline void Add(const Register& rd,
206                  const Register& rn,
207                  const Operand& operand);
208  inline void Adds(const Register& rd,
209                   const Register& rn,
210                   const Operand& operand);
211  inline void Sub(const Register& rd,
212                  const Register& rn,
213                  const Operand& operand);
214  inline void Subs(const Register& rd,
215                   const Register& rn,
216                   const Operand& operand);
217  inline void Cmn(const Register& rn, const Operand& operand);
218  inline void Cmp(const Register& rn, const Operand& operand);
219  inline void Neg(const Register& rd,
220                  const Operand& operand);
221  inline void Negs(const Register& rd,
222                   const Operand& operand);
223
224  void AddSubMacro(const Register& rd,
225                   const Register& rn,
226                   const Operand& operand,
227                   FlagsUpdate S,
228                   AddSubOp op);
229
230  // Add/sub with carry macros.
231  inline void Adc(const Register& rd,
232                  const Register& rn,
233                  const Operand& operand);
234  inline void Adcs(const Register& rd,
235                   const Register& rn,
236                   const Operand& operand);
237  inline void Sbc(const Register& rd,
238                  const Register& rn,
239                  const Operand& operand);
240  inline void Sbcs(const Register& rd,
241                   const Register& rn,
242                   const Operand& operand);
243  inline void Ngc(const Register& rd,
244                  const Operand& operand);
245  inline void Ngcs(const Register& rd,
246                   const Operand& operand);
247  void AddSubWithCarryMacro(const Register& rd,
248                            const Register& rn,
249                            const Operand& operand,
250                            FlagsUpdate S,
251                            AddSubWithCarryOp op);
252
253  // Move macros.
254  void Mov(const Register& rd,
255           const Operand& operand,
256           DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
257  void Mov(const Register& rd, uint64_t imm);
258  inline void Mvn(const Register& rd, uint64_t imm);
259  void Mvn(const Register& rd, const Operand& operand);
260  static bool IsImmMovn(uint64_t imm, unsigned reg_size);
261  static bool IsImmMovz(uint64_t imm, unsigned reg_size);
262  static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
263
264  // Try to move an immediate into the destination register in a single
265  // instruction. Returns true for success, and updates the contents of dst.
266  // Returns false, otherwise.
267  bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
268
269  // Move an immediate into register dst, and return an Operand object for use
270  // with a subsequent instruction that accepts a shift. The value moved into
271  // dst is not necessarily equal to imm; it may have had a shifting operation
272  // applied to it that will be subsequently undone by the shift applied in the
273  // Operand.
274  Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm);
275
276  // Conditional macros.
277  inline void Ccmp(const Register& rn,
278                   const Operand& operand,
279                   StatusFlags nzcv,
280                   Condition cond);
281  inline void Ccmn(const Register& rn,
282                   const Operand& operand,
283                   StatusFlags nzcv,
284                   Condition cond);
285  void ConditionalCompareMacro(const Register& rn,
286                               const Operand& operand,
287                               StatusFlags nzcv,
288                               Condition cond,
289                               ConditionalCompareOp op);
290  void Csel(const Register& rd,
291            const Register& rn,
292            const Operand& operand,
293            Condition cond);
294
295  // Load/store macros.
296#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
297  inline void FN(const REGTYPE REG, const MemOperand& addr);
298  LS_MACRO_LIST(DECLARE_FUNCTION)
299#undef DECLARE_FUNCTION
300
301  void LoadStoreMacro(const CPURegister& rt,
302                      const MemOperand& addr,
303                      LoadStoreOp op);
304
305#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
306  inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
307  LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
308#undef DECLARE_FUNCTION
309
310  void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
311                          const MemOperand& addr, LoadStorePairOp op);
312
313// Load-acquire/store-release macros.
314#define DECLARE_FUNCTION(FN, OP) \
315  inline void FN(const Register& rt, const Register& rn);
316  LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
317#undef DECLARE_FUNCTION
318
319#define DECLARE_FUNCTION(FN, OP) \
320  inline void FN(const Register& rs, const Register& rt, const Register& rn);
321  STLX_MACRO_LIST(DECLARE_FUNCTION)
322#undef DECLARE_FUNCTION
323
324  // V8-specific load/store helpers.
325  void Load(const Register& rt, const MemOperand& addr, Representation r);
326  void Store(const Register& rt, const MemOperand& addr, Representation r);
327
328  enum AdrHint {
329    // The target must be within the immediate range of adr.
330    kAdrNear,
331    // The target may be outside of the immediate range of adr. Additional
332    // instructions may be emitted.
333    kAdrFar
334  };
335  void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
336
337  // Remaining instructions are simple pass-through calls to the assembler.
338  inline void Asr(const Register& rd, const Register& rn, unsigned shift);
339  inline void Asr(const Register& rd, const Register& rn, const Register& rm);
340
341  // Branch type inversion relies on these relations.
342  STATIC_ASSERT((reg_zero      == (reg_not_zero ^ 1)) &&
343                (reg_bit_clear == (reg_bit_set ^ 1)) &&
344                (always        == (never ^ 1)));
345
346  void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
347
348  inline void B(Label* label);
349  inline void B(Condition cond, Label* label);
350  void B(Label* label, Condition cond);
351  inline void Bfi(const Register& rd,
352                  const Register& rn,
353                  unsigned lsb,
354                  unsigned width);
355  inline void Bfxil(const Register& rd,
356                    const Register& rn,
357                    unsigned lsb,
358                    unsigned width);
359  inline void Bind(Label* label);
360  inline void Bl(Label* label);
361  inline void Blr(const Register& xn);
362  inline void Br(const Register& xn);
363  inline void Brk(int code);
364  void Cbnz(const Register& rt, Label* label);
365  void Cbz(const Register& rt, Label* label);
366  inline void Cinc(const Register& rd, const Register& rn, Condition cond);
367  inline void Cinv(const Register& rd, const Register& rn, Condition cond);
368  inline void Cls(const Register& rd, const Register& rn);
369  inline void Clz(const Register& rd, const Register& rn);
370  inline void Cneg(const Register& rd, const Register& rn, Condition cond);
371  inline void CzeroX(const Register& rd, Condition cond);
372  inline void CmovX(const Register& rd, const Register& rn, Condition cond);
373  inline void Cset(const Register& rd, Condition cond);
374  inline void Csetm(const Register& rd, Condition cond);
375  inline void Csinc(const Register& rd,
376                    const Register& rn,
377                    const Register& rm,
378                    Condition cond);
379  inline void Csinv(const Register& rd,
380                    const Register& rn,
381                    const Register& rm,
382                    Condition cond);
383  inline void Csneg(const Register& rd,
384                    const Register& rn,
385                    const Register& rm,
386                    Condition cond);
387  inline void Dmb(BarrierDomain domain, BarrierType type);
388  inline void Dsb(BarrierDomain domain, BarrierType type);
389  inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
390  inline void Extr(const Register& rd,
391                   const Register& rn,
392                   const Register& rm,
393                   unsigned lsb);
394  inline void Fabs(const FPRegister& fd, const FPRegister& fn);
395  inline void Fadd(const FPRegister& fd,
396                   const FPRegister& fn,
397                   const FPRegister& fm);
398  inline void Fccmp(const FPRegister& fn,
399                    const FPRegister& fm,
400                    StatusFlags nzcv,
401                    Condition cond);
402  inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
403  inline void Fcmp(const FPRegister& fn, double value);
404  inline void Fcsel(const FPRegister& fd,
405                    const FPRegister& fn,
406                    const FPRegister& fm,
407                    Condition cond);
408  inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
409  inline void Fcvtas(const Register& rd, const FPRegister& fn);
410  inline void Fcvtau(const Register& rd, const FPRegister& fn);
411  inline void Fcvtms(const Register& rd, const FPRegister& fn);
412  inline void Fcvtmu(const Register& rd, const FPRegister& fn);
413  inline void Fcvtns(const Register& rd, const FPRegister& fn);
414  inline void Fcvtnu(const Register& rd, const FPRegister& fn);
415  inline void Fcvtzs(const Register& rd, const FPRegister& fn);
416  inline void Fcvtzu(const Register& rd, const FPRegister& fn);
417  inline void Fdiv(const FPRegister& fd,
418                   const FPRegister& fn,
419                   const FPRegister& fm);
420  inline void Fmadd(const FPRegister& fd,
421                    const FPRegister& fn,
422                    const FPRegister& fm,
423                    const FPRegister& fa);
424  inline void Fmax(const FPRegister& fd,
425                   const FPRegister& fn,
426                   const FPRegister& fm);
427  inline void Fmaxnm(const FPRegister& fd,
428                     const FPRegister& fn,
429                     const FPRegister& fm);
430  inline void Fmin(const FPRegister& fd,
431                   const FPRegister& fn,
432                   const FPRegister& fm);
433  inline void Fminnm(const FPRegister& fd,
434                     const FPRegister& fn,
435                     const FPRegister& fm);
436  inline void Fmov(FPRegister fd, FPRegister fn);
437  inline void Fmov(FPRegister fd, Register rn);
438  // Provide explicit double and float interfaces for FP immediate moves, rather
439  // than relying on implicit C++ casts. This allows signalling NaNs to be
440  // preserved when the immediate matches the format of fd. Most systems convert
441  // signalling NaNs to quiet NaNs when converting between float and double.
442  inline void Fmov(FPRegister fd, double imm);
443  inline void Fmov(FPRegister fd, float imm);
444  // Provide a template to allow other types to be converted automatically.
445  template<typename T>
446  void Fmov(FPRegister fd, T imm) {
447    DCHECK(allow_macro_instructions_);
448    Fmov(fd, static_cast<double>(imm));
449  }
450  inline void Fmov(Register rd, FPRegister fn);
451  inline void Fmsub(const FPRegister& fd,
452                    const FPRegister& fn,
453                    const FPRegister& fm,
454                    const FPRegister& fa);
455  inline void Fmul(const FPRegister& fd,
456                   const FPRegister& fn,
457                   const FPRegister& fm);
458  inline void Fneg(const FPRegister& fd, const FPRegister& fn);
459  inline void Fnmadd(const FPRegister& fd,
460                     const FPRegister& fn,
461                     const FPRegister& fm,
462                     const FPRegister& fa);
463  inline void Fnmsub(const FPRegister& fd,
464                     const FPRegister& fn,
465                     const FPRegister& fm,
466                     const FPRegister& fa);
467  inline void Frinta(const FPRegister& fd, const FPRegister& fn);
468  inline void Frintm(const FPRegister& fd, const FPRegister& fn);
469  inline void Frintn(const FPRegister& fd, const FPRegister& fn);
470  inline void Frintp(const FPRegister& fd, const FPRegister& fn);
471  inline void Frintz(const FPRegister& fd, const FPRegister& fn);
472  inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
473  inline void Fsub(const FPRegister& fd,
474                   const FPRegister& fn,
475                   const FPRegister& fm);
476  inline void Hint(SystemHint code);
477  inline void Hlt(int code);
478  inline void Isb();
479  inline void Ldnp(const CPURegister& rt,
480                   const CPURegister& rt2,
481                   const MemOperand& src);
482  // Load a literal from the inline constant pool.
483  inline void Ldr(const CPURegister& rt, const Immediate& imm);
484  // Helper function for double immediate.
485  inline void Ldr(const CPURegister& rt, double imm);
486  inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
487  inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
488  inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
489  inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
490  inline void Madd(const Register& rd,
491                   const Register& rn,
492                   const Register& rm,
493                   const Register& ra);
494  inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
495  inline void Mov(const Register& rd, const Register& rm);
496  inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
497  inline void Mrs(const Register& rt, SystemRegister sysreg);
498  inline void Msr(SystemRegister sysreg, const Register& rt);
499  inline void Msub(const Register& rd,
500                   const Register& rn,
501                   const Register& rm,
502                   const Register& ra);
503  inline void Mul(const Register& rd, const Register& rn, const Register& rm);
504  inline void Nop() { nop(); }
505  inline void Rbit(const Register& rd, const Register& rn);
506  inline void Ret(const Register& xn = lr);
507  inline void Rev(const Register& rd, const Register& rn);
508  inline void Rev16(const Register& rd, const Register& rn);
509  inline void Rev32(const Register& rd, const Register& rn);
510  inline void Ror(const Register& rd, const Register& rs, unsigned shift);
511  inline void Ror(const Register& rd, const Register& rn, const Register& rm);
512  inline void Sbfiz(const Register& rd,
513                    const Register& rn,
514                    unsigned lsb,
515                    unsigned width);
516  inline void Sbfx(const Register& rd,
517                   const Register& rn,
518                   unsigned lsb,
519                   unsigned width);
520  inline void Scvtf(const FPRegister& fd,
521                    const Register& rn,
522                    unsigned fbits = 0);
523  inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
524  inline void Smaddl(const Register& rd,
525                     const Register& rn,
526                     const Register& rm,
527                     const Register& ra);
528  inline void Smsubl(const Register& rd,
529                     const Register& rn,
530                     const Register& rm,
531                     const Register& ra);
532  inline void Smull(const Register& rd,
533                    const Register& rn,
534                    const Register& rm);
535  inline void Smulh(const Register& rd,
536                    const Register& rn,
537                    const Register& rm);
538  inline void Umull(const Register& rd, const Register& rn, const Register& rm);
539  inline void Stnp(const CPURegister& rt,
540                   const CPURegister& rt2,
541                   const MemOperand& dst);
542  inline void Sxtb(const Register& rd, const Register& rn);
543  inline void Sxth(const Register& rd, const Register& rn);
544  inline void Sxtw(const Register& rd, const Register& rn);
545  void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
546  void Tbz(const Register& rt, unsigned bit_pos, Label* label);
547  inline void Ubfiz(const Register& rd,
548                    const Register& rn,
549                    unsigned lsb,
550                    unsigned width);
551  inline void Ubfx(const Register& rd,
552                   const Register& rn,
553                   unsigned lsb,
554                   unsigned width);
555  inline void Ucvtf(const FPRegister& fd,
556                    const Register& rn,
557                    unsigned fbits = 0);
558  inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
559  inline void Umaddl(const Register& rd,
560                     const Register& rn,
561                     const Register& rm,
562                     const Register& ra);
563  inline void Umsubl(const Register& rd,
564                     const Register& rn,
565                     const Register& rm,
566                     const Register& ra);
567  inline void Uxtb(const Register& rd, const Register& rn);
568  inline void Uxth(const Register& rd, const Register& rn);
569  inline void Uxtw(const Register& rd, const Register& rn);
570
571  // Pseudo-instructions ------------------------------------------------------
572
573  // Compute rd = abs(rm).
574  // This function clobbers the condition flags. On output the overflow flag is
575  // set iff the negation overflowed.
576  //
577  // If rm is the minimum representable value, the result is not representable.
578  // Handlers for each case can be specified using the relevant labels.
579  void Abs(const Register& rd, const Register& rm,
580           Label * is_not_representable = NULL,
581           Label * is_representable = NULL);
582
583  // Push or pop up to 4 registers of the same width to or from the stack,
584  // using the current stack pointer as set by SetStackPointer.
585  //
586  // If an argument register is 'NoReg', all further arguments are also assumed
587  // to be 'NoReg', and are thus not pushed or popped.
588  //
589  // Arguments are ordered such that "Push(a, b);" is functionally equivalent
590  // to "Push(a); Push(b);".
591  //
592  // It is valid to push the same register more than once, and there is no
593  // restriction on the order in which registers are specified.
594  //
595  // It is not valid to pop into the same register more than once in one
596  // operation, not even into the zero register.
597  //
598  // If the current stack pointer (as set by SetStackPointer) is csp, then it
599  // must be aligned to 16 bytes on entry and the total size of the specified
600  // registers must also be a multiple of 16 bytes.
601  //
602  // Even if the current stack pointer is not the system stack pointer (csp),
603  // Push (and derived methods) will still modify the system stack pointer in
604  // order to comply with ABI rules about accessing memory below the system
605  // stack pointer.
606  //
607  // Other than the registers passed into Pop, the stack pointer and (possibly)
608  // the system stack pointer, these methods do not modify any other registers.
609  void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
610            const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
611  void Push(const CPURegister& src0, const CPURegister& src1,
612            const CPURegister& src2, const CPURegister& src3,
613            const CPURegister& src4, const CPURegister& src5 = NoReg,
614            const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
615  void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
616           const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
617  void Pop(const CPURegister& dst0, const CPURegister& dst1,
618           const CPURegister& dst2, const CPURegister& dst3,
619           const CPURegister& dst4, const CPURegister& dst5 = NoReg,
620           const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
621  void Push(const Register& src0, const FPRegister& src1);
622
623  // Alternative forms of Push and Pop, taking a RegList or CPURegList that
624  // specifies the registers that are to be pushed or popped. Higher-numbered
625  // registers are associated with higher memory addresses (as in the A32 push
626  // and pop instructions).
627  //
628  // (Push|Pop)SizeRegList allow you to specify the register size as a
629  // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
630  // kSRegSizeInBits are supported.
631  //
632  // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
633  void PushCPURegList(CPURegList registers);
634  void PopCPURegList(CPURegList registers);
635
636  inline void PushSizeRegList(RegList registers, unsigned reg_size,
637      CPURegister::RegisterType type = CPURegister::kRegister) {
638    PushCPURegList(CPURegList(type, reg_size, registers));
639  }
640  inline void PopSizeRegList(RegList registers, unsigned reg_size,
641      CPURegister::RegisterType type = CPURegister::kRegister) {
642    PopCPURegList(CPURegList(type, reg_size, registers));
643  }
644  inline void PushXRegList(RegList regs) {
645    PushSizeRegList(regs, kXRegSizeInBits);
646  }
647  inline void PopXRegList(RegList regs) {
648    PopSizeRegList(regs, kXRegSizeInBits);
649  }
650  inline void PushWRegList(RegList regs) {
651    PushSizeRegList(regs, kWRegSizeInBits);
652  }
653  inline void PopWRegList(RegList regs) {
654    PopSizeRegList(regs, kWRegSizeInBits);
655  }
656  inline void PushDRegList(RegList regs) {
657    PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
658  }
659  inline void PopDRegList(RegList regs) {
660    PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
661  }
662  inline void PushSRegList(RegList regs) {
663    PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
664  }
665  inline void PopSRegList(RegList regs) {
666    PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
667  }
668
669  // Push the specified register 'count' times.
670  void PushMultipleTimes(CPURegister src, Register count);
671  void PushMultipleTimes(CPURegister src, int count);
672
673  // This is a convenience method for pushing a single Handle<Object>.
674  inline void Push(Handle<Object> handle);
675  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
676
677  // Aliases of Push and Pop, required for V8 compatibility.
678  inline void push(Register src) {
679    Push(src);
680  }
681  inline void pop(Register dst) {
682    Pop(dst);
683  }
684
685  // Sometimes callers need to push or pop multiple registers in a way that is
686  // difficult to structure efficiently for fixed Push or Pop calls. This scope
687  // allows push requests to be queued up, then flushed at once. The
688  // MacroAssembler will try to generate the most efficient sequence required.
689  //
690  // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
691  // register sizes and types.
692  class PushPopQueue {
693   public:
694    explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
695
696    ~PushPopQueue() {
697      DCHECK(queued_.empty());
698    }
699
700    void Queue(const CPURegister& rt) {
701      size_ += rt.SizeInBytes();
702      queued_.push_back(rt);
703    }
704
705    enum PreambleDirective {
706      WITH_PREAMBLE,
707      SKIP_PREAMBLE
708    };
709    void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
710    void PopQueued();
711
712   private:
713    MacroAssembler* masm_;
714    int size_;
715    std::vector<CPURegister> queued_;
716  };
717
718  // Poke 'src' onto the stack. The offset is in bytes.
719  //
720  // If the current stack pointer (according to StackPointer()) is csp, then
721  // csp must be aligned to 16 bytes.
722  void Poke(const CPURegister& src, const Operand& offset);
723
724  // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
725  //
726  // If the current stack pointer (according to StackPointer()) is csp, then
727  // csp must be aligned to 16 bytes.
728  void Peek(const CPURegister& dst, const Operand& offset);
729
730  // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
731  // with 'src2' at a higher address than 'src1'. The offset is in bytes.
732  //
733  // If the current stack pointer (according to StackPointer()) is csp, then
734  // csp must be aligned to 16 bytes.
735  void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
736
737  // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
738  // values peeked will be adjacent, with the value in 'dst2' being from a
739  // higher address than 'dst1'. The offset is in bytes.
740  //
741  // If the current stack pointer (according to StackPointer()) is csp, then
742  // csp must be aligned to 16 bytes.
743  void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
744
745  // Emit code that loads |parameter_index|'th parameter from the stack to
746  // the register according to the CallInterfaceDescriptor definition.
747  // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
748  // below the caller's sp.
749  template <class Descriptor>
750  void LoadParameterFromStack(
751      Register reg, typename Descriptor::ParameterIndices parameter_index,
752      int sp_to_ra_offset_in_words = 0) {
753    DCHECK(Descriptor::kPassLastArgsOnStack);
754    UNIMPLEMENTED();
755  }
756
757  // Claim or drop stack space without actually accessing memory.
758  //
759  // In debug mode, both of these will write invalid data into the claimed or
760  // dropped space.
761  //
762  // If the current stack pointer (according to StackPointer()) is csp, then it
763  // must be aligned to 16 bytes and the size claimed or dropped must be a
764  // multiple of 16 bytes.
765  //
766  // Note that unit_size must be specified in bytes. For variants which take a
767  // Register count, the unit size must be a power of two.
768  inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
769  inline void Claim(const Register& count,
770                    uint64_t unit_size = kXRegSize);
771  inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
772  inline void Drop(const Register& count,
773                   uint64_t unit_size = kXRegSize);
774
775  // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
776  // register.
777  inline void ClaimBySMI(const Register& count_smi,
778                         uint64_t unit_size = kXRegSize);
779  inline void DropBySMI(const Register& count_smi,
780                        uint64_t unit_size = kXRegSize);
781
782  // Compare a register with an operand, and branch to label depending on the
783  // condition. May corrupt the status flags.
784  inline void CompareAndBranch(const Register& lhs,
785                               const Operand& rhs,
786                               Condition cond,
787                               Label* label);
788
789  // Test the bits of register defined by bit_pattern, and branch if ANY of
790  // those bits are set. May corrupt the status flags.
791  inline void TestAndBranchIfAnySet(const Register& reg,
792                                    const uint64_t bit_pattern,
793                                    Label* label);
794
795  // Test the bits of register defined by bit_pattern, and branch if ALL of
796  // those bits are clear (ie. not set.) May corrupt the status flags.
797  inline void TestAndBranchIfAllClear(const Register& reg,
798                                      const uint64_t bit_pattern,
799                                      Label* label);
800
801  // Insert one or more instructions into the instruction stream that encode
802  // some caller-defined data. The instructions used will be executable with no
803  // side effects.
804  inline void InlineData(uint64_t data);
805
806  // Insert an instrumentation enable marker into the instruction stream.
807  inline void EnableInstrumentation();
808
809  // Insert an instrumentation disable marker into the instruction stream.
810  inline void DisableInstrumentation();
811
812  // Insert an instrumentation event marker into the instruction stream. These
813  // will be picked up by the instrumentation system to annotate an instruction
814  // profile. The argument marker_name must be a printable two character string;
815  // it will be encoded in the event marker.
816  inline void AnnotateInstrumentation(const char* marker_name);
817
818  // If emit_debug_code() is true, emit a run-time check to ensure that
819  // StackPointer() does not point below the system stack pointer.
820  //
821  // Whilst it is architecturally legal for StackPointer() to point below csp,
822  // it can be evidence of a potential bug because the ABI forbids accesses
823  // below csp.
824  //
825  // If StackPointer() is the system stack pointer (csp), then csp will be
826  // dereferenced to cause the processor (or simulator) to abort if it is not
827  // properly aligned.
828  //
829  // If emit_debug_code() is false, this emits no code.
830  void AssertStackConsistency();
831
832  // Emits a runtime assert that the CSP is aligned.
833  void AssertCspAligned();
834
835  // Preserve the callee-saved registers (as defined by AAPCS64).
836  //
837  // Higher-numbered registers are pushed before lower-numbered registers, and
838  // thus get higher addresses.
839  // Floating-point registers are pushed before general-purpose registers, and
840  // thus get higher addresses.
841  //
842  // Note that registers are not checked for invalid values. Use this method
843  // only if you know that the GC won't try to examine the values on the stack.
844  //
845  // This method must not be called unless the current stack pointer (as set by
846  // SetStackPointer) is the system stack pointer (csp), and is aligned to
847  // ActivationFrameAlignment().
848  void PushCalleeSavedRegisters();
849
850  // Restore the callee-saved registers (as defined by AAPCS64).
851  //
852  // Higher-numbered registers are popped after lower-numbered registers, and
853  // thus come from higher addresses.
854  // Floating-point registers are popped after general-purpose registers, and
855  // thus come from higher addresses.
856  //
857  // This method must not be called unless the current stack pointer (as set by
858  // SetStackPointer) is the system stack pointer (csp), and is aligned to
859  // ActivationFrameAlignment().
860  void PopCalleeSavedRegisters();
861
862  // Set the current stack pointer, but don't generate any code.
863  inline void SetStackPointer(const Register& stack_pointer) {
864    DCHECK(!TmpList()->IncludesAliasOf(stack_pointer));
865    sp_ = stack_pointer;
866  }
867
868  // Return the current stack pointer, as set by SetStackPointer.
869  inline const Register& StackPointer() const {
870    return sp_;
871  }
872
873  // Align csp for a frame, as per ActivationFrameAlignment, and make it the
874  // current stack pointer.
875  inline void AlignAndSetCSPForFrame() {
876    int sp_alignment = ActivationFrameAlignment();
877    // AAPCS64 mandates at least 16-byte alignment.
878    DCHECK(sp_alignment >= 16);
879    DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
880    Bic(csp, StackPointer(), sp_alignment - 1);
881    SetStackPointer(csp);
882  }
883
884  // Push the system stack pointer (csp) down to allow the same to be done to
885  // the current stack pointer (according to StackPointer()). This must be
886  // called _before_ accessing the memory.
887  //
888  // This is necessary when pushing or otherwise adding things to the stack, to
889  // satisfy the AAPCS64 constraint that the memory below the system stack
890  // pointer is not accessed.  The amount pushed will be increased as necessary
891  // to ensure csp remains aligned to 16 bytes.
892  //
893  // This method asserts that StackPointer() is not csp, since the call does
894  // not make sense in that context.
895  inline void BumpSystemStackPointer(const Operand& space);
896
897  // Re-synchronizes the system stack pointer (csp) with the current stack
898  // pointer (according to StackPointer()).
899  //
900  // This method asserts that StackPointer() is not csp, since the call does
901  // not make sense in that context.
902  inline void SyncSystemStackPointer();
903
904  // Helpers ------------------------------------------------------------------
905  // Root register.
906  inline void InitializeRootRegister();
907
908  void AssertFPCRState(Register fpcr = NoReg);
909  void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
910  void CanonicalizeNaN(const FPRegister& reg) {
911    CanonicalizeNaN(reg, reg);
912  }
913
914  // Load an object from the root table.
915  void LoadRoot(CPURegister destination,
916                Heap::RootListIndex index);
917  // Store an object to the root table.
918  void StoreRoot(Register source,
919                 Heap::RootListIndex index);
920
921  // Load both TrueValue and FalseValue roots.
922  void LoadTrueFalseRoots(Register true_root, Register false_root);
923
924  void LoadHeapObject(Register dst, Handle<HeapObject> object);
925
926  void LoadObject(Register result, Handle<Object> object) {
927    AllowDeferredHandleDereference heap_object_check;
928    if (object->IsHeapObject()) {
929      LoadHeapObject(result, Handle<HeapObject>::cast(object));
930    } else {
931      DCHECK(object->IsSmi());
932      Mov(result, Operand(object));
933    }
934  }
935
936  static int SafepointRegisterStackIndex(int reg_code);
937
938  // This is required for compatibility with architecture independant code.
939  // Remove if not needed.
940  inline void Move(Register dst, Register src) { Mov(dst, src); }
941  inline void Move(Register dst, Handle<Object> x) { LoadObject(dst, x); }
942  inline void Move(Register dst, Smi* src) { Mov(dst, src); }
943
944  void LoadInstanceDescriptors(Register map,
945                               Register descriptors);
946  void EnumLengthUntagged(Register dst, Register map);
947  void EnumLengthSmi(Register dst, Register map);
948  void NumberOfOwnDescriptors(Register dst, Register map);
949  void LoadAccessor(Register dst, Register holder, int accessor_index,
950                    AccessorComponent accessor);
951
952  template<typename Field>
953  void DecodeField(Register dst, Register src) {
954    static const int shift = Field::kShift;
955    static const int setbits = CountSetBits(Field::kMask, 32);
956    Ubfx(dst, src, shift, setbits);
957  }
958
959  template<typename Field>
960  void DecodeField(Register reg) {
961    DecodeField<Field>(reg, reg);
962  }
963
964  // ---- SMI and Number Utilities ----
965
966  inline void SmiTag(Register dst, Register src);
967  inline void SmiTag(Register smi);
968  inline void SmiUntag(Register dst, Register src);
969  inline void SmiUntag(Register smi);
970  inline void SmiUntagToDouble(FPRegister dst,
971                               Register src,
972                               UntagMode mode = kNotSpeculativeUntag);
973  inline void SmiUntagToFloat(FPRegister dst,
974                              Register src,
975                              UntagMode mode = kNotSpeculativeUntag);
976
977  // Tag and push in one step.
978  inline void SmiTagAndPush(Register src);
979  inline void SmiTagAndPush(Register src1, Register src2);
980
981  inline void JumpIfSmi(Register value,
982                        Label* smi_label,
983                        Label* not_smi_label = NULL);
984  inline void JumpIfNotSmi(Register value, Label* not_smi_label);
985  inline void JumpIfBothSmi(Register value1,
986                            Register value2,
987                            Label* both_smi_label,
988                            Label* not_smi_label = NULL);
989  inline void JumpIfEitherSmi(Register value1,
990                              Register value2,
991                              Label* either_smi_label,
992                              Label* not_smi_label = NULL);
993  inline void JumpIfEitherNotSmi(Register value1,
994                                 Register value2,
995                                 Label* not_smi_label);
996  inline void JumpIfBothNotSmi(Register value1,
997                               Register value2,
998                               Label* not_smi_label);
999
1000  // Abort execution if argument is a smi, enabled via --debug-code.
1001  void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
1002  void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
1003
1004  inline void ObjectTag(Register tagged_obj, Register obj);
1005  inline void ObjectUntag(Register untagged_obj, Register obj);
1006
1007  // Abort execution if argument is not a name, enabled via --debug-code.
1008  void AssertName(Register object);
1009
1010  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1011  void AssertFunction(Register object);
1012
1013  // Abort execution if argument is not a JSGeneratorObject,
1014  // enabled via --debug-code.
1015  void AssertGeneratorObject(Register object);
1016
1017  // Abort execution if argument is not a JSBoundFunction,
1018  // enabled via --debug-code.
1019  void AssertBoundFunction(Register object);
1020
1021  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1022  void AssertReceiver(Register object);
1023
1024  // Abort execution if argument is not undefined or an AllocationSite, enabled
1025  // via --debug-code.
1026  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1027
1028  // Abort execution if argument is not a string, enabled via --debug-code.
1029  void AssertString(Register object);
1030
1031  // Abort execution if argument is not a positive or zero integer, enabled via
1032  // --debug-code.
1033  void AssertPositiveOrZero(Register value);
1034
1035  // Abort execution if argument is not a number (heap number or smi).
1036  void AssertNumber(Register value);
1037  void AssertNotNumber(Register value);
1038
1039  void JumpIfHeapNumber(Register object, Label* on_heap_number,
1040                        SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1041  void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
1042                           SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1043
1044  // Sets the vs flag if the input is -0.0.
1045  void TestForMinusZero(DoubleRegister input);
1046
1047  // Jump to label if the input double register contains -0.0.
1048  void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
1049
1050  // Jump to label if the input integer register contains the double precision
1051  // floating point representation of -0.0.
1052  void JumpIfMinusZero(Register input, Label* on_negative_zero);
1053
1054  // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
1055  // output.
1056  void ClampInt32ToUint8(Register in_out);
1057  void ClampInt32ToUint8(Register output, Register input);
1058
1059  // Saturate a double in input to an unsigned 8-bit integer in output.
1060  void ClampDoubleToUint8(Register output,
1061                          DoubleRegister input,
1062                          DoubleRegister dbl_scratch);
1063
1064  // Try to represent a double as a signed 32-bit int.
1065  // This succeeds if the result compares equal to the input, so inputs of -0.0
1066  // are represented as 0 and handled as a success.
1067  //
1068  // On output the Z flag is set if the operation was successful.
1069  void TryRepresentDoubleAsInt32(Register as_int,
1070                                 FPRegister value,
1071                                 FPRegister scratch_d,
1072                                 Label* on_successful_conversion = NULL,
1073                                 Label* on_failed_conversion = NULL) {
1074    DCHECK(as_int.Is32Bits());
1075    TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1076                            on_failed_conversion);
1077  }
1078
1079  // Try to represent a double as a signed 64-bit int.
1080  // This succeeds if the result compares equal to the input, so inputs of -0.0
1081  // are represented as 0 and handled as a success.
1082  //
1083  // On output the Z flag is set if the operation was successful.
1084  void TryRepresentDoubleAsInt64(Register as_int,
1085                                 FPRegister value,
1086                                 FPRegister scratch_d,
1087                                 Label* on_successful_conversion = NULL,
1088                                 Label* on_failed_conversion = NULL) {
1089    DCHECK(as_int.Is64Bits());
1090    TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1091                            on_failed_conversion);
1092  }
1093
1094  // ---- Object Utilities ----
1095
1096  // Initialize fields with filler values.  Fields starting at |current_address|
1097  // not including |end_address| are overwritten with the value in |filler|.  At
1098  // the end the loop, |current_address| takes the value of |end_address|.
1099  void InitializeFieldsWithFiller(Register current_address,
1100                                  Register end_address, Register filler);
1101
1102  // ---- String Utilities ----
1103
1104  // Checks if both instance types are sequential one-byte strings and jumps to
1105  // label if either is not.
1106  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1107      Register first_object_instance_type, Register second_object_instance_type,
1108      Register scratch1, Register scratch2, Label* failure);
1109
1110  void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name);
1111
1112  // ---- Calling / Jumping helpers ----
1113
1114  // This is required for compatibility in architecture indepenedant code.
1115  inline void jmp(Label* L) { B(L); }
1116
1117  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1118  void TailCallStub(CodeStub* stub);
1119
1120  void CallRuntime(const Runtime::Function* f,
1121                   int num_arguments,
1122                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1123
1124  // Convenience function: Same as above, but takes the fid instead.
1125  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1126                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1127    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1128  }
1129
1130  // Convenience function: Same as above, but takes the fid instead.
1131  void CallRuntime(Runtime::FunctionId fid,
1132                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1133    const Runtime::Function* function = Runtime::FunctionForId(fid);
1134    CallRuntime(function, function->nargs, save_doubles);
1135  }
1136
1137  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1138    const Runtime::Function* function = Runtime::FunctionForId(fid);
1139    CallRuntime(function, function->nargs, kSaveFPRegs);
1140  }
1141
1142  void TailCallRuntime(Runtime::FunctionId fid);
1143
1144  int ActivationFrameAlignment();
1145
1146  // Calls a C function.
1147  // The called function is not allowed to trigger a
1148  // garbage collection, since that might move the code and invalidate the
1149  // return address (unless this is somehow accounted for by the called
1150  // function).
1151  void CallCFunction(ExternalReference function,
1152                     int num_reg_arguments);
1153  void CallCFunction(ExternalReference function,
1154                     int num_reg_arguments,
1155                     int num_double_arguments);
1156  void CallCFunction(Register function,
1157                     int num_reg_arguments,
1158                     int num_double_arguments);
1159
1160  // Jump to a runtime routine.
1161  void JumpToExternalReference(const ExternalReference& builtin,
1162                               bool builtin_exit_frame = false);
1163
1164  // Convenience function: call an external reference.
1165  void CallExternalReference(const ExternalReference& ext,
1166                             int num_arguments);
1167
1168
1169  void Jump(Register target);
1170  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
1171  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
1172  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1173
1174  void Call(Register target);
1175  void Call(Label* target);
1176  void Call(Address target, RelocInfo::Mode rmode);
1177  void Call(Handle<Code> code,
1178            RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1179            TypeFeedbackId ast_id = TypeFeedbackId::None());
1180
1181  // For every Call variant, there is a matching CallSize function that returns
1182  // the size (in bytes) of the call sequence.
1183  static int CallSize(Register target);
1184  static int CallSize(Label* target);
1185  static int CallSize(Address target, RelocInfo::Mode rmode);
1186  static int CallSize(Handle<Code> code,
1187                      RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1188                      TypeFeedbackId ast_id = TypeFeedbackId::None());
1189
1190  // Removes current frame and its arguments from the stack preserving
1191  // the arguments and a return address pushed to the stack for the next call.
1192  // Both |callee_args_count| and |caller_args_count_reg| do not include
1193  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1194  // is trashed.
1195  void PrepareForTailCall(const ParameterCount& callee_args_count,
1196                          Register caller_args_count_reg, Register scratch0,
1197                          Register scratch1);
1198
1199  // Registers used through the invocation chain are hard-coded.
1200  // We force passing the parameters to ensure the contracts are correctly
1201  // honoured by the caller.
1202  // 'function' must be x1.
1203  // 'actual' must use an immediate or x0.
1204  // 'expected' must use an immediate or x2.
1205  // 'call_kind' must be x5.
1206  void InvokePrologue(const ParameterCount& expected,
1207                      const ParameterCount& actual,
1208                      Label* done,
1209                      InvokeFlag flag,
1210                      bool* definitely_mismatches,
1211                      const CallWrapper& call_wrapper);
1212
1213  // On function call, call into the debugger if necessary.
1214  void CheckDebugHook(Register fun, Register new_target,
1215                      const ParameterCount& expected,
1216                      const ParameterCount& actual);
1217  void InvokeFunctionCode(Register function, Register new_target,
1218                          const ParameterCount& expected,
1219                          const ParameterCount& actual, InvokeFlag flag,
1220                          const CallWrapper& call_wrapper);
1221  // Invoke the JavaScript function in the given register.
1222  // Changes the current context to the context in the function before invoking.
1223  void InvokeFunction(Register function,
1224                      Register new_target,
1225                      const ParameterCount& actual,
1226                      InvokeFlag flag,
1227                      const CallWrapper& call_wrapper);
1228  void InvokeFunction(Register function,
1229                      const ParameterCount& expected,
1230                      const ParameterCount& actual,
1231                      InvokeFlag flag,
1232                      const CallWrapper& call_wrapper);
1233  void InvokeFunction(Handle<JSFunction> function,
1234                      const ParameterCount& expected,
1235                      const ParameterCount& actual,
1236                      InvokeFlag flag,
1237                      const CallWrapper& call_wrapper);
1238
1239
1240  // ---- Floating point helpers ----
1241
1242  // Perform a conversion from a double to a signed int64. If the input fits in
1243  // range of the 64-bit result, execution branches to done. Otherwise,
1244  // execution falls through, and the sign of the result can be used to
1245  // determine if overflow was towards positive or negative infinity.
1246  //
1247  // On successful conversion, the least significant 32 bits of the result are
1248  // equivalent to the ECMA-262 operation "ToInt32".
1249  //
1250  // Only public for the test code in test-code-stubs-arm64.cc.
1251  void TryConvertDoubleToInt64(Register result,
1252                               DoubleRegister input,
1253                               Label* done);
1254
1255  // Performs a truncating conversion of a floating point number as used by
1256  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1257  // Exits with 'result' holding the answer.
1258  void TruncateDoubleToI(Register result, DoubleRegister double_input);
1259
1260  // Performs a truncating conversion of a heap number as used by
1261  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1262  // must be different registers.  Exits with 'result' holding the answer.
1263  void TruncateHeapNumberToI(Register result, Register object);
1264
1265  // Converts the smi or heap number in object to an int32 using the rules
1266  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1267  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1268  // different registers.
1269  void TruncateNumberToI(Register object,
1270                         Register result,
1271                         Register heap_number_map,
1272                         Label* not_int32);
1273
1274  // ---- Code generation helpers ----
1275
1276  void set_generating_stub(bool value) { generating_stub_ = value; }
1277  bool generating_stub() const { return generating_stub_; }
1278#if DEBUG
1279  void set_allow_macro_instructions(bool value) {
1280    allow_macro_instructions_ = value;
1281  }
1282  bool allow_macro_instructions() const { return allow_macro_instructions_; }
1283#endif
1284  bool use_real_aborts() const { return use_real_aborts_; }
1285  void set_has_frame(bool value) { has_frame_ = value; }
1286  bool has_frame() const { return has_frame_; }
1287  bool AllowThisStubCall(CodeStub* stub);
1288
1289  class NoUseRealAbortsScope {
1290   public:
1291    explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1292        saved_(masm->use_real_aborts_), masm_(masm) {
1293      masm_->use_real_aborts_ = false;
1294    }
1295    ~NoUseRealAbortsScope() {
1296      masm_->use_real_aborts_ = saved_;
1297    }
1298   private:
1299    bool saved_;
1300    MacroAssembler* masm_;
1301  };
1302
1303  // Frame restart support
1304  void MaybeDropFrames();
1305
1306  // Exception handling
1307
1308  // Push a new stack handler and link into stack handler chain.
1309  void PushStackHandler();
1310
1311  // Unlink the stack handler on top of the stack from the stack handler chain.
1312  // Must preserve the result register.
1313  void PopStackHandler();
1314
1315
1316  // ---------------------------------------------------------------------------
1317  // Allocation support
1318
1319  // Allocate an object in new space or old space. The object_size is
1320  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1321  // is passed. The allocated object is returned in result.
1322  //
1323  // If the new space is exhausted control continues at the gc_required label.
1324  // In this case, the result and scratch registers may still be clobbered.
1325  void Allocate(Register object_size, Register result, Register result_end,
1326                Register scratch, Label* gc_required, AllocationFlags flags);
1327
1328  void Allocate(int object_size,
1329                Register result,
1330                Register scratch1,
1331                Register scratch2,
1332                Label* gc_required,
1333                AllocationFlags flags);
1334
1335  // FastAllocate is right now only used for folded allocations. It just
1336  // increments the top pointer without checking against limit. This can only
1337  // be done if it was proved earlier that the allocation will succeed.
1338  void FastAllocate(Register object_size, Register result, Register result_end,
1339                    Register scratch, AllocationFlags flags);
1340
1341  void FastAllocate(int object_size, Register result, Register scratch1,
1342                    Register scratch2, AllocationFlags flags);
1343
1344  // Allocates a heap number or jumps to the gc_required label if the young
1345  // space is full and a scavenge is needed.
1346  // All registers are clobbered.
1347  // If no heap_number_map register is provided, the function will take care of
1348  // loading it.
1349  void AllocateHeapNumber(Register result,
1350                          Label* gc_required,
1351                          Register scratch1,
1352                          Register scratch2,
1353                          CPURegister value = NoFPReg,
1354                          CPURegister heap_number_map = NoReg,
1355                          MutableMode mode = IMMUTABLE);
1356
1357  // Allocate and initialize a JSValue wrapper with the specified {constructor}
1358  // and {value}.
1359  void AllocateJSValue(Register result, Register constructor, Register value,
1360                       Register scratch1, Register scratch2,
1361                       Label* gc_required);
1362
1363  // ---------------------------------------------------------------------------
1364  // Support functions.
1365
1366  // Machine code version of Map::GetConstructor().
1367  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1368  void GetMapConstructor(Register result, Register map, Register temp,
1369                         Register temp2);
1370
1371  // Compare object type for heap object.  heap_object contains a non-Smi
1372  // whose object type should be compared with the given type.  This both
1373  // sets the flags and leaves the object type in the type_reg register.
1374  // It leaves the map in the map register (unless the type_reg and map register
1375  // are the same register).  It leaves the heap object in the heap_object
1376  // register unless the heap_object register is the same register as one of the
1377  // other registers.
1378  void CompareObjectType(Register heap_object,
1379                         Register map,
1380                         Register type_reg,
1381                         InstanceType type);
1382
1383
1384  // Compare object type for heap object, and branch if equal (or not.)
1385  // heap_object contains a non-Smi whose object type should be compared with
1386  // the given type.  This both sets the flags and leaves the object type in
1387  // the type_reg register. It leaves the map in the map register (unless the
1388  // type_reg and map register are the same register).  It leaves the heap
1389  // object in the heap_object register unless the heap_object register is the
1390  // same register as one of the other registers.
1391  void JumpIfObjectType(Register object,
1392                        Register map,
1393                        Register type_reg,
1394                        InstanceType type,
1395                        Label* if_cond_pass,
1396                        Condition cond = eq);
1397
1398  void JumpIfNotObjectType(Register object,
1399                           Register map,
1400                           Register type_reg,
1401                           InstanceType type,
1402                           Label* if_not_object);
1403
1404  // Compare instance type in a map.  map contains a valid map object whose
1405  // object type should be compared with the given type.  This both
1406  // sets the flags and leaves the object type in the type_reg register.
1407  void CompareInstanceType(Register map,
1408                           Register type_reg,
1409                           InstanceType type);
1410
1411  // Compare an object's map with the specified map. Condition flags are set
1412  // with result of map compare.
1413  void CompareObjectMap(Register obj, Heap::RootListIndex index);
1414
1415  // Compare an object's map with the specified map. Condition flags are set
1416  // with result of map compare.
1417  void CompareObjectMap(Register obj, Register scratch, Handle<Map> map);
1418
1419  // As above, but the map of the object is already loaded into the register
1420  // which is preserved by the code generated.
1421  void CompareMap(Register obj_map,
1422                  Handle<Map> map);
1423
1424  // Check if the map of an object is equal to a specified map and branch to
1425  // label if not. Skip the smi check if not required (object is known to be a
1426  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1427  // against maps that are ElementsKind transition maps of the specified map.
1428  void CheckMap(Register obj,
1429                Register scratch,
1430                Handle<Map> map,
1431                Label* fail,
1432                SmiCheckType smi_check_type);
1433
1434
1435  void CheckMap(Register obj,
1436                Register scratch,
1437                Heap::RootListIndex index,
1438                Label* fail,
1439                SmiCheckType smi_check_type);
1440
1441  // As above, but the map of the object is already loaded into obj_map, and is
1442  // preserved.
1443  void CheckMap(Register obj_map,
1444                Handle<Map> map,
1445                Label* fail,
1446                SmiCheckType smi_check_type);
1447
1448  // Check if the map of an object is equal to a specified weak map and branch
1449  // to a specified target if equal. Skip the smi check if not required
1450  // (object is known to be a heap object)
1451  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1452                       Handle<WeakCell> cell, Handle<Code> success,
1453                       SmiCheckType smi_check_type);
1454
1455  // Compare the given value and the value of weak cell.
1456  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
1457
1458  void GetWeakValue(Register value, Handle<WeakCell> cell);
1459
1460  // Load the value of the weak cell in the value register. Branch to the given
1461  // miss label if the weak cell was cleared.
1462  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1463
1464  // Test the bitfield of the heap object map with mask and set the condition
1465  // flags. The object register is preserved.
1466  void TestMapBitfield(Register object, uint64_t mask);
1467
1468  // Load the elements kind field from a map, and return it in the result
1469  // register.
1470  void LoadElementsKindFromMap(Register result, Register map);
1471
1472  // Load the value from the root list and push it onto the stack.
1473  void PushRoot(Heap::RootListIndex index);
1474
1475  // Compare the object in a register to a value from the root list.
1476  void CompareRoot(const Register& obj, Heap::RootListIndex index);
1477
1478  // Compare the object in a register to a value and jump if they are equal.
1479  void JumpIfRoot(const Register& obj,
1480                  Heap::RootListIndex index,
1481                  Label* if_equal);
1482
1483  // Compare the object in a register to a value and jump if they are not equal.
1484  void JumpIfNotRoot(const Register& obj,
1485                     Heap::RootListIndex index,
1486                     Label* if_not_equal);
1487
1488  // Load and check the instance type of an object for being a unique name.
1489  // Loads the type into the second argument register.
1490  // The object and type arguments can be the same register; in that case it
1491  // will be overwritten with the type.
1492  // Fall-through if the object was a string and jump on fail otherwise.
1493  inline void IsObjectNameType(Register object, Register type, Label* fail);
1494
1495  // Load and check the instance type of an object for being a string.
1496  // Loads the type into the second argument register.
1497  // The object and type arguments can be the same register; in that case it
1498  // will be overwritten with the type.
1499  // Jumps to not_string or string appropriate. If the appropriate label is
1500  // NULL, fall through.
1501  inline void IsObjectJSStringType(Register object, Register type,
1502                                   Label* not_string, Label* string = NULL);
1503
1504  // Compare the contents of a register with an operand, and branch to true,
1505  // false or fall through, depending on condition.
1506  void CompareAndSplit(const Register& lhs,
1507                       const Operand& rhs,
1508                       Condition cond,
1509                       Label* if_true,
1510                       Label* if_false,
1511                       Label* fall_through);
1512
1513  // Test the bits of register defined by bit_pattern, and branch to
1514  // if_any_set, if_all_clear or fall_through accordingly.
1515  void TestAndSplit(const Register& reg,
1516                    uint64_t bit_pattern,
1517                    Label* if_all_clear,
1518                    Label* if_any_set,
1519                    Label* fall_through);
1520
1521  // ---------------------------------------------------------------------------
1522  // Inline caching support.
1523
1524  void EmitSeqStringSetCharCheck(Register string,
1525                                 Register index,
1526                                 SeqStringSetCharCheckIndexType index_type,
1527                                 Register scratch,
1528                                 uint32_t encoding_mask);
1529
1530  // Hash the interger value in 'key' register.
1531  // It uses the same algorithm as ComputeIntegerHash in utils.h.
1532  void GetNumberHash(Register key, Register scratch);
1533
1534  // ---------------------------------------------------------------------------
1535  // Frames.
1536
1537  // Load the type feedback vector from a JavaScript frame.
1538  void EmitLoadFeedbackVector(Register vector);
1539
1540  // Activation support.
1541  void EnterFrame(StackFrame::Type type);
1542  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1543  void LeaveFrame(StackFrame::Type type);
1544
1545  void EnterBuiltinFrame(Register context, Register target, Register argc);
1546  void LeaveBuiltinFrame(Register context, Register target, Register argc);
1547
1548  // Returns map with validated enum cache in object register.
1549  void CheckEnumCache(Register object, Register scratch0, Register scratch1,
1550                      Register scratch2, Register scratch3, Register scratch4,
1551                      Label* call_runtime);
1552
1553  // AllocationMemento support. Arrays may have an associated
1554  // AllocationMemento object that can be checked for in order to pretransition
1555  // to another type.
1556  // On entry, receiver should point to the array object.
1557  // If allocation info is present, the Z flag is set (so that the eq
1558  // condition will pass).
1559  void TestJSArrayForAllocationMemento(Register receiver,
1560                                       Register scratch1,
1561                                       Register scratch2,
1562                                       Label* no_memento_found);
1563
1564  // The stack pointer has to switch between csp and jssp when setting up and
1565  // destroying the exit frame. Hence preserving/restoring the registers is
1566  // slightly more complicated than simple push/pop operations.
1567  void ExitFramePreserveFPRegs();
1568  void ExitFrameRestoreFPRegs();
1569
1570  // Generates function and stub prologue code.
1571  void StubPrologue(StackFrame::Type type, int frame_slots);
1572  void Prologue(bool code_pre_aging);
1573
1574  // Enter exit frame. Exit frames are used when calling C code from generated
1575  // (JavaScript) code.
1576  //
1577  // The stack pointer must be jssp on entry, and will be set to csp by this
1578  // function. The frame pointer is also configured, but the only other
1579  // registers modified by this function are the provided scratch register, and
1580  // jssp.
1581  //
1582  // The 'extra_space' argument can be used to allocate some space in the exit
1583  // frame that will be ignored by the GC. This space will be reserved in the
1584  // bottom of the frame immediately above the return address slot.
1585  //
1586  // Set up a stack frame and registers as follows:
1587  //         fp[8]: CallerPC (lr)
1588  //   fp -> fp[0]: CallerFP (old fp)
1589  //         fp[-8]: SPOffset (new csp)
1590  //         fp[-16]: CodeObject()
1591  //         fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1592  //         csp[8]: Memory reserved for the caller if extra_space != 0.
1593  //                 Alignment padding, if necessary.
1594  //  csp -> csp[0]: Space reserved for the return address.
1595  //
1596  // This function also stores the new frame information in the top frame, so
1597  // that the new frame becomes the current frame.
1598  void EnterExitFrame(bool save_doubles, const Register& scratch,
1599                      int extra_space = 0,
1600                      StackFrame::Type frame_type = StackFrame::EXIT);
1601
1602  // Leave the current exit frame, after a C function has returned to generated
1603  // (JavaScript) code.
1604  //
1605  // This effectively unwinds the operation of EnterExitFrame:
1606  //  * Preserved doubles are restored (if restore_doubles is true).
1607  //  * The frame information is removed from the top frame.
1608  //  * The exit frame is dropped.
1609  //  * The stack pointer is reset to jssp.
1610  //
1611  // The stack pointer must be csp on entry.
1612  void LeaveExitFrame(bool save_doubles,
1613                      const Register& scratch,
1614                      bool restore_context);
1615
1616  void LoadContext(Register dst, int context_chain_length);
1617
1618  // Load the global object from the current context.
1619  void LoadGlobalObject(Register dst) {
1620    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1621  }
1622
1623  // Load the global proxy from the current context.
1624  void LoadGlobalProxy(Register dst) {
1625    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1626  }
1627
1628  // Emit code for a truncating division by a constant. The dividend register is
1629  // unchanged. Dividend and result must be different.
1630  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1631
1632  // ---------------------------------------------------------------------------
1633  // StatsCounter support
1634
1635  void SetCounter(StatsCounter* counter, int value, Register scratch1,
1636                  Register scratch2);
1637  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1638                        Register scratch2);
1639  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1640                        Register scratch2);
1641
1642  // ---------------------------------------------------------------------------
1643  // Garbage collector support (GC).
1644
1645  enum RememberedSetFinalAction {
1646    kReturnAtEnd,
1647    kFallThroughAtEnd
1648  };
1649
1650  // Record in the remembered set the fact that we have a pointer to new space
1651  // at the address pointed to by the addr register. Only works if addr is not
1652  // in new space.
1653  void RememberedSetHelper(Register object,  // Used for debug code.
1654                           Register addr,
1655                           Register scratch1,
1656                           SaveFPRegsMode save_fp,
1657                           RememberedSetFinalAction and_then);
1658
1659  // Push and pop the registers that can hold pointers, as defined by the
1660  // RegList constant kSafepointSavedRegisters.
1661  void PushSafepointRegisters();
1662  void PopSafepointRegisters();
1663
1664  void PushSafepointRegistersAndDoubles();
1665  void PopSafepointRegistersAndDoubles();
1666
1667  // Store value in register src in the safepoint stack slot for register dst.
1668  void StoreToSafepointRegisterSlot(Register src, Register dst) {
1669    Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1670  }
1671
1672  // Load the value of the src register from its safepoint stack slot
1673  // into register dst.
1674  void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1675    Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1676  }
1677
1678  void CheckPageFlag(const Register& object, const Register& scratch, int mask,
1679                     Condition cc, Label* condition_met);
1680
1681  void CheckPageFlagSet(const Register& object,
1682                        const Register& scratch,
1683                        int mask,
1684                        Label* if_any_set);
1685
1686  void CheckPageFlagClear(const Register& object,
1687                          const Register& scratch,
1688                          int mask,
1689                          Label* if_all_clear);
1690
1691  // Check if object is in new space and jump accordingly.
1692  // Register 'object' is preserved.
1693  void JumpIfNotInNewSpace(Register object,
1694                           Label* branch) {
1695    InNewSpace(object, ne, branch);
1696  }
1697
1698  void JumpIfInNewSpace(Register object,
1699                        Label* branch) {
1700    InNewSpace(object, eq, branch);
1701  }
1702
1703  // Notify the garbage collector that we wrote a pointer into an object.
1704  // |object| is the object being stored into, |value| is the object being
1705  // stored.  value and scratch registers are clobbered by the operation.
1706  // The offset is the offset from the start of the object, not the offset from
1707  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
1708  void RecordWriteField(
1709      Register object,
1710      int offset,
1711      Register value,
1712      Register scratch,
1713      LinkRegisterStatus lr_status,
1714      SaveFPRegsMode save_fp,
1715      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1716      SmiCheck smi_check = INLINE_SMI_CHECK,
1717      PointersToHereCheck pointers_to_here_check_for_value =
1718          kPointersToHereMaybeInteresting);
1719
1720  // As above, but the offset has the tag presubtracted. For use with
1721  // MemOperand(reg, off).
1722  inline void RecordWriteContextSlot(
1723      Register context,
1724      int offset,
1725      Register value,
1726      Register scratch,
1727      LinkRegisterStatus lr_status,
1728      SaveFPRegsMode save_fp,
1729      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1730      SmiCheck smi_check = INLINE_SMI_CHECK,
1731      PointersToHereCheck pointers_to_here_check_for_value =
1732          kPointersToHereMaybeInteresting) {
1733    RecordWriteField(context,
1734                     offset + kHeapObjectTag,
1735                     value,
1736                     scratch,
1737                     lr_status,
1738                     save_fp,
1739                     remembered_set_action,
1740                     smi_check,
1741                     pointers_to_here_check_for_value);
1742  }
1743
1744  // Notify the garbage collector that we wrote a code entry into a
1745  // JSFunction. Only scratch is clobbered by the operation.
1746  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
1747                                 Register scratch);
1748
1749  void RecordWriteForMap(
1750      Register object,
1751      Register map,
1752      Register dst,
1753      LinkRegisterStatus lr_status,
1754      SaveFPRegsMode save_fp);
1755
1756  // For a given |object| notify the garbage collector that the slot |address|
1757  // has been written.  |value| is the object being stored. The value and
1758  // address registers are clobbered by the operation.
1759  void RecordWrite(
1760      Register object,
1761      Register address,
1762      Register value,
1763      LinkRegisterStatus lr_status,
1764      SaveFPRegsMode save_fp,
1765      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1766      SmiCheck smi_check = INLINE_SMI_CHECK,
1767      PointersToHereCheck pointers_to_here_check_for_value =
1768          kPointersToHereMaybeInteresting);
1769
1770  // Checks the color of an object.  If the object is white we jump to the
1771  // incremental marker.
1772  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
1773                   Register scratch3, Register scratch4, Label* value_is_white);
1774
1775  // Helper for finding the mark bits for an address.
1776  // Note that the behaviour slightly differs from other architectures.
1777  // On exit:
1778  //  - addr_reg is unchanged.
1779  //  - The bitmap register points at the word with the mark bits.
1780  //  - The shift register contains the index of the first color bit for this
1781  //    object in the bitmap.
1782  inline void GetMarkBits(Register addr_reg,
1783                          Register bitmap_reg,
1784                          Register shift_reg);
1785
1786  // Check if an object has a given incremental marking color.
1787  void HasColor(Register object,
1788                Register scratch0,
1789                Register scratch1,
1790                Label* has_color,
1791                int first_bit,
1792                int second_bit);
1793
1794  void JumpIfBlack(Register object,
1795                   Register scratch0,
1796                   Register scratch1,
1797                   Label* on_black);
1798
1799
1800  // ---------------------------------------------------------------------------
1801  // Debugging.
1802
1803  // Calls Abort(msg) if the condition cond is not satisfied.
1804  // Use --debug_code to enable.
1805  void Assert(Condition cond, BailoutReason reason);
1806  void AssertRegisterIsClear(Register reg, BailoutReason reason);
1807  void AssertRegisterIsRoot(
1808      Register reg,
1809      Heap::RootListIndex index,
1810      BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1811  void AssertFastElements(Register elements);
1812
1813  // Abort if the specified register contains the invalid color bit pattern.
1814  // The pattern must be in bits [1:0] of 'reg' register.
1815  //
1816  // If emit_debug_code() is false, this emits no code.
1817  void AssertHasValidColor(const Register& reg);
1818
1819  // Abort if 'object' register doesn't point to a string object.
1820  //
1821  // If emit_debug_code() is false, this emits no code.
1822  void AssertIsString(const Register& object);
1823
1824  // Like Assert(), but always enabled.
1825  void Check(Condition cond, BailoutReason reason);
1826  void CheckRegisterIsClear(Register reg, BailoutReason reason);
1827
1828  // Print a message to stderr and abort execution.
1829  void Abort(BailoutReason reason);
1830
1831  void LoadNativeContextSlot(int index, Register dst);
1832
1833  // Load the initial map from the global function. The registers function and
1834  // map can be the same, function is then overwritten.
1835  void LoadGlobalFunctionInitialMap(Register function,
1836                                    Register map,
1837                                    Register scratch);
1838
1839  CPURegList* TmpList() { return &tmp_list_; }
1840  CPURegList* FPTmpList() { return &fptmp_list_; }
1841
1842  static CPURegList DefaultTmpList();
1843  static CPURegList DefaultFPTmpList();
1844
1845  // Like printf, but print at run-time from generated code.
1846  //
1847  // The caller must ensure that arguments for floating-point placeholders
1848  // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1849  // placeholders are Registers.
1850  //
1851  // At the moment it is only possible to print the value of csp if it is the
1852  // current stack pointer. Otherwise, the MacroAssembler will automatically
1853  // update csp on every push (using BumpSystemStackPointer), so determining its
1854  // value is difficult.
1855  //
1856  // Format placeholders that refer to more than one argument, or to a specific
1857  // argument, are not supported. This includes formats like "%1$d" or "%.*d".
1858  //
1859  // This function automatically preserves caller-saved registers so that
1860  // calling code can use Printf at any point without having to worry about
1861  // corruption. The preservation mechanism generates a lot of code. If this is
1862  // a problem, preserve the important registers manually and then call
1863  // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1864  // implicitly preserved.
1865  void Printf(const char * format,
1866              CPURegister arg0 = NoCPUReg,
1867              CPURegister arg1 = NoCPUReg,
1868              CPURegister arg2 = NoCPUReg,
1869              CPURegister arg3 = NoCPUReg);
1870
1871  // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
1872  //
1873  // The return code from the system printf call will be returned in x0.
1874  void PrintfNoPreserve(const char * format,
1875                        const CPURegister& arg0 = NoCPUReg,
1876                        const CPURegister& arg1 = NoCPUReg,
1877                        const CPURegister& arg2 = NoCPUReg,
1878                        const CPURegister& arg3 = NoCPUReg);
1879
1880  // Code ageing support functions.
1881
1882  // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
1883  // function as old, it replaces some of the function prologue (generated by
1884  // FullCodeGenerator::Generate) with a call to a special stub (ultimately
1885  // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
1886  // function prologue to its initial young state (indicating that it has been
1887  // recently run) and continues. A young function is therefore one which has a
1888  // normal frame setup sequence, and an old function has a code age sequence
1889  // which calls a code ageing stub.
1890
1891  // Set up a basic stack frame for young code (or code exempt from ageing) with
1892  // type FUNCTION. It may be patched later for code ageing support. This is
1893  // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
1894  //
1895  // This function takes an Assembler so it can be called from either a
1896  // MacroAssembler or a PatchingAssembler context.
1897  static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
1898
1899  // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
1900  void EmitFrameSetupForCodeAgePatching();
1901
1902  // Emit a code age sequence that calls the relevant code age stub. The code
1903  // generated by this sequence is expected to replace the code generated by
1904  // EmitFrameSetupForCodeAgePatching, and represents an old function.
1905  //
1906  // If stub is NULL, this function generates the code age sequence but omits
1907  // the stub address that is normally embedded in the instruction stream. This
1908  // can be used by debug code to verify code age sequences.
1909  static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
1910
1911  // Call EmitCodeAgeSequence from a MacroAssembler context.
1912  void EmitCodeAgeSequence(Code* stub);
1913
1914  // Return true if the sequence is a young sequence geneated by
1915  // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
1916  // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
1917  static bool IsYoungSequence(Isolate* isolate, byte* sequence);
1918
1919  // Perform necessary maintenance operations before a push or after a pop.
1920  //
1921  // Note that size is specified in bytes.
1922  void PushPreamble(Operand total_size);
1923  void PopPostamble(Operand total_size);
1924
1925  void PushPreamble(int count, int size) { PushPreamble(count * size); }
1926  void PopPostamble(int count, int size) { PopPostamble(count * size); }
1927
1928 private:
1929  // The actual Push and Pop implementations. These don't generate any code
1930  // other than that required for the push or pop. This allows
1931  // (Push|Pop)CPURegList to bundle together run-time assertions for a large
1932  // block of registers.
1933  //
1934  // Note that size is per register, and is specified in bytes.
1935  void PushHelper(int count, int size,
1936                  const CPURegister& src0, const CPURegister& src1,
1937                  const CPURegister& src2, const CPURegister& src3);
1938  void PopHelper(int count, int size,
1939                 const CPURegister& dst0, const CPURegister& dst1,
1940                 const CPURegister& dst2, const CPURegister& dst3);
1941
1942  // Call Printf. On a native build, a simple call will be generated, but if the
1943  // simulator is being used then a suitable pseudo-instruction is used. The
1944  // arguments and stack (csp) must be prepared by the caller as for a normal
1945  // AAPCS64 call to 'printf'.
1946  //
1947  // The 'args' argument should point to an array of variable arguments in their
1948  // proper PCS registers (and in calling order). The argument registers can
1949  // have mixed types. The format string (x0) should not be included.
1950  void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
1951
1952  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1953  void InNewSpace(Register object,
1954                  Condition cond,  // eq for new space, ne otherwise.
1955                  Label* branch);
1956
1957  // Try to represent a double as an int so that integer fast-paths may be
1958  // used. Not every valid integer value is guaranteed to be caught.
1959  // It supports both 32-bit and 64-bit integers depending whether 'as_int'
1960  // is a W or X register.
1961  //
1962  // This does not distinguish between +0 and -0, so if this distinction is
1963  // important it must be checked separately.
1964  //
1965  // On output the Z flag is set if the operation was successful.
1966  void TryRepresentDoubleAsInt(Register as_int,
1967                               FPRegister value,
1968                               FPRegister scratch_d,
1969                               Label* on_successful_conversion = NULL,
1970                               Label* on_failed_conversion = NULL);
1971
1972  bool generating_stub_;
1973#if DEBUG
1974  // Tell whether any of the macro instruction can be used. When false the
1975  // MacroAssembler will assert if a method which can emit a variable number
1976  // of instructions is called.
1977  bool allow_macro_instructions_;
1978#endif
1979  bool has_frame_;
1980
1981  // The Abort method should call a V8 runtime function, but the CallRuntime
1982  // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
1983  // use a simpler abort mechanism that doesn't depend on CEntryStub.
1984  //
1985  // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
1986  // being generated.
1987  bool use_real_aborts_;
1988
1989  // This handle will be patched with the code object on installation.
1990  Handle<Object> code_object_;
1991
1992  // The register to use as a stack pointer for stack operations.
1993  Register sp_;
1994
1995  // Scratch registers available for use by the MacroAssembler.
1996  CPURegList tmp_list_;
1997  CPURegList fptmp_list_;
1998
1999 public:
2000  // Far branches resolving.
2001  //
2002  // The various classes of branch instructions with immediate offsets have
2003  // different ranges. While the Assembler will fail to assemble a branch
2004  // exceeding its range, the MacroAssembler offers a mechanism to resolve
2005  // branches to too distant targets, either by tweaking the generated code to
2006  // use branch instructions with wider ranges or generating veneers.
2007  //
2008  // Currently branches to distant targets are resolved using unconditional
2009  // branch isntructions with a range of +-128MB. If that becomes too little
2010  // (!), the mechanism can be extended to generate special veneers for really
2011  // far targets.
2012
2013  // Helps resolve branching to labels potentially out of range.
2014  // If the label is not bound, it registers the information necessary to later
2015  // be able to emit a veneer for this branch if necessary.
2016  // If the label is bound, it returns true if the label (or the previous link
2017  // in the label chain) is out of range. In that case the caller is responsible
2018  // for generating appropriate code.
2019  // Otherwise it returns false.
2020  // This function also checks wether veneers need to be emitted.
2021  bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2022                                             ImmBranchType branch_type);
2023};
2024
2025
2026// Use this scope when you need a one-to-one mapping bewteen methods and
2027// instructions. This scope prevents the MacroAssembler from being called and
2028// literal pools from being emitted. It also asserts the number of instructions
2029// emitted is what you specified when creating the scope.
2030class InstructionAccurateScope BASE_EMBEDDED {
2031 public:
2032  explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
2033      : masm_(masm)
2034#ifdef DEBUG
2035        ,
2036        size_(count * kInstructionSize)
2037#endif
2038  {
2039    // Before blocking the const pool, see if it needs to be emitted.
2040    masm_->CheckConstPool(false, true);
2041    masm_->CheckVeneerPool(false, true);
2042
2043    masm_->StartBlockPools();
2044#ifdef DEBUG
2045    if (count != 0) {
2046      masm_->bind(&start_);
2047    }
2048    previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2049    masm_->set_allow_macro_instructions(false);
2050#endif
2051  }
2052
2053  ~InstructionAccurateScope() {
2054    masm_->EndBlockPools();
2055#ifdef DEBUG
2056    if (start_.is_bound()) {
2057      DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2058    }
2059    masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2060#endif
2061  }
2062
2063 private:
2064  MacroAssembler* masm_;
2065#ifdef DEBUG
2066  size_t size_;
2067  Label start_;
2068  bool previous_allow_macro_instructions_;
2069#endif
2070};
2071
2072
2073// This scope utility allows scratch registers to be managed safely. The
2074// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
2075// registers. These registers can be allocated on demand, and will be returned
2076// at the end of the scope.
2077//
2078// When the scope ends, the MacroAssembler's lists will be restored to their
2079// original state, even if the lists were modified by some other means.
2080class UseScratchRegisterScope {
2081 public:
2082  explicit UseScratchRegisterScope(MacroAssembler* masm)
2083      : available_(masm->TmpList()),
2084        availablefp_(masm->FPTmpList()),
2085        old_available_(available_->list()),
2086        old_availablefp_(availablefp_->list()) {
2087    DCHECK(available_->type() == CPURegister::kRegister);
2088    DCHECK(availablefp_->type() == CPURegister::kFPRegister);
2089  }
2090
2091  ~UseScratchRegisterScope();
2092
2093  // Take a register from the appropriate temps list. It will be returned
2094  // automatically when the scope ends.
2095  Register AcquireW() { return AcquireNextAvailable(available_).W(); }
2096  Register AcquireX() { return AcquireNextAvailable(available_).X(); }
2097  FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
2098  FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
2099
2100  Register UnsafeAcquire(const Register& reg) {
2101    return Register(UnsafeAcquire(available_, reg));
2102  }
2103
2104  Register AcquireSameSizeAs(const Register& reg);
2105  FPRegister AcquireSameSizeAs(const FPRegister& reg);
2106
2107 private:
2108  static CPURegister AcquireNextAvailable(CPURegList* available);
2109  static CPURegister UnsafeAcquire(CPURegList* available,
2110                                   const CPURegister& reg);
2111
2112  // Available scratch registers.
2113  CPURegList* available_;     // kRegister
2114  CPURegList* availablefp_;   // kFPRegister
2115
2116  // The state of the available lists at the start of this scope.
2117  RegList old_available_;     // kRegister
2118  RegList old_availablefp_;   // kFPRegister
2119};
2120
2121
2122inline MemOperand ContextMemOperand(Register context, int index = 0) {
2123  return MemOperand(context, Context::SlotOffset(index));
2124}
2125
2126inline MemOperand NativeContextMemOperand() {
2127  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
2128}
2129
2130
2131// Encode and decode information about patchable inline SMI checks.
2132class InlineSmiCheckInfo {
2133 public:
2134  explicit InlineSmiCheckInfo(Address info);
2135
2136  bool HasSmiCheck() const {
2137    return smi_check_ != NULL;
2138  }
2139
2140  const Register& SmiRegister() const {
2141    return reg_;
2142  }
2143
2144  Instruction* SmiCheck() const {
2145    return smi_check_;
2146  }
2147
2148  int SmiCheckDelta() const { return smi_check_delta_; }
2149
2150  // Use MacroAssembler::InlineData to emit information about patchable inline
2151  // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2152  // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2153  //
2154  // The generated patch information can be read using the InlineSMICheckInfo
2155  // class.
2156  static void Emit(MacroAssembler* masm, const Register& reg,
2157                   const Label* smi_check);
2158
2159  // Emit information to indicate that there is no inline SMI check.
2160  static void EmitNotInlined(MacroAssembler* masm) {
2161    Label unbound;
2162    Emit(masm, NoReg, &unbound);
2163  }
2164
2165 private:
2166  Register reg_;
2167  int smi_check_delta_;
2168  Instruction* smi_check_;
2169
2170  // Fields in the data encoded by InlineData.
2171
2172  // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2173  // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2174  // used in a patchable check. The Emit() method checks this.
2175  //
2176  // Note that the total size of the fields is restricted by the underlying
2177  // storage size handled by the BitField class, which is a uint32_t.
2178  class RegisterBits : public BitField<unsigned, 0, 5> {};
2179  class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2180};
2181
2182}  // namespace internal
2183}  // namespace v8
2184
2185#define ACCESS_MASM(masm) masm->
2186
2187#endif  // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
2188