1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_MIPS64
6
7#include "src/codegen.h"
8#include "src/debug/debug.h"
9#include "src/deoptimizer.h"
10#include "src/full-codegen/full-codegen.h"
11#include "src/runtime/runtime.h"
12
13namespace v8 {
14namespace internal {
15
16#define __ ACCESS_MASM(masm)
17
18void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
19                                ExitFrameType exit_frame_type) {
20  // ----------- S t a t e -------------
21  //  -- a0                 : number of arguments excluding receiver
22  //  -- a1                 : target
23  //  -- a3                 : new.target
24  //  -- sp[0]              : last argument
25  //  -- ...
26  //  -- sp[8 * (argc - 1)] : first argument
27  //  -- sp[8 * agrc]       : receiver
28  // -----------------------------------
29  __ AssertFunction(a1);
30
31  // Make sure we operate in the context of the called function (for example
32  // ConstructStubs implemented in C++ will be run in the context of the caller
33  // instead of the callee, due to the way that [[Construct]] is defined for
34  // ordinary functions).
35  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
36
37  // JumpToExternalReference expects a0 to contain the number of arguments
38  // including the receiver and the extra arguments.
39  const int num_extra_args = 3;
40  __ Daddu(a0, a0, num_extra_args + 1);
41
42  // Insert extra arguments.
43  __ SmiTag(a0);
44  __ Push(a0, a1, a3);
45  __ SmiUntag(a0);
46
47  __ JumpToExternalReference(ExternalReference(address, masm->isolate()),
48                             PROTECT, exit_frame_type == BUILTIN_EXIT);
49}
50
51// Load the built-in InternalArray function from the current context.
52static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
53                                              Register result) {
54  // Load the InternalArray function from the native context.
55  __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
56}
57
58// Load the built-in Array function from the current context.
59static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
60  // Load the Array function from the native context.
61  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
62}
63
64void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
65  // ----------- S t a t e -------------
66  //  -- a0     : number of arguments
67  //  -- ra     : return address
68  //  -- sp[...]: constructor arguments
69  // -----------------------------------
70  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
71
72  // Get the InternalArray function.
73  GenerateLoadInternalArrayFunction(masm, a1);
74
75  if (FLAG_debug_code) {
76    // Initial map for the builtin InternalArray functions should be maps.
77    __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
78    __ SmiTst(a2, a4);
79    __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, a4,
80              Operand(zero_reg));
81    __ GetObjectType(a2, a3, a4);
82    __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, a4,
83              Operand(MAP_TYPE));
84  }
85
86  // Run the native code for the InternalArray function called as a normal
87  // function.
88  // Tail call a stub.
89  InternalArrayConstructorStub stub(masm->isolate());
90  __ TailCallStub(&stub);
91}
92
93void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
94  // ----------- S t a t e -------------
95  //  -- a0     : number of arguments
96  //  -- ra     : return address
97  //  -- sp[...]: constructor arguments
98  // -----------------------------------
99  Label generic_array_code;
100
101  // Get the Array function.
102  GenerateLoadArrayFunction(masm, a1);
103
104  if (FLAG_debug_code) {
105    // Initial map for the builtin Array functions should be maps.
106    __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
107    __ SmiTst(a2, a4);
108    __ Assert(ne, kUnexpectedInitialMapForArrayFunction1, a4,
109              Operand(zero_reg));
110    __ GetObjectType(a2, a3, a4);
111    __ Assert(eq, kUnexpectedInitialMapForArrayFunction2, a4,
112              Operand(MAP_TYPE));
113  }
114
115  // Run the native code for the Array function called as a normal function.
116  // Tail call a stub.
117  __ mov(a3, a1);
118  __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
119  ArrayConstructorStub stub(masm->isolate());
120  __ TailCallStub(&stub);
121}
122
123// static
124void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
125  // ----------- S t a t e -------------
126  //  -- a0                     : number of arguments
127  //  -- a1                     : function
128  //  -- cp                     : context
129  //  -- ra                     : return address
130  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero-based)
131  //  -- sp[argc * 8]           : receiver
132  // -----------------------------------
133  Heap::RootListIndex const root_index =
134      (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
135                                     : Heap::kMinusInfinityValueRootIndex;
136
137  // Load the accumulator with the default return value (either -Infinity or
138  // +Infinity), with the tagged value in t1 and the double value in f0.
139  __ LoadRoot(t1, root_index);
140  __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
141
142  Label done_loop, loop, done;
143  __ mov(a3, a0);
144  __ bind(&loop);
145  {
146    // Check if all parameters done.
147    __ Dsubu(a3, a3, Operand(1));
148    __ Branch(&done_loop, lt, a3, Operand(zero_reg));
149
150    // Load the next parameter tagged value into a2.
151    __ Dlsa(at, sp, a3, kPointerSizeLog2);
152    __ ld(a2, MemOperand(at));
153
154    // Load the double value of the parameter into f2, maybe converting the
155    // parameter to a number first using the ToNumber builtin if necessary.
156    Label convert, convert_smi, convert_number, done_convert;
157    __ bind(&convert);
158    __ JumpIfSmi(a2, &convert_smi);
159    __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
160    __ JumpIfRoot(a4, Heap::kHeapNumberMapRootIndex, &convert_number);
161    {
162      // Parameter is not a Number, use the ToNumber builtin to convert it.
163      FrameScope scope(masm, StackFrame::MANUAL);
164      __ SmiTag(a0);
165      __ SmiTag(a3);
166      __ EnterBuiltinFrame(cp, a1, a0);
167      __ Push(t1, a3);
168      __ mov(a0, a2);
169      __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
170      __ mov(a2, v0);
171      __ Pop(t1, a3);
172      __ LeaveBuiltinFrame(cp, a1, a0);
173      __ SmiUntag(a3);
174      __ SmiUntag(a0);
175      {
176        // Restore the double accumulator value (f0).
177        Label restore_smi, done_restore;
178        __ JumpIfSmi(t1, &restore_smi);
179        __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
180        __ jmp(&done_restore);
181        __ bind(&restore_smi);
182        __ SmiToDoubleFPURegister(t1, f0, a4);
183        __ bind(&done_restore);
184      }
185    }
186    __ jmp(&convert);
187    __ bind(&convert_number);
188    __ ldc1(f2, FieldMemOperand(a2, HeapNumber::kValueOffset));
189    __ jmp(&done_convert);
190    __ bind(&convert_smi);
191    __ SmiToDoubleFPURegister(a2, f2, a4);
192    __ bind(&done_convert);
193
194    // Perform the actual comparison with using Min/Max macro instructions the
195    // accumulator value on the left hand side (f0) and the next parameter value
196    // on the right hand side (f2).
197    // We need to work out which HeapNumber (or smi) the result came from.
198    Label compare_nan, ool_min, ool_max;
199    __ BranchF(nullptr, &compare_nan, eq, f0, f2);
200    __ Move(a4, f0);
201    if (kind == MathMaxMinKind::kMin) {
202      __ Float64Min(f0, f0, f2, &ool_min);
203    } else {
204      DCHECK(kind == MathMaxMinKind::kMax);
205      __ Float64Max(f0, f0, f2, &ool_max);
206    }
207    __ jmp(&done);
208
209    __ bind(&ool_min);
210    __ Float64MinOutOfLine(f0, f0, f2);
211    __ jmp(&done);
212
213    __ bind(&ool_max);
214    __ Float64MaxOutOfLine(f0, f0, f2);
215
216    __ bind(&done);
217    __ Move(at, f0);
218    __ Branch(&loop, eq, a4, Operand(at));
219    __ mov(t1, a2);
220    __ jmp(&loop);
221
222    // At least one side is NaN, which means that the result will be NaN too.
223    __ bind(&compare_nan);
224    __ LoadRoot(t1, Heap::kNanValueRootIndex);
225    __ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
226    __ jmp(&loop);
227  }
228
229  __ bind(&done_loop);
230  // Drop all slots, including the receiver.
231  __ Daddu(a0, a0, Operand(1));
232  __ Dlsa(sp, sp, a0, kPointerSizeLog2);
233  __ Ret(USE_DELAY_SLOT);
234  __ mov(v0, t1);  // In delay slot.
235}
236
237// static
238void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
239  // ----------- S t a t e -------------
240  //  -- a0                     : number of arguments
241  //  -- a1                     : constructor function
242  //  -- cp                     : context
243  //  -- ra                     : return address
244  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
245  //  -- sp[argc * 8]           : receiver
246  // -----------------------------------
247
248  // 1. Load the first argument into a0 and get rid of the rest (including the
249  // receiver).
250  Label no_arguments;
251  {
252    __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
253    __ Dsubu(t1, a0, Operand(1));  // In delay slot.
254    __ mov(t0, a0);                // Store argc in t0.
255    __ Dlsa(at, sp, t1, kPointerSizeLog2);
256    __ ld(a0, MemOperand(at));
257  }
258
259  // 2a. Convert first argument to number.
260  {
261    FrameScope scope(masm, StackFrame::MANUAL);
262    __ SmiTag(t0);
263    __ EnterBuiltinFrame(cp, a1, t0);
264    __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
265    __ LeaveBuiltinFrame(cp, a1, t0);
266    __ SmiUntag(t0);
267  }
268
269  {
270    // Drop all arguments including the receiver.
271    __ Dlsa(sp, sp, t0, kPointerSizeLog2);
272    __ DropAndRet(1);
273  }
274
275  // 2b. No arguments, return +0.
276  __ bind(&no_arguments);
277  __ Move(v0, Smi::kZero);
278  __ DropAndRet(1);
279}
280
281void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
282  // ----------- S t a t e -------------
283  //  -- a0                     : number of arguments
284  //  -- a1                     : constructor function
285  //  -- a3                     : new target
286  //  -- cp                     : context
287  //  -- ra                     : return address
288  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
289  //  -- sp[argc * 8]           : receiver
290  // -----------------------------------
291
292  // 1. Make sure we operate in the context of the called function.
293  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
294
295  // 2. Load the first argument into a0 and get rid of the rest (including the
296  // receiver).
297  {
298    Label no_arguments, done;
299    __ mov(t0, a0);  // Store argc in t0.
300    __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
301    __ Dsubu(a0, a0, Operand(1));  // In delay slot.
302    __ Dlsa(at, sp, a0, kPointerSizeLog2);
303    __ ld(a0, MemOperand(at));
304    __ jmp(&done);
305    __ bind(&no_arguments);
306    __ Move(a0, Smi::kZero);
307    __ bind(&done);
308  }
309
310  // 3. Make sure a0 is a number.
311  {
312    Label done_convert;
313    __ JumpIfSmi(a0, &done_convert);
314    __ GetObjectType(a0, a2, a2);
315    __ Branch(&done_convert, eq, a2, Operand(HEAP_NUMBER_TYPE));
316    {
317      FrameScope scope(masm, StackFrame::MANUAL);
318      __ SmiTag(t0);
319      __ EnterBuiltinFrame(cp, a1, t0);
320      __ Push(a3);
321      __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
322      __ Move(a0, v0);
323      __ Pop(a3);
324      __ LeaveBuiltinFrame(cp, a1, t0);
325      __ SmiUntag(t0);
326    }
327    __ bind(&done_convert);
328  }
329
330  // 4. Check if new target and constructor differ.
331  Label drop_frame_and_ret, new_object;
332  __ Branch(&new_object, ne, a1, Operand(a3));
333
334  // 5. Allocate a JSValue wrapper for the number.
335  __ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
336  __ jmp(&drop_frame_and_ret);
337
338  // 6. Fallback to the runtime to create new object.
339  __ bind(&new_object);
340  {
341    FrameScope scope(masm, StackFrame::MANUAL);
342    __ SmiTag(t0);
343    __ EnterBuiltinFrame(cp, a1, t0);
344    __ Push(a0);
345    __ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
346            RelocInfo::CODE_TARGET);
347    __ Pop(a0);
348    __ LeaveBuiltinFrame(cp, a1, t0);
349    __ SmiUntag(t0);
350  }
351  __ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
352
353  __ bind(&drop_frame_and_ret);
354  {
355    __ Dlsa(sp, sp, t0, kPointerSizeLog2);
356    __ DropAndRet(1);
357  }
358}
359
360// static
361void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
362  // ----------- S t a t e -------------
363  //  -- a0                     : number of arguments
364  //  -- a1                     : constructor function
365  //  -- cp                     : context
366  //  -- ra                     : return address
367  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
368  //  -- sp[argc * 8]           : receiver
369  // -----------------------------------
370
371  // 1. Load the first argument into a0 and get rid of the rest (including the
372  // receiver).
373  Label no_arguments;
374  {
375    __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
376    __ Dsubu(t1, a0, Operand(1));  // In delay slot.
377    __ mov(t0, a0);                // Store argc in t0.
378    __ Dlsa(at, sp, t1, kPointerSizeLog2);
379    __ ld(a0, MemOperand(at));
380  }
381
382  // 2a. At least one argument, return a0 if it's a string, otherwise
383  // dispatch to appropriate conversion.
384  Label drop_frame_and_ret, to_string, symbol_descriptive_string;
385  {
386    __ JumpIfSmi(a0, &to_string);
387    __ GetObjectType(a0, t1, t1);
388    STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
389    __ Subu(t1, t1, Operand(FIRST_NONSTRING_TYPE));
390    __ Branch(&symbol_descriptive_string, eq, t1, Operand(zero_reg));
391    __ Branch(&to_string, gt, t1, Operand(zero_reg));
392    __ mov(v0, a0);
393    __ jmp(&drop_frame_and_ret);
394  }
395
396  // 2b. No arguments, return the empty string (and pop the receiver).
397  __ bind(&no_arguments);
398  {
399    __ LoadRoot(v0, Heap::kempty_stringRootIndex);
400    __ DropAndRet(1);
401  }
402
403  // 3a. Convert a0 to a string.
404  __ bind(&to_string);
405  {
406    FrameScope scope(masm, StackFrame::MANUAL);
407    __ SmiTag(t0);
408    __ EnterBuiltinFrame(cp, a1, t0);
409    __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
410    __ LeaveBuiltinFrame(cp, a1, t0);
411    __ SmiUntag(t0);
412  }
413  __ jmp(&drop_frame_and_ret);
414
415  // 3b. Convert symbol in a0 to a string.
416  __ bind(&symbol_descriptive_string);
417  {
418    __ Dlsa(sp, sp, t0, kPointerSizeLog2);
419    __ Drop(1);
420    __ Push(a0);
421    __ TailCallRuntime(Runtime::kSymbolDescriptiveString);
422  }
423
424  __ bind(&drop_frame_and_ret);
425  {
426    __ Dlsa(sp, sp, t0, kPointerSizeLog2);
427    __ DropAndRet(1);
428  }
429}
430
431void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
432  // ----------- S t a t e -------------
433  //  -- a0                     : number of arguments
434  //  -- a1                     : constructor function
435  //  -- a3                     : new target
436  //  -- cp                     : context
437  //  -- ra                     : return address
438  //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
439  //  -- sp[argc * 8]           : receiver
440  // -----------------------------------
441
442  // 1. Make sure we operate in the context of the called function.
443  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
444
445  // 2. Load the first argument into a0 and get rid of the rest (including the
446  // receiver).
447  {
448    Label no_arguments, done;
449    __ mov(t0, a0);  // Store argc in t0.
450    __ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
451    __ Dsubu(a0, a0, Operand(1));
452    __ Dlsa(at, sp, a0, kPointerSizeLog2);
453    __ ld(a0, MemOperand(at));
454    __ jmp(&done);
455    __ bind(&no_arguments);
456    __ LoadRoot(a0, Heap::kempty_stringRootIndex);
457    __ bind(&done);
458  }
459
460  // 3. Make sure a0 is a string.
461  {
462    Label convert, done_convert;
463    __ JumpIfSmi(a0, &convert);
464    __ GetObjectType(a0, a2, a2);
465    __ And(t1, a2, Operand(kIsNotStringMask));
466    __ Branch(&done_convert, eq, t1, Operand(zero_reg));
467    __ bind(&convert);
468    {
469      FrameScope scope(masm, StackFrame::MANUAL);
470      __ SmiTag(t0);
471      __ EnterBuiltinFrame(cp, a1, t0);
472      __ Push(a3);
473      __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
474      __ Move(a0, v0);
475      __ Pop(a3);
476      __ LeaveBuiltinFrame(cp, a1, t0);
477      __ SmiUntag(t0);
478    }
479    __ bind(&done_convert);
480  }
481
482  // 4. Check if new target and constructor differ.
483  Label drop_frame_and_ret, new_object;
484  __ Branch(&new_object, ne, a1, Operand(a3));
485
486  // 5. Allocate a JSValue wrapper for the string.
487  __ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
488  __ jmp(&drop_frame_and_ret);
489
490  // 6. Fallback to the runtime to create new object.
491  __ bind(&new_object);
492  {
493    FrameScope scope(masm, StackFrame::MANUAL);
494    __ SmiTag(t0);
495    __ EnterBuiltinFrame(cp, a1, t0);
496    __ Push(a0);
497    __ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
498            RelocInfo::CODE_TARGET);
499    __ Pop(a0);
500    __ LeaveBuiltinFrame(cp, a1, t0);
501    __ SmiUntag(t0);
502  }
503  __ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
504
505  __ bind(&drop_frame_and_ret);
506  {
507    __ Dlsa(sp, sp, t0, kPointerSizeLog2);
508    __ DropAndRet(1);
509  }
510}
511
512static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
513  __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
514  __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
515  __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
516  __ Jump(at);
517}
518
519static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
520                                           Runtime::FunctionId function_id) {
521  // ----------- S t a t e -------------
522  //  -- a0 : argument count (preserved for callee)
523  //  -- a1 : target function (preserved for callee)
524  //  -- a3 : new target (preserved for callee)
525  // -----------------------------------
526  {
527    FrameScope scope(masm, StackFrame::INTERNAL);
528    // Push a copy of the function onto the stack.
529    // Push a copy of the target function and the new target.
530    __ SmiTag(a0);
531    __ Push(a0, a1, a3, a1);
532
533    __ CallRuntime(function_id, 1);
534    // Restore target function and new target.
535    __ Pop(a0, a1, a3);
536    __ SmiUntag(a0);
537  }
538
539  __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
540  __ Jump(at);
541}
542
543void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
544  // Checking whether the queued function is ready for install is optional,
545  // since we come across interrupts and stack checks elsewhere.  However,
546  // not checking may delay installing ready functions, and always checking
547  // would be quite expensive.  A good compromise is to first check against
548  // stack limit as a cue for an interrupt signal.
549  Label ok;
550  __ LoadRoot(a4, Heap::kStackLimitRootIndex);
551  __ Branch(&ok, hs, sp, Operand(a4));
552
553  GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
554
555  __ bind(&ok);
556  GenerateTailCallToSharedCode(masm);
557}
558
559namespace {
560
561void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
562                                    bool create_implicit_receiver,
563                                    bool check_derived_construct) {
564  Label post_instantiation_deopt_entry;
565
566  // ----------- S t a t e -------------
567  //  -- a0     : number of arguments
568  //  -- a1     : constructor function
569  //  -- a3     : new target
570  //  -- cp     : context
571  //  -- ra     : return address
572  //  -- sp[...]: constructor arguments
573  // -----------------------------------
574
575  Isolate* isolate = masm->isolate();
576
577  // Enter a construct frame.
578  {
579    FrameScope scope(masm, StackFrame::CONSTRUCT);
580
581    // Preserve the incoming parameters on the stack.
582    __ SmiTag(a0);
583    __ Push(cp, a0);
584
585    if (create_implicit_receiver) {
586      __ Push(a1, a3);
587      __ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
588              RelocInfo::CODE_TARGET);
589      __ mov(t0, v0);
590      __ Pop(a1, a3);
591
592      // ----------- S t a t e -------------
593      // -- a1: constructor function
594      // -- a3: new target
595      // -- t0: newly allocated object
596      // -----------------------------------
597      __ ld(a0, MemOperand(sp));
598    }
599    __ SmiUntag(a0);
600
601    if (create_implicit_receiver) {
602      // Push the allocated receiver to the stack. We need two copies
603      // because we may have to return the original one and the calling
604      // conventions dictate that the called function pops the receiver.
605      __ Push(t0, t0);
606    } else {
607      __ PushRoot(Heap::kTheHoleValueRootIndex);
608    }
609
610    // Deoptimizer re-enters stub code here.
611    __ bind(&post_instantiation_deopt_entry);
612
613    // Set up pointer to last argument.
614    __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
615
616    // Copy arguments and receiver to the expression stack.
617    // a0: number of arguments
618    // a1: constructor function
619    // a2: address of last argument (caller sp)
620    // a3: new target
621    // t0: number of arguments (smi-tagged)
622    // sp[0]: receiver
623    // sp[1]: receiver
624    // sp[2]: number of arguments (smi-tagged)
625    Label loop, entry;
626    __ mov(t0, a0);
627    __ jmp(&entry);
628    __ bind(&loop);
629    __ Dlsa(a4, a2, t0, kPointerSizeLog2);
630    __ ld(a5, MemOperand(a4));
631    __ push(a5);
632    __ bind(&entry);
633    __ Daddu(t0, t0, Operand(-1));
634    __ Branch(&loop, greater_equal, t0, Operand(zero_reg));
635
636    // Call the function.
637    // a0: number of arguments
638    // a1: constructor function
639    // a3: new target
640    ParameterCount actual(a0);
641    __ InvokeFunction(a1, a3, actual, CALL_FUNCTION,
642                      CheckDebugStepCallWrapper());
643
644    // Store offset of return address for deoptimizer.
645    if (create_implicit_receiver && !is_api_function) {
646      masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
647          masm->pc_offset());
648    }
649
650    // Restore context from the frame.
651    __ ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
652
653    if (create_implicit_receiver) {
654      // If the result is an object (in the ECMA sense), we should get rid
655      // of the receiver and use the result; see ECMA-262 section 13.2.2-7
656      // on page 74.
657      Label use_receiver, exit;
658
659      // If the result is a smi, it is *not* an object in the ECMA sense.
660      // v0: result
661      // sp[0]: receiver (newly allocated object)
662      // sp[1]: number of arguments (smi-tagged)
663      __ JumpIfSmi(v0, &use_receiver);
664
665      // If the type of the result (stored in its map) is less than
666      // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
667      __ GetObjectType(v0, a1, a3);
668      __ Branch(&exit, greater_equal, a3, Operand(FIRST_JS_RECEIVER_TYPE));
669
670      // Throw away the result of the constructor invocation and use the
671      // on-stack receiver as the result.
672      __ bind(&use_receiver);
673      __ ld(v0, MemOperand(sp));
674
675      // Remove receiver from the stack, remove caller arguments, and
676      // return.
677      __ bind(&exit);
678      // v0: result
679      // sp[0]: receiver (newly allocated object)
680      // sp[1]: number of arguments (smi-tagged)
681      __ ld(a1, MemOperand(sp, 1 * kPointerSize));
682    } else {
683      __ ld(a1, MemOperand(sp));
684    }
685
686    // Leave construct frame.
687  }
688
689  // ES6 9.2.2. Step 13+
690  // Check that the result is not a Smi, indicating that the constructor result
691  // from a derived class is neither undefined nor an Object.
692  if (check_derived_construct) {
693    Label dont_throw;
694    __ JumpIfNotSmi(v0, &dont_throw);
695    {
696      FrameScope scope(masm, StackFrame::INTERNAL);
697      __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
698    }
699    __ bind(&dont_throw);
700  }
701
702  __ SmiScale(a4, a1, kPointerSizeLog2);
703  __ Daddu(sp, sp, a4);
704  __ Daddu(sp, sp, kPointerSize);
705  if (create_implicit_receiver) {
706    __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
707  }
708  __ Ret();
709
710  // Store offset of trampoline address for deoptimizer. This is the bailout
711  // point after the receiver instantiation but before the function invocation.
712  // We need to restore some registers in order to continue the above code.
713  if (create_implicit_receiver && !is_api_function) {
714    masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
715        masm->pc_offset());
716
717    // ----------- S t a t e -------------
718    //  -- a0    : newly allocated object
719    //  -- sp[0] : constructor function
720    // -----------------------------------
721
722    __ Pop(a1);
723    __ Push(a0, a0);
724
725    // Retrieve smi-tagged arguments count from the stack.
726    __ ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
727    __ SmiUntag(a0);
728
729    // Retrieve the new target value from the stack. This was placed into the
730    // frame description in place of the receiver by the optimizing compiler.
731    __ Daddu(a3, fp, Operand(StandardFrameConstants::kCallerSPOffset));
732    __ Dlsa(a3, a3, a0, kPointerSizeLog2);
733    __ ld(a3, MemOperand(a3));
734
735    // Continue with constructor function invocation.
736    __ jmp(&post_instantiation_deopt_entry);
737  }
738}
739
740}  // namespace
741
742void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
743  Generate_JSConstructStubHelper(masm, false, true, false);
744}
745
746void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
747  Generate_JSConstructStubHelper(masm, true, false, false);
748}
749
750void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
751  Generate_JSConstructStubHelper(masm, false, false, false);
752}
753
754void Builtins::Generate_JSBuiltinsConstructStubForDerived(
755    MacroAssembler* masm) {
756  Generate_JSConstructStubHelper(masm, false, false, true);
757}
758
759// static
760void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
761  // ----------- S t a t e -------------
762  //  -- v0 : the value to pass to the generator
763  //  -- a1 : the JSGeneratorObject to resume
764  //  -- a2 : the resume mode (tagged)
765  //  -- ra : return address
766  // -----------------------------------
767  __ AssertGeneratorObject(a1);
768
769  // Store input value into generator object.
770  __ sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
771  __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
772                      kRAHasNotBeenSaved, kDontSaveFPRegs);
773
774  // Store resume mode into generator object.
775  __ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kResumeModeOffset));
776
777  // Load suspended function and context.
778  __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
779  __ ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset));
780
781  // Flood function if we are stepping.
782  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
783  Label stepping_prepared;
784  ExternalReference debug_hook =
785      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
786  __ li(a5, Operand(debug_hook));
787  __ lb(a5, MemOperand(a5));
788  __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg));
789
790  // Flood function if we need to continue stepping in the suspended generator.
791  ExternalReference debug_suspended_generator =
792      ExternalReference::debug_suspended_generator_address(masm->isolate());
793  __ li(a5, Operand(debug_suspended_generator));
794  __ ld(a5, MemOperand(a5));
795  __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5));
796  __ bind(&stepping_prepared);
797
798  // Push receiver.
799  __ ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
800  __ Push(a5);
801
802  // ----------- S t a t e -------------
803  //  -- a1    : the JSGeneratorObject to resume
804  //  -- a2    : the resume mode (tagged)
805  //  -- a4    : generator function
806  //  -- cp    : generator context
807  //  -- ra    : return address
808  //  -- sp[0] : generator receiver
809  // -----------------------------------
810
811  // Push holes for arguments to generator function. Since the parser forced
812  // context allocation for any variables in generators, the actual argument
813  // values have already been copied into the context and these dummy values
814  // will never be used.
815  __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
816  __ lw(a3,
817        FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
818  {
819    Label done_loop, loop;
820    __ bind(&loop);
821    __ Dsubu(a3, a3, Operand(1));
822    __ Branch(&done_loop, lt, a3, Operand(zero_reg));
823    __ PushRoot(Heap::kTheHoleValueRootIndex);
824    __ Branch(&loop);
825    __ bind(&done_loop);
826  }
827
828  // Underlying function needs to have bytecode available.
829  if (FLAG_debug_code) {
830    __ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
831    __ ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
832    __ GetObjectType(a3, a3, a3);
833    __ Assert(eq, kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE));
834  }
835
836  // Resume (Ignition/TurboFan) generator object.
837  {
838    __ ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
839    __ lw(a0,
840          FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset));
841    // We abuse new.target both to indicate that this is a resume call and to
842    // pass in the generator object.  In ordinary calls, new.target is always
843    // undefined because generator functions are non-constructable.
844    __ Move(a3, a1);
845    __ Move(a1, a4);
846    __ ld(a2, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
847    __ Jump(a2);
848  }
849
850  __ bind(&prepare_step_in_if_stepping);
851  {
852    FrameScope scope(masm, StackFrame::INTERNAL);
853    __ Push(a1, a2, a4);
854    __ CallRuntime(Runtime::kDebugOnFunctionCall);
855    __ Pop(a1, a2);
856  }
857  __ Branch(USE_DELAY_SLOT, &stepping_prepared);
858  __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
859
860  __ bind(&prepare_step_in_suspended_generator);
861  {
862    FrameScope scope(masm, StackFrame::INTERNAL);
863    __ Push(a1, a2);
864    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
865    __ Pop(a1, a2);
866  }
867  __ Branch(USE_DELAY_SLOT, &stepping_prepared);
868  __ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
869}
870
871void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
872  FrameScope scope(masm, StackFrame::INTERNAL);
873  __ Push(a1);
874  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
875}
876
877enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
878
879// Clobbers a2; preserves all other registers.
880static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
881                                        IsTagged argc_is_tagged) {
882  // Check the stack for overflow. We are not trying to catch
883  // interruptions (e.g. debug break and preemption) here, so the "real stack
884  // limit" is checked.
885  Label okay;
886  __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
887  // Make a2 the space we have left. The stack might already be overflowed
888  // here which will cause r2 to become negative.
889  __ dsubu(a2, sp, a2);
890  // Check if the arguments will overflow the stack.
891  if (argc_is_tagged == kArgcIsSmiTagged) {
892    __ SmiScale(a7, v0, kPointerSizeLog2);
893  } else {
894    DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
895    __ dsll(a7, argc, kPointerSizeLog2);
896  }
897  __ Branch(&okay, gt, a2, Operand(a7));  // Signed comparison.
898
899  // Out of stack space.
900  __ CallRuntime(Runtime::kThrowStackOverflow);
901
902  __ bind(&okay);
903}
904
905static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
906                                             bool is_construct) {
907  // Called from JSEntryStub::GenerateBody
908
909  // ----------- S t a t e -------------
910  //  -- a0: new.target
911  //  -- a1: function
912  //  -- a2: receiver_pointer
913  //  -- a3: argc
914  //  -- s0: argv
915  // -----------------------------------
916  ProfileEntryHookStub::MaybeCallEntryHook(masm);
917
918  // Enter an internal frame.
919  {
920    FrameScope scope(masm, StackFrame::INTERNAL);
921
922    // Setup the context (we need to use the caller context from the isolate).
923    ExternalReference context_address(Isolate::kContextAddress,
924                                      masm->isolate());
925    __ li(cp, Operand(context_address));
926    __ ld(cp, MemOperand(cp));
927
928    // Push the function and the receiver onto the stack.
929    __ Push(a1, a2);
930
931    // Check if we have enough stack space to push all arguments.
932    // Clobbers a2.
933    Generate_CheckStackOverflow(masm, a3, kArgcIsUntaggedInt);
934
935    // Remember new.target.
936    __ mov(a5, a0);
937
938    // Copy arguments to the stack in a loop.
939    // a3: argc
940    // s0: argv, i.e. points to first arg
941    Label loop, entry;
942    __ Dlsa(a6, s0, a3, kPointerSizeLog2);
943    __ b(&entry);
944    __ nop();  // Branch delay slot nop.
945    // a6 points past last arg.
946    __ bind(&loop);
947    __ ld(a4, MemOperand(s0));  // Read next parameter.
948    __ daddiu(s0, s0, kPointerSize);
949    __ ld(a4, MemOperand(a4));  // Dereference handle.
950    __ push(a4);                // Push parameter.
951    __ bind(&entry);
952    __ Branch(&loop, ne, s0, Operand(a6));
953
954    // Setup new.target and argc.
955    __ mov(a0, a3);
956    __ mov(a3, a5);
957
958    // Initialize all JavaScript callee-saved registers, since they will be seen
959    // by the garbage collector as part of handlers.
960    __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
961    __ mov(s1, a4);
962    __ mov(s2, a4);
963    __ mov(s3, a4);
964    __ mov(s4, a4);
965    __ mov(s5, a4);
966    // s6 holds the root address. Do not clobber.
967    // s7 is cp. Do not init.
968
969    // Invoke the code.
970    Handle<Code> builtin = is_construct
971                               ? masm->isolate()->builtins()->Construct()
972                               : masm->isolate()->builtins()->Call();
973    __ Call(builtin, RelocInfo::CODE_TARGET);
974
975    // Leave internal frame.
976  }
977  __ Jump(ra);
978}
979
980void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
981  Generate_JSEntryTrampolineHelper(masm, false);
982}
983
984void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
985  Generate_JSEntryTrampolineHelper(masm, true);
986}
987
988static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
989  Register args_count = scratch;
990
991  // Get the arguments + receiver count.
992  __ ld(args_count,
993        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
994  __ lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
995
996  // Leave the frame (also dropping the register file).
997  __ LeaveFrame(StackFrame::JAVA_SCRIPT);
998
999  // Drop receiver + arguments.
1000  __ Daddu(sp, sp, args_count);
1001}
1002
1003// Generate code for entering a JS function with the interpreter.
1004// On entry to the function the receiver and arguments have been pushed on the
1005// stack left to right.  The actual argument count matches the formal parameter
1006// count expected by the function.
1007//
1008// The live registers are:
1009//   o a1: the JS function object being called.
1010//   o a3: the new target
1011//   o cp: our context
1012//   o fp: the caller's frame pointer
1013//   o sp: stack pointer
1014//   o ra: return address
1015//
1016// The function builds an interpreter frame.  See InterpreterFrameConstants in
1017// frames.h for its layout.
1018void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1019  ProfileEntryHookStub::MaybeCallEntryHook(masm);
1020
1021  // Open a frame scope to indicate that there is a frame on the stack.  The
1022  // MANUAL indicates that the scope shouldn't actually generate code to set up
1023  // the frame (that is done below).
1024  FrameScope frame_scope(masm, StackFrame::MANUAL);
1025  __ PushStandardFrame(a1);
1026
1027  // Get the bytecode array from the function object (or from the DebugInfo if
1028  // it is present) and load it into kInterpreterBytecodeArrayRegister.
1029  __ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1030  Label load_debug_bytecode_array, bytecode_array_loaded;
1031  Register debug_info = kInterpreterBytecodeArrayRegister;
1032  DCHECK(!debug_info.is(a0));
1033  __ ld(debug_info, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset));
1034  __ JumpIfNotSmi(debug_info, &load_debug_bytecode_array);
1035  __ ld(kInterpreterBytecodeArrayRegister,
1036        FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
1037  __ bind(&bytecode_array_loaded);
1038
1039  // Check whether we should continue to use the interpreter.
1040  Label switch_to_different_code_kind;
1041  __ ld(a0, FieldMemOperand(a0, SharedFunctionInfo::kCodeOffset));
1042  __ Branch(&switch_to_different_code_kind, ne, a0,
1043            Operand(masm->CodeObject()));  // Self-reference to this code.
1044
1045  // Increment invocation count for the function.
1046  __ ld(a0, FieldMemOperand(a1, JSFunction::kFeedbackVectorOffset));
1047  __ ld(a0, FieldMemOperand(a0, Cell::kValueOffset));
1048  __ ld(a4, FieldMemOperand(
1049                a0, FeedbackVector::kInvocationCountIndex * kPointerSize +
1050                        FeedbackVector::kHeaderSize));
1051  __ Daddu(a4, a4, Operand(Smi::FromInt(1)));
1052  __ sd(a4, FieldMemOperand(
1053                a0, FeedbackVector::kInvocationCountIndex * kPointerSize +
1054                        FeedbackVector::kHeaderSize));
1055
1056  // Check function data field is actually a BytecodeArray object.
1057  if (FLAG_debug_code) {
1058    __ SmiTst(kInterpreterBytecodeArrayRegister, a4);
1059    __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
1060              Operand(zero_reg));
1061    __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
1062    __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
1063              Operand(BYTECODE_ARRAY_TYPE));
1064  }
1065
1066  // Reset code age.
1067  DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge);
1068  __ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1069                                  BytecodeArray::kBytecodeAgeOffset));
1070
1071  // Load initial bytecode offset.
1072  __ li(kInterpreterBytecodeOffsetRegister,
1073        Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
1074
1075  // Push new.target, bytecode array and Smi tagged bytecode array offset.
1076  __ SmiTag(a4, kInterpreterBytecodeOffsetRegister);
1077  __ Push(a3, kInterpreterBytecodeArrayRegister, a4);
1078
1079  // Allocate the local and temporary register file on the stack.
1080  {
1081    // Load frame size (word) from the BytecodeArray object.
1082    __ lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1083                              BytecodeArray::kFrameSizeOffset));
1084
1085    // Do a stack check to ensure we don't go over the limit.
1086    Label ok;
1087    __ Dsubu(a5, sp, Operand(a4));
1088    __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
1089    __ Branch(&ok, hs, a5, Operand(a2));
1090    __ CallRuntime(Runtime::kThrowStackOverflow);
1091    __ bind(&ok);
1092
1093    // If ok, push undefined as the initial value for all register file entries.
1094    Label loop_header;
1095    Label loop_check;
1096    __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
1097    __ Branch(&loop_check);
1098    __ bind(&loop_header);
1099    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1100    __ push(a5);
1101    // Continue loop if not done.
1102    __ bind(&loop_check);
1103    __ Dsubu(a4, a4, Operand(kPointerSize));
1104    __ Branch(&loop_header, ge, a4, Operand(zero_reg));
1105  }
1106
1107  // Load accumulator and dispatch table into registers.
1108  __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
1109  __ li(kInterpreterDispatchTableRegister,
1110        Operand(ExternalReference::interpreter_dispatch_table_address(
1111            masm->isolate())));
1112
1113  // Dispatch to the first bytecode handler for the function.
1114  __ Daddu(a0, kInterpreterBytecodeArrayRegister,
1115           kInterpreterBytecodeOffsetRegister);
1116  __ lbu(a0, MemOperand(a0));
1117  __ Dlsa(at, kInterpreterDispatchTableRegister, a0, kPointerSizeLog2);
1118  __ ld(at, MemOperand(at));
1119  __ Call(at);
1120  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
1121
1122  // The return value is in v0.
1123  LeaveInterpreterFrame(masm, t0);
1124  __ Jump(ra);
1125
1126  // Load debug copy of the bytecode array.
1127  __ bind(&load_debug_bytecode_array);
1128  __ ld(kInterpreterBytecodeArrayRegister,
1129        FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex));
1130  __ Branch(&bytecode_array_loaded);
1131
1132  // If the shared code is no longer this entry trampoline, then the underlying
1133  // function has been switched to a different kind of code and we heal the
1134  // closure by switching the code entry field over to the new code as well.
1135  __ bind(&switch_to_different_code_kind);
1136  __ LeaveFrame(StackFrame::JAVA_SCRIPT);
1137  __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1138  __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kCodeOffset));
1139  __ Daddu(a4, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
1140  __ sd(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1141  __ RecordWriteCodeEntryField(a1, a4, a5);
1142  __ Jump(a4);
1143}
1144
1145static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
1146                                        Register scratch1, Register scratch2,
1147                                        Label* stack_overflow) {
1148  // Check the stack for overflow. We are not trying to catch
1149  // interruptions (e.g. debug break and preemption) here, so the "real stack
1150  // limit" is checked.
1151  __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex);
1152  // Make scratch1 the space we have left. The stack might already be overflowed
1153  // here which will cause scratch1 to become negative.
1154  __ dsubu(scratch1, sp, scratch1);
1155  // Check if the arguments will overflow the stack.
1156  __ dsll(scratch2, num_args, kPointerSizeLog2);
1157  // Signed comparison.
1158  __ Branch(stack_overflow, le, scratch1, Operand(scratch2));
1159}
1160
1161static void Generate_InterpreterPushArgs(MacroAssembler* masm,
1162                                         Register num_args, Register index,
1163                                         Register scratch, Register scratch2,
1164                                         Label* stack_overflow) {
1165  //  Generate_StackOverflowCheck(masm, num_args, scratch, scratch2,
1166  //  stack_overflow);
1167
1168  // Find the address of the last argument.
1169  __ mov(scratch2, num_args);
1170  __ dsll(scratch2, scratch2, kPointerSizeLog2);
1171  __ Dsubu(scratch2, index, Operand(scratch2));
1172
1173  // Push the arguments.
1174  Label loop_header, loop_check;
1175  __ Branch(&loop_check);
1176  __ bind(&loop_header);
1177  __ ld(scratch, MemOperand(index));
1178  __ Daddu(index, index, Operand(-kPointerSize));
1179  __ push(scratch);
1180  __ bind(&loop_check);
1181  __ Branch(&loop_header, gt, index, Operand(scratch2));
1182}
1183
1184// static
1185void Builtins::Generate_InterpreterPushArgsAndCallImpl(
1186    MacroAssembler* masm, TailCallMode tail_call_mode,
1187    InterpreterPushArgsMode mode) {
1188  // ----------- S t a t e -------------
1189  //  -- a0 : the number of arguments (not including the receiver)
1190  //  -- a2 : the address of the first argument to be pushed. Subsequent
1191  //          arguments should be consecutive above this, in the same order as
1192  //          they are to be pushed onto the stack.
1193  //  -- a1 : the target to call (can be any Object).
1194  // -----------------------------------
1195  Label stack_overflow;
1196
1197  __ Daddu(a3, a0, Operand(1));  // Add one for receiver.
1198
1199  // This function modifies a2, t0 and a4.
1200  Generate_InterpreterPushArgs(masm, a3, a2, a4, t0, &stack_overflow);
1201
1202  // Call the target.
1203  if (mode == InterpreterPushArgsMode::kJSFunction) {
1204    __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
1205                                                      tail_call_mode),
1206            RelocInfo::CODE_TARGET);
1207  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1208    __ Jump(masm->isolate()->builtins()->CallWithSpread(),
1209            RelocInfo::CODE_TARGET);
1210  } else {
1211    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
1212                                              tail_call_mode),
1213            RelocInfo::CODE_TARGET);
1214  }
1215
1216  __ bind(&stack_overflow);
1217  {
1218    __ TailCallRuntime(Runtime::kThrowStackOverflow);
1219    // Unreachable code.
1220    __ break_(0xCC);
1221  }
1222}
1223
1224// static
1225void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
1226    MacroAssembler* masm, InterpreterPushArgsMode mode) {
1227  // ----------- S t a t e -------------
1228  // -- a0 : argument count (not including receiver)
1229  // -- a3 : new target
1230  // -- a1 : constructor to call
1231  // -- a2 : allocation site feedback if available, undefined otherwise.
1232  // -- a4 : address of the first argument
1233  // -----------------------------------
1234  Label stack_overflow;
1235
1236  // Push a slot for the receiver.
1237  __ push(zero_reg);
1238
1239  // This function modifies t0, a4 and a5.
1240  Generate_InterpreterPushArgs(masm, a0, a4, a5, t0, &stack_overflow);
1241
1242  __ AssertUndefinedOrAllocationSite(a2, t0);
1243  if (mode == InterpreterPushArgsMode::kJSFunction) {
1244    __ AssertFunction(a1);
1245
1246    // Tail call to the function-specific construct stub (still in the caller
1247    // context at this point).
1248    __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1249    __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
1250    __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
1251    __ Jump(at);
1252  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1253    // Call the constructor with a0, a1, and a3 unmodified.
1254    __ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
1255            RelocInfo::CODE_TARGET);
1256  } else {
1257    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1258    // Call the constructor with a0, a1, and a3 unmodified.
1259    __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1260  }
1261
1262  __ bind(&stack_overflow);
1263  {
1264    __ TailCallRuntime(Runtime::kThrowStackOverflow);
1265    // Unreachable code.
1266    __ break_(0xCC);
1267  }
1268}
1269
1270// static
1271void Builtins::Generate_InterpreterPushArgsAndConstructArray(
1272    MacroAssembler* masm) {
1273  // ----------- S t a t e -------------
1274  //  -- a0 : the number of arguments (not including the receiver)
1275  //  -- a1 : the target to call checked to be Array function.
1276  //  -- a2 : allocation site feedback.
1277  //  -- a3 : the address of the first argument to be pushed. Subsequent
1278  //          arguments should be consecutive above this, in the same order as
1279  //          they are to be pushed onto the stack.
1280  // -----------------------------------
1281  Label stack_overflow;
1282
1283  __ Daddu(a4, a0, Operand(1));  // Add one for receiver.
1284
1285  // This function modifies a3, a5 and a6.
1286  Generate_InterpreterPushArgs(masm, a4, a3, a5, a6, &stack_overflow);
1287
1288  // ArrayConstructor stub expects constructor in a3. Set it here.
1289  __ mov(a3, a1);
1290
1291  ArrayConstructorStub stub(masm->isolate());
1292  __ TailCallStub(&stub);
1293
1294  __ bind(&stack_overflow);
1295  {
1296    __ TailCallRuntime(Runtime::kThrowStackOverflow);
1297    // Unreachable code.
1298    __ break_(0xCC);
1299  }
1300}
1301
1302static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1303  // Set the return address to the correct point in the interpreter entry
1304  // trampoline.
1305  Smi* interpreter_entry_return_pc_offset(
1306      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1307  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
1308  __ li(t0, Operand(masm->isolate()->builtins()->InterpreterEntryTrampoline()));
1309  __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() +
1310                           Code::kHeaderSize - kHeapObjectTag));
1311
1312  // Initialize the dispatch table register.
1313  __ li(kInterpreterDispatchTableRegister,
1314        Operand(ExternalReference::interpreter_dispatch_table_address(
1315            masm->isolate())));
1316
1317  // Get the bytecode array pointer from the frame.
1318  __ ld(kInterpreterBytecodeArrayRegister,
1319        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1320
1321  if (FLAG_debug_code) {
1322    // Check function data field is actually a BytecodeArray object.
1323    __ SmiTst(kInterpreterBytecodeArrayRegister, at);
1324    __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, at,
1325              Operand(zero_reg));
1326    __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
1327    __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1,
1328              Operand(BYTECODE_ARRAY_TYPE));
1329  }
1330
1331  // Get the target bytecode offset from the frame.
1332  __ lw(
1333      kInterpreterBytecodeOffsetRegister,
1334      UntagSmiMemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1335
1336  // Dispatch to the target bytecode.
1337  __ Daddu(a1, kInterpreterBytecodeArrayRegister,
1338           kInterpreterBytecodeOffsetRegister);
1339  __ lbu(a1, MemOperand(a1));
1340  __ Dlsa(a1, kInterpreterDispatchTableRegister, a1, kPointerSizeLog2);
1341  __ ld(a1, MemOperand(a1));
1342  __ Jump(a1);
1343}
1344
1345void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1346  // Advance the current bytecode offset stored within the given interpreter
1347  // stack frame. This simulates what all bytecode handlers do upon completion
1348  // of the underlying operation.
1349  __ ld(a1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1350  __ ld(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1351  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1352  {
1353    FrameScope scope(masm, StackFrame::INTERNAL);
1354    __ Push(kInterpreterAccumulatorRegister, a1, a2);
1355    __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
1356    __ mov(a2, v0);  // Result is the new bytecode offset.
1357    __ Pop(kInterpreterAccumulatorRegister);
1358  }
1359  __ sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1360
1361  Generate_InterpreterEnterBytecode(masm);
1362}
1363
1364void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1365  Generate_InterpreterEnterBytecode(masm);
1366}
1367
1368void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1369  // ----------- S t a t e -------------
1370  //  -- a0 : argument count (preserved for callee)
1371  //  -- a3 : new target (preserved for callee)
1372  //  -- a1 : target function (preserved for callee)
1373  // -----------------------------------
1374  // First lookup code, maybe we don't need to compile!
1375  Label gotta_call_runtime, gotta_call_runtime_no_stack;
1376  Label try_shared;
1377  Label loop_top, loop_bottom;
1378
1379  Register argument_count = a0;
1380  Register closure = a1;
1381  Register new_target = a3;
1382  Register map = a0;
1383  Register index = a2;
1384
1385  // Do we have a valid feedback vector?
1386  __ ld(index, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
1387  __ ld(index, FieldMemOperand(index, Cell::kValueOffset));
1388  __ JumpIfRoot(index, Heap::kUndefinedValueRootIndex,
1389                &gotta_call_runtime_no_stack);
1390
1391  __ push(argument_count);
1392  __ push(new_target);
1393  __ push(closure);
1394
1395  __ ld(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1396  __ ld(map, FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
1397  __ ld(index, FieldMemOperand(map, FixedArray::kLengthOffset));
1398  __ Branch(&try_shared, lt, index, Operand(Smi::FromInt(2)));
1399
1400  // a3  : native context
1401  // a2  : length / index
1402  // a0  : optimized code map
1403  // stack[0] : new target
1404  // stack[4] : closure
1405  Register native_context = a3;
1406  __ ld(native_context, NativeContextMemOperand());
1407
1408  __ bind(&loop_top);
1409  Register temp = a1;
1410  Register array_pointer = a5;
1411
1412  // Does the native context match?
1413  __ SmiScale(at, index, kPointerSizeLog2);
1414  __ Daddu(array_pointer, map, Operand(at));
1415  __ ld(temp, FieldMemOperand(array_pointer,
1416                              SharedFunctionInfo::kOffsetToPreviousContext));
1417  __ ld(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
1418  __ Branch(&loop_bottom, ne, temp, Operand(native_context));
1419
1420  // Code available?
1421  Register entry = a4;
1422  __ ld(entry,
1423        FieldMemOperand(array_pointer,
1424                        SharedFunctionInfo::kOffsetToPreviousCachedCode));
1425  __ ld(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
1426  __ JumpIfSmi(entry, &try_shared);
1427
1428  // Found code. Get it into the closure and return.
1429  __ pop(closure);
1430  // Store code entry in the closure.
1431  __ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
1432  __ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
1433  __ RecordWriteCodeEntryField(closure, entry, a5);
1434
1435  // Link the closure into the optimized function list.
1436  // a4 : code entry
1437  // a3 : native context
1438  // a1 : closure
1439  __ ld(a5,
1440        ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
1441  __ sd(a5, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset));
1442  __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, a5, a0,
1443                      kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
1444                      OMIT_SMI_CHECK);
1445  const int function_list_offset =
1446      Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
1447  __ sd(closure,
1448        ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
1449  // Save closure before the write barrier.
1450  __ mov(a5, closure);
1451  __ RecordWriteContextSlot(native_context, function_list_offset, closure, a0,
1452                            kRAHasNotBeenSaved, kDontSaveFPRegs);
1453  __ mov(closure, a5);
1454  __ pop(new_target);
1455  __ pop(argument_count);
1456  __ Jump(entry);
1457
1458  __ bind(&loop_bottom);
1459  __ Dsubu(index, index,
1460           Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
1461  __ Branch(&loop_top, gt, index, Operand(Smi::FromInt(1)));
1462
1463  // We found no code.
1464  __ bind(&try_shared);
1465  __ pop(closure);
1466  __ pop(new_target);
1467  __ pop(argument_count);
1468  __ ld(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1469  // Is the shared function marked for tier up?
1470  __ lbu(a5, FieldMemOperand(entry,
1471                             SharedFunctionInfo::kMarkedForTierUpByteOffset));
1472  __ And(a5, a5,
1473         Operand(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte));
1474  __ Branch(&gotta_call_runtime_no_stack, ne, a5, Operand(zero_reg));
1475
1476  // If SFI points to anything other than CompileLazy, install that.
1477  __ ld(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
1478  __ Move(t1, masm->CodeObject());
1479  __ Branch(&gotta_call_runtime_no_stack, eq, entry, Operand(t1));
1480
1481  // Install the SFI's code entry.
1482  __ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
1483  __ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
1484  __ RecordWriteCodeEntryField(closure, entry, a5);
1485  __ Jump(entry);
1486
1487  __ bind(&gotta_call_runtime);
1488  __ pop(closure);
1489  __ pop(new_target);
1490  __ pop(argument_count);
1491  __ bind(&gotta_call_runtime_no_stack);
1492  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1493}
1494
1495void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
1496  GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
1497}
1498
1499void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
1500  GenerateTailCallToReturnedCode(masm,
1501                                 Runtime::kCompileOptimized_NotConcurrent);
1502}
1503
1504void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
1505  GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
1506}
1507
1508void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
1509  // ----------- S t a t e -------------
1510  //  -- a0 : argument count (preserved for callee)
1511  //  -- a1 : new target (preserved for callee)
1512  //  -- a3 : target function (preserved for callee)
1513  // -----------------------------------
1514  Label failed;
1515  {
1516    FrameScope scope(masm, StackFrame::INTERNAL);
1517    // Push a copy of the target function and the new target.
1518    // Push function as parameter to the runtime call.
1519    __ Move(t2, a0);
1520    __ SmiTag(a0);
1521    __ Push(a0, a1, a3, a1);
1522
1523    // Copy arguments from caller (stdlib, foreign, heap).
1524    Label args_done;
1525    for (int j = 0; j < 4; ++j) {
1526      Label over;
1527      if (j < 3) {
1528        __ Branch(&over, ne, t2, Operand(j));
1529      }
1530      for (int i = j - 1; i >= 0; --i) {
1531        __ ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1532                                     i * kPointerSize));
1533        __ push(t2);
1534      }
1535      for (int i = 0; i < 3 - j; ++i) {
1536        __ PushRoot(Heap::kUndefinedValueRootIndex);
1537      }
1538      if (j < 3) {
1539        __ jmp(&args_done);
1540        __ bind(&over);
1541      }
1542    }
1543    __ bind(&args_done);
1544
1545    // Call runtime, on success unwind frame, and parent frame.
1546    __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
1547    // A smi 0 is returned on failure, an object on success.
1548    __ JumpIfSmi(v0, &failed);
1549
1550    __ Drop(2);
1551    __ pop(t2);
1552    __ SmiUntag(t2);
1553    scope.GenerateLeaveFrame();
1554
1555    __ Daddu(t2, t2, Operand(1));
1556    __ Dlsa(sp, sp, t2, kPointerSizeLog2);
1557    __ Ret();
1558
1559    __ bind(&failed);
1560    // Restore target function and new target.
1561    __ Pop(a0, a1, a3);
1562    __ SmiUntag(a0);
1563  }
1564  // On failure, tail call back to regular js.
1565  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1566}
1567
1568static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
1569  // For now, we are relying on the fact that make_code_young doesn't do any
1570  // garbage collection which allows us to save/restore the registers without
1571  // worrying about which of them contain pointers. We also don't build an
1572  // internal frame to make the code faster, since we shouldn't have to do stack
1573  // crawls in MakeCodeYoung. This seems a bit fragile.
1574
1575  // Set a0 to point to the head of the PlatformCodeAge sequence.
1576  __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1577
1578  // The following registers must be saved and restored when calling through to
1579  // the runtime:
1580  //   a0 - contains return address (beginning of patch sequence)
1581  //   a1 - isolate
1582  //   a3 - new target
1583  RegList saved_regs =
1584      (a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1585  FrameScope scope(masm, StackFrame::MANUAL);
1586  __ MultiPush(saved_regs);
1587  __ PrepareCallCFunction(2, 0, a2);
1588  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1589  __ CallCFunction(
1590      ExternalReference::get_make_code_young_function(masm->isolate()), 2);
1591  __ MultiPop(saved_regs);
1592  __ Jump(a0);
1593}
1594
1595#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                              \
1596  void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
1597    GenerateMakeCodeYoungAgainCommon(masm);                               \
1598  }
1599CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
1600#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
1601
1602void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
1603  // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
1604  // that make_code_young doesn't do any garbage collection which allows us to
1605  // save/restore the registers without worrying about which of them contain
1606  // pointers.
1607
1608  // Set a0 to point to the head of the PlatformCodeAge sequence.
1609  __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1610
1611  // The following registers must be saved and restored when calling through to
1612  // the runtime:
1613  //   a0 - contains return address (beginning of patch sequence)
1614  //   a1 - isolate
1615  //   a3 - new target
1616  RegList saved_regs =
1617      (a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1618  FrameScope scope(masm, StackFrame::MANUAL);
1619  __ MultiPush(saved_regs);
1620  __ PrepareCallCFunction(2, 0, a2);
1621  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1622  __ CallCFunction(
1623      ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
1624      2);
1625  __ MultiPop(saved_regs);
1626
1627  // Perform prologue operations usually performed by the young code stub.
1628  __ PushStandardFrame(a1);
1629
1630  // Jump to point after the code-age stub.
1631  __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
1632  __ Jump(a0);
1633}
1634
1635void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
1636  GenerateMakeCodeYoungAgainCommon(masm);
1637}
1638
1639void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
1640  Generate_MarkCodeAsExecutedOnce(masm);
1641}
1642
1643static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
1644                                             SaveFPRegsMode save_doubles) {
1645  {
1646    FrameScope scope(masm, StackFrame::INTERNAL);
1647
1648    // Preserve registers across notification, this is important for compiled
1649    // stubs that tail call the runtime on deopts passing their parameters in
1650    // registers.
1651    __ MultiPush(kJSCallerSaved | kCalleeSaved);
1652    // Pass the function and deoptimization type to the runtime system.
1653    __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
1654    __ MultiPop(kJSCallerSaved | kCalleeSaved);
1655  }
1656
1657  __ Daddu(sp, sp, Operand(kPointerSize));  // Ignore state
1658  __ Jump(ra);                              // Jump to miss handler
1659}
1660
1661void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
1662  Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
1663}
1664
1665void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
1666  Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
1667}
1668
1669static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1670                                             Deoptimizer::BailoutType type) {
1671  {
1672    FrameScope scope(masm, StackFrame::INTERNAL);
1673    // Pass the function and deoptimization type to the runtime system.
1674    __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
1675    __ push(a0);
1676    __ CallRuntime(Runtime::kNotifyDeoptimized);
1677  }
1678
1679  // Get the full codegen state from the stack and untag it -> a6.
1680  __ lw(a6, UntagSmiMemOperand(sp, 0 * kPointerSize));
1681  // Switch on the state.
1682  Label with_tos_register, unknown_state;
1683  __ Branch(
1684      &with_tos_register, ne, a6,
1685      Operand(static_cast<int64_t>(Deoptimizer::BailoutState::NO_REGISTERS)));
1686  __ Ret(USE_DELAY_SLOT);
1687  // Safe to fill delay slot Addu will emit one instruction.
1688  __ Daddu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1689
1690  __ bind(&with_tos_register);
1691  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
1692  __ ld(v0, MemOperand(sp, 1 * kPointerSize));
1693  __ Branch(
1694      &unknown_state, ne, a6,
1695      Operand(static_cast<int64_t>(Deoptimizer::BailoutState::TOS_REGISTER)));
1696
1697  __ Ret(USE_DELAY_SLOT);
1698  // Safe to fill delay slot Addu will emit one instruction.
1699  __ Daddu(sp, sp, Operand(2 * kPointerSize));  // Remove state.
1700
1701  __ bind(&unknown_state);
1702  __ stop("no cases left");
1703}
1704
1705void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1706  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1707}
1708
1709void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1710  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1711}
1712
1713void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1714  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1715}
1716
1717// Clobbers {t2, t3, a4, a5}.
1718static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
1719                                    Register function_template_info,
1720                                    Label* receiver_check_failed) {
1721  Register signature = t2;
1722  Register map = t3;
1723  Register constructor = a4;
1724  Register scratch = a5;
1725
1726  // If there is no signature, return the holder.
1727  __ ld(signature, FieldMemOperand(function_template_info,
1728                                   FunctionTemplateInfo::kSignatureOffset));
1729  Label receiver_check_passed;
1730  __ JumpIfRoot(signature, Heap::kUndefinedValueRootIndex,
1731                &receiver_check_passed);
1732
1733  // Walk the prototype chain.
1734  __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
1735  Label prototype_loop_start;
1736  __ bind(&prototype_loop_start);
1737
1738  // Get the constructor, if any.
1739  __ GetMapConstructor(constructor, map, scratch, scratch);
1740  Label next_prototype;
1741  __ Branch(&next_prototype, ne, scratch, Operand(JS_FUNCTION_TYPE));
1742  Register type = constructor;
1743  __ ld(type,
1744        FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
1745  __ ld(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
1746
1747  // Loop through the chain of inheriting function templates.
1748  Label function_template_loop;
1749  __ bind(&function_template_loop);
1750
1751  // If the signatures match, we have a compatible receiver.
1752  __ Branch(&receiver_check_passed, eq, signature, Operand(type),
1753            USE_DELAY_SLOT);
1754
1755  // If the current type is not a FunctionTemplateInfo, load the next prototype
1756  // in the chain.
1757  __ JumpIfSmi(type, &next_prototype);
1758  __ GetObjectType(type, scratch, scratch);
1759  __ Branch(&next_prototype, ne, scratch, Operand(FUNCTION_TEMPLATE_INFO_TYPE));
1760
1761  // Otherwise load the parent function template and iterate.
1762  __ ld(type,
1763        FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
1764  __ Branch(&function_template_loop);
1765
1766  // Load the next prototype.
1767  __ bind(&next_prototype);
1768  __ lwu(scratch, FieldMemOperand(map, Map::kBitField3Offset));
1769  __ DecodeField<Map::HasHiddenPrototype>(scratch);
1770  __ Branch(receiver_check_failed, eq, scratch, Operand(zero_reg));
1771
1772  __ ld(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
1773  __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
1774  // Iterate.
1775  __ Branch(&prototype_loop_start);
1776
1777  __ bind(&receiver_check_passed);
1778}
1779
1780void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
1781  // ----------- S t a t e -------------
1782  //  -- a0                 : number of arguments excluding receiver
1783  //  -- a1                 : callee
1784  //  -- ra                 : return address
1785  //  -- sp[0]              : last argument
1786  //  -- ...
1787  //  -- sp[8 * (argc - 1)] : first argument
1788  //  -- sp[8 * argc]       : receiver
1789  // -----------------------------------
1790
1791  // Load the FunctionTemplateInfo.
1792  __ ld(t1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1793  __ ld(t1, FieldMemOperand(t1, SharedFunctionInfo::kFunctionDataOffset));
1794
1795  // Do the compatible receiver check
1796  Label receiver_check_failed;
1797  __ Dlsa(t8, sp, a0, kPointerSizeLog2);
1798  __ ld(t0, MemOperand(t8));
1799  CompatibleReceiverCheck(masm, t0, t1, &receiver_check_failed);
1800
1801  // Get the callback offset from the FunctionTemplateInfo, and jump to the
1802  // beginning of the code.
1803  __ ld(t2, FieldMemOperand(t1, FunctionTemplateInfo::kCallCodeOffset));
1804  __ ld(t2, FieldMemOperand(t2, CallHandlerInfo::kFastHandlerOffset));
1805  __ Daddu(t2, t2, Operand(Code::kHeaderSize - kHeapObjectTag));
1806  __ Jump(t2);
1807
1808  // Compatible receiver check failed: throw an Illegal Invocation exception.
1809  __ bind(&receiver_check_failed);
1810  // Drop the arguments (including the receiver);
1811  __ Daddu(t8, t8, Operand(kPointerSize));
1812  __ daddu(sp, t8, zero_reg);
1813  __ TailCallRuntime(Runtime::kThrowIllegalInvocation);
1814}
1815
1816static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
1817                                              bool has_handler_frame) {
1818  // Lookup the function in the JavaScript frame.
1819  if (has_handler_frame) {
1820    __ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1821    __ ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset));
1822  } else {
1823    __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1824  }
1825
1826  {
1827    FrameScope scope(masm, StackFrame::INTERNAL);
1828    // Pass function as argument.
1829    __ push(a0);
1830    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1831  }
1832
1833  // If the code object is null, just return to the caller.
1834  __ Ret(eq, v0, Operand(Smi::kZero));
1835
1836  // Drop any potential handler frame that is be sitting on top of the actual
1837  // JavaScript frame. This is the case then OSR is triggered from bytecode.
1838  if (has_handler_frame) {
1839    __ LeaveFrame(StackFrame::STUB);
1840  }
1841
1842  // Load deoptimization data from the code object.
1843  // <deopt_data> = <code>[#deoptimization_data_offset]
1844  __ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1845
1846  // Load the OSR entrypoint offset from the deoptimization data.
1847  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1848  __ lw(a1,
1849        UntagSmiMemOperand(a1, FixedArray::OffsetOfElementAt(
1850                                   DeoptimizationInputData::kOsrPcOffsetIndex) -
1851                                   kHeapObjectTag));
1852
1853  // Compute the target address = code_obj + header_size + osr_offset
1854  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1855  __ daddu(v0, v0, a1);
1856  __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1857
1858  // And "return" to the OSR entry point of the function.
1859  __ Ret();
1860}
1861
1862void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1863  Generate_OnStackReplacementHelper(masm, false);
1864}
1865
1866void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1867  Generate_OnStackReplacementHelper(masm, true);
1868}
1869
1870// static
1871void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1872  // ----------- S t a t e -------------
1873  //  -- a0    : argc
1874  //  -- sp[0] : argArray
1875  //  -- sp[4] : thisArg
1876  //  -- sp[8] : receiver
1877  // -----------------------------------
1878
1879  Register argc = a0;
1880  Register arg_array = a0;
1881  Register receiver = a1;
1882  Register this_arg = a2;
1883  Register undefined_value = a3;
1884  Register scratch = a4;
1885
1886  __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
1887  // 1. Load receiver into a1, argArray into a0 (if present), remove all
1888  // arguments from the stack (including the receiver), and push thisArg (if
1889  // present) instead.
1890  {
1891    // Claim (2 - argc) dummy arguments form the stack, to put the stack in a
1892    // consistent state for a simple pop operation.
1893
1894    __ Dsubu(sp, sp, Operand(2 * kPointerSize));
1895    __ Dlsa(sp, sp, argc, kPointerSizeLog2);
1896    __ mov(scratch, argc);
1897    __ Pop(this_arg, arg_array);                   // Overwrite argc
1898    __ Movz(arg_array, undefined_value, scratch);  // if argc == 0
1899    __ Movz(this_arg, undefined_value, scratch);   // if argc == 0
1900    __ Dsubu(scratch, scratch, Operand(1));
1901    __ Movz(arg_array, undefined_value, scratch);  // if argc == 1
1902    __ ld(receiver, MemOperand(sp));
1903    __ sd(this_arg, MemOperand(sp));
1904  }
1905
1906  // ----------- S t a t e -------------
1907  //  -- a0    : argArray
1908  //  -- a1    : receiver
1909  //  -- a3    : undefined root value
1910  //  -- sp[0] : thisArg
1911  // -----------------------------------
1912
1913  // 2. Make sure the receiver is actually callable.
1914  Label receiver_not_callable;
1915  __ JumpIfSmi(receiver, &receiver_not_callable);
1916  __ ld(a4, FieldMemOperand(receiver, HeapObject::kMapOffset));
1917  __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
1918  __ And(a4, a4, Operand(1 << Map::kIsCallable));
1919  __ Branch(&receiver_not_callable, eq, a4, Operand(zero_reg));
1920
1921  // 3. Tail call with no arguments if argArray is null or undefined.
1922  Label no_arguments;
1923  __ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments);
1924  __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value));
1925
1926  // 4a. Apply the receiver to the given argArray (passing undefined for
1927  // new.target).
1928  DCHECK(undefined_value.is(a3));
1929  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
1930
1931  // 4b. The argArray is either null or undefined, so we tail call without any
1932  // arguments to the receiver.
1933  __ bind(&no_arguments);
1934  {
1935    __ mov(a0, zero_reg);
1936    DCHECK(receiver.is(a1));
1937    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1938  }
1939
1940  // 4c. The receiver is not callable, throw an appropriate TypeError.
1941  __ bind(&receiver_not_callable);
1942  {
1943    __ sd(receiver, MemOperand(sp));
1944    __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
1945  }
1946}
1947
1948// static
1949void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1950  // 1. Make sure we have at least one argument.
1951  // a0: actual number of arguments
1952  {
1953    Label done;
1954    __ Branch(&done, ne, a0, Operand(zero_reg));
1955    __ PushRoot(Heap::kUndefinedValueRootIndex);
1956    __ Daddu(a0, a0, Operand(1));
1957    __ bind(&done);
1958  }
1959
1960  // 2. Get the function to call (passed as receiver) from the stack.
1961  // a0: actual number of arguments
1962  __ Dlsa(at, sp, a0, kPointerSizeLog2);
1963  __ ld(a1, MemOperand(at));
1964
1965  // 3. Shift arguments and return address one slot down on the stack
1966  //    (overwriting the original receiver).  Adjust argument count to make
1967  //    the original first argument the new receiver.
1968  // a0: actual number of arguments
1969  // a1: function
1970  {
1971    Label loop;
1972    // Calculate the copy start address (destination). Copy end address is sp.
1973    __ Dlsa(a2, sp, a0, kPointerSizeLog2);
1974
1975    __ bind(&loop);
1976    __ ld(at, MemOperand(a2, -kPointerSize));
1977    __ sd(at, MemOperand(a2));
1978    __ Dsubu(a2, a2, Operand(kPointerSize));
1979    __ Branch(&loop, ne, a2, Operand(sp));
1980    // Adjust the actual number of arguments and remove the top element
1981    // (which is a copy of the last argument).
1982    __ Dsubu(a0, a0, Operand(1));
1983    __ Pop();
1984  }
1985
1986  // 4. Call the callable.
1987  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1988}
1989
1990void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1991  // ----------- S t a t e -------------
1992  //  -- a0     : argc
1993  //  -- sp[0]  : argumentsList  (if argc ==3)
1994  //  -- sp[4]  : thisArgument   (if argc >=2)
1995  //  -- sp[8]  : target         (if argc >=1)
1996  //  -- sp[12] : receiver
1997  // -----------------------------------
1998
1999  Register argc = a0;
2000  Register arguments_list = a0;
2001  Register target = a1;
2002  Register this_argument = a2;
2003  Register undefined_value = a3;
2004  Register scratch = a4;
2005
2006  __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
2007  // 1. Load target into a1 (if present), argumentsList into a0 (if present),
2008  // remove all arguments from the stack (including the receiver), and push
2009  // thisArgument (if present) instead.
2010  {
2011    // Claim (3 - argc) dummy arguments form the stack, to put the stack in a
2012    // consistent state for a simple pop operation.
2013
2014    __ Dsubu(sp, sp, Operand(3 * kPointerSize));
2015    __ Dlsa(sp, sp, argc, kPointerSizeLog2);
2016    __ mov(scratch, argc);
2017    __ Pop(target, this_argument, arguments_list);
2018    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0
2019    __ Movz(this_argument, undefined_value, scratch);   // if argc == 0
2020    __ Movz(target, undefined_value, scratch);          // if argc == 0
2021    __ Dsubu(scratch, scratch, Operand(1));
2022    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1
2023    __ Movz(this_argument, undefined_value, scratch);   // if argc == 1
2024    __ Dsubu(scratch, scratch, Operand(1));
2025    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 2
2026
2027    __ sd(this_argument, MemOperand(sp, 0));  // Overwrite receiver
2028  }
2029
2030  // ----------- S t a t e -------------
2031  //  -- a0    : argumentsList
2032  //  -- a1    : target
2033  //  -- a3    : undefined root value
2034  //  -- sp[0] : thisArgument
2035  // -----------------------------------
2036
2037  // 2. Make sure the target is actually callable.
2038  Label target_not_callable;
2039  __ JumpIfSmi(target, &target_not_callable);
2040  __ ld(a4, FieldMemOperand(target, HeapObject::kMapOffset));
2041  __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
2042  __ And(a4, a4, Operand(1 << Map::kIsCallable));
2043  __ Branch(&target_not_callable, eq, a4, Operand(zero_reg));
2044
2045  // 3a. Apply the target to the given argumentsList (passing undefined for
2046  // new.target).
2047  DCHECK(undefined_value.is(a3));
2048  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
2049
2050  // 3b. The target is not callable, throw an appropriate TypeError.
2051  __ bind(&target_not_callable);
2052  {
2053    __ sd(target, MemOperand(sp));
2054    __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
2055  }
2056}
2057
2058void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
2059  // ----------- S t a t e -------------
2060  //  -- a0     : argc
2061  //  -- sp[0]  : new.target (optional) (dummy value if argc <= 2)
2062  //  -- sp[4]  : argumentsList         (dummy value if argc <= 1)
2063  //  -- sp[8]  : target                (dummy value if argc == 0)
2064  //  -- sp[12] : receiver
2065  // -----------------------------------
2066  Register argc = a0;
2067  Register arguments_list = a0;
2068  Register target = a1;
2069  Register new_target = a3;
2070  Register undefined_value = a4;
2071  Register scratch = a5;
2072
2073  // 1. Load target into a1 (if present), argumentsList into a0 (if present),
2074  // new.target into a3 (if present, otherwise use target), remove all
2075  // arguments from the stack (including the receiver), and push thisArgument
2076  // (if present) instead.
2077  {
2078    // Claim (3 - argc) dummy arguments form the stack, to put the stack in a
2079    // consistent state for a simple pop operation.
2080
2081    __ Dsubu(sp, sp, Operand(3 * kPointerSize));
2082    __ Dlsa(sp, sp, argc, kPointerSizeLog2);
2083    __ mov(scratch, argc);
2084    __ Pop(target, arguments_list, new_target);
2085    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0
2086    __ Movz(new_target, undefined_value, scratch);      // if argc == 0
2087    __ Movz(target, undefined_value, scratch);          // if argc == 0
2088    __ Dsubu(scratch, scratch, Operand(1));
2089    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1
2090    __ Movz(new_target, target, scratch);               // if argc == 1
2091    __ Dsubu(scratch, scratch, Operand(1));
2092    __ Movz(new_target, target, scratch);  // if argc == 2
2093
2094    __ sd(undefined_value, MemOperand(sp, 0));  // Overwrite receiver
2095  }
2096
2097  // ----------- S t a t e -------------
2098  //  -- a0    : argumentsList
2099  //  -- a1    : target
2100  //  -- a3    : new.target
2101  //  -- sp[0] : receiver (undefined)
2102  // -----------------------------------
2103
2104  // 2. Make sure the target is actually a constructor.
2105  Label target_not_constructor;
2106  __ JumpIfSmi(target, &target_not_constructor);
2107  __ ld(a4, FieldMemOperand(target, HeapObject::kMapOffset));
2108  __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
2109  __ And(a4, a4, Operand(1 << Map::kIsConstructor));
2110  __ Branch(&target_not_constructor, eq, a4, Operand(zero_reg));
2111
2112  // 3. Make sure the target is actually a constructor.
2113  Label new_target_not_constructor;
2114  __ JumpIfSmi(new_target, &new_target_not_constructor);
2115  __ ld(a4, FieldMemOperand(new_target, HeapObject::kMapOffset));
2116  __ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
2117  __ And(a4, a4, Operand(1 << Map::kIsConstructor));
2118  __ Branch(&new_target_not_constructor, eq, a4, Operand(zero_reg));
2119
2120  // 4a. Construct the target with the given new.target and argumentsList.
2121  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
2122
2123  // 4b. The target is not a constructor, throw an appropriate TypeError.
2124  __ bind(&target_not_constructor);
2125  {
2126    __ sd(target, MemOperand(sp));
2127    __ TailCallRuntime(Runtime::kThrowNotConstructor);
2128  }
2129
2130  // 4c. The new.target is not a constructor, throw an appropriate TypeError.
2131  __ bind(&new_target_not_constructor);
2132  {
2133    __ sd(new_target, MemOperand(sp));
2134    __ TailCallRuntime(Runtime::kThrowNotConstructor);
2135  }
2136}
2137
2138static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
2139  // __ sll(a0, a0, kSmiTagSize);
2140  __ dsll32(a0, a0, 0);
2141  __ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2142  __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
2143  __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2144                           kPointerSize));
2145}
2146
2147static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
2148  // ----------- S t a t e -------------
2149  //  -- v0 : result being passed through
2150  // -----------------------------------
2151  // Get the number of arguments passed (as a smi), tear down the frame and
2152  // then tear down the parameters.
2153  __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
2154                             kPointerSize)));
2155  __ mov(sp, fp);
2156  __ MultiPop(fp.bit() | ra.bit());
2157  __ SmiScale(a4, a1, kPointerSizeLog2);
2158  __ Daddu(sp, sp, a4);
2159  // Adjust for the receiver.
2160  __ Daddu(sp, sp, Operand(kPointerSize));
2161}
2162
2163// static
2164void Builtins::Generate_Apply(MacroAssembler* masm) {
2165  // ----------- S t a t e -------------
2166  //  -- a0    : argumentsList
2167  //  -- a1    : target
2168  //  -- a3    : new.target (checked to be constructor or undefined)
2169  //  -- sp[0] : thisArgument
2170  // -----------------------------------
2171
2172  Register arguments_list = a0;
2173  Register target = a1;
2174  Register new_target = a3;
2175
2176  Register args = a0;
2177  Register len = a2;
2178
2179  // Create the list of arguments from the array-like argumentsList.
2180  {
2181    Label create_arguments, create_array, create_holey_array, create_runtime,
2182        done_create;
2183    __ JumpIfSmi(arguments_list, &create_runtime);
2184
2185    // Load the map of argumentsList into a2.
2186    Register arguments_list_map = a2;
2187    __ ld(arguments_list_map,
2188          FieldMemOperand(arguments_list, HeapObject::kMapOffset));
2189
2190    // Load native context into a4.
2191    Register native_context = a4;
2192    __ ld(native_context, NativeContextMemOperand());
2193
2194    // Check if argumentsList is an (unmodified) arguments object.
2195    __ ld(at, ContextMemOperand(native_context,
2196                                Context::SLOPPY_ARGUMENTS_MAP_INDEX));
2197    __ Branch(&create_arguments, eq, arguments_list_map, Operand(at));
2198    __ ld(at, ContextMemOperand(native_context,
2199                                Context::STRICT_ARGUMENTS_MAP_INDEX));
2200    __ Branch(&create_arguments, eq, arguments_list_map, Operand(at));
2201
2202    // Check if argumentsList is a fast JSArray.
2203    __ lbu(v0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
2204    __ Branch(&create_array, eq, v0, Operand(JS_ARRAY_TYPE));
2205
2206    // Ask the runtime to create the list (actually a FixedArray).
2207    __ bind(&create_runtime);
2208    {
2209      FrameScope scope(masm, StackFrame::INTERNAL);
2210      __ Push(target, new_target, arguments_list);
2211      __ CallRuntime(Runtime::kCreateListFromArrayLike);
2212      __ mov(arguments_list, v0);
2213      __ Pop(target, new_target);
2214      __ lw(len, UntagSmiFieldMemOperand(v0, FixedArray::kLengthOffset));
2215    }
2216    __ Branch(&done_create);
2217
2218    // Try to create the list from an arguments object.
2219    __ bind(&create_arguments);
2220    __ lw(len, UntagSmiFieldMemOperand(arguments_list,
2221                                       JSArgumentsObject::kLengthOffset));
2222    __ ld(a4, FieldMemOperand(arguments_list, JSObject::kElementsOffset));
2223    __ lw(at, UntagSmiFieldMemOperand(a4, FixedArray::kLengthOffset));
2224    __ Branch(&create_runtime, ne, len, Operand(at));
2225    __ mov(args, a4);
2226
2227    __ Branch(&done_create);
2228
2229    // For holey JSArrays we need to check that the array prototype chain
2230    // protector is intact and our prototype is the Array.prototype actually.
2231    __ bind(&create_holey_array);
2232    __ ld(a2, FieldMemOperand(a2, Map::kPrototypeOffset));
2233    __ ld(at, ContextMemOperand(native_context,
2234                                Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
2235    __ Branch(&create_runtime, ne, a2, Operand(at));
2236    __ LoadRoot(at, Heap::kArrayProtectorRootIndex);
2237    __ lw(a2, FieldMemOperand(at, PropertyCell::kValueOffset));
2238    __ Branch(&create_runtime, ne, a2,
2239              Operand(Smi::FromInt(Isolate::kProtectorValid)));
2240    __ lw(a2, UntagSmiFieldMemOperand(a0, JSArray::kLengthOffset));
2241    __ ld(a0, FieldMemOperand(a0, JSArray::kElementsOffset));
2242    __ Branch(&done_create);
2243
2244    // Try to create the list from a JSArray object.
2245    __ bind(&create_array);
2246    __ lbu(t1, FieldMemOperand(a2, Map::kBitField2Offset));
2247    __ DecodeField<Map::ElementsKindBits>(t1);
2248    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2249    STATIC_ASSERT(FAST_ELEMENTS == 2);
2250    STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2251    __ Branch(&create_holey_array, eq, t1, Operand(FAST_HOLEY_SMI_ELEMENTS));
2252    __ Branch(&create_holey_array, eq, t1, Operand(FAST_HOLEY_ELEMENTS));
2253    __ Branch(&create_runtime, hi, t1, Operand(FAST_ELEMENTS));
2254    __ lw(a2, UntagSmiFieldMemOperand(arguments_list, JSArray::kLengthOffset));
2255    __ ld(a0, FieldMemOperand(arguments_list, JSArray::kElementsOffset));
2256
2257    __ bind(&done_create);
2258  }
2259
2260  // Check for stack overflow.
2261  {
2262    // Check the stack for overflow. We are not trying to catch interruptions
2263    // (i.e. debug break and preemption) here, so check the "real stack limit".
2264    Label done;
2265    __ LoadRoot(a4, Heap::kRealStackLimitRootIndex);
2266    // Make ip the space we have left. The stack might already be overflowed
2267    // here which will cause ip to become negative.
2268    __ Dsubu(a4, sp, a4);
2269    // Check if the arguments will overflow the stack.
2270    __ dsll(at, len, kPointerSizeLog2);
2271    __ Branch(&done, gt, a4, Operand(at));  // Signed comparison.
2272    __ TailCallRuntime(Runtime::kThrowStackOverflow);
2273    __ bind(&done);
2274  }
2275
2276  // ----------- S t a t e -------------
2277  //  -- a1    : target
2278  //  -- a0    : args (a FixedArray built from argumentsList)
2279  //  -- a2    : len (number of elements to push from args)
2280  //  -- a3    : new.target (checked to be constructor or undefined)
2281  //  -- sp[0] : thisArgument
2282  // -----------------------------------
2283
2284  // Push arguments onto the stack (thisArgument is already on the stack).
2285  {
2286    Label done, push, loop;
2287    Register src = a4;
2288    Register scratch = len;
2289
2290    __ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
2291    __ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT);
2292    __ mov(a0, len);  // The 'len' argument for Call() or Construct().
2293    __ dsll(scratch, len, kPointerSizeLog2);
2294    __ Dsubu(scratch, sp, Operand(scratch));
2295    __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
2296    __ bind(&loop);
2297    __ ld(a5, MemOperand(src));
2298    __ Branch(&push, ne, a5, Operand(t1));
2299    __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
2300    __ bind(&push);
2301    __ daddiu(src, src, kPointerSize);
2302    __ Push(a5);
2303    __ Branch(&loop, ne, scratch, Operand(sp));
2304    __ bind(&done);
2305  }
2306
2307  // ----------- S t a t e -------------
2308  //  -- a0             : argument count (len)
2309  //  -- a1             : target
2310  //  -- a3             : new.target (checked to be constructor or undefinded)
2311  //  -- sp[0]          : args[len-1]
2312  //  -- sp[8]          : args[len-2]
2313  //     ...            : ...
2314  //  -- sp[8*(len-2)]  : args[1]
2315  //  -- sp[8*(len-1)]  : args[0]
2316  //  ----------------------------------
2317
2318  // Dispatch to Call or Construct depending on whether new.target is undefined.
2319  {
2320    Label construct;
2321    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2322    __ Branch(&construct, ne, a3, Operand(at));
2323    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2324    __ bind(&construct);
2325    __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2326  }
2327}
2328
2329// static
2330void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm,
2331                                           Handle<Code> code) {
2332  // ----------- S t a t e -------------
2333  //  -- a1    : the target to call (can be any Object)
2334  //  -- a2    : start index (to support rest parameters)
2335  //  -- ra    : return address.
2336  //  -- sp[0] : thisArgument
2337  // -----------------------------------
2338
2339  // Check if we have an arguments adaptor frame below the function frame.
2340  Label arguments_adaptor, arguments_done;
2341  __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2342  __ ld(a0, MemOperand(a3, CommonFrameConstants::kContextOrFrameTypeOffset));
2343  __ Branch(&arguments_adaptor, eq, a0,
2344            Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2345  {
2346    __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2347    __ ld(a0, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset));
2348    __ lw(a0,
2349          FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset));
2350    __ mov(a3, fp);
2351  }
2352  __ Branch(&arguments_done);
2353  __ bind(&arguments_adaptor);
2354  {
2355    // Just get the length from the ArgumentsAdaptorFrame.
2356    __ lw(a0, UntagSmiMemOperand(
2357                  a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
2358  }
2359  __ bind(&arguments_done);
2360
2361  Label stack_empty, stack_done, stack_overflow;
2362  __ Subu(a0, a0, a2);
2363  __ Branch(&stack_empty, le, a0, Operand(zero_reg));
2364  {
2365    // Check for stack overflow.
2366    Generate_StackOverflowCheck(masm, a0, a4, a5, &stack_overflow);
2367
2368    // Forward the arguments from the caller frame.
2369    {
2370      Label loop;
2371      __ mov(a2, a0);
2372      __ bind(&loop);
2373      {
2374        __ Dlsa(at, a3, a2, kPointerSizeLog2);
2375        __ ld(at, MemOperand(at, 1 * kPointerSize));
2376        __ push(at);
2377        __ Subu(a2, a2, Operand(1));
2378        __ Branch(&loop, ne, a2, Operand(zero_reg));
2379      }
2380    }
2381  }
2382  __ Branch(&stack_done);
2383  __ bind(&stack_overflow);
2384  __ TailCallRuntime(Runtime::kThrowStackOverflow);
2385  __ bind(&stack_empty);
2386  {
2387    // We just pass the receiver, which is already on the stack.
2388    __ mov(a0, zero_reg);
2389  }
2390  __ bind(&stack_done);
2391
2392  __ Jump(code, RelocInfo::CODE_TARGET);
2393}
2394
2395namespace {
2396
2397// Drops top JavaScript frame and an arguments adaptor frame below it (if
2398// present) preserving all the arguments prepared for current call.
2399// Does nothing if debugger is currently active.
2400// ES6 14.6.3. PrepareForTailCall
2401//
2402// Stack structure for the function g() tail calling f():
2403//
2404// ------- Caller frame: -------
2405// |  ...
2406// |  g()'s arg M
2407// |  ...
2408// |  g()'s arg 1
2409// |  g()'s receiver arg
2410// |  g()'s caller pc
2411// ------- g()'s frame: -------
2412// |  g()'s caller fp      <- fp
2413// |  g()'s context
2414// |  function pointer: g
2415// |  -------------------------
2416// |  ...
2417// |  ...
2418// |  f()'s arg N
2419// |  ...
2420// |  f()'s arg 1
2421// |  f()'s receiver arg   <- sp (f()'s caller pc is not on the stack yet!)
2422// ----------------------
2423//
2424void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
2425                        Register scratch1, Register scratch2,
2426                        Register scratch3) {
2427  DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
2428  Comment cmnt(masm, "[ PrepareForTailCall");
2429
2430  // Prepare for tail call only if ES2015 tail call elimination is enabled.
2431  Label done;
2432  ExternalReference is_tail_call_elimination_enabled =
2433      ExternalReference::is_tail_call_elimination_enabled_address(
2434          masm->isolate());
2435  __ li(at, Operand(is_tail_call_elimination_enabled));
2436  __ lb(scratch1, MemOperand(at));
2437  __ Branch(&done, eq, scratch1, Operand(zero_reg));
2438
2439  // Drop possible interpreter handler/stub frame.
2440  {
2441    Label no_interpreter_frame;
2442    __ ld(scratch3,
2443          MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
2444    __ Branch(&no_interpreter_frame, ne, scratch3,
2445              Operand(StackFrame::TypeToMarker(StackFrame::STUB)));
2446    __ ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2447    __ bind(&no_interpreter_frame);
2448  }
2449
2450  // Check if next frame is an arguments adaptor frame.
2451  Register caller_args_count_reg = scratch1;
2452  Label no_arguments_adaptor, formal_parameter_count_loaded;
2453  __ ld(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2454  __ ld(scratch3,
2455        MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset));
2456  __ Branch(&no_arguments_adaptor, ne, scratch3,
2457            Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2458
2459  // Drop current frame and load arguments count from arguments adaptor frame.
2460  __ mov(fp, scratch2);
2461  __ lw(caller_args_count_reg,
2462        UntagSmiMemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2463  __ Branch(&formal_parameter_count_loaded);
2464
2465  __ bind(&no_arguments_adaptor);
2466  // Load caller's formal parameter count
2467  __ ld(scratch1,
2468        MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
2469  __ ld(scratch1,
2470        FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2471  __ lw(caller_args_count_reg,
2472        FieldMemOperand(scratch1,
2473                        SharedFunctionInfo::kFormalParameterCountOffset));
2474
2475  __ bind(&formal_parameter_count_loaded);
2476
2477  ParameterCount callee_args_count(args_reg);
2478  __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
2479                        scratch3);
2480  __ bind(&done);
2481}
2482}  // namespace
2483
2484// static
2485void Builtins::Generate_CallFunction(MacroAssembler* masm,
2486                                     ConvertReceiverMode mode,
2487                                     TailCallMode tail_call_mode) {
2488  // ----------- S t a t e -------------
2489  //  -- a0 : the number of arguments (not including the receiver)
2490  //  -- a1 : the function to call (checked to be a JSFunction)
2491  // -----------------------------------
2492  __ AssertFunction(a1);
2493
2494  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2495  // Check that function is not a "classConstructor".
2496  Label class_constructor;
2497  __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2498  __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFunctionKindByteOffset));
2499  __ And(at, a3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte));
2500  __ Branch(&class_constructor, ne, at, Operand(zero_reg));
2501
2502  // Enter the context of the function; ToObject has to run in the function
2503  // context, and we also need to take the global proxy from the function
2504  // context in case of conversion.
2505  STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
2506                SharedFunctionInfo::kStrictModeByteOffset);
2507  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2508  // We need to convert the receiver for non-native sloppy mode functions.
2509  Label done_convert;
2510  __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
2511  __ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
2512                         (1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
2513  __ Branch(&done_convert, ne, at, Operand(zero_reg));
2514  {
2515    // ----------- S t a t e -------------
2516    //  -- a0 : the number of arguments (not including the receiver)
2517    //  -- a1 : the function to call (checked to be a JSFunction)
2518    //  -- a2 : the shared function info.
2519    //  -- cp : the function context.
2520    // -----------------------------------
2521
2522    if (mode == ConvertReceiverMode::kNullOrUndefined) {
2523      // Patch receiver to global proxy.
2524      __ LoadGlobalProxy(a3);
2525    } else {
2526      Label convert_to_object, convert_receiver;
2527      __ Dlsa(at, sp, a0, kPointerSizeLog2);
2528      __ ld(a3, MemOperand(at));
2529      __ JumpIfSmi(a3, &convert_to_object);
2530      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2531      __ GetObjectType(a3, a4, a4);
2532      __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
2533      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2534        Label convert_global_proxy;
2535        __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex,
2536                      &convert_global_proxy);
2537        __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
2538        __ bind(&convert_global_proxy);
2539        {
2540          // Patch receiver to global proxy.
2541          __ LoadGlobalProxy(a3);
2542        }
2543        __ Branch(&convert_receiver);
2544      }
2545      __ bind(&convert_to_object);
2546      {
2547        // Convert receiver using ToObject.
2548        // TODO(bmeurer): Inline the allocation here to avoid building the frame
2549        // in the fast case? (fall back to AllocateInNewSpace?)
2550        FrameScope scope(masm, StackFrame::INTERNAL);
2551        __ SmiTag(a0);
2552        __ Push(a0, a1);
2553        __ mov(a0, a3);
2554        __ Push(cp);
2555        __ Call(masm->isolate()->builtins()->ToObject(),
2556                RelocInfo::CODE_TARGET);
2557        __ Pop(cp);
2558        __ mov(a3, v0);
2559        __ Pop(a0, a1);
2560        __ SmiUntag(a0);
2561      }
2562      __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2563      __ bind(&convert_receiver);
2564    }
2565    __ Dlsa(at, sp, a0, kPointerSizeLog2);
2566    __ sd(a3, MemOperand(at));
2567  }
2568  __ bind(&done_convert);
2569
2570  // ----------- S t a t e -------------
2571  //  -- a0 : the number of arguments (not including the receiver)
2572  //  -- a1 : the function to call (checked to be a JSFunction)
2573  //  -- a2 : the shared function info.
2574  //  -- cp : the function context.
2575  // -----------------------------------
2576
2577  if (tail_call_mode == TailCallMode::kAllow) {
2578    PrepareForTailCall(masm, a0, t0, t1, t2);
2579  }
2580
2581  __ lw(a2,
2582        FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
2583  ParameterCount actual(a0);
2584  ParameterCount expected(a2);
2585  __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION,
2586                        CheckDebugStepCallWrapper());
2587
2588  // The function is a "classConstructor", need to raise an exception.
2589  __ bind(&class_constructor);
2590  {
2591    FrameScope frame(masm, StackFrame::INTERNAL);
2592    __ Push(a1);
2593    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2594  }
2595}
2596
2597// static
2598void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
2599                                              TailCallMode tail_call_mode) {
2600  // ----------- S t a t e -------------
2601  //  -- a0 : the number of arguments (not including the receiver)
2602  //  -- a1 : the function to call (checked to be a JSBoundFunction)
2603  // -----------------------------------
2604  __ AssertBoundFunction(a1);
2605
2606  if (tail_call_mode == TailCallMode::kAllow) {
2607    PrepareForTailCall(masm, a0, t0, t1, t2);
2608  }
2609
2610  // Patch the receiver to [[BoundThis]].
2611  {
2612    __ ld(at, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
2613    __ Dlsa(a4, sp, a0, kPointerSizeLog2);
2614    __ sd(at, MemOperand(a4));
2615  }
2616
2617  // Load [[BoundArguments]] into a2 and length of that into a4.
2618  __ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
2619  __ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
2620
2621  // ----------- S t a t e -------------
2622  //  -- a0 : the number of arguments (not including the receiver)
2623  //  -- a1 : the function to call (checked to be a JSBoundFunction)
2624  //  -- a2 : the [[BoundArguments]] (implemented as FixedArray)
2625  //  -- a4 : the number of [[BoundArguments]]
2626  // -----------------------------------
2627
2628  // Reserve stack space for the [[BoundArguments]].
2629  {
2630    Label done;
2631    __ dsll(a5, a4, kPointerSizeLog2);
2632    __ Dsubu(sp, sp, Operand(a5));
2633    // Check the stack for overflow. We are not trying to catch interruptions
2634    // (i.e. debug break and preemption) here, so check the "real stack limit".
2635    __ LoadRoot(at, Heap::kRealStackLimitRootIndex);
2636    __ Branch(&done, gt, sp, Operand(at));  // Signed comparison.
2637    // Restore the stack pointer.
2638    __ Daddu(sp, sp, Operand(a5));
2639    {
2640      FrameScope scope(masm, StackFrame::MANUAL);
2641      __ EnterFrame(StackFrame::INTERNAL);
2642      __ CallRuntime(Runtime::kThrowStackOverflow);
2643    }
2644    __ bind(&done);
2645  }
2646
2647  // Relocate arguments down the stack.
2648  {
2649    Label loop, done_loop;
2650    __ mov(a5, zero_reg);
2651    __ bind(&loop);
2652    __ Branch(&done_loop, gt, a5, Operand(a0));
2653    __ Dlsa(a6, sp, a4, kPointerSizeLog2);
2654    __ ld(at, MemOperand(a6));
2655    __ Dlsa(a6, sp, a5, kPointerSizeLog2);
2656    __ sd(at, MemOperand(a6));
2657    __ Daddu(a4, a4, Operand(1));
2658    __ Daddu(a5, a5, Operand(1));
2659    __ Branch(&loop);
2660    __ bind(&done_loop);
2661  }
2662
2663  // Copy [[BoundArguments]] to the stack (below the arguments).
2664  {
2665    Label loop, done_loop;
2666    __ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
2667    __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2668    __ bind(&loop);
2669    __ Dsubu(a4, a4, Operand(1));
2670    __ Branch(&done_loop, lt, a4, Operand(zero_reg));
2671    __ Dlsa(a5, a2, a4, kPointerSizeLog2);
2672    __ ld(at, MemOperand(a5));
2673    __ Dlsa(a5, sp, a0, kPointerSizeLog2);
2674    __ sd(at, MemOperand(a5));
2675    __ Daddu(a0, a0, Operand(1));
2676    __ Branch(&loop);
2677    __ bind(&done_loop);
2678  }
2679
2680  // Call the [[BoundTargetFunction]] via the Call builtin.
2681  __ ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2682  __ li(at, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny,
2683                                      masm->isolate())));
2684  __ ld(at, MemOperand(at));
2685  __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
2686  __ Jump(at);
2687}
2688
2689// static
2690void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
2691                             TailCallMode tail_call_mode) {
2692  // ----------- S t a t e -------------
2693  //  -- a0 : the number of arguments (not including the receiver)
2694  //  -- a1 : the target to call (can be any Object).
2695  // -----------------------------------
2696
2697  Label non_callable, non_function, non_smi;
2698  __ JumpIfSmi(a1, &non_callable);
2699  __ bind(&non_smi);
2700  __ GetObjectType(a1, t1, t2);
2701  __ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
2702          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
2703  __ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
2704          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
2705
2706  // Check if target has a [[Call]] internal method.
2707  __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
2708  __ And(t1, t1, Operand(1 << Map::kIsCallable));
2709  __ Branch(&non_callable, eq, t1, Operand(zero_reg));
2710
2711  __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE));
2712
2713  // 0. Prepare for tail call if necessary.
2714  if (tail_call_mode == TailCallMode::kAllow) {
2715    PrepareForTailCall(masm, a0, t0, t1, t2);
2716  }
2717
2718  // 1. Runtime fallback for Proxy [[Call]].
2719  __ Push(a1);
2720  // Increase the arguments size to include the pushed function and the
2721  // existing receiver on the stack.
2722  __ Daddu(a0, a0, 2);
2723  // Tail-call to the runtime.
2724  __ JumpToExternalReference(
2725      ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
2726
2727  // 2. Call to something else, which might have a [[Call]] internal method (if
2728  // not we raise an exception).
2729  __ bind(&non_function);
2730  // Overwrite the original receiver with the (original) target.
2731  __ Dlsa(at, sp, a0, kPointerSizeLog2);
2732  __ sd(a1, MemOperand(at));
2733  // Let the "call_as_function_delegate" take care of the rest.
2734  __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
2735  __ Jump(masm->isolate()->builtins()->CallFunction(
2736              ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
2737          RelocInfo::CODE_TARGET);
2738
2739  // 3. Call to something that is not callable.
2740  __ bind(&non_callable);
2741  {
2742    FrameScope scope(masm, StackFrame::INTERNAL);
2743    __ Push(a1);
2744    __ CallRuntime(Runtime::kThrowCalledNonCallable);
2745  }
2746}
2747
2748static void CheckSpreadAndPushToStack(MacroAssembler* masm) {
2749  Register argc = a0;
2750  Register constructor = a1;
2751  Register new_target = a3;
2752
2753  Register scratch = t0;
2754  Register scratch2 = t1;
2755
2756  Register spread = a2;
2757  Register spread_map = a4;
2758
2759  Register spread_len = a4;
2760
2761  Register native_context = a5;
2762
2763  Label runtime_call, push_args;
2764  __ ld(spread, MemOperand(sp, 0));
2765  __ JumpIfSmi(spread, &runtime_call);
2766  __ ld(spread_map, FieldMemOperand(spread, HeapObject::kMapOffset));
2767  __ ld(native_context, NativeContextMemOperand());
2768
2769  // Check that the spread is an array.
2770  __ lbu(scratch, FieldMemOperand(spread_map, Map::kInstanceTypeOffset));
2771  __ Branch(&runtime_call, ne, scratch, Operand(JS_ARRAY_TYPE));
2772
2773  // Check that we have the original ArrayPrototype.
2774  __ ld(scratch, FieldMemOperand(spread_map, Map::kPrototypeOffset));
2775  __ ld(scratch2, ContextMemOperand(native_context,
2776                                    Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
2777  __ Branch(&runtime_call, ne, scratch, Operand(scratch2));
2778
2779  // Check that the ArrayPrototype hasn't been modified in a way that would
2780  // affect iteration.
2781  __ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex);
2782  __ ld(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
2783  __ Branch(&runtime_call, ne, scratch,
2784            Operand(Smi::FromInt(Isolate::kProtectorValid)));
2785
2786  // Check that the map of the initial array iterator hasn't changed.
2787  __ ld(scratch,
2788        ContextMemOperand(native_context,
2789                          Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX));
2790  __ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
2791  __ ld(scratch2,
2792        ContextMemOperand(native_context,
2793                          Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX));
2794  __ Branch(&runtime_call, ne, scratch, Operand(scratch2));
2795
2796  // For FastPacked kinds, iteration will have the same effect as simply
2797  // accessing each property in order.
2798  Label no_protector_check;
2799  __ lbu(scratch, FieldMemOperand(spread_map, Map::kBitField2Offset));
2800  __ DecodeField<Map::ElementsKindBits>(scratch);
2801  __ Branch(&runtime_call, hi, scratch, Operand(FAST_HOLEY_ELEMENTS));
2802  // For non-FastHoley kinds, we can skip the protector check.
2803  __ Branch(&no_protector_check, eq, scratch, Operand(FAST_SMI_ELEMENTS));
2804  __ Branch(&no_protector_check, eq, scratch, Operand(FAST_ELEMENTS));
2805  // Check the ArrayProtector cell.
2806  __ LoadRoot(scratch, Heap::kArrayProtectorRootIndex);
2807  __ ld(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
2808  __ Branch(&runtime_call, ne, scratch,
2809            Operand(Smi::FromInt(Isolate::kProtectorValid)));
2810
2811  __ bind(&no_protector_check);
2812  // Load the FixedArray backing store, but use the length from the array.
2813  __ lw(spread_len, UntagSmiFieldMemOperand(spread, JSArray::kLengthOffset));
2814  __ ld(spread, FieldMemOperand(spread, JSArray::kElementsOffset));
2815  __ Branch(&push_args);
2816
2817  __ bind(&runtime_call);
2818  {
2819    // Call the builtin for the result of the spread.
2820    FrameScope scope(masm, StackFrame::INTERNAL);
2821    __ SmiTag(argc);
2822    __ Push(constructor, new_target, argc, spread);
2823    __ CallRuntime(Runtime::kSpreadIterableFixed);
2824    __ mov(spread, v0);
2825    __ Pop(constructor, new_target, argc);
2826    __ SmiUntag(argc);
2827  }
2828
2829  {
2830    // Calculate the new nargs including the result of the spread.
2831    __ lw(spread_len,
2832          UntagSmiFieldMemOperand(spread, FixedArray::kLengthOffset));
2833
2834    __ bind(&push_args);
2835    // argc += spread_len - 1. Subtract 1 for the spread itself.
2836    __ Daddu(argc, argc, spread_len);
2837    __ Dsubu(argc, argc, Operand(1));
2838
2839    // Pop the spread argument off the stack.
2840    __ Pop(scratch);
2841  }
2842
2843  // Check for stack overflow.
2844  {
2845    // Check the stack for overflow. We are not trying to catch interruptions
2846    // (i.e. debug break and preemption) here, so check the "real stack limit".
2847    Label done;
2848    __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
2849    // Make scratch the space we have left. The stack might already be
2850    // overflowed here which will cause ip to become negative.
2851    __ Dsubu(scratch, sp, scratch);
2852    // Check if the arguments will overflow the stack.
2853    __ dsll(at, spread_len, kPointerSizeLog2);
2854    __ Branch(&done, gt, scratch, Operand(at));  // Signed comparison.
2855    __ TailCallRuntime(Runtime::kThrowStackOverflow);
2856    __ bind(&done);
2857  }
2858
2859  // Put the evaluated spread onto the stack as additional arguments.
2860  {
2861    __ mov(scratch, zero_reg);
2862    Label done, push, loop;
2863    __ bind(&loop);
2864    __ Branch(&done, eq, scratch, Operand(spread_len));
2865    __ Dlsa(scratch2, spread, scratch, kPointerSizeLog2);
2866    __ ld(scratch2, FieldMemOperand(scratch2, FixedArray::kHeaderSize));
2867    __ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push);
2868    __ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex);
2869    __ bind(&push);
2870    __ Push(scratch2);
2871    __ Daddu(scratch, scratch, Operand(1));
2872    __ Branch(&loop);
2873    __ bind(&done);
2874  }
2875}
2876
2877// static
2878void Builtins::Generate_CallWithSpread(MacroAssembler* masm) {
2879  // ----------- S t a t e -------------
2880  //  -- a0 : the number of arguments (not including the receiver)
2881  //  -- a1 : the target to call (can be any Object).
2882  // -----------------------------------
2883
2884  // CheckSpreadAndPushToStack will push a3 to save it.
2885  __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
2886  CheckSpreadAndPushToStack(masm);
2887  __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
2888                                            TailCallMode::kDisallow),
2889          RelocInfo::CODE_TARGET);
2890}
2891
2892void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2893  // ----------- S t a t e -------------
2894  //  -- a0 : the number of arguments (not including the receiver)
2895  //  -- a1 : the constructor to call (checked to be a JSFunction)
2896  //  -- a3 : the new target (checked to be a constructor)
2897  // -----------------------------------
2898  __ AssertFunction(a1);
2899
2900  // Calling convention for function specific ConstructStubs require
2901  // a2 to contain either an AllocationSite or undefined.
2902  __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2903
2904  // Tail call to the function-specific construct stub (still in the caller
2905  // context at this point).
2906  __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2907  __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
2908  __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
2909  __ Jump(at);
2910}
2911
2912// static
2913void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2914  // ----------- S t a t e -------------
2915  //  -- a0 : the number of arguments (not including the receiver)
2916  //  -- a1 : the function to call (checked to be a JSBoundFunction)
2917  //  -- a3 : the new target (checked to be a constructor)
2918  // -----------------------------------
2919  __ AssertBoundFunction(a1);
2920
2921  // Load [[BoundArguments]] into a2 and length of that into a4.
2922  __ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
2923  __ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
2924
2925  // ----------- S t a t e -------------
2926  //  -- a0 : the number of arguments (not including the receiver)
2927  //  -- a1 : the function to call (checked to be a JSBoundFunction)
2928  //  -- a2 : the [[BoundArguments]] (implemented as FixedArray)
2929  //  -- a3 : the new target (checked to be a constructor)
2930  //  -- a4 : the number of [[BoundArguments]]
2931  // -----------------------------------
2932
2933  // Reserve stack space for the [[BoundArguments]].
2934  {
2935    Label done;
2936    __ dsll(a5, a4, kPointerSizeLog2);
2937    __ Dsubu(sp, sp, Operand(a5));
2938    // Check the stack for overflow. We are not trying to catch interruptions
2939    // (i.e. debug break and preemption) here, so check the "real stack limit".
2940    __ LoadRoot(at, Heap::kRealStackLimitRootIndex);
2941    __ Branch(&done, gt, sp, Operand(at));  // Signed comparison.
2942    // Restore the stack pointer.
2943    __ Daddu(sp, sp, Operand(a5));
2944    {
2945      FrameScope scope(masm, StackFrame::MANUAL);
2946      __ EnterFrame(StackFrame::INTERNAL);
2947      __ CallRuntime(Runtime::kThrowStackOverflow);
2948    }
2949    __ bind(&done);
2950  }
2951
2952  // Relocate arguments down the stack.
2953  {
2954    Label loop, done_loop;
2955    __ mov(a5, zero_reg);
2956    __ bind(&loop);
2957    __ Branch(&done_loop, ge, a5, Operand(a0));
2958    __ Dlsa(a6, sp, a4, kPointerSizeLog2);
2959    __ ld(at, MemOperand(a6));
2960    __ Dlsa(a6, sp, a5, kPointerSizeLog2);
2961    __ sd(at, MemOperand(a6));
2962    __ Daddu(a4, a4, Operand(1));
2963    __ Daddu(a5, a5, Operand(1));
2964    __ Branch(&loop);
2965    __ bind(&done_loop);
2966  }
2967
2968  // Copy [[BoundArguments]] to the stack (below the arguments).
2969  {
2970    Label loop, done_loop;
2971    __ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
2972    __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2973    __ bind(&loop);
2974    __ Dsubu(a4, a4, Operand(1));
2975    __ Branch(&done_loop, lt, a4, Operand(zero_reg));
2976    __ Dlsa(a5, a2, a4, kPointerSizeLog2);
2977    __ ld(at, MemOperand(a5));
2978    __ Dlsa(a5, sp, a0, kPointerSizeLog2);
2979    __ sd(at, MemOperand(a5));
2980    __ Daddu(a0, a0, Operand(1));
2981    __ Branch(&loop);
2982    __ bind(&done_loop);
2983  }
2984
2985  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2986  {
2987    Label skip_load;
2988    __ Branch(&skip_load, ne, a1, Operand(a3));
2989    __ ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2990    __ bind(&skip_load);
2991  }
2992
2993  // Construct the [[BoundTargetFunction]] via the Construct builtin.
2994  __ ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2995  __ li(at, Operand(ExternalReference(Builtins::kConstruct, masm->isolate())));
2996  __ ld(at, MemOperand(at));
2997  __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
2998  __ Jump(at);
2999}
3000
3001// static
3002void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
3003  // ----------- S t a t e -------------
3004  //  -- a0 : the number of arguments (not including the receiver)
3005  //  -- a1 : the constructor to call (checked to be a JSProxy)
3006  //  -- a3 : the new target (either the same as the constructor or
3007  //          the JSFunction on which new was invoked initially)
3008  // -----------------------------------
3009
3010  // Call into the Runtime for Proxy [[Construct]].
3011  __ Push(a1, a3);
3012  // Include the pushed new_target, constructor and the receiver.
3013  __ Daddu(a0, a0, Operand(3));
3014  // Tail-call to the runtime.
3015  __ JumpToExternalReference(
3016      ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
3017}
3018
3019// static
3020void Builtins::Generate_Construct(MacroAssembler* masm) {
3021  // ----------- S t a t e -------------
3022  //  -- a0 : the number of arguments (not including the receiver)
3023  //  -- a1 : the constructor to call (can be any Object)
3024  //  -- a3 : the new target (either the same as the constructor or
3025  //          the JSFunction on which new was invoked initially)
3026  // -----------------------------------
3027
3028  // Check if target is a Smi.
3029  Label non_constructor;
3030  __ JumpIfSmi(a1, &non_constructor);
3031
3032  // Dispatch based on instance type.
3033  __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
3034  __ lbu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset));
3035  __ Jump(masm->isolate()->builtins()->ConstructFunction(),
3036          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
3037
3038  // Check if target has a [[Construct]] internal method.
3039  __ lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset));
3040  __ And(t3, t3, Operand(1 << Map::kIsConstructor));
3041  __ Branch(&non_constructor, eq, t3, Operand(zero_reg));
3042
3043  // Only dispatch to bound functions after checking whether they are
3044  // constructors.
3045  __ Jump(masm->isolate()->builtins()->ConstructBoundFunction(),
3046          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
3047
3048  // Only dispatch to proxies after checking whether they are constructors.
3049  __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
3050          eq, t2, Operand(JS_PROXY_TYPE));
3051
3052  // Called Construct on an exotic Object with a [[Construct]] internal method.
3053  {
3054    // Overwrite the original receiver with the (original) target.
3055    __ Dlsa(at, sp, a0, kPointerSizeLog2);
3056    __ sd(a1, MemOperand(at));
3057    // Let the "call_as_constructor_delegate" take care of the rest.
3058    __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1);
3059    __ Jump(masm->isolate()->builtins()->CallFunction(),
3060            RelocInfo::CODE_TARGET);
3061  }
3062
3063  // Called Construct on an Object that doesn't have a [[Construct]] internal
3064  // method.
3065  __ bind(&non_constructor);
3066  __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
3067          RelocInfo::CODE_TARGET);
3068}
3069
3070// static
3071void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) {
3072  // ----------- S t a t e -------------
3073  //  -- a0 : the number of arguments (not including the receiver)
3074  //  -- a1 : the constructor to call (can be any Object)
3075  //  -- a3 : the new target (either the same as the constructor or
3076  //          the JSFunction on which new was invoked initially)
3077  // -----------------------------------
3078
3079  CheckSpreadAndPushToStack(masm);
3080  __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
3081}
3082
3083// static
3084void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
3085  // ----------- S t a t e -------------
3086  //  -- a0 : requested object size (untagged)
3087  //  -- ra : return address
3088  // -----------------------------------
3089  __ SmiTag(a0);
3090  __ Push(a0);
3091  __ Move(cp, Smi::kZero);
3092  __ TailCallRuntime(Runtime::kAllocateInNewSpace);
3093}
3094
3095// static
3096void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
3097  // ----------- S t a t e -------------
3098  //  -- a0 : requested object size (untagged)
3099  //  -- ra : return address
3100  // -----------------------------------
3101  __ SmiTag(a0);
3102  __ Move(a1, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
3103  __ Push(a0, a1);
3104  __ Move(cp, Smi::kZero);
3105  __ TailCallRuntime(Runtime::kAllocateInTargetSpace);
3106}
3107
3108// static
3109void Builtins::Generate_Abort(MacroAssembler* masm) {
3110  // ----------- S t a t e -------------
3111  //  -- a0 : message_id as Smi
3112  //  -- ra : return address
3113  // -----------------------------------
3114  __ Push(a0);
3115  __ Move(cp, Smi::kZero);
3116  __ TailCallRuntime(Runtime::kAbort);
3117}
3118
3119void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
3120  // State setup as expected by MacroAssembler::InvokePrologue.
3121  // ----------- S t a t e -------------
3122  //  -- a0: actual arguments count
3123  //  -- a1: function (passed through to callee)
3124  //  -- a2: expected arguments count
3125  //  -- a3: new target (passed through to callee)
3126  // -----------------------------------
3127
3128  Label invoke, dont_adapt_arguments, stack_overflow;
3129
3130  Label enough, too_few;
3131  __ Branch(&dont_adapt_arguments, eq, a2,
3132            Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
3133  // We use Uless as the number of argument should always be greater than 0.
3134  __ Branch(&too_few, Uless, a0, Operand(a2));
3135
3136  {  // Enough parameters: actual >= expected.
3137    // a0: actual number of arguments as a smi
3138    // a1: function
3139    // a2: expected number of arguments
3140    // a3: new target (passed through to callee)
3141    __ bind(&enough);
3142    EnterArgumentsAdaptorFrame(masm);
3143    Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow);
3144
3145    // Calculate copy start address into a0 and copy end address into a4.
3146    __ SmiScale(a0, a0, kPointerSizeLog2);
3147    __ Daddu(a0, fp, a0);
3148    // Adjust for return address and receiver.
3149    __ Daddu(a0, a0, Operand(2 * kPointerSize));
3150    // Compute copy end address.
3151    __ dsll(a4, a2, kPointerSizeLog2);
3152    __ dsubu(a4, a0, a4);
3153
3154    // Copy the arguments (including the receiver) to the new stack frame.
3155    // a0: copy start address
3156    // a1: function
3157    // a2: expected number of arguments
3158    // a3: new target (passed through to callee)
3159    // a4: copy end address
3160
3161    Label copy;
3162    __ bind(&copy);
3163    __ ld(a5, MemOperand(a0));
3164    __ push(a5);
3165    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a4));
3166    __ daddiu(a0, a0, -kPointerSize);  // In delay slot.
3167
3168    __ jmp(&invoke);
3169  }
3170
3171  {  // Too few parameters: Actual < expected.
3172    __ bind(&too_few);
3173    EnterArgumentsAdaptorFrame(masm);
3174    Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow);
3175
3176    // Calculate copy start address into a0 and copy end address into a7.
3177    // a0: actual number of arguments as a smi
3178    // a1: function
3179    // a2: expected number of arguments
3180    // a3: new target (passed through to callee)
3181    __ SmiScale(a0, a0, kPointerSizeLog2);
3182    __ Daddu(a0, fp, a0);
3183    // Adjust for return address and receiver.
3184    __ Daddu(a0, a0, Operand(2 * kPointerSize));
3185    // Compute copy end address. Also adjust for return address.
3186    __ Daddu(a7, fp, kPointerSize);
3187
3188    // Copy the arguments (including the receiver) to the new stack frame.
3189    // a0: copy start address
3190    // a1: function
3191    // a2: expected number of arguments
3192    // a3: new target (passed through to callee)
3193    // a7: copy end address
3194    Label copy;
3195    __ bind(&copy);
3196    __ ld(a4, MemOperand(a0));  // Adjusted above for return addr and receiver.
3197    __ Dsubu(sp, sp, kPointerSize);
3198    __ Dsubu(a0, a0, kPointerSize);
3199    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
3200    __ sd(a4, MemOperand(sp));  // In the delay slot.
3201
3202    // Fill the remaining expected arguments with undefined.
3203    // a1: function
3204    // a2: expected number of arguments
3205    // a3: new target (passed through to callee)
3206    __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
3207    __ dsll(a6, a2, kPointerSizeLog2);
3208    __ Dsubu(a4, fp, Operand(a6));
3209    // Adjust for frame.
3210    __ Dsubu(a4, a4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
3211                             2 * kPointerSize));
3212
3213    Label fill;
3214    __ bind(&fill);
3215    __ Dsubu(sp, sp, kPointerSize);
3216    __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4));
3217    __ sd(a5, MemOperand(sp));
3218  }
3219
3220  // Call the entry point.
3221  __ bind(&invoke);
3222  __ mov(a0, a2);
3223  // a0 : expected number of arguments
3224  // a1 : function (passed through to callee)
3225  // a3: new target (passed through to callee)
3226  __ ld(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3227  __ Call(a4);
3228
3229  // Store offset of return address for deoptimizer.
3230  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
3231
3232  // Exit frame and return.
3233  LeaveArgumentsAdaptorFrame(masm);
3234  __ Ret();
3235
3236  // -------------------------------------------
3237  // Don't adapt arguments.
3238  // -------------------------------------------
3239  __ bind(&dont_adapt_arguments);
3240  __ ld(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3241  __ Jump(a4);
3242
3243  __ bind(&stack_overflow);
3244  {
3245    FrameScope frame(masm, StackFrame::MANUAL);
3246    __ CallRuntime(Runtime::kThrowStackOverflow);
3247    __ break_(0xCC);
3248  }
3249}
3250
3251#undef __
3252
3253}  // namespace internal
3254}  // namespace v8
3255
3256#endif  // V8_TARGET_ARCH_MIPS64
3257