1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stdarg.h>
6#include <stdlib.h>
7#include <cmath>
8
9#if V8_TARGET_ARCH_PPC
10
11#include "src/assembler.h"
12#include "src/base/bits.h"
13#include "src/codegen.h"
14#include "src/disasm.h"
15#include "src/ppc/constants-ppc.h"
16#include "src/ppc/frames-ppc.h"
17#include "src/ppc/simulator-ppc.h"
18#include "src/runtime/runtime-utils.h"
19
20#if defined(USE_SIMULATOR)
21
22// Only build the simulator if not compiling for real PPC hardware.
23namespace v8 {
24namespace internal {
25
26const auto GetRegConfig = RegisterConfiguration::Crankshaft;
27
28// This macro provides a platform independent use of sscanf. The reason for
29// SScanF not being implemented in a platform independent way through
30// ::v8::internal::OS in the same way as SNPrintF is that the
31// Windows C Run-Time Library does not provide vsscanf.
32#define SScanF sscanf  // NOLINT
33
34// The PPCDebugger class is used by the simulator while debugging simulated
35// PowerPC code.
36class PPCDebugger {
37 public:
38  explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
39
40  void Stop(Instruction* instr);
41  void Debug();
42
43 private:
44  static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
45  static const Instr kNopInstr = (ORI);  // ori, 0,0,0
46
47  Simulator* sim_;
48
49  intptr_t GetRegisterValue(int regnum);
50  double GetRegisterPairDoubleValue(int regnum);
51  double GetFPDoubleRegisterValue(int regnum);
52  bool GetValue(const char* desc, intptr_t* value);
53  bool GetFPDoubleValue(const char* desc, double* value);
54
55  // Set or delete a breakpoint. Returns true if successful.
56  bool SetBreakpoint(Instruction* break_pc);
57  bool DeleteBreakpoint(Instruction* break_pc);
58
59  // Undo and redo all breakpoints. This is needed to bracket disassembly and
60  // execution to skip past breakpoints when run from the debugger.
61  void UndoBreakpoints();
62  void RedoBreakpoints();
63};
64
65void PPCDebugger::Stop(Instruction* instr) {
66  // Get the stop code.
67  // use of kStopCodeMask not right on PowerPC
68  uint32_t code = instr->SvcValue() & kStopCodeMask;
69  // Retrieve the encoded address, which comes just after this stop.
70  char* msg =
71      *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
72  // Update this stop description.
73  if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
74    sim_->watched_stops_[code].desc = msg;
75  }
76  // Print the stop message and code if it is not the default code.
77  if (code != kMaxStopCode) {
78    PrintF("Simulator hit stop %u: %s\n", code, msg);
79  } else {
80    PrintF("Simulator hit %s\n", msg);
81  }
82  sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
83  Debug();
84}
85
86intptr_t PPCDebugger::GetRegisterValue(int regnum) {
87  return sim_->get_register(regnum);
88}
89
90
91double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
92  return sim_->get_double_from_register_pair(regnum);
93}
94
95
96double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
97  return sim_->get_double_from_d_register(regnum);
98}
99
100
101bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
102  int regnum = Registers::Number(desc);
103  if (regnum != kNoRegister) {
104    *value = GetRegisterValue(regnum);
105    return true;
106  } else {
107    if (strncmp(desc, "0x", 2) == 0) {
108      return SScanF(desc + 2, "%" V8PRIxPTR,
109                    reinterpret_cast<uintptr_t*>(value)) == 1;
110    } else {
111      return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
112             1;
113    }
114  }
115  return false;
116}
117
118
119bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
120  int regnum = DoubleRegisters::Number(desc);
121  if (regnum != kNoRegister) {
122    *value = sim_->get_double_from_d_register(regnum);
123    return true;
124  }
125  return false;
126}
127
128
129bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
130  // Check if a breakpoint can be set. If not return without any side-effects.
131  if (sim_->break_pc_ != NULL) {
132    return false;
133  }
134
135  // Set the breakpoint.
136  sim_->break_pc_ = break_pc;
137  sim_->break_instr_ = break_pc->InstructionBits();
138  // Not setting the breakpoint instruction in the code itself. It will be set
139  // when the debugger shell continues.
140  return true;
141}
142
143
144bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
145  if (sim_->break_pc_ != NULL) {
146    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
147  }
148
149  sim_->break_pc_ = NULL;
150  sim_->break_instr_ = 0;
151  return true;
152}
153
154
155void PPCDebugger::UndoBreakpoints() {
156  if (sim_->break_pc_ != NULL) {
157    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
158  }
159}
160
161
162void PPCDebugger::RedoBreakpoints() {
163  if (sim_->break_pc_ != NULL) {
164    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
165  }
166}
167
168
169void PPCDebugger::Debug() {
170  intptr_t last_pc = -1;
171  bool done = false;
172
173#define COMMAND_SIZE 63
174#define ARG_SIZE 255
175
176#define STR(a) #a
177#define XSTR(a) STR(a)
178
179  char cmd[COMMAND_SIZE + 1];
180  char arg1[ARG_SIZE + 1];
181  char arg2[ARG_SIZE + 1];
182  char* argv[3] = {cmd, arg1, arg2};
183
184  // make sure to have a proper terminating character if reaching the limit
185  cmd[COMMAND_SIZE] = 0;
186  arg1[ARG_SIZE] = 0;
187  arg2[ARG_SIZE] = 0;
188
189  // Undo all set breakpoints while running in the debugger shell. This will
190  // make them invisible to all commands.
191  UndoBreakpoints();
192  // Disable tracing while simulating
193  bool trace = ::v8::internal::FLAG_trace_sim;
194  ::v8::internal::FLAG_trace_sim = false;
195
196  while (!done && !sim_->has_bad_pc()) {
197    if (last_pc != sim_->get_pc()) {
198      disasm::NameConverter converter;
199      disasm::Disassembler dasm(converter);
200      // use a reasonably large buffer
201      v8::internal::EmbeddedVector<char, 256> buffer;
202      dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
203      PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.start());
204      last_pc = sim_->get_pc();
205    }
206    char* line = ReadLine("sim> ");
207    if (line == NULL) {
208      break;
209    } else {
210      char* last_input = sim_->last_debugger_input();
211      if (strcmp(line, "\n") == 0 && last_input != NULL) {
212        line = last_input;
213      } else {
214        // Ownership is transferred to sim_;
215        sim_->set_last_debugger_input(line);
216      }
217      // Use sscanf to parse the individual parts of the command line. At the
218      // moment no command expects more than two parameters.
219      int argc = SScanF(line,
220                        "%" XSTR(COMMAND_SIZE) "s "
221                        "%" XSTR(ARG_SIZE) "s "
222                        "%" XSTR(ARG_SIZE) "s",
223                        cmd, arg1, arg2);
224      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
225        intptr_t value;
226
227        // If at a breakpoint, proceed past it.
228        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
229                ->InstructionBits() == 0x7d821008) {
230          sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
231        } else {
232          sim_->ExecuteInstruction(
233              reinterpret_cast<Instruction*>(sim_->get_pc()));
234        }
235
236        if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
237          for (int i = 1; i < value; i++) {
238            disasm::NameConverter converter;
239            disasm::Disassembler dasm(converter);
240            // use a reasonably large buffer
241            v8::internal::EmbeddedVector<char, 256> buffer;
242            dasm.InstructionDecode(buffer,
243                                   reinterpret_cast<byte*>(sim_->get_pc()));
244            PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
245                   buffer.start());
246            sim_->ExecuteInstruction(
247                reinterpret_cast<Instruction*>(sim_->get_pc()));
248          }
249        }
250      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
251        // If at a breakpoint, proceed past it.
252        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
253                ->InstructionBits() == 0x7d821008) {
254          sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
255        } else {
256          // Execute the one instruction we broke at with breakpoints disabled.
257          sim_->ExecuteInstruction(
258              reinterpret_cast<Instruction*>(sim_->get_pc()));
259        }
260        // Leave the debugger shell.
261        done = true;
262      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
263        if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
264          intptr_t value;
265          double dvalue;
266          if (strcmp(arg1, "all") == 0) {
267            for (int i = 0; i < kNumRegisters; i++) {
268              value = GetRegisterValue(i);
269              PrintF("    %3s: %08" V8PRIxPTR,
270                     GetRegConfig()->GetGeneralRegisterName(i), value);
271              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
272                  (i % 2) == 0) {
273                dvalue = GetRegisterPairDoubleValue(i);
274                PrintF(" (%f)\n", dvalue);
275              } else if (i != 0 && !((i + 1) & 3)) {
276                PrintF("\n");
277              }
278            }
279            PrintF("  pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
280                   "  "
281                   "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
282                   sim_->special_reg_pc_, sim_->special_reg_lr_,
283                   sim_->special_reg_ctr_, sim_->special_reg_xer_,
284                   sim_->condition_reg_);
285          } else if (strcmp(arg1, "alld") == 0) {
286            for (int i = 0; i < kNumRegisters; i++) {
287              value = GetRegisterValue(i);
288              PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
289                     GetRegConfig()->GetGeneralRegisterName(i), value, value);
290              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
291                  (i % 2) == 0) {
292                dvalue = GetRegisterPairDoubleValue(i);
293                PrintF(" (%f)\n", dvalue);
294              } else if (!((i + 1) % 2)) {
295                PrintF("\n");
296              }
297            }
298            PrintF("   pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
299                   "  "
300                   "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
301                   sim_->special_reg_pc_, sim_->special_reg_lr_,
302                   sim_->special_reg_ctr_, sim_->special_reg_xer_,
303                   sim_->condition_reg_);
304          } else if (strcmp(arg1, "allf") == 0) {
305            for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
306              dvalue = GetFPDoubleRegisterValue(i);
307              uint64_t as_words = bit_cast<uint64_t>(dvalue);
308              PrintF("%3s: %f 0x%08x %08x\n",
309                     GetRegConfig()->GetDoubleRegisterName(i), dvalue,
310                     static_cast<uint32_t>(as_words >> 32),
311                     static_cast<uint32_t>(as_words & 0xffffffff));
312            }
313          } else if (arg1[0] == 'r' &&
314                     (arg1[1] >= '0' && arg1[1] <= '9' &&
315                      (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
316                                           arg1[3] == '\0')))) {
317            int regnum = strtoul(&arg1[1], 0, 10);
318            if (regnum != kNoRegister) {
319              value = GetRegisterValue(regnum);
320              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
321                     value);
322            } else {
323              PrintF("%s unrecognized\n", arg1);
324            }
325          } else {
326            if (GetValue(arg1, &value)) {
327              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
328                     value);
329            } else if (GetFPDoubleValue(arg1, &dvalue)) {
330              uint64_t as_words = bit_cast<uint64_t>(dvalue);
331              PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
332                     static_cast<uint32_t>(as_words >> 32),
333                     static_cast<uint32_t>(as_words & 0xffffffff));
334            } else {
335              PrintF("%s unrecognized\n", arg1);
336            }
337          }
338        } else {
339          PrintF("print <register>\n");
340        }
341      } else if ((strcmp(cmd, "po") == 0) ||
342                 (strcmp(cmd, "printobject") == 0)) {
343        if (argc == 2) {
344          intptr_t value;
345          OFStream os(stdout);
346          if (GetValue(arg1, &value)) {
347            Object* obj = reinterpret_cast<Object*>(value);
348            os << arg1 << ": \n";
349#ifdef DEBUG
350            obj->Print(os);
351            os << "\n";
352#else
353            os << Brief(obj) << "\n";
354#endif
355          } else {
356            os << arg1 << " unrecognized\n";
357          }
358        } else {
359          PrintF("printobject <value>\n");
360        }
361      } else if (strcmp(cmd, "setpc") == 0) {
362        intptr_t value;
363
364        if (!GetValue(arg1, &value)) {
365          PrintF("%s unrecognized\n", arg1);
366          continue;
367        }
368        sim_->set_pc(value);
369      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
370        intptr_t* cur = NULL;
371        intptr_t* end = NULL;
372        int next_arg = 1;
373
374        if (strcmp(cmd, "stack") == 0) {
375          cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
376        } else {  // "mem"
377          intptr_t value;
378          if (!GetValue(arg1, &value)) {
379            PrintF("%s unrecognized\n", arg1);
380            continue;
381          }
382          cur = reinterpret_cast<intptr_t*>(value);
383          next_arg++;
384        }
385
386        intptr_t words;  // likely inaccurate variable name for 64bit
387        if (argc == next_arg) {
388          words = 10;
389        } else {
390          if (!GetValue(argv[next_arg], &words)) {
391            words = 10;
392          }
393        }
394        end = cur + words;
395
396        while (cur < end) {
397          PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
398                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
399          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
400          intptr_t value = *cur;
401          Heap* current_heap = sim_->isolate_->heap();
402          if (((value & 1) == 0) ||
403              current_heap->ContainsSlow(obj->address())) {
404            PrintF(" (");
405            if ((value & 1) == 0) {
406              PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
407            } else {
408              obj->ShortPrint();
409            }
410            PrintF(")");
411          }
412          PrintF("\n");
413          cur++;
414        }
415      } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
416        disasm::NameConverter converter;
417        disasm::Disassembler dasm(converter);
418        // use a reasonably large buffer
419        v8::internal::EmbeddedVector<char, 256> buffer;
420
421        byte* prev = NULL;
422        byte* cur = NULL;
423        byte* end = NULL;
424
425        if (argc == 1) {
426          cur = reinterpret_cast<byte*>(sim_->get_pc());
427          end = cur + (10 * Instruction::kInstrSize);
428        } else if (argc == 2) {
429          int regnum = Registers::Number(arg1);
430          if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
431            // The argument is an address or a register name.
432            intptr_t value;
433            if (GetValue(arg1, &value)) {
434              cur = reinterpret_cast<byte*>(value);
435              // Disassemble 10 instructions at <arg1>.
436              end = cur + (10 * Instruction::kInstrSize);
437            }
438          } else {
439            // The argument is the number of instructions.
440            intptr_t value;
441            if (GetValue(arg1, &value)) {
442              cur = reinterpret_cast<byte*>(sim_->get_pc());
443              // Disassemble <arg1> instructions.
444              end = cur + (value * Instruction::kInstrSize);
445            }
446          }
447        } else {
448          intptr_t value1;
449          intptr_t value2;
450          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
451            cur = reinterpret_cast<byte*>(value1);
452            end = cur + (value2 * Instruction::kInstrSize);
453          }
454        }
455
456        while (cur < end) {
457          prev = cur;
458          cur += dasm.InstructionDecode(buffer, cur);
459          PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
460                 buffer.start());
461        }
462      } else if (strcmp(cmd, "gdb") == 0) {
463        PrintF("relinquishing control to gdb\n");
464        v8::base::OS::DebugBreak();
465        PrintF("regaining control from gdb\n");
466      } else if (strcmp(cmd, "break") == 0) {
467        if (argc == 2) {
468          intptr_t value;
469          if (GetValue(arg1, &value)) {
470            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
471              PrintF("setting breakpoint failed\n");
472            }
473          } else {
474            PrintF("%s unrecognized\n", arg1);
475          }
476        } else {
477          PrintF("break <address>\n");
478        }
479      } else if (strcmp(cmd, "del") == 0) {
480        if (!DeleteBreakpoint(NULL)) {
481          PrintF("deleting breakpoint failed\n");
482        }
483      } else if (strcmp(cmd, "cr") == 0) {
484        PrintF("Condition reg: %08x\n", sim_->condition_reg_);
485      } else if (strcmp(cmd, "lr") == 0) {
486        PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
487      } else if (strcmp(cmd, "ctr") == 0) {
488        PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
489      } else if (strcmp(cmd, "xer") == 0) {
490        PrintF("XER: %08x\n", sim_->special_reg_xer_);
491      } else if (strcmp(cmd, "fpscr") == 0) {
492        PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
493      } else if (strcmp(cmd, "stop") == 0) {
494        intptr_t value;
495        intptr_t stop_pc =
496            sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
497        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
498        Instruction* msg_address =
499            reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
500        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
501          // Remove the current stop.
502          if (sim_->isStopInstruction(stop_instr)) {
503            stop_instr->SetInstructionBits(kNopInstr);
504            msg_address->SetInstructionBits(kNopInstr);
505          } else {
506            PrintF("Not at debugger stop.\n");
507          }
508        } else if (argc == 3) {
509          // Print information about all/the specified breakpoint(s).
510          if (strcmp(arg1, "info") == 0) {
511            if (strcmp(arg2, "all") == 0) {
512              PrintF("Stop information:\n");
513              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
514                sim_->PrintStopInfo(i);
515              }
516            } else if (GetValue(arg2, &value)) {
517              sim_->PrintStopInfo(value);
518            } else {
519              PrintF("Unrecognized argument.\n");
520            }
521          } else if (strcmp(arg1, "enable") == 0) {
522            // Enable all/the specified breakpoint(s).
523            if (strcmp(arg2, "all") == 0) {
524              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
525                sim_->EnableStop(i);
526              }
527            } else if (GetValue(arg2, &value)) {
528              sim_->EnableStop(value);
529            } else {
530              PrintF("Unrecognized argument.\n");
531            }
532          } else if (strcmp(arg1, "disable") == 0) {
533            // Disable all/the specified breakpoint(s).
534            if (strcmp(arg2, "all") == 0) {
535              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
536                sim_->DisableStop(i);
537              }
538            } else if (GetValue(arg2, &value)) {
539              sim_->DisableStop(value);
540            } else {
541              PrintF("Unrecognized argument.\n");
542            }
543          }
544        } else {
545          PrintF("Wrong usage. Use help command for more information.\n");
546        }
547      } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
548        ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
549        PrintF("Trace of executed instructions is %s\n",
550               ::v8::internal::FLAG_trace_sim ? "on" : "off");
551      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
552        PrintF("cont\n");
553        PrintF("  continue execution (alias 'c')\n");
554        PrintF("stepi [num instructions]\n");
555        PrintF("  step one/num instruction(s) (alias 'si')\n");
556        PrintF("print <register>\n");
557        PrintF("  print register content (alias 'p')\n");
558        PrintF("  use register name 'all' to display all integer registers\n");
559        PrintF(
560            "  use register name 'alld' to display integer registers "
561            "with decimal values\n");
562        PrintF("  use register name 'rN' to display register number 'N'\n");
563        PrintF("  add argument 'fp' to print register pair double values\n");
564        PrintF(
565            "  use register name 'allf' to display floating-point "
566            "registers\n");
567        PrintF("printobject <register>\n");
568        PrintF("  print an object from a register (alias 'po')\n");
569        PrintF("cr\n");
570        PrintF("  print condition register\n");
571        PrintF("lr\n");
572        PrintF("  print link register\n");
573        PrintF("ctr\n");
574        PrintF("  print ctr register\n");
575        PrintF("xer\n");
576        PrintF("  print XER\n");
577        PrintF("fpscr\n");
578        PrintF("  print FPSCR\n");
579        PrintF("stack [<num words>]\n");
580        PrintF("  dump stack content, default dump 10 words)\n");
581        PrintF("mem <address> [<num words>]\n");
582        PrintF("  dump memory content, default dump 10 words)\n");
583        PrintF("disasm [<instructions>]\n");
584        PrintF("disasm [<address/register>]\n");
585        PrintF("disasm [[<address/register>] <instructions>]\n");
586        PrintF("  disassemble code, default is 10 instructions\n");
587        PrintF("  from pc (alias 'di')\n");
588        PrintF("gdb\n");
589        PrintF("  enter gdb\n");
590        PrintF("break <address>\n");
591        PrintF("  set a break point on the address\n");
592        PrintF("del\n");
593        PrintF("  delete the breakpoint\n");
594        PrintF("trace (alias 't')\n");
595        PrintF("  toogle the tracing of all executed statements\n");
596        PrintF("stop feature:\n");
597        PrintF("  Description:\n");
598        PrintF("    Stops are debug instructions inserted by\n");
599        PrintF("    the Assembler::stop() function.\n");
600        PrintF("    When hitting a stop, the Simulator will\n");
601        PrintF("    stop and and give control to the PPCDebugger.\n");
602        PrintF("    The first %d stop codes are watched:\n",
603               Simulator::kNumOfWatchedStops);
604        PrintF("    - They can be enabled / disabled: the Simulator\n");
605        PrintF("      will / won't stop when hitting them.\n");
606        PrintF("    - The Simulator keeps track of how many times they \n");
607        PrintF("      are met. (See the info command.) Going over a\n");
608        PrintF("      disabled stop still increases its counter. \n");
609        PrintF("  Commands:\n");
610        PrintF("    stop info all/<code> : print infos about number <code>\n");
611        PrintF("      or all stop(s).\n");
612        PrintF("    stop enable/disable all/<code> : enables / disables\n");
613        PrintF("      all or number <code> stop(s)\n");
614        PrintF("    stop unstop\n");
615        PrintF("      ignore the stop instruction at the current location\n");
616        PrintF("      from now on\n");
617      } else {
618        PrintF("Unknown command: %s\n", cmd);
619      }
620    }
621  }
622
623  // Add all the breakpoints back to stop execution and enter the debugger
624  // shell when hit.
625  RedoBreakpoints();
626  // Restore tracing
627  ::v8::internal::FLAG_trace_sim = trace;
628
629#undef COMMAND_SIZE
630#undef ARG_SIZE
631
632#undef STR
633#undef XSTR
634}
635
636
637static bool ICacheMatch(void* one, void* two) {
638  DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
639  DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
640  return one == two;
641}
642
643
644static uint32_t ICacheHash(void* key) {
645  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
646}
647
648
649static bool AllOnOnePage(uintptr_t start, int size) {
650  intptr_t start_page = (start & ~CachePage::kPageMask);
651  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
652  return start_page == end_page;
653}
654
655
656void Simulator::set_last_debugger_input(char* input) {
657  DeleteArray(last_debugger_input_);
658  last_debugger_input_ = input;
659}
660
661void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
662                            void* start_addr, size_t size) {
663  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
664  int intra_line = (start & CachePage::kLineMask);
665  start -= intra_line;
666  size += intra_line;
667  size = ((size - 1) | CachePage::kLineMask) + 1;
668  int offset = (start & CachePage::kPageMask);
669  while (!AllOnOnePage(start, size - 1)) {
670    int bytes_to_flush = CachePage::kPageSize - offset;
671    FlushOnePage(i_cache, start, bytes_to_flush);
672    start += bytes_to_flush;
673    size -= bytes_to_flush;
674    DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
675    offset = 0;
676  }
677  if (size != 0) {
678    FlushOnePage(i_cache, start, size);
679  }
680}
681
682CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
683                                   void* page) {
684  base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
685  if (entry->value == NULL) {
686    CachePage* new_page = new CachePage();
687    entry->value = new_page;
688  }
689  return reinterpret_cast<CachePage*>(entry->value);
690}
691
692
693// Flush from start up to and not including start + size.
694void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
695                             intptr_t start, int size) {
696  DCHECK(size <= CachePage::kPageSize);
697  DCHECK(AllOnOnePage(start, size - 1));
698  DCHECK((start & CachePage::kLineMask) == 0);
699  DCHECK((size & CachePage::kLineMask) == 0);
700  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
701  int offset = (start & CachePage::kPageMask);
702  CachePage* cache_page = GetCachePage(i_cache, page);
703  char* valid_bytemap = cache_page->ValidityByte(offset);
704  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
705}
706
707void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
708                            Instruction* instr) {
709  intptr_t address = reinterpret_cast<intptr_t>(instr);
710  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
711  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
712  int offset = (address & CachePage::kPageMask);
713  CachePage* cache_page = GetCachePage(i_cache, page);
714  char* cache_valid_byte = cache_page->ValidityByte(offset);
715  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
716  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
717  if (cache_hit) {
718    // Check that the data in memory matches the contents of the I-cache.
719    CHECK_EQ(0,
720             memcmp(reinterpret_cast<void*>(instr),
721                    cache_page->CachedData(offset), Instruction::kInstrSize));
722  } else {
723    // Cache miss.  Load memory into the cache.
724    memcpy(cached_line, line, CachePage::kLineLength);
725    *cache_valid_byte = CachePage::LINE_VALID;
726  }
727}
728
729
730void Simulator::Initialize(Isolate* isolate) {
731  if (isolate->simulator_initialized()) return;
732  isolate->set_simulator_initialized(true);
733  ::v8::internal::ExternalReference::set_redirector(isolate,
734                                                    &RedirectExternalReference);
735}
736
737
738Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
739  i_cache_ = isolate_->simulator_i_cache();
740  if (i_cache_ == NULL) {
741    i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
742    isolate_->set_simulator_i_cache(i_cache_);
743  }
744  Initialize(isolate);
745// Set up simulator support first. Some of this information is needed to
746// setup the architecture state.
747#if V8_TARGET_ARCH_PPC64
748  size_t stack_size = FLAG_sim_stack_size * KB;
749#else
750  size_t stack_size = MB;  // allocate 1MB for stack
751#endif
752  stack_size += 2 * stack_protection_size_;
753  stack_ = reinterpret_cast<char*>(malloc(stack_size));
754  pc_modified_ = false;
755  icount_ = 0;
756  break_pc_ = NULL;
757  break_instr_ = 0;
758
759  // Set up architecture state.
760  // All registers are initialized to zero to start with.
761  for (int i = 0; i < kNumGPRs; i++) {
762    registers_[i] = 0;
763  }
764  condition_reg_ = 0;
765  fp_condition_reg_ = 0;
766  special_reg_pc_ = 0;
767  special_reg_lr_ = 0;
768  special_reg_ctr_ = 0;
769
770  // Initializing FP registers.
771  for (int i = 0; i < kNumFPRs; i++) {
772    fp_registers_[i] = 0.0;
773  }
774
775  // The sp is initialized to point to the bottom (high address) of the
776  // allocated stack area. To be safe in potential stack underflows we leave
777  // some buffer below.
778  registers_[sp] =
779      reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
780
781  last_debugger_input_ = NULL;
782}
783
784
785Simulator::~Simulator() { free(stack_); }
786
787
788// When the generated code calls an external reference we need to catch that in
789// the simulator.  The external reference will be a function compiled for the
790// host architecture.  We need to call that function instead of trying to
791// execute it with the simulator.  We do that by redirecting the external
792// reference to a svc (Supervisor Call) instruction that is handled by
793// the simulator.  We write the original destination of the jump just at a known
794// offset from the svc instruction so the simulator knows what to call.
795class Redirection {
796 public:
797  Redirection(Isolate* isolate, void* external_function,
798              ExternalReference::Type type)
799      : external_function_(external_function),
800        swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
801        type_(type),
802        next_(NULL) {
803    next_ = isolate->simulator_redirection();
804    Simulator::current(isolate)->FlushICache(
805        isolate->simulator_i_cache(),
806        reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
807    isolate->set_simulator_redirection(this);
808    if (ABI_USES_FUNCTION_DESCRIPTORS) {
809      function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
810      function_descriptor_[1] = 0;
811      function_descriptor_[2] = 0;
812    }
813  }
814
815  void* address() {
816    if (ABI_USES_FUNCTION_DESCRIPTORS) {
817      return reinterpret_cast<void*>(function_descriptor_);
818    } else {
819      return reinterpret_cast<void*>(&swi_instruction_);
820    }
821  }
822
823  void* external_function() { return external_function_; }
824  ExternalReference::Type type() { return type_; }
825
826  static Redirection* Get(Isolate* isolate, void* external_function,
827                          ExternalReference::Type type) {
828    Redirection* current = isolate->simulator_redirection();
829    for (; current != NULL; current = current->next_) {
830      if (current->external_function_ == external_function) {
831        DCHECK_EQ(current->type(), type);
832        return current;
833      }
834    }
835    return new Redirection(isolate, external_function, type);
836  }
837
838  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
839    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
840    char* addr_of_redirection =
841        addr_of_swi - offsetof(Redirection, swi_instruction_);
842    return reinterpret_cast<Redirection*>(addr_of_redirection);
843  }
844
845  static Redirection* FromAddress(void* address) {
846    int delta = ABI_USES_FUNCTION_DESCRIPTORS
847                    ? offsetof(Redirection, function_descriptor_)
848                    : offsetof(Redirection, swi_instruction_);
849    char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
850    return reinterpret_cast<Redirection*>(addr_of_redirection);
851  }
852
853  static void* ReverseRedirection(intptr_t reg) {
854    Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
855    return redirection->external_function();
856  }
857
858  static void DeleteChain(Redirection* redirection) {
859    while (redirection != nullptr) {
860      Redirection* next = redirection->next_;
861      delete redirection;
862      redirection = next;
863    }
864  }
865
866 private:
867  void* external_function_;
868  uint32_t swi_instruction_;
869  ExternalReference::Type type_;
870  Redirection* next_;
871  intptr_t function_descriptor_[3];
872};
873
874
875// static
876void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
877                         Redirection* first) {
878  Redirection::DeleteChain(first);
879  if (i_cache != nullptr) {
880    for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
881         entry = i_cache->Next(entry)) {
882      delete static_cast<CachePage*>(entry->value);
883    }
884    delete i_cache;
885  }
886}
887
888
889void* Simulator::RedirectExternalReference(Isolate* isolate,
890                                           void* external_function,
891                                           ExternalReference::Type type) {
892  Redirection* redirection = Redirection::Get(isolate, external_function, type);
893  return redirection->address();
894}
895
896
897// Get the active Simulator for the current thread.
898Simulator* Simulator::current(Isolate* isolate) {
899  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
900      isolate->FindOrAllocatePerThreadDataForThisThread();
901  DCHECK(isolate_data != NULL);
902
903  Simulator* sim = isolate_data->simulator();
904  if (sim == NULL) {
905    // TODO(146): delete the simulator object when a thread/isolate goes away.
906    sim = new Simulator(isolate);
907    isolate_data->set_simulator(sim);
908  }
909  return sim;
910}
911
912
913// Sets the register in the architecture state.
914void Simulator::set_register(int reg, intptr_t value) {
915  DCHECK((reg >= 0) && (reg < kNumGPRs));
916  registers_[reg] = value;
917}
918
919
920// Get the register from the architecture state.
921intptr_t Simulator::get_register(int reg) const {
922  DCHECK((reg >= 0) && (reg < kNumGPRs));
923  // Stupid code added to avoid bug in GCC.
924  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
925  if (reg >= kNumGPRs) return 0;
926  // End stupid code.
927  return registers_[reg];
928}
929
930
931double Simulator::get_double_from_register_pair(int reg) {
932  DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
933
934  double dm_val = 0.0;
935#if !V8_TARGET_ARCH_PPC64  // doesn't make sense in 64bit mode
936  // Read the bits from the unsigned integer register_[] array
937  // into the double precision floating point value and return it.
938  char buffer[sizeof(fp_registers_[0])];
939  memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
940  memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
941#endif
942  return (dm_val);
943}
944
945
946// Raw access to the PC register.
947void Simulator::set_pc(intptr_t value) {
948  pc_modified_ = true;
949  special_reg_pc_ = value;
950}
951
952
953bool Simulator::has_bad_pc() const {
954  return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
955}
956
957
958// Raw access to the PC register without the special adjustment when reading.
959intptr_t Simulator::get_pc() const { return special_reg_pc_; }
960
961
962// Runtime FP routines take:
963// - two double arguments
964// - one double argument and zero or one integer arguments.
965// All are consructed here from d1, d2 and r3.
966void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
967  *x = get_double_from_d_register(1);
968  *y = get_double_from_d_register(2);
969  *z = get_register(3);
970}
971
972
973// The return value is in d1.
974void Simulator::SetFpResult(const double& result) {
975  set_d_register_from_double(1, result);
976}
977
978
979void Simulator::TrashCallerSaveRegisters() {
980// We don't trash the registers with the return value.
981#if 0  // A good idea to trash volatile registers, needs to be done
982  registers_[2] = 0x50Bad4U;
983  registers_[3] = 0x50Bad4U;
984  registers_[12] = 0x50Bad4U;
985#endif
986}
987
988
989uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
990  uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
991  return *ptr;
992}
993
994
995int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
996  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
997  return *ptr;
998}
999
1000
1001void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1002  uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1003  *ptr = value;
1004  return;
1005}
1006
1007
1008void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1009  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1010  *ptr = value;
1011  return;
1012}
1013
1014
1015uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1016  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1017  return *ptr;
1018}
1019
1020
1021int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1022  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1023  return *ptr;
1024}
1025
1026
1027void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1028  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1029  *ptr = value;
1030  return;
1031}
1032
1033
1034void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1035  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1036  *ptr = value;
1037  return;
1038}
1039
1040
1041uint8_t Simulator::ReadBU(intptr_t addr) {
1042  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1043  return *ptr;
1044}
1045
1046
1047int8_t Simulator::ReadB(intptr_t addr) {
1048  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1049  return *ptr;
1050}
1051
1052
1053void Simulator::WriteB(intptr_t addr, uint8_t value) {
1054  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1055  *ptr = value;
1056}
1057
1058
1059void Simulator::WriteB(intptr_t addr, int8_t value) {
1060  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1061  *ptr = value;
1062}
1063
1064
1065intptr_t* Simulator::ReadDW(intptr_t addr) {
1066  intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1067  return ptr;
1068}
1069
1070
1071void Simulator::WriteDW(intptr_t addr, int64_t value) {
1072  int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1073  *ptr = value;
1074  return;
1075}
1076
1077
1078// Returns the limit of the stack area to enable checking for stack overflows.
1079uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1080  // The simulator uses a separate JS stack. If we have exhausted the C stack,
1081  // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1082  if (GetCurrentStackPosition() < c_limit) {
1083    return reinterpret_cast<uintptr_t>(get_sp());
1084  }
1085
1086  // Otherwise the limit is the JS stack. Leave a safety margin to prevent
1087  // overrunning the stack when pushing values.
1088  return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
1089}
1090
1091
1092// Unsupported instructions use Format to print an error and stop execution.
1093void Simulator::Format(Instruction* instr, const char* format) {
1094  PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1095         reinterpret_cast<intptr_t>(instr), format);
1096  UNIMPLEMENTED();
1097}
1098
1099
1100// Calculate C flag value for additions.
1101bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1102  uint32_t uleft = static_cast<uint32_t>(left);
1103  uint32_t uright = static_cast<uint32_t>(right);
1104  uint32_t urest = 0xffffffffU - uleft;
1105
1106  return (uright > urest) ||
1107         (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1108}
1109
1110
1111// Calculate C flag value for subtractions.
1112bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1113  uint32_t uleft = static_cast<uint32_t>(left);
1114  uint32_t uright = static_cast<uint32_t>(right);
1115
1116  return (uright > uleft);
1117}
1118
1119
1120// Calculate V flag value for additions and subtractions.
1121bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1122                             bool addition) {
1123  bool overflow;
1124  if (addition) {
1125    // operands have the same sign
1126    overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1127               // and operands and result have different sign
1128               &&
1129               ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1130  } else {
1131    // operands have different signs
1132    overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1133               // and first operand and result have different signs
1134               &&
1135               ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1136  }
1137  return overflow;
1138}
1139
1140
1141#if V8_TARGET_ARCH_PPC64
1142static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1143  *x = reinterpret_cast<intptr_t>(pair->x);
1144  *y = reinterpret_cast<intptr_t>(pair->y);
1145}
1146#else
1147static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1148#if V8_TARGET_BIG_ENDIAN
1149  *x = static_cast<int32_t>(*pair >> 32);
1150  *y = static_cast<int32_t>(*pair);
1151#else
1152  *x = static_cast<int32_t>(*pair);
1153  *y = static_cast<int32_t>(*pair >> 32);
1154#endif
1155}
1156#endif
1157
1158// Calls into the V8 runtime.
1159typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1160                                         intptr_t arg2, intptr_t arg3,
1161                                         intptr_t arg4, intptr_t arg5);
1162typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
1163                                               intptr_t arg2, intptr_t arg3,
1164                                               intptr_t arg4, intptr_t arg5);
1165typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
1166                                                   intptr_t arg2, intptr_t arg3,
1167                                                   intptr_t arg4,
1168                                                   intptr_t arg5);
1169
1170// These prototypes handle the four types of FP calls.
1171typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1172typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1173typedef double (*SimulatorRuntimeFPCall)(double darg0);
1174typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1175
1176// This signature supports direct call in to API function native callback
1177// (refer to InvocationCallback in v8.h).
1178typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1179typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1180
1181// This signature supports direct call to accessor getter callback.
1182typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1183typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1184                                                    intptr_t arg1, void* arg2);
1185
1186// Software interrupt instructions are used by the simulator to call into the
1187// C-based V8 runtime.
1188void Simulator::SoftwareInterrupt(Instruction* instr) {
1189  int svc = instr->SvcValue();
1190  switch (svc) {
1191    case kCallRtRedirected: {
1192      // Check if stack is aligned. Error if not aligned is reported below to
1193      // include information on the function called.
1194      bool stack_aligned =
1195          (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1196          0;
1197      Redirection* redirection = Redirection::FromSwiInstruction(instr);
1198      const int kArgCount = 6;
1199      int arg0_regnum = 3;
1200      intptr_t result_buffer = 0;
1201      bool uses_result_buffer =
1202          redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
1203          (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
1204           !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
1205      if (uses_result_buffer) {
1206        result_buffer = get_register(r3);
1207        arg0_regnum++;
1208      }
1209      intptr_t arg[kArgCount];
1210      for (int i = 0; i < kArgCount; i++) {
1211        arg[i] = get_register(arg0_regnum + i);
1212      }
1213      bool fp_call =
1214          (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1215          (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1216          (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1217          (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1218      // This is dodgy but it works because the C entry stubs are never moved.
1219      // See comment in codegen-arm.cc and bug 1242173.
1220      intptr_t saved_lr = special_reg_lr_;
1221      intptr_t external =
1222          reinterpret_cast<intptr_t>(redirection->external_function());
1223      if (fp_call) {
1224        double dval0, dval1;  // one or two double parameters
1225        intptr_t ival;        // zero or one integer parameters
1226        int iresult = 0;      // integer return value
1227        double dresult = 0;   // double return value
1228        GetFpArgs(&dval0, &dval1, &ival);
1229        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1230          SimulatorRuntimeCall generic_target =
1231              reinterpret_cast<SimulatorRuntimeCall>(external);
1232          switch (redirection->type()) {
1233            case ExternalReference::BUILTIN_FP_FP_CALL:
1234            case ExternalReference::BUILTIN_COMPARE_CALL:
1235              PrintF("Call to host function at %p with args %f, %f",
1236                     static_cast<void*>(FUNCTION_ADDR(generic_target)),
1237                     dval0, dval1);
1238              break;
1239            case ExternalReference::BUILTIN_FP_CALL:
1240              PrintF("Call to host function at %p with arg %f",
1241                     static_cast<void*>(FUNCTION_ADDR(generic_target)),
1242                     dval0);
1243              break;
1244            case ExternalReference::BUILTIN_FP_INT_CALL:
1245              PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1246                     static_cast<void*>(FUNCTION_ADDR(generic_target)),
1247                     dval0, ival);
1248              break;
1249            default:
1250              UNREACHABLE();
1251              break;
1252          }
1253          if (!stack_aligned) {
1254            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1255                   get_register(sp));
1256          }
1257          PrintF("\n");
1258        }
1259        CHECK(stack_aligned);
1260        switch (redirection->type()) {
1261          case ExternalReference::BUILTIN_COMPARE_CALL: {
1262            SimulatorRuntimeCompareCall target =
1263                reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1264            iresult = target(dval0, dval1);
1265            set_register(r3, iresult);
1266            break;
1267          }
1268          case ExternalReference::BUILTIN_FP_FP_CALL: {
1269            SimulatorRuntimeFPFPCall target =
1270                reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1271            dresult = target(dval0, dval1);
1272            SetFpResult(dresult);
1273            break;
1274          }
1275          case ExternalReference::BUILTIN_FP_CALL: {
1276            SimulatorRuntimeFPCall target =
1277                reinterpret_cast<SimulatorRuntimeFPCall>(external);
1278            dresult = target(dval0);
1279            SetFpResult(dresult);
1280            break;
1281          }
1282          case ExternalReference::BUILTIN_FP_INT_CALL: {
1283            SimulatorRuntimeFPIntCall target =
1284                reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1285            dresult = target(dval0, ival);
1286            SetFpResult(dresult);
1287            break;
1288          }
1289          default:
1290            UNREACHABLE();
1291            break;
1292        }
1293        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1294          switch (redirection->type()) {
1295            case ExternalReference::BUILTIN_COMPARE_CALL:
1296              PrintF("Returned %08x\n", iresult);
1297              break;
1298            case ExternalReference::BUILTIN_FP_FP_CALL:
1299            case ExternalReference::BUILTIN_FP_CALL:
1300            case ExternalReference::BUILTIN_FP_INT_CALL:
1301              PrintF("Returned %f\n", dresult);
1302              break;
1303            default:
1304              UNREACHABLE();
1305              break;
1306          }
1307        }
1308      } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1309        // See callers of MacroAssembler::CallApiFunctionAndReturn for
1310        // explanation of register usage.
1311        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1312          PrintF("Call to host function at %p args %08" V8PRIxPTR,
1313                 reinterpret_cast<void*>(external), arg[0]);
1314          if (!stack_aligned) {
1315            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1316                   get_register(sp));
1317          }
1318          PrintF("\n");
1319        }
1320        CHECK(stack_aligned);
1321        SimulatorRuntimeDirectApiCall target =
1322            reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1323        target(arg[0]);
1324      } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1325        // See callers of MacroAssembler::CallApiFunctionAndReturn for
1326        // explanation of register usage.
1327        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1328          PrintF("Call to host function at %p args %08" V8PRIxPTR
1329                 " %08" V8PRIxPTR,
1330                 reinterpret_cast<void*>(external), arg[0], arg[1]);
1331          if (!stack_aligned) {
1332            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1333                   get_register(sp));
1334          }
1335          PrintF("\n");
1336        }
1337        CHECK(stack_aligned);
1338        SimulatorRuntimeProfilingApiCall target =
1339            reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1340        target(arg[0], Redirection::ReverseRedirection(arg[1]));
1341      } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1342        // See callers of MacroAssembler::CallApiFunctionAndReturn for
1343        // explanation of register usage.
1344        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1345          PrintF("Call to host function at %p args %08" V8PRIxPTR
1346                 " %08" V8PRIxPTR,
1347                 reinterpret_cast<void*>(external), arg[0], arg[1]);
1348          if (!stack_aligned) {
1349            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1350                   get_register(sp));
1351          }
1352          PrintF("\n");
1353        }
1354        CHECK(stack_aligned);
1355        SimulatorRuntimeDirectGetterCall target =
1356            reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1357        if (!ABI_PASSES_HANDLES_IN_REGS) {
1358          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1359        }
1360        target(arg[0], arg[1]);
1361      } else if (redirection->type() ==
1362                 ExternalReference::PROFILING_GETTER_CALL) {
1363        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1364          PrintF("Call to host function at %p args %08" V8PRIxPTR
1365                 " %08" V8PRIxPTR " %08" V8PRIxPTR,
1366                 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1367          if (!stack_aligned) {
1368            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1369                   get_register(sp));
1370          }
1371          PrintF("\n");
1372        }
1373        CHECK(stack_aligned);
1374        SimulatorRuntimeProfilingGetterCall target =
1375            reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1376        if (!ABI_PASSES_HANDLES_IN_REGS) {
1377          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1378        }
1379        target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1380      } else {
1381        // builtin call.
1382        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1383          SimulatorRuntimeCall target =
1384              reinterpret_cast<SimulatorRuntimeCall>(external);
1385          PrintF(
1386              "Call to host function at %p,\n"
1387              "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1388              ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1389              static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
1390              arg[2], arg[3], arg[4], arg[5]);
1391          if (!stack_aligned) {
1392            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1393                   get_register(sp));
1394          }
1395          PrintF("\n");
1396        }
1397        CHECK(stack_aligned);
1398        if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
1399          SimulatorRuntimeTripleCall target =
1400              reinterpret_cast<SimulatorRuntimeTripleCall>(external);
1401          ObjectTriple result =
1402              target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1403          if (::v8::internal::FLAG_trace_sim) {
1404            PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1405                   "}\n",
1406                   reinterpret_cast<intptr_t>(result.x),
1407                   reinterpret_cast<intptr_t>(result.y),
1408                   reinterpret_cast<intptr_t>(result.z));
1409          }
1410          memcpy(reinterpret_cast<void*>(result_buffer), &result,
1411                 sizeof(ObjectTriple));
1412          set_register(r3, result_buffer);
1413        } else {
1414          if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
1415            SimulatorRuntimePairCall target =
1416                reinterpret_cast<SimulatorRuntimePairCall>(external);
1417            ObjectPair result =
1418                target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1419            intptr_t x;
1420            intptr_t y;
1421            decodeObjectPair(&result, &x, &y);
1422            if (::v8::internal::FLAG_trace_sim) {
1423              PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1424            }
1425            if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
1426              set_register(r3, x);
1427              set_register(r4, y);
1428            } else {
1429              memcpy(reinterpret_cast<void*>(result_buffer), &result,
1430                     sizeof(ObjectPair));
1431              set_register(r3, result_buffer);
1432            }
1433          } else {
1434            DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1435            SimulatorRuntimeCall target =
1436                reinterpret_cast<SimulatorRuntimeCall>(external);
1437            intptr_t result =
1438                target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1439            if (::v8::internal::FLAG_trace_sim) {
1440              PrintF("Returned %08" V8PRIxPTR "\n", result);
1441            }
1442            set_register(r3, result);
1443          }
1444        }
1445      }
1446      set_pc(saved_lr);
1447      break;
1448    }
1449    case kBreakpoint: {
1450      PPCDebugger dbg(this);
1451      dbg.Debug();
1452      break;
1453    }
1454    // stop uses all codes greater than 1 << 23.
1455    default: {
1456      if (svc >= (1 << 23)) {
1457        uint32_t code = svc & kStopCodeMask;
1458        if (isWatchedStop(code)) {
1459          IncreaseStopCounter(code);
1460        }
1461        // Stop if it is enabled, otherwise go on jumping over the stop
1462        // and the message address.
1463        if (isEnabledStop(code)) {
1464          PPCDebugger dbg(this);
1465          dbg.Stop(instr);
1466        } else {
1467          set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1468        }
1469      } else {
1470        // This is not a valid svc code.
1471        UNREACHABLE();
1472        break;
1473      }
1474    }
1475  }
1476}
1477
1478
1479// Stop helper functions.
1480bool Simulator::isStopInstruction(Instruction* instr) {
1481  return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1482}
1483
1484
1485bool Simulator::isWatchedStop(uint32_t code) {
1486  DCHECK(code <= kMaxStopCode);
1487  return code < kNumOfWatchedStops;
1488}
1489
1490
1491bool Simulator::isEnabledStop(uint32_t code) {
1492  DCHECK(code <= kMaxStopCode);
1493  // Unwatched stops are always enabled.
1494  return !isWatchedStop(code) ||
1495         !(watched_stops_[code].count & kStopDisabledBit);
1496}
1497
1498
1499void Simulator::EnableStop(uint32_t code) {
1500  DCHECK(isWatchedStop(code));
1501  if (!isEnabledStop(code)) {
1502    watched_stops_[code].count &= ~kStopDisabledBit;
1503  }
1504}
1505
1506
1507void Simulator::DisableStop(uint32_t code) {
1508  DCHECK(isWatchedStop(code));
1509  if (isEnabledStop(code)) {
1510    watched_stops_[code].count |= kStopDisabledBit;
1511  }
1512}
1513
1514
1515void Simulator::IncreaseStopCounter(uint32_t code) {
1516  DCHECK(code <= kMaxStopCode);
1517  DCHECK(isWatchedStop(code));
1518  if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1519    PrintF(
1520        "Stop counter for code %i has overflowed.\n"
1521        "Enabling this code and reseting the counter to 0.\n",
1522        code);
1523    watched_stops_[code].count = 0;
1524    EnableStop(code);
1525  } else {
1526    watched_stops_[code].count++;
1527  }
1528}
1529
1530
1531// Print a stop status.
1532void Simulator::PrintStopInfo(uint32_t code) {
1533  DCHECK(code <= kMaxStopCode);
1534  if (!isWatchedStop(code)) {
1535    PrintF("Stop not watched.");
1536  } else {
1537    const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1538    int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1539    // Don't print the state of unused breakpoints.
1540    if (count != 0) {
1541      if (watched_stops_[code].desc) {
1542        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1543               state, count, watched_stops_[code].desc);
1544      } else {
1545        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1546               count);
1547      }
1548    }
1549  }
1550}
1551
1552
1553void Simulator::SetCR0(intptr_t result, bool setSO) {
1554  int bf = 0;
1555  if (result < 0) {
1556    bf |= 0x80000000;
1557  }
1558  if (result > 0) {
1559    bf |= 0x40000000;
1560  }
1561  if (result == 0) {
1562    bf |= 0x20000000;
1563  }
1564  if (setSO) {
1565    bf |= 0x10000000;
1566  }
1567  condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1568}
1569
1570
1571void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
1572  int bo = instr->Bits(25, 21) << 21;
1573  int condition_bit = instr->Bits(20, 16);
1574  int condition_mask = 0x80000000 >> condition_bit;
1575  switch (bo) {
1576    case DCBNZF:  // Decrement CTR; branch if CTR != 0 and condition false
1577    case DCBEZF:  // Decrement CTR; branch if CTR == 0 and condition false
1578      UNIMPLEMENTED();
1579    case BF: {  // Branch if condition false
1580      if (condition_reg_ & condition_mask) return;
1581      break;
1582    }
1583    case DCBNZT:  // Decrement CTR; branch if CTR != 0 and condition true
1584    case DCBEZT:  // Decrement CTR; branch if CTR == 0 and condition true
1585      UNIMPLEMENTED();
1586    case BT: {  // Branch if condition true
1587      if (!(condition_reg_ & condition_mask)) return;
1588      break;
1589    }
1590    case DCBNZ:  // Decrement CTR; branch if CTR != 0
1591    case DCBEZ:  // Decrement CTR; branch if CTR == 0
1592      special_reg_ctr_ -= 1;
1593      if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
1594      break;
1595    case BA: {                   // Branch always
1596      break;
1597    }
1598    default:
1599      UNIMPLEMENTED();  // Invalid encoding
1600  }
1601
1602  intptr_t old_pc = get_pc();
1603
1604  switch (type) {
1605    case BC_OFFSET: {
1606      int offset = (instr->Bits(15, 2) << 18) >> 16;
1607      set_pc(old_pc + offset);
1608      break;
1609    }
1610    case BC_LINK_REG:
1611      set_pc(special_reg_lr_);
1612      break;
1613    case BC_CTR_REG:
1614      set_pc(special_reg_ctr_);
1615      break;
1616  }
1617
1618  if (instr->Bit(0) == 1) {  // LK flag set
1619    special_reg_lr_ = old_pc + 4;
1620  }
1621}
1622
1623
1624// Handle execution based on instruction types.
1625void Simulator::ExecuteExt1(Instruction* instr) {
1626  uint32_t opcode = EXT1 | instr->BitField(10, 1);
1627  switch (opcode) {
1628    case MCRF:
1629      UNIMPLEMENTED();  // Not used by V8.
1630    case BCLRX:
1631      ExecuteBranchConditional(instr, BC_LINK_REG);
1632      break;
1633    case BCCTRX:
1634      ExecuteBranchConditional(instr, BC_CTR_REG);
1635      break;
1636    case CRNOR:
1637    case RFI:
1638    case CRANDC:
1639      UNIMPLEMENTED();
1640    case ISYNC: {
1641      // todo - simulate isync
1642      break;
1643    }
1644    case CRXOR: {
1645      int bt = instr->Bits(25, 21);
1646      int ba = instr->Bits(20, 16);
1647      int bb = instr->Bits(15, 11);
1648      int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1649      int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1650      int bt_val = ba_val ^ bb_val;
1651      bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1652      condition_reg_ &= ~(0x80000000 >> bt);
1653      condition_reg_ |= bt_val;
1654      break;
1655    }
1656    case CREQV: {
1657      int bt = instr->Bits(25, 21);
1658      int ba = instr->Bits(20, 16);
1659      int bb = instr->Bits(15, 11);
1660      int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1661      int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1662      int bt_val = 1 - (ba_val ^ bb_val);
1663      bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1664      condition_reg_ &= ~(0x80000000 >> bt);
1665      condition_reg_ |= bt_val;
1666      break;
1667    }
1668    case CRNAND:
1669    case CRAND:
1670    case CRORC:
1671    case CROR:
1672    default: {
1673      UNIMPLEMENTED();  // Not used by V8.
1674    }
1675  }
1676}
1677
1678
1679bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1680  bool found = true;
1681
1682  uint32_t opcode = EXT2 | instr->BitField(10, 1);
1683  switch (opcode) {
1684    case SRWX: {
1685      int rs = instr->RSValue();
1686      int ra = instr->RAValue();
1687      int rb = instr->RBValue();
1688      uint32_t rs_val = get_register(rs);
1689      uintptr_t rb_val = get_register(rb) & 0x3f;
1690      intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
1691      set_register(ra, result);
1692      if (instr->Bit(0)) {  // RC bit set
1693        SetCR0(result);
1694      }
1695      break;
1696    }
1697#if V8_TARGET_ARCH_PPC64
1698    case SRDX: {
1699      int rs = instr->RSValue();
1700      int ra = instr->RAValue();
1701      int rb = instr->RBValue();
1702      uintptr_t rs_val = get_register(rs);
1703      uintptr_t rb_val = get_register(rb) & 0x7f;
1704      intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
1705      set_register(ra, result);
1706      if (instr->Bit(0)) {  // RC bit set
1707        SetCR0(result);
1708      }
1709      break;
1710    }
1711#endif
1712    case MODUW: {
1713      int rt = instr->RTValue();
1714      int ra = instr->RAValue();
1715      int rb = instr->RBValue();
1716      uint32_t ra_val = get_register(ra);
1717      uint32_t rb_val = get_register(rb);
1718      uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
1719      set_register(rt, alu_out);
1720      break;
1721    }
1722#if V8_TARGET_ARCH_PPC64
1723    case MODUD: {
1724      int rt = instr->RTValue();
1725      int ra = instr->RAValue();
1726      int rb = instr->RBValue();
1727      uint64_t ra_val = get_register(ra);
1728      uint64_t rb_val = get_register(rb);
1729      uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
1730      set_register(rt, alu_out);
1731      break;
1732    }
1733#endif
1734    case MODSW: {
1735      int rt = instr->RTValue();
1736      int ra = instr->RAValue();
1737      int rb = instr->RBValue();
1738      int32_t ra_val = get_register(ra);
1739      int32_t rb_val = get_register(rb);
1740      bool overflow = (ra_val == kMinInt && rb_val == -1);
1741      // result is undefined if divisor is zero or if operation
1742      // is 0x80000000 / -1.
1743      int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val;
1744      set_register(rt, alu_out);
1745      break;
1746    }
1747#if V8_TARGET_ARCH_PPC64
1748    case MODSD: {
1749      int rt = instr->RTValue();
1750      int ra = instr->RAValue();
1751      int rb = instr->RBValue();
1752      int64_t ra_val = get_register(ra);
1753      int64_t rb_val = get_register(rb);
1754      int64_t one = 1;  // work-around gcc
1755      int64_t kMinLongLong = (one << 63);
1756      // result is undefined if divisor is zero or if operation
1757      // is 0x80000000_00000000 / -1.
1758      int64_t alu_out =
1759          (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
1760              ? -1
1761              : ra_val % rb_val;
1762      set_register(rt, alu_out);
1763      break;
1764    }
1765#endif
1766    case SRAW: {
1767      int rs = instr->RSValue();
1768      int ra = instr->RAValue();
1769      int rb = instr->RBValue();
1770      int32_t rs_val = get_register(rs);
1771      intptr_t rb_val = get_register(rb) & 0x3f;
1772      intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
1773      set_register(ra, result);
1774      if (instr->Bit(0)) {  // RC bit set
1775        SetCR0(result);
1776      }
1777      break;
1778    }
1779#if V8_TARGET_ARCH_PPC64
1780    case SRAD: {
1781      int rs = instr->RSValue();
1782      int ra = instr->RAValue();
1783      int rb = instr->RBValue();
1784      intptr_t rs_val = get_register(rs);
1785      intptr_t rb_val = get_register(rb) & 0x7f;
1786      intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
1787      set_register(ra, result);
1788      if (instr->Bit(0)) {  // RC bit set
1789        SetCR0(result);
1790      }
1791      break;
1792    }
1793#endif
1794    case SRAWIX: {
1795      int ra = instr->RAValue();
1796      int rs = instr->RSValue();
1797      int sh = instr->Bits(15, 11);
1798      int32_t rs_val = get_register(rs);
1799      intptr_t result = rs_val >> sh;
1800      set_register(ra, result);
1801      if (instr->Bit(0)) {  // RC bit set
1802        SetCR0(result);
1803      }
1804      break;
1805    }
1806#if V8_TARGET_ARCH_PPC64
1807    case EXTSW: {
1808      const int shift = kBitsPerPointer - 32;
1809      int ra = instr->RAValue();
1810      int rs = instr->RSValue();
1811      intptr_t rs_val = get_register(rs);
1812      intptr_t ra_val = (rs_val << shift) >> shift;
1813      set_register(ra, ra_val);
1814      if (instr->Bit(0)) {  // RC bit set
1815        SetCR0(ra_val);
1816      }
1817      break;
1818    }
1819#endif
1820    case EXTSH: {
1821      const int shift = kBitsPerPointer - 16;
1822      int ra = instr->RAValue();
1823      int rs = instr->RSValue();
1824      intptr_t rs_val = get_register(rs);
1825      intptr_t ra_val = (rs_val << shift) >> shift;
1826      set_register(ra, ra_val);
1827      if (instr->Bit(0)) {  // RC bit set
1828        SetCR0(ra_val);
1829      }
1830      break;
1831    }
1832    case EXTSB: {
1833      const int shift = kBitsPerPointer - 8;
1834      int ra = instr->RAValue();
1835      int rs = instr->RSValue();
1836      intptr_t rs_val = get_register(rs);
1837      intptr_t ra_val = (rs_val << shift) >> shift;
1838      set_register(ra, ra_val);
1839      if (instr->Bit(0)) {  // RC bit set
1840        SetCR0(ra_val);
1841      }
1842      break;
1843    }
1844    case LFSUX:
1845    case LFSX: {
1846      int frt = instr->RTValue();
1847      int ra = instr->RAValue();
1848      int rb = instr->RBValue();
1849      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1850      intptr_t rb_val = get_register(rb);
1851      int32_t val = ReadW(ra_val + rb_val, instr);
1852      float* fptr = reinterpret_cast<float*>(&val);
1853      set_d_register_from_double(frt, static_cast<double>(*fptr));
1854      if (opcode == LFSUX) {
1855        DCHECK(ra != 0);
1856        set_register(ra, ra_val + rb_val);
1857      }
1858      break;
1859    }
1860    case LFDUX:
1861    case LFDX: {
1862      int frt = instr->RTValue();
1863      int ra = instr->RAValue();
1864      int rb = instr->RBValue();
1865      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1866      intptr_t rb_val = get_register(rb);
1867      int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
1868      set_d_register(frt, *dptr);
1869      if (opcode == LFDUX) {
1870        DCHECK(ra != 0);
1871        set_register(ra, ra_val + rb_val);
1872      }
1873      break;
1874    }
1875    case STFSUX: {
1876      case STFSX:
1877        int frs = instr->RSValue();
1878        int ra = instr->RAValue();
1879        int rb = instr->RBValue();
1880        intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1881        intptr_t rb_val = get_register(rb);
1882        float frs_val = static_cast<float>(get_double_from_d_register(frs));
1883        int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1884        WriteW(ra_val + rb_val, *p, instr);
1885        if (opcode == STFSUX) {
1886          DCHECK(ra != 0);
1887          set_register(ra, ra_val + rb_val);
1888        }
1889        break;
1890    }
1891    case STFDUX: {
1892      case STFDX:
1893        int frs = instr->RSValue();
1894        int ra = instr->RAValue();
1895        int rb = instr->RBValue();
1896        intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1897        intptr_t rb_val = get_register(rb);
1898        int64_t frs_val = get_d_register(frs);
1899        WriteDW(ra_val + rb_val, frs_val);
1900        if (opcode == STFDUX) {
1901          DCHECK(ra != 0);
1902          set_register(ra, ra_val + rb_val);
1903        }
1904        break;
1905    }
1906    case POPCNTW: {
1907      int rs = instr->RSValue();
1908      int ra = instr->RAValue();
1909      uintptr_t rs_val = get_register(rs);
1910      uintptr_t count = 0;
1911      int n = 0;
1912      uintptr_t bit = 0x80000000;
1913      for (; n < 32; n++) {
1914        if (bit & rs_val) count++;
1915        bit >>= 1;
1916      }
1917      set_register(ra, count);
1918      break;
1919    }
1920#if V8_TARGET_ARCH_PPC64
1921    case POPCNTD: {
1922      int rs = instr->RSValue();
1923      int ra = instr->RAValue();
1924      uintptr_t rs_val = get_register(rs);
1925      uintptr_t count = 0;
1926      int n = 0;
1927      uintptr_t bit = 0x8000000000000000UL;
1928      for (; n < 64; n++) {
1929        if (bit & rs_val) count++;
1930        bit >>= 1;
1931      }
1932      set_register(ra, count);
1933      break;
1934    }
1935#endif
1936    case SYNC: {
1937      // todo - simulate sync
1938      break;
1939    }
1940    case ICBI: {
1941      // todo - simulate icbi
1942      break;
1943    }
1944    default: {
1945      found = false;
1946      break;
1947    }
1948  }
1949
1950  if (found) return found;
1951
1952  found = true;
1953  opcode = EXT2 | instr->BitField(10, 2);
1954  switch (opcode) {
1955    case SRADIX: {
1956      int ra = instr->RAValue();
1957      int rs = instr->RSValue();
1958      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1959      intptr_t rs_val = get_register(rs);
1960      intptr_t result = rs_val >> sh;
1961      set_register(ra, result);
1962      if (instr->Bit(0)) {  // RC bit set
1963        SetCR0(result);
1964      }
1965      break;
1966    }
1967    default: {
1968      found = false;
1969      break;
1970    }
1971  }
1972
1973  return found;
1974}
1975
1976
1977bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1978  bool found = true;
1979
1980  uint32_t opcode = EXT2 | instr->BitField(9, 1);
1981  switch (opcode) {
1982    case TW: {
1983      // used for call redirection in simulation mode
1984      SoftwareInterrupt(instr);
1985      break;
1986    }
1987    case CMP: {
1988      int ra = instr->RAValue();
1989      int rb = instr->RBValue();
1990      int cr = instr->Bits(25, 23);
1991      uint32_t bf = 0;
1992#if V8_TARGET_ARCH_PPC64
1993      int L = instr->Bit(21);
1994      if (L) {
1995#endif
1996        intptr_t ra_val = get_register(ra);
1997        intptr_t rb_val = get_register(rb);
1998        if (ra_val < rb_val) {
1999          bf |= 0x80000000;
2000        }
2001        if (ra_val > rb_val) {
2002          bf |= 0x40000000;
2003        }
2004        if (ra_val == rb_val) {
2005          bf |= 0x20000000;
2006        }
2007#if V8_TARGET_ARCH_PPC64
2008      } else {
2009        int32_t ra_val = get_register(ra);
2010        int32_t rb_val = get_register(rb);
2011        if (ra_val < rb_val) {
2012          bf |= 0x80000000;
2013        }
2014        if (ra_val > rb_val) {
2015          bf |= 0x40000000;
2016        }
2017        if (ra_val == rb_val) {
2018          bf |= 0x20000000;
2019        }
2020      }
2021#endif
2022      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2023      uint32_t condition = bf >> (cr * 4);
2024      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2025      break;
2026    }
2027    case SUBFCX: {
2028      int rt = instr->RTValue();
2029      int ra = instr->RAValue();
2030      int rb = instr->RBValue();
2031      // int oe = instr->Bit(10);
2032      uintptr_t ra_val = get_register(ra);
2033      uintptr_t rb_val = get_register(rb);
2034      uintptr_t alu_out = ~ra_val + rb_val + 1;
2035      // Set carry
2036      if (ra_val <= rb_val) {
2037        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2038      } else {
2039        special_reg_xer_ &= ~0xF0000000;
2040      }
2041      set_register(rt, alu_out);
2042      if (instr->Bit(0)) {  // RC bit set
2043        SetCR0(alu_out);
2044      }
2045      // todo - handle OE bit
2046      break;
2047    }
2048    case SUBFEX: {
2049      int rt = instr->RTValue();
2050      int ra = instr->RAValue();
2051      int rb = instr->RBValue();
2052      // int oe = instr->Bit(10);
2053      uintptr_t ra_val = get_register(ra);
2054      uintptr_t rb_val = get_register(rb);
2055      uintptr_t alu_out = ~ra_val + rb_val;
2056      if (special_reg_xer_ & 0x20000000) {
2057        alu_out += 1;
2058      }
2059      set_register(rt, alu_out);
2060      if (instr->Bit(0)) {  // RC bit set
2061        SetCR0(static_cast<intptr_t>(alu_out));
2062      }
2063      // todo - handle OE bit
2064      break;
2065    }
2066    case ADDCX: {
2067      int rt = instr->RTValue();
2068      int ra = instr->RAValue();
2069      int rb = instr->RBValue();
2070      // int oe = instr->Bit(10);
2071      uintptr_t ra_val = get_register(ra);
2072      uintptr_t rb_val = get_register(rb);
2073      uintptr_t alu_out = ra_val + rb_val;
2074      // Set carry
2075      if (~ra_val < rb_val) {
2076        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2077      } else {
2078        special_reg_xer_ &= ~0xF0000000;
2079      }
2080      set_register(rt, alu_out);
2081      if (instr->Bit(0)) {  // RC bit set
2082        SetCR0(static_cast<intptr_t>(alu_out));
2083      }
2084      // todo - handle OE bit
2085      break;
2086    }
2087    case ADDEX: {
2088      int rt = instr->RTValue();
2089      int ra = instr->RAValue();
2090      int rb = instr->RBValue();
2091      // int oe = instr->Bit(10);
2092      uintptr_t ra_val = get_register(ra);
2093      uintptr_t rb_val = get_register(rb);
2094      uintptr_t alu_out = ra_val + rb_val;
2095      if (special_reg_xer_ & 0x20000000) {
2096        alu_out += 1;
2097      }
2098      set_register(rt, alu_out);
2099      if (instr->Bit(0)) {  // RC bit set
2100        SetCR0(static_cast<intptr_t>(alu_out));
2101      }
2102      // todo - handle OE bit
2103      break;
2104    }
2105    case MULHWX: {
2106      int rt = instr->RTValue();
2107      int ra = instr->RAValue();
2108      int rb = instr->RBValue();
2109      int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2110      int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2111      int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2112      alu_out >>= 32;
2113      set_register(rt, alu_out);
2114      if (instr->Bit(0)) {  // RC bit set
2115        SetCR0(static_cast<intptr_t>(alu_out));
2116      }
2117      break;
2118    }
2119    case MULHWUX: {
2120      int rt = instr->RTValue();
2121      int ra = instr->RAValue();
2122      int rb = instr->RBValue();
2123      uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2124      uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2125      uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
2126      alu_out >>= 32;
2127      set_register(rt, alu_out);
2128      if (instr->Bit(0)) {  // RC bit set
2129        SetCR0(static_cast<intptr_t>(alu_out));
2130      }
2131      break;
2132    }
2133    case NEGX: {
2134      int rt = instr->RTValue();
2135      int ra = instr->RAValue();
2136      intptr_t ra_val = get_register(ra);
2137      intptr_t alu_out = 1 + ~ra_val;
2138#if V8_TARGET_ARCH_PPC64
2139      intptr_t one = 1;  // work-around gcc
2140      intptr_t kOverflowVal = (one << 63);
2141#else
2142      intptr_t kOverflowVal = kMinInt;
2143#endif
2144      set_register(rt, alu_out);
2145      if (instr->Bit(10)) {  // OE bit set
2146        if (ra_val == kOverflowVal) {
2147          special_reg_xer_ |= 0xC0000000;  // set SO,OV
2148        } else {
2149          special_reg_xer_ &= ~0x40000000;  // clear OV
2150        }
2151      }
2152      if (instr->Bit(0)) {  // RC bit set
2153        bool setSO = (special_reg_xer_ & 0x80000000);
2154        SetCR0(alu_out, setSO);
2155      }
2156      break;
2157    }
2158    case SLWX: {
2159      int rs = instr->RSValue();
2160      int ra = instr->RAValue();
2161      int rb = instr->RBValue();
2162      uint32_t rs_val = get_register(rs);
2163      uintptr_t rb_val = get_register(rb) & 0x3f;
2164      uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
2165      set_register(ra, result);
2166      if (instr->Bit(0)) {  // RC bit set
2167        SetCR0(result);
2168      }
2169      break;
2170    }
2171#if V8_TARGET_ARCH_PPC64
2172    case SLDX: {
2173      int rs = instr->RSValue();
2174      int ra = instr->RAValue();
2175      int rb = instr->RBValue();
2176      uintptr_t rs_val = get_register(rs);
2177      uintptr_t rb_val = get_register(rb) & 0x7f;
2178      uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
2179      set_register(ra, result);
2180      if (instr->Bit(0)) {  // RC bit set
2181        SetCR0(result);
2182      }
2183      break;
2184    }
2185    case MFVSRD: {
2186      DCHECK(!instr->Bit(0));
2187      int frt = instr->RTValue();
2188      int ra = instr->RAValue();
2189      int64_t frt_val = get_d_register(frt);
2190      set_register(ra, frt_val);
2191      break;
2192    }
2193    case MFVSRWZ: {
2194      DCHECK(!instr->Bit(0));
2195      int frt = instr->RTValue();
2196      int ra = instr->RAValue();
2197      int64_t frt_val = get_d_register(frt);
2198      set_register(ra, static_cast<uint32_t>(frt_val));
2199      break;
2200    }
2201    case MTVSRD: {
2202      DCHECK(!instr->Bit(0));
2203      int frt = instr->RTValue();
2204      int ra = instr->RAValue();
2205      int64_t ra_val = get_register(ra);
2206      set_d_register(frt, ra_val);
2207      break;
2208    }
2209    case MTVSRWA: {
2210      DCHECK(!instr->Bit(0));
2211      int frt = instr->RTValue();
2212      int ra = instr->RAValue();
2213      int64_t ra_val = static_cast<int32_t>(get_register(ra));
2214      set_d_register(frt, ra_val);
2215      break;
2216    }
2217    case MTVSRWZ: {
2218      DCHECK(!instr->Bit(0));
2219      int frt = instr->RTValue();
2220      int ra = instr->RAValue();
2221      uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2222      set_d_register(frt, ra_val);
2223      break;
2224    }
2225#endif
2226    default: {
2227      found = false;
2228      break;
2229    }
2230  }
2231
2232  return found;
2233}
2234
2235
2236bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2237  bool found = true;
2238  uint32_t opcode = EXT2 | instr->BitField(9, 1);
2239  switch (opcode) {
2240    case CNTLZWX: {
2241      int rs = instr->RSValue();
2242      int ra = instr->RAValue();
2243      uintptr_t rs_val = get_register(rs);
2244      uintptr_t count = 0;
2245      int n = 0;
2246      uintptr_t bit = 0x80000000;
2247      for (; n < 32; n++) {
2248        if (bit & rs_val) break;
2249        count++;
2250        bit >>= 1;
2251      }
2252      set_register(ra, count);
2253      if (instr->Bit(0)) {  // RC Bit set
2254        int bf = 0;
2255        if (count > 0) {
2256          bf |= 0x40000000;
2257        }
2258        if (count == 0) {
2259          bf |= 0x20000000;
2260        }
2261        condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2262      }
2263      break;
2264    }
2265#if V8_TARGET_ARCH_PPC64
2266    case CNTLZDX: {
2267      int rs = instr->RSValue();
2268      int ra = instr->RAValue();
2269      uintptr_t rs_val = get_register(rs);
2270      uintptr_t count = 0;
2271      int n = 0;
2272      uintptr_t bit = 0x8000000000000000UL;
2273      for (; n < 64; n++) {
2274        if (bit & rs_val) break;
2275        count++;
2276        bit >>= 1;
2277      }
2278      set_register(ra, count);
2279      if (instr->Bit(0)) {  // RC Bit set
2280        int bf = 0;
2281        if (count > 0) {
2282          bf |= 0x40000000;
2283        }
2284        if (count == 0) {
2285          bf |= 0x20000000;
2286        }
2287        condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2288      }
2289      break;
2290    }
2291#endif
2292    case ANDX: {
2293      int rs = instr->RSValue();
2294      int ra = instr->RAValue();
2295      int rb = instr->RBValue();
2296      intptr_t rs_val = get_register(rs);
2297      intptr_t rb_val = get_register(rb);
2298      intptr_t alu_out = rs_val & rb_val;
2299      set_register(ra, alu_out);
2300      if (instr->Bit(0)) {  // RC Bit set
2301        SetCR0(alu_out);
2302      }
2303      break;
2304    }
2305    case ANDCX: {
2306      int rs = instr->RSValue();
2307      int ra = instr->RAValue();
2308      int rb = instr->RBValue();
2309      intptr_t rs_val = get_register(rs);
2310      intptr_t rb_val = get_register(rb);
2311      intptr_t alu_out = rs_val & ~rb_val;
2312      set_register(ra, alu_out);
2313      if (instr->Bit(0)) {  // RC Bit set
2314        SetCR0(alu_out);
2315      }
2316      break;
2317    }
2318    case CMPL: {
2319      int ra = instr->RAValue();
2320      int rb = instr->RBValue();
2321      int cr = instr->Bits(25, 23);
2322      uint32_t bf = 0;
2323#if V8_TARGET_ARCH_PPC64
2324      int L = instr->Bit(21);
2325      if (L) {
2326#endif
2327        uintptr_t ra_val = get_register(ra);
2328        uintptr_t rb_val = get_register(rb);
2329        if (ra_val < rb_val) {
2330          bf |= 0x80000000;
2331        }
2332        if (ra_val > rb_val) {
2333          bf |= 0x40000000;
2334        }
2335        if (ra_val == rb_val) {
2336          bf |= 0x20000000;
2337        }
2338#if V8_TARGET_ARCH_PPC64
2339      } else {
2340        uint32_t ra_val = get_register(ra);
2341        uint32_t rb_val = get_register(rb);
2342        if (ra_val < rb_val) {
2343          bf |= 0x80000000;
2344        }
2345        if (ra_val > rb_val) {
2346          bf |= 0x40000000;
2347        }
2348        if (ra_val == rb_val) {
2349          bf |= 0x20000000;
2350        }
2351      }
2352#endif
2353      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2354      uint32_t condition = bf >> (cr * 4);
2355      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2356      break;
2357    }
2358    case SUBFX: {
2359      int rt = instr->RTValue();
2360      int ra = instr->RAValue();
2361      int rb = instr->RBValue();
2362      // int oe = instr->Bit(10);
2363      intptr_t ra_val = get_register(ra);
2364      intptr_t rb_val = get_register(rb);
2365      intptr_t alu_out = rb_val - ra_val;
2366      // todo - figure out underflow
2367      set_register(rt, alu_out);
2368      if (instr->Bit(0)) {  // RC Bit set
2369        SetCR0(alu_out);
2370      }
2371      // todo - handle OE bit
2372      break;
2373    }
2374    case ADDZEX: {
2375      int rt = instr->RTValue();
2376      int ra = instr->RAValue();
2377      intptr_t ra_val = get_register(ra);
2378      if (special_reg_xer_ & 0x20000000) {
2379        ra_val += 1;
2380      }
2381      set_register(rt, ra_val);
2382      if (instr->Bit(0)) {  // RC bit set
2383        SetCR0(ra_val);
2384      }
2385      // todo - handle OE bit
2386      break;
2387    }
2388    case NORX: {
2389      int rs = instr->RSValue();
2390      int ra = instr->RAValue();
2391      int rb = instr->RBValue();
2392      intptr_t rs_val = get_register(rs);
2393      intptr_t rb_val = get_register(rb);
2394      intptr_t alu_out = ~(rs_val | rb_val);
2395      set_register(ra, alu_out);
2396      if (instr->Bit(0)) {  // RC bit set
2397        SetCR0(alu_out);
2398      }
2399      break;
2400    }
2401    case MULLW: {
2402      int rt = instr->RTValue();
2403      int ra = instr->RAValue();
2404      int rb = instr->RBValue();
2405      int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2406      int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2407      int32_t alu_out = ra_val * rb_val;
2408      set_register(rt, alu_out);
2409      if (instr->Bit(0)) {  // RC bit set
2410        SetCR0(alu_out);
2411      }
2412      // todo - handle OE bit
2413      break;
2414    }
2415#if V8_TARGET_ARCH_PPC64
2416    case MULLD: {
2417      int rt = instr->RTValue();
2418      int ra = instr->RAValue();
2419      int rb = instr->RBValue();
2420      int64_t ra_val = get_register(ra);
2421      int64_t rb_val = get_register(rb);
2422      int64_t alu_out = ra_val * rb_val;
2423      set_register(rt, alu_out);
2424      if (instr->Bit(0)) {  // RC bit set
2425        SetCR0(alu_out);
2426      }
2427      // todo - handle OE bit
2428      break;
2429    }
2430#endif
2431    case DIVW: {
2432      int rt = instr->RTValue();
2433      int ra = instr->RAValue();
2434      int rb = instr->RBValue();
2435      int32_t ra_val = get_register(ra);
2436      int32_t rb_val = get_register(rb);
2437      bool overflow = (ra_val == kMinInt && rb_val == -1);
2438      // result is undefined if divisor is zero or if operation
2439      // is 0x80000000 / -1.
2440      int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2441      set_register(rt, alu_out);
2442      if (instr->Bit(10)) {  // OE bit set
2443        if (overflow) {
2444          special_reg_xer_ |= 0xC0000000;  // set SO,OV
2445        } else {
2446          special_reg_xer_ &= ~0x40000000;  // clear OV
2447        }
2448      }
2449      if (instr->Bit(0)) {  // RC bit set
2450        bool setSO = (special_reg_xer_ & 0x80000000);
2451        SetCR0(alu_out, setSO);
2452      }
2453      break;
2454    }
2455    case DIVWU: {
2456      int rt = instr->RTValue();
2457      int ra = instr->RAValue();
2458      int rb = instr->RBValue();
2459      uint32_t ra_val = get_register(ra);
2460      uint32_t rb_val = get_register(rb);
2461      bool overflow = (rb_val == 0);
2462      // result is undefined if divisor is zero
2463      uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
2464      set_register(rt, alu_out);
2465      if (instr->Bit(10)) {  // OE bit set
2466        if (overflow) {
2467          special_reg_xer_ |= 0xC0000000;  // set SO,OV
2468        } else {
2469          special_reg_xer_ &= ~0x40000000;  // clear OV
2470        }
2471      }
2472      if (instr->Bit(0)) {  // RC bit set
2473        bool setSO = (special_reg_xer_ & 0x80000000);
2474        SetCR0(alu_out, setSO);
2475      }
2476      break;
2477    }
2478#if V8_TARGET_ARCH_PPC64
2479    case DIVD: {
2480      int rt = instr->RTValue();
2481      int ra = instr->RAValue();
2482      int rb = instr->RBValue();
2483      int64_t ra_val = get_register(ra);
2484      int64_t rb_val = get_register(rb);
2485      int64_t one = 1;  // work-around gcc
2486      int64_t kMinLongLong = (one << 63);
2487      // result is undefined if divisor is zero or if operation
2488      // is 0x80000000_00000000 / -1.
2489      int64_t alu_out =
2490          (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2491              ? -1
2492              : ra_val / rb_val;
2493      set_register(rt, alu_out);
2494      if (instr->Bit(0)) {  // RC bit set
2495        SetCR0(alu_out);
2496      }
2497      // todo - handle OE bit
2498      break;
2499    }
2500    case DIVDU: {
2501      int rt = instr->RTValue();
2502      int ra = instr->RAValue();
2503      int rb = instr->RBValue();
2504      uint64_t ra_val = get_register(ra);
2505      uint64_t rb_val = get_register(rb);
2506      // result is undefined if divisor is zero
2507      uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
2508      set_register(rt, alu_out);
2509      if (instr->Bit(0)) {  // RC bit set
2510        SetCR0(alu_out);
2511      }
2512      // todo - handle OE bit
2513      break;
2514    }
2515#endif
2516    case ADDX: {
2517      int rt = instr->RTValue();
2518      int ra = instr->RAValue();
2519      int rb = instr->RBValue();
2520      // int oe = instr->Bit(10);
2521      intptr_t ra_val = get_register(ra);
2522      intptr_t rb_val = get_register(rb);
2523      intptr_t alu_out = ra_val + rb_val;
2524      set_register(rt, alu_out);
2525      if (instr->Bit(0)) {  // RC bit set
2526        SetCR0(alu_out);
2527      }
2528      // todo - handle OE bit
2529      break;
2530    }
2531    case XORX: {
2532      int rs = instr->RSValue();
2533      int ra = instr->RAValue();
2534      int rb = instr->RBValue();
2535      intptr_t rs_val = get_register(rs);
2536      intptr_t rb_val = get_register(rb);
2537      intptr_t alu_out = rs_val ^ rb_val;
2538      set_register(ra, alu_out);
2539      if (instr->Bit(0)) {  // RC bit set
2540        SetCR0(alu_out);
2541      }
2542      break;
2543    }
2544    case ORX: {
2545      int rs = instr->RSValue();
2546      int ra = instr->RAValue();
2547      int rb = instr->RBValue();
2548      intptr_t rs_val = get_register(rs);
2549      intptr_t rb_val = get_register(rb);
2550      intptr_t alu_out = rs_val | rb_val;
2551      set_register(ra, alu_out);
2552      if (instr->Bit(0)) {  // RC bit set
2553        SetCR0(alu_out);
2554      }
2555      break;
2556    }
2557    case ORC: {
2558      int rs = instr->RSValue();
2559      int ra = instr->RAValue();
2560      int rb = instr->RBValue();
2561      intptr_t rs_val = get_register(rs);
2562      intptr_t rb_val = get_register(rb);
2563      intptr_t alu_out = rs_val | ~rb_val;
2564      set_register(ra, alu_out);
2565      if (instr->Bit(0)) {  // RC bit set
2566        SetCR0(alu_out);
2567      }
2568      break;
2569    }
2570    case MFSPR: {
2571      int rt = instr->RTValue();
2572      int spr = instr->Bits(20, 11);
2573      if (spr != 256) {
2574        UNIMPLEMENTED();  // Only LRLR supported
2575      }
2576      set_register(rt, special_reg_lr_);
2577      break;
2578    }
2579    case MTSPR: {
2580      int rt = instr->RTValue();
2581      intptr_t rt_val = get_register(rt);
2582      int spr = instr->Bits(20, 11);
2583      if (spr == 256) {
2584        special_reg_lr_ = rt_val;
2585      } else if (spr == 288) {
2586        special_reg_ctr_ = rt_val;
2587      } else if (spr == 32) {
2588        special_reg_xer_ = rt_val;
2589      } else {
2590        UNIMPLEMENTED();  // Only LR supported
2591      }
2592      break;
2593    }
2594    case MFCR: {
2595      int rt = instr->RTValue();
2596      set_register(rt, condition_reg_);
2597      break;
2598    }
2599    case STWUX:
2600    case STWX: {
2601      int rs = instr->RSValue();
2602      int ra = instr->RAValue();
2603      int rb = instr->RBValue();
2604      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2605      int32_t rs_val = get_register(rs);
2606      intptr_t rb_val = get_register(rb);
2607      WriteW(ra_val + rb_val, rs_val, instr);
2608      if (opcode == STWUX) {
2609        DCHECK(ra != 0);
2610        set_register(ra, ra_val + rb_val);
2611      }
2612      break;
2613    }
2614    case STBUX:
2615    case STBX: {
2616      int rs = instr->RSValue();
2617      int ra = instr->RAValue();
2618      int rb = instr->RBValue();
2619      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2620      int8_t rs_val = get_register(rs);
2621      intptr_t rb_val = get_register(rb);
2622      WriteB(ra_val + rb_val, rs_val);
2623      if (opcode == STBUX) {
2624        DCHECK(ra != 0);
2625        set_register(ra, ra_val + rb_val);
2626      }
2627      break;
2628    }
2629    case STHUX:
2630    case STHX: {
2631      int rs = instr->RSValue();
2632      int ra = instr->RAValue();
2633      int rb = instr->RBValue();
2634      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2635      int16_t rs_val = get_register(rs);
2636      intptr_t rb_val = get_register(rb);
2637      WriteH(ra_val + rb_val, rs_val, instr);
2638      if (opcode == STHUX) {
2639        DCHECK(ra != 0);
2640        set_register(ra, ra_val + rb_val);
2641      }
2642      break;
2643    }
2644    case LWZX:
2645    case LWZUX: {
2646      int rt = instr->RTValue();
2647      int ra = instr->RAValue();
2648      int rb = instr->RBValue();
2649      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2650      intptr_t rb_val = get_register(rb);
2651      set_register(rt, ReadWU(ra_val + rb_val, instr));
2652      if (opcode == LWZUX) {
2653        DCHECK(ra != 0 && ra != rt);
2654        set_register(ra, ra_val + rb_val);
2655      }
2656      break;
2657    }
2658#if V8_TARGET_ARCH_PPC64
2659    case LWAX: {
2660      int rt = instr->RTValue();
2661      int ra = instr->RAValue();
2662      int rb = instr->RBValue();
2663      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2664      intptr_t rb_val = get_register(rb);
2665      set_register(rt, ReadW(ra_val + rb_val, instr));
2666      break;
2667    }
2668    case LDX:
2669    case LDUX: {
2670      int rt = instr->RTValue();
2671      int ra = instr->RAValue();
2672      int rb = instr->RBValue();
2673      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2674      intptr_t rb_val = get_register(rb);
2675      intptr_t* result = ReadDW(ra_val + rb_val);
2676      set_register(rt, *result);
2677      if (opcode == LDUX) {
2678        DCHECK(ra != 0 && ra != rt);
2679        set_register(ra, ra_val + rb_val);
2680      }
2681      break;
2682    }
2683    case STDX:
2684    case STDUX: {
2685      int rs = instr->RSValue();
2686      int ra = instr->RAValue();
2687      int rb = instr->RBValue();
2688      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2689      intptr_t rs_val = get_register(rs);
2690      intptr_t rb_val = get_register(rb);
2691      WriteDW(ra_val + rb_val, rs_val);
2692      if (opcode == STDUX) {
2693        DCHECK(ra != 0);
2694        set_register(ra, ra_val + rb_val);
2695      }
2696      break;
2697    }
2698#endif
2699    case LBZX:
2700    case LBZUX: {
2701      int rt = instr->RTValue();
2702      int ra = instr->RAValue();
2703      int rb = instr->RBValue();
2704      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2705      intptr_t rb_val = get_register(rb);
2706      set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2707      if (opcode == LBZUX) {
2708        DCHECK(ra != 0 && ra != rt);
2709        set_register(ra, ra_val + rb_val);
2710      }
2711      break;
2712    }
2713    case LHZX:
2714    case LHZUX: {
2715      int rt = instr->RTValue();
2716      int ra = instr->RAValue();
2717      int rb = instr->RBValue();
2718      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2719      intptr_t rb_val = get_register(rb);
2720      set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2721      if (opcode == LHZUX) {
2722        DCHECK(ra != 0 && ra != rt);
2723        set_register(ra, ra_val + rb_val);
2724      }
2725      break;
2726    }
2727    case LHAX:
2728    case LHAUX: {
2729      int rt = instr->RTValue();
2730      int ra = instr->RAValue();
2731      int rb = instr->RBValue();
2732      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2733      intptr_t rb_val = get_register(rb);
2734      set_register(rt, ReadH(ra_val + rb_val, instr));
2735      if (opcode == LHAUX) {
2736        DCHECK(ra != 0 && ra != rt);
2737        set_register(ra, ra_val + rb_val);
2738      }
2739      break;
2740    }
2741    case DCBF: {
2742      // todo - simulate dcbf
2743      break;
2744    }
2745    default: {
2746      found = false;
2747      break;
2748    }
2749  }
2750
2751  return found;
2752}
2753
2754
2755void Simulator::ExecuteExt2_5bit(Instruction* instr) {
2756  uint32_t opcode = EXT2 | instr->BitField(5, 1);
2757  switch (opcode) {
2758    case ISEL: {
2759      int rt = instr->RTValue();
2760      int ra = instr->RAValue();
2761      int rb = instr->RBValue();
2762      int condition_bit = instr->RCValue();
2763      int condition_mask = 0x80000000 >> condition_bit;
2764      intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
2765      intptr_t rb_val = get_register(rb);
2766      intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
2767      set_register(rt, value);
2768      break;
2769    }
2770    default: {
2771      PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2772      UNIMPLEMENTED();  // Not used by V8.
2773    }
2774  }
2775}
2776
2777
2778void Simulator::ExecuteExt2(Instruction* instr) {
2779  // Check first the 10-1 bit versions
2780  if (ExecuteExt2_10bit(instr)) return;
2781  // Now look at the lesser encodings
2782  if (ExecuteExt2_9bit_part1(instr)) return;
2783  if (ExecuteExt2_9bit_part2(instr)) return;
2784  ExecuteExt2_5bit(instr);
2785}
2786
2787
2788void Simulator::ExecuteExt3(Instruction* instr) {
2789  uint32_t opcode = EXT3 | instr->BitField(10, 1);
2790  switch (opcode) {
2791    case FCFIDS: {
2792      // fcfids
2793      int frt = instr->RTValue();
2794      int frb = instr->RBValue();
2795      int64_t frb_val = get_d_register(frb);
2796      double frt_val = static_cast<float>(frb_val);
2797      set_d_register_from_double(frt, frt_val);
2798      return;
2799    }
2800    case FCFIDUS: {
2801      // fcfidus
2802      int frt = instr->RTValue();
2803      int frb = instr->RBValue();
2804      uint64_t frb_val = get_d_register(frb);
2805      double frt_val = static_cast<float>(frb_val);
2806      set_d_register_from_double(frt, frt_val);
2807      return;
2808    }
2809  }
2810  UNIMPLEMENTED();  // Not used by V8.
2811}
2812
2813
2814void Simulator::ExecuteExt4(Instruction* instr) {
2815  uint32_t opcode = EXT4 | instr->BitField(5, 1);
2816  switch (opcode) {
2817    case FDIV: {
2818      int frt = instr->RTValue();
2819      int fra = instr->RAValue();
2820      int frb = instr->RBValue();
2821      double fra_val = get_double_from_d_register(fra);
2822      double frb_val = get_double_from_d_register(frb);
2823      double frt_val = fra_val / frb_val;
2824      set_d_register_from_double(frt, frt_val);
2825      return;
2826    }
2827    case FSUB: {
2828      int frt = instr->RTValue();
2829      int fra = instr->RAValue();
2830      int frb = instr->RBValue();
2831      double fra_val = get_double_from_d_register(fra);
2832      double frb_val = get_double_from_d_register(frb);
2833      double frt_val = fra_val - frb_val;
2834      set_d_register_from_double(frt, frt_val);
2835      return;
2836    }
2837    case FADD: {
2838      int frt = instr->RTValue();
2839      int fra = instr->RAValue();
2840      int frb = instr->RBValue();
2841      double fra_val = get_double_from_d_register(fra);
2842      double frb_val = get_double_from_d_register(frb);
2843      double frt_val = fra_val + frb_val;
2844      set_d_register_from_double(frt, frt_val);
2845      return;
2846    }
2847    case FSQRT: {
2848      lazily_initialize_fast_sqrt(isolate_);
2849      int frt = instr->RTValue();
2850      int frb = instr->RBValue();
2851      double frb_val = get_double_from_d_register(frb);
2852      double frt_val = fast_sqrt(frb_val, isolate_);
2853      set_d_register_from_double(frt, frt_val);
2854      return;
2855    }
2856    case FSEL: {
2857      int frt = instr->RTValue();
2858      int fra = instr->RAValue();
2859      int frb = instr->RBValue();
2860      int frc = instr->RCValue();
2861      double fra_val = get_double_from_d_register(fra);
2862      double frb_val = get_double_from_d_register(frb);
2863      double frc_val = get_double_from_d_register(frc);
2864      double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2865      set_d_register_from_double(frt, frt_val);
2866      return;
2867    }
2868    case FMUL: {
2869      int frt = instr->RTValue();
2870      int fra = instr->RAValue();
2871      int frc = instr->RCValue();
2872      double fra_val = get_double_from_d_register(fra);
2873      double frc_val = get_double_from_d_register(frc);
2874      double frt_val = fra_val * frc_val;
2875      set_d_register_from_double(frt, frt_val);
2876      return;
2877    }
2878    case FMSUB: {
2879      int frt = instr->RTValue();
2880      int fra = instr->RAValue();
2881      int frb = instr->RBValue();
2882      int frc = instr->RCValue();
2883      double fra_val = get_double_from_d_register(fra);
2884      double frb_val = get_double_from_d_register(frb);
2885      double frc_val = get_double_from_d_register(frc);
2886      double frt_val = (fra_val * frc_val) - frb_val;
2887      set_d_register_from_double(frt, frt_val);
2888      return;
2889    }
2890    case FMADD: {
2891      int frt = instr->RTValue();
2892      int fra = instr->RAValue();
2893      int frb = instr->RBValue();
2894      int frc = instr->RCValue();
2895      double fra_val = get_double_from_d_register(fra);
2896      double frb_val = get_double_from_d_register(frb);
2897      double frc_val = get_double_from_d_register(frc);
2898      double frt_val = (fra_val * frc_val) + frb_val;
2899      set_d_register_from_double(frt, frt_val);
2900      return;
2901    }
2902  }
2903  opcode = EXT4 | instr->BitField(10, 1);
2904  switch (opcode) {
2905    case FCMPU: {
2906      int fra = instr->RAValue();
2907      int frb = instr->RBValue();
2908      double fra_val = get_double_from_d_register(fra);
2909      double frb_val = get_double_from_d_register(frb);
2910      int cr = instr->Bits(25, 23);
2911      int bf = 0;
2912      if (fra_val < frb_val) {
2913        bf |= 0x80000000;
2914      }
2915      if (fra_val > frb_val) {
2916        bf |= 0x40000000;
2917      }
2918      if (fra_val == frb_val) {
2919        bf |= 0x20000000;
2920      }
2921      if (std::isunordered(fra_val, frb_val)) {
2922        bf |= 0x10000000;
2923      }
2924      int condition_mask = 0xF0000000 >> (cr * 4);
2925      int condition = bf >> (cr * 4);
2926      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2927      return;
2928    }
2929    case FRIN: {
2930      int frt = instr->RTValue();
2931      int frb = instr->RBValue();
2932      double frb_val = get_double_from_d_register(frb);
2933      double frt_val = std::round(frb_val);
2934      set_d_register_from_double(frt, frt_val);
2935      if (instr->Bit(0)) {  // RC bit set
2936                            //  UNIMPLEMENTED();
2937      }
2938      return;
2939    }
2940    case FRIZ: {
2941      int frt = instr->RTValue();
2942      int frb = instr->RBValue();
2943      double frb_val = get_double_from_d_register(frb);
2944      double frt_val = std::trunc(frb_val);
2945      set_d_register_from_double(frt, frt_val);
2946      if (instr->Bit(0)) {  // RC bit set
2947                            //  UNIMPLEMENTED();
2948      }
2949      return;
2950    }
2951    case FRIP: {
2952      int frt = instr->RTValue();
2953      int frb = instr->RBValue();
2954      double frb_val = get_double_from_d_register(frb);
2955      double frt_val = std::ceil(frb_val);
2956      set_d_register_from_double(frt, frt_val);
2957      if (instr->Bit(0)) {  // RC bit set
2958                            //  UNIMPLEMENTED();
2959      }
2960      return;
2961    }
2962    case FRIM: {
2963      int frt = instr->RTValue();
2964      int frb = instr->RBValue();
2965      double frb_val = get_double_from_d_register(frb);
2966      double frt_val = std::floor(frb_val);
2967      set_d_register_from_double(frt, frt_val);
2968      if (instr->Bit(0)) {  // RC bit set
2969                            //  UNIMPLEMENTED();
2970      }
2971      return;
2972    }
2973    case FRSP: {
2974      int frt = instr->RTValue();
2975      int frb = instr->RBValue();
2976      // frsp round 8-byte double-precision value to
2977      // single-precision value
2978      double frb_val = get_double_from_d_register(frb);
2979      double frt_val = static_cast<float>(frb_val);
2980      set_d_register_from_double(frt, frt_val);
2981      if (instr->Bit(0)) {  // RC bit set
2982                            //  UNIMPLEMENTED();
2983      }
2984      return;
2985    }
2986    case FCFID: {
2987      int frt = instr->RTValue();
2988      int frb = instr->RBValue();
2989      int64_t frb_val = get_d_register(frb);
2990      double frt_val = static_cast<double>(frb_val);
2991      set_d_register_from_double(frt, frt_val);
2992      return;
2993    }
2994    case FCFIDU: {
2995      int frt = instr->RTValue();
2996      int frb = instr->RBValue();
2997      uint64_t frb_val = get_d_register(frb);
2998      double frt_val = static_cast<double>(frb_val);
2999      set_d_register_from_double(frt, frt_val);
3000      return;
3001    }
3002    case FCTID:
3003    case FCTIDZ: {
3004      int frt = instr->RTValue();
3005      int frb = instr->RBValue();
3006      double frb_val = get_double_from_d_register(frb);
3007      int mode = (opcode == FCTIDZ) ? kRoundToZero
3008                                    : (fp_condition_reg_ & kFPRoundingModeMask);
3009      int64_t frt_val;
3010      int64_t one = 1;  // work-around gcc
3011      int64_t kMinVal = (one << 63);
3012      int64_t kMaxVal = kMinVal - 1;
3013      bool invalid_convert = false;
3014
3015      if (std::isnan(frb_val)) {
3016        frt_val = kMinVal;
3017        invalid_convert = true;
3018      } else {
3019        switch (mode) {
3020          case kRoundToZero:
3021            frb_val = std::trunc(frb_val);
3022            break;
3023          case kRoundToPlusInf:
3024            frb_val = std::ceil(frb_val);
3025            break;
3026          case kRoundToMinusInf:
3027            frb_val = std::floor(frb_val);
3028            break;
3029          default:
3030            UNIMPLEMENTED();  // Not used by V8.
3031            break;
3032        }
3033        if (frb_val < static_cast<double>(kMinVal)) {
3034          frt_val = kMinVal;
3035          invalid_convert = true;
3036        } else if (frb_val >= static_cast<double>(kMaxVal)) {
3037          frt_val = kMaxVal;
3038          invalid_convert = true;
3039        } else {
3040          frt_val = (int64_t)frb_val;
3041        }
3042      }
3043      set_d_register(frt, frt_val);
3044      if (invalid_convert) SetFPSCR(VXCVI);
3045      return;
3046    }
3047    case FCTIDU:
3048    case FCTIDUZ: {
3049      int frt = instr->RTValue();
3050      int frb = instr->RBValue();
3051      double frb_val = get_double_from_d_register(frb);
3052      int mode = (opcode == FCTIDUZ)
3053                     ? kRoundToZero
3054                     : (fp_condition_reg_ & kFPRoundingModeMask);
3055      uint64_t frt_val;
3056      uint64_t kMinVal = 0;
3057      uint64_t kMaxVal = kMinVal - 1;
3058      bool invalid_convert = false;
3059
3060      if (std::isnan(frb_val)) {
3061        frt_val = kMinVal;
3062        invalid_convert = true;
3063      } else {
3064        switch (mode) {
3065          case kRoundToZero:
3066            frb_val = std::trunc(frb_val);
3067            break;
3068          case kRoundToPlusInf:
3069            frb_val = std::ceil(frb_val);
3070            break;
3071          case kRoundToMinusInf:
3072            frb_val = std::floor(frb_val);
3073            break;
3074          default:
3075            UNIMPLEMENTED();  // Not used by V8.
3076            break;
3077        }
3078        if (frb_val < static_cast<double>(kMinVal)) {
3079          frt_val = kMinVal;
3080          invalid_convert = true;
3081        } else if (frb_val >= static_cast<double>(kMaxVal)) {
3082          frt_val = kMaxVal;
3083          invalid_convert = true;
3084        } else {
3085          frt_val = (uint64_t)frb_val;
3086        }
3087      }
3088      set_d_register(frt, frt_val);
3089      if (invalid_convert) SetFPSCR(VXCVI);
3090      return;
3091    }
3092    case FCTIW:
3093    case FCTIWZ: {
3094      int frt = instr->RTValue();
3095      int frb = instr->RBValue();
3096      double frb_val = get_double_from_d_register(frb);
3097      int mode = (opcode == FCTIWZ) ? kRoundToZero
3098                                    : (fp_condition_reg_ & kFPRoundingModeMask);
3099      int64_t frt_val;
3100      int64_t kMinVal = kMinInt;
3101      int64_t kMaxVal = kMaxInt;
3102
3103      if (std::isnan(frb_val)) {
3104        frt_val = kMinVal;
3105      } else {
3106        switch (mode) {
3107          case kRoundToZero:
3108            frb_val = std::trunc(frb_val);
3109            break;
3110          case kRoundToPlusInf:
3111            frb_val = std::ceil(frb_val);
3112            break;
3113          case kRoundToMinusInf:
3114            frb_val = std::floor(frb_val);
3115            break;
3116          case kRoundToNearest: {
3117            double orig = frb_val;
3118            frb_val = lround(frb_val);
3119            // Round to even if exactly halfway.  (lround rounds up)
3120            if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
3121              frb_val += ((frb_val > 0) ? -1.0 : 1.0);
3122            }
3123            break;
3124          }
3125          default:
3126            UNIMPLEMENTED();  // Not used by V8.
3127            break;
3128        }
3129        if (frb_val < kMinVal) {
3130          frt_val = kMinVal;
3131        } else if (frb_val > kMaxVal) {
3132          frt_val = kMaxVal;
3133        } else {
3134          frt_val = (int64_t)frb_val;
3135        }
3136      }
3137      set_d_register(frt, frt_val);
3138      return;
3139    }
3140    case FNEG: {
3141      int frt = instr->RTValue();
3142      int frb = instr->RBValue();
3143      double frb_val = get_double_from_d_register(frb);
3144      double frt_val = -frb_val;
3145      set_d_register_from_double(frt, frt_val);
3146      return;
3147    }
3148    case FMR: {
3149      int frt = instr->RTValue();
3150      int frb = instr->RBValue();
3151      int64_t frb_val = get_d_register(frb);
3152      set_d_register(frt, frb_val);
3153      return;
3154    }
3155    case MTFSFI: {
3156      int bf = instr->Bits(25, 23);
3157      int imm = instr->Bits(15, 12);
3158      int fp_condition_mask = 0xF0000000 >> (bf * 4);
3159      fp_condition_reg_ &= ~fp_condition_mask;
3160      fp_condition_reg_ |= (imm << (28 - (bf * 4)));
3161      if (instr->Bit(0)) {  // RC bit set
3162        condition_reg_ &= 0xF0FFFFFF;
3163        condition_reg_ |= (imm << 23);
3164      }
3165      return;
3166    }
3167    case MTFSF: {
3168      int frb = instr->RBValue();
3169      int64_t frb_dval = get_d_register(frb);
3170      int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
3171      int l = instr->Bits(25, 25);
3172      if (l == 1) {
3173        fp_condition_reg_ = frb_ival;
3174      } else {
3175        UNIMPLEMENTED();
3176      }
3177      if (instr->Bit(0)) {  // RC bit set
3178        UNIMPLEMENTED();
3179        // int w = instr->Bits(16, 16);
3180        // int flm = instr->Bits(24, 17);
3181      }
3182      return;
3183    }
3184    case MFFS: {
3185      int frt = instr->RTValue();
3186      int64_t lval = static_cast<int64_t>(fp_condition_reg_);
3187      set_d_register(frt, lval);
3188      return;
3189    }
3190    case MCRFS: {
3191      int bf = instr->Bits(25, 23);
3192      int bfa = instr->Bits(20, 18);
3193      int cr_shift = (7 - bf) * CRWIDTH;
3194      int fp_shift = (7 - bfa) * CRWIDTH;
3195      int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
3196      condition_reg_ &= ~(0x0f << cr_shift);
3197      condition_reg_ |= (field_val << cr_shift);
3198      // Clear copied exception bits
3199      switch (bfa) {
3200        case 5:
3201          ClearFPSCR(VXSOFT);
3202          ClearFPSCR(VXSQRT);
3203          ClearFPSCR(VXCVI);
3204          break;
3205        default:
3206          UNIMPLEMENTED();
3207          break;
3208      }
3209      return;
3210    }
3211    case MTFSB0: {
3212      int bt = instr->Bits(25, 21);
3213      ClearFPSCR(bt);
3214      if (instr->Bit(0)) {  // RC bit set
3215        UNIMPLEMENTED();
3216      }
3217      return;
3218    }
3219    case MTFSB1: {
3220      int bt = instr->Bits(25, 21);
3221      SetFPSCR(bt);
3222      if (instr->Bit(0)) {  // RC bit set
3223        UNIMPLEMENTED();
3224      }
3225      return;
3226    }
3227    case FABS: {
3228      int frt = instr->RTValue();
3229      int frb = instr->RBValue();
3230      double frb_val = get_double_from_d_register(frb);
3231      double frt_val = std::fabs(frb_val);
3232      set_d_register_from_double(frt, frt_val);
3233      return;
3234    }
3235  }
3236  UNIMPLEMENTED();  // Not used by V8.
3237}
3238
3239#if V8_TARGET_ARCH_PPC64
3240void Simulator::ExecuteExt5(Instruction* instr) {
3241  uint32_t opcode = EXT5 | instr->BitField(4, 2);
3242  switch (opcode) {
3243    case RLDICL: {
3244      int ra = instr->RAValue();
3245      int rs = instr->RSValue();
3246      uintptr_t rs_val = get_register(rs);
3247      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3248      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3249      DCHECK(sh >= 0 && sh <= 63);
3250      DCHECK(mb >= 0 && mb <= 63);
3251      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3252      uintptr_t mask = 0xffffffffffffffff >> mb;
3253      result &= mask;
3254      set_register(ra, result);
3255      if (instr->Bit(0)) {  // RC bit set
3256        SetCR0(result);
3257      }
3258      return;
3259    }
3260    case RLDICR: {
3261      int ra = instr->RAValue();
3262      int rs = instr->RSValue();
3263      uintptr_t rs_val = get_register(rs);
3264      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3265      int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3266      DCHECK(sh >= 0 && sh <= 63);
3267      DCHECK(me >= 0 && me <= 63);
3268      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3269      uintptr_t mask = 0xffffffffffffffff << (63 - me);
3270      result &= mask;
3271      set_register(ra, result);
3272      if (instr->Bit(0)) {  // RC bit set
3273        SetCR0(result);
3274      }
3275      return;
3276    }
3277    case RLDIC: {
3278      int ra = instr->RAValue();
3279      int rs = instr->RSValue();
3280      uintptr_t rs_val = get_register(rs);
3281      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3282      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3283      DCHECK(sh >= 0 && sh <= 63);
3284      DCHECK(mb >= 0 && mb <= 63);
3285      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3286      uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
3287      result &= mask;
3288      set_register(ra, result);
3289      if (instr->Bit(0)) {  // RC bit set
3290        SetCR0(result);
3291      }
3292      return;
3293    }
3294    case RLDIMI: {
3295      int ra = instr->RAValue();
3296      int rs = instr->RSValue();
3297      uintptr_t rs_val = get_register(rs);
3298      intptr_t ra_val = get_register(ra);
3299      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3300      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3301      int me = 63 - sh;
3302      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3303      uintptr_t mask = 0;
3304      if (mb < me + 1) {
3305        uintptr_t bit = 0x8000000000000000 >> mb;
3306        for (; mb <= me; mb++) {
3307          mask |= bit;
3308          bit >>= 1;
3309        }
3310      } else if (mb == me + 1) {
3311        mask = 0xffffffffffffffff;
3312      } else {                                           // mb > me+1
3313        uintptr_t bit = 0x8000000000000000 >> (me + 1);  // needs to be tested
3314        mask = 0xffffffffffffffff;
3315        for (; me < mb; me++) {
3316          mask ^= bit;
3317          bit >>= 1;
3318        }
3319      }
3320      result &= mask;
3321      ra_val &= ~mask;
3322      result |= ra_val;
3323      set_register(ra, result);
3324      if (instr->Bit(0)) {  // RC bit set
3325        SetCR0(result);
3326      }
3327      return;
3328    }
3329  }
3330  opcode = EXT5 | instr->BitField(4, 1);
3331  switch (opcode) {
3332    case RLDCL: {
3333      int ra = instr->RAValue();
3334      int rs = instr->RSValue();
3335      int rb = instr->RBValue();
3336      uintptr_t rs_val = get_register(rs);
3337      uintptr_t rb_val = get_register(rb);
3338      int sh = (rb_val & 0x3f);
3339      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3340      DCHECK(sh >= 0 && sh <= 63);
3341      DCHECK(mb >= 0 && mb <= 63);
3342      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3343      uintptr_t mask = 0xffffffffffffffff >> mb;
3344      result &= mask;
3345      set_register(ra, result);
3346      if (instr->Bit(0)) {  // RC bit set
3347        SetCR0(result);
3348      }
3349      return;
3350    }
3351  }
3352  UNIMPLEMENTED();  // Not used by V8.
3353}
3354#endif
3355
3356void Simulator::ExecuteExt6(Instruction* instr) {
3357  uint32_t opcode = EXT6 | instr->BitField(10, 3);
3358  switch (opcode) {
3359    case XSADDDP: {
3360      int frt = instr->RTValue();
3361      int fra = instr->RAValue();
3362      int frb = instr->RBValue();
3363      double fra_val = get_double_from_d_register(fra);
3364      double frb_val = get_double_from_d_register(frb);
3365      double frt_val = fra_val + frb_val;
3366      set_d_register_from_double(frt, frt_val);
3367      return;
3368    }
3369    case XSSUBDP: {
3370      int frt = instr->RTValue();
3371      int fra = instr->RAValue();
3372      int frb = instr->RBValue();
3373      double fra_val = get_double_from_d_register(fra);
3374      double frb_val = get_double_from_d_register(frb);
3375      double frt_val = fra_val - frb_val;
3376      set_d_register_from_double(frt, frt_val);
3377      return;
3378    }
3379    case XSMULDP: {
3380      int frt = instr->RTValue();
3381      int fra = instr->RAValue();
3382      int frb = instr->RBValue();
3383      double fra_val = get_double_from_d_register(fra);
3384      double frb_val = get_double_from_d_register(frb);
3385      double frt_val = fra_val * frb_val;
3386      set_d_register_from_double(frt, frt_val);
3387      return;
3388    }
3389    case XSDIVDP: {
3390      int frt = instr->RTValue();
3391      int fra = instr->RAValue();
3392      int frb = instr->RBValue();
3393      double fra_val = get_double_from_d_register(fra);
3394      double frb_val = get_double_from_d_register(frb);
3395      double frt_val = fra_val / frb_val;
3396      set_d_register_from_double(frt, frt_val);
3397      return;
3398    }
3399  }
3400  UNIMPLEMENTED();  // Not used by V8.
3401}
3402
3403void Simulator::ExecuteGeneric(Instruction* instr) {
3404  uint32_t opcode = instr->OpcodeField();
3405  switch (opcode) {
3406    case SUBFIC: {
3407      int rt = instr->RTValue();
3408      int ra = instr->RAValue();
3409      intptr_t ra_val = get_register(ra);
3410      int32_t im_val = instr->Bits(15, 0);
3411      im_val = SIGN_EXT_IMM16(im_val);
3412      intptr_t alu_out = im_val - ra_val;
3413      set_register(rt, alu_out);
3414      // todo - handle RC bit
3415      break;
3416    }
3417    case CMPLI: {
3418      int ra = instr->RAValue();
3419      uint32_t im_val = instr->Bits(15, 0);
3420      int cr = instr->Bits(25, 23);
3421      uint32_t bf = 0;
3422#if V8_TARGET_ARCH_PPC64
3423      int L = instr->Bit(21);
3424      if (L) {
3425#endif
3426        uintptr_t ra_val = get_register(ra);
3427        if (ra_val < im_val) {
3428          bf |= 0x80000000;
3429        }
3430        if (ra_val > im_val) {
3431          bf |= 0x40000000;
3432        }
3433        if (ra_val == im_val) {
3434          bf |= 0x20000000;
3435        }
3436#if V8_TARGET_ARCH_PPC64
3437      } else {
3438        uint32_t ra_val = get_register(ra);
3439        if (ra_val < im_val) {
3440          bf |= 0x80000000;
3441        }
3442        if (ra_val > im_val) {
3443          bf |= 0x40000000;
3444        }
3445        if (ra_val == im_val) {
3446          bf |= 0x20000000;
3447        }
3448      }
3449#endif
3450      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3451      uint32_t condition = bf >> (cr * 4);
3452      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3453      break;
3454    }
3455    case CMPI: {
3456      int ra = instr->RAValue();
3457      int32_t im_val = instr->Bits(15, 0);
3458      im_val = SIGN_EXT_IMM16(im_val);
3459      int cr = instr->Bits(25, 23);
3460      uint32_t bf = 0;
3461#if V8_TARGET_ARCH_PPC64
3462      int L = instr->Bit(21);
3463      if (L) {
3464#endif
3465        intptr_t ra_val = get_register(ra);
3466        if (ra_val < im_val) {
3467          bf |= 0x80000000;
3468        }
3469        if (ra_val > im_val) {
3470          bf |= 0x40000000;
3471        }
3472        if (ra_val == im_val) {
3473          bf |= 0x20000000;
3474        }
3475#if V8_TARGET_ARCH_PPC64
3476      } else {
3477        int32_t ra_val = get_register(ra);
3478        if (ra_val < im_val) {
3479          bf |= 0x80000000;
3480        }
3481        if (ra_val > im_val) {
3482          bf |= 0x40000000;
3483        }
3484        if (ra_val == im_val) {
3485          bf |= 0x20000000;
3486        }
3487      }
3488#endif
3489      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3490      uint32_t condition = bf >> (cr * 4);
3491      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3492      break;
3493    }
3494    case ADDIC: {
3495      int rt = instr->RTValue();
3496      int ra = instr->RAValue();
3497      uintptr_t ra_val = get_register(ra);
3498      uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3499      uintptr_t alu_out = ra_val + im_val;
3500      // Check overflow
3501      if (~ra_val < im_val) {
3502        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3503      } else {
3504        special_reg_xer_ &= ~0xF0000000;
3505      }
3506      set_register(rt, alu_out);
3507      break;
3508    }
3509    case ADDI: {
3510      int rt = instr->RTValue();
3511      int ra = instr->RAValue();
3512      int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3513      intptr_t alu_out;
3514      if (ra == 0) {
3515        alu_out = im_val;
3516      } else {
3517        intptr_t ra_val = get_register(ra);
3518        alu_out = ra_val + im_val;
3519      }
3520      set_register(rt, alu_out);
3521      // todo - handle RC bit
3522      break;
3523    }
3524    case ADDIS: {
3525      int rt = instr->RTValue();
3526      int ra = instr->RAValue();
3527      int32_t im_val = (instr->Bits(15, 0) << 16);
3528      intptr_t alu_out;
3529      if (ra == 0) {  // treat r0 as zero
3530        alu_out = im_val;
3531      } else {
3532        intptr_t ra_val = get_register(ra);
3533        alu_out = ra_val + im_val;
3534      }
3535      set_register(rt, alu_out);
3536      break;
3537    }
3538    case BCX: {
3539      ExecuteBranchConditional(instr, BC_OFFSET);
3540      break;
3541    }
3542    case BX: {
3543      int offset = (instr->Bits(25, 2) << 8) >> 6;
3544      if (instr->Bit(0) == 1) {  // LK flag set
3545        special_reg_lr_ = get_pc() + 4;
3546      }
3547      set_pc(get_pc() + offset);
3548      // todo - AA flag
3549      break;
3550    }
3551    case EXT1: {
3552      ExecuteExt1(instr);
3553      break;
3554    }
3555    case RLWIMIX: {
3556      int ra = instr->RAValue();
3557      int rs = instr->RSValue();
3558      uint32_t rs_val = get_register(rs);
3559      int32_t ra_val = get_register(ra);
3560      int sh = instr->Bits(15, 11);
3561      int mb = instr->Bits(10, 6);
3562      int me = instr->Bits(5, 1);
3563      uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3564      int mask = 0;
3565      if (mb < me + 1) {
3566        int bit = 0x80000000 >> mb;
3567        for (; mb <= me; mb++) {
3568          mask |= bit;
3569          bit >>= 1;
3570        }
3571      } else if (mb == me + 1) {
3572        mask = 0xffffffff;
3573      } else {                             // mb > me+1
3574        int bit = 0x80000000 >> (me + 1);  // needs to be tested
3575        mask = 0xffffffff;
3576        for (; me < mb; me++) {
3577          mask ^= bit;
3578          bit >>= 1;
3579        }
3580      }
3581      result &= mask;
3582      ra_val &= ~mask;
3583      result |= ra_val;
3584      set_register(ra, result);
3585      if (instr->Bit(0)) {  // RC bit set
3586        SetCR0(result);
3587      }
3588      break;
3589    }
3590    case RLWINMX:
3591    case RLWNMX: {
3592      int ra = instr->RAValue();
3593      int rs = instr->RSValue();
3594      uint32_t rs_val = get_register(rs);
3595      int sh = 0;
3596      if (opcode == RLWINMX) {
3597        sh = instr->Bits(15, 11);
3598      } else {
3599        int rb = instr->RBValue();
3600        uint32_t rb_val = get_register(rb);
3601        sh = (rb_val & 0x1f);
3602      }
3603      int mb = instr->Bits(10, 6);
3604      int me = instr->Bits(5, 1);
3605      uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3606      int mask = 0;
3607      if (mb < me + 1) {
3608        int bit = 0x80000000 >> mb;
3609        for (; mb <= me; mb++) {
3610          mask |= bit;
3611          bit >>= 1;
3612        }
3613      } else if (mb == me + 1) {
3614        mask = 0xffffffff;
3615      } else {                             // mb > me+1
3616        int bit = 0x80000000 >> (me + 1);  // needs to be tested
3617        mask = 0xffffffff;
3618        for (; me < mb; me++) {
3619          mask ^= bit;
3620          bit >>= 1;
3621        }
3622      }
3623      result &= mask;
3624      set_register(ra, result);
3625      if (instr->Bit(0)) {  // RC bit set
3626        SetCR0(result);
3627      }
3628      break;
3629    }
3630    case ORI: {
3631      int rs = instr->RSValue();
3632      int ra = instr->RAValue();
3633      intptr_t rs_val = get_register(rs);
3634      uint32_t im_val = instr->Bits(15, 0);
3635      intptr_t alu_out = rs_val | im_val;
3636      set_register(ra, alu_out);
3637      break;
3638    }
3639    case ORIS: {
3640      int rs = instr->RSValue();
3641      int ra = instr->RAValue();
3642      intptr_t rs_val = get_register(rs);
3643      uint32_t im_val = instr->Bits(15, 0);
3644      intptr_t alu_out = rs_val | (im_val << 16);
3645      set_register(ra, alu_out);
3646      break;
3647    }
3648    case XORI: {
3649      int rs = instr->RSValue();
3650      int ra = instr->RAValue();
3651      intptr_t rs_val = get_register(rs);
3652      uint32_t im_val = instr->Bits(15, 0);
3653      intptr_t alu_out = rs_val ^ im_val;
3654      set_register(ra, alu_out);
3655      // todo - set condition based SO bit
3656      break;
3657    }
3658    case XORIS: {
3659      int rs = instr->RSValue();
3660      int ra = instr->RAValue();
3661      intptr_t rs_val = get_register(rs);
3662      uint32_t im_val = instr->Bits(15, 0);
3663      intptr_t alu_out = rs_val ^ (im_val << 16);
3664      set_register(ra, alu_out);
3665      break;
3666    }
3667    case ANDIx: {
3668      int rs = instr->RSValue();
3669      int ra = instr->RAValue();
3670      intptr_t rs_val = get_register(rs);
3671      uint32_t im_val = instr->Bits(15, 0);
3672      intptr_t alu_out = rs_val & im_val;
3673      set_register(ra, alu_out);
3674      SetCR0(alu_out);
3675      break;
3676    }
3677    case ANDISx: {
3678      int rs = instr->RSValue();
3679      int ra = instr->RAValue();
3680      intptr_t rs_val = get_register(rs);
3681      uint32_t im_val = instr->Bits(15, 0);
3682      intptr_t alu_out = rs_val & (im_val << 16);
3683      set_register(ra, alu_out);
3684      SetCR0(alu_out);
3685      break;
3686    }
3687    case EXT2: {
3688      ExecuteExt2(instr);
3689      break;
3690    }
3691
3692    case LWZU:
3693    case LWZ: {
3694      int ra = instr->RAValue();
3695      int rt = instr->RTValue();
3696      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3697      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3698      set_register(rt, ReadWU(ra_val + offset, instr));
3699      if (opcode == LWZU) {
3700        DCHECK(ra != 0);
3701        set_register(ra, ra_val + offset);
3702      }
3703      break;
3704    }
3705
3706    case LBZU:
3707    case LBZ: {
3708      int ra = instr->RAValue();
3709      int rt = instr->RTValue();
3710      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3711      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3712      set_register(rt, ReadB(ra_val + offset) & 0xFF);
3713      if (opcode == LBZU) {
3714        DCHECK(ra != 0);
3715        set_register(ra, ra_val + offset);
3716      }
3717      break;
3718    }
3719
3720    case STWU:
3721    case STW: {
3722      int ra = instr->RAValue();
3723      int rs = instr->RSValue();
3724      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3725      int32_t rs_val = get_register(rs);
3726      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3727      WriteW(ra_val + offset, rs_val, instr);
3728      if (opcode == STWU) {
3729        DCHECK(ra != 0);
3730        set_register(ra, ra_val + offset);
3731      }
3732      // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3733      break;
3734    }
3735
3736    case STBU:
3737    case STB: {
3738      int ra = instr->RAValue();
3739      int rs = instr->RSValue();
3740      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3741      int8_t rs_val = get_register(rs);
3742      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3743      WriteB(ra_val + offset, rs_val);
3744      if (opcode == STBU) {
3745        DCHECK(ra != 0);
3746        set_register(ra, ra_val + offset);
3747      }
3748      break;
3749    }
3750
3751    case LHZU:
3752    case LHZ: {
3753      int ra = instr->RAValue();
3754      int rt = instr->RTValue();
3755      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3756      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3757      uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3758      set_register(rt, result);
3759      if (opcode == LHZU) {
3760        set_register(ra, ra_val + offset);
3761      }
3762      break;
3763    }
3764
3765    case LHA:
3766    case LHAU: {
3767      int ra = instr->RAValue();
3768      int rt = instr->RTValue();
3769      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3770      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3771      intptr_t result = ReadH(ra_val + offset, instr);
3772      set_register(rt, result);
3773      if (opcode == LHAU) {
3774        set_register(ra, ra_val + offset);
3775      }
3776      break;
3777    }
3778
3779    case STHU:
3780    case STH: {
3781      int ra = instr->RAValue();
3782      int rs = instr->RSValue();
3783      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3784      int16_t rs_val = get_register(rs);
3785      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3786      WriteH(ra_val + offset, rs_val, instr);
3787      if (opcode == STHU) {
3788        DCHECK(ra != 0);
3789        set_register(ra, ra_val + offset);
3790      }
3791      break;
3792    }
3793
3794    case LMW:
3795    case STMW: {
3796      UNIMPLEMENTED();
3797      break;
3798    }
3799
3800    case LFSU:
3801    case LFS: {
3802      int frt = instr->RTValue();
3803      int ra = instr->RAValue();
3804      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3805      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3806      int32_t val = ReadW(ra_val + offset, instr);
3807      float* fptr = reinterpret_cast<float*>(&val);
3808// Conversion using double changes sNan to qNan on ia32/x64
3809#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
3810      if (val == 0x7fa00000) {
3811        set_d_register(frt, 0x7ff4000000000000);
3812      } else {
3813#endif
3814        set_d_register_from_double(frt, static_cast<double>(*fptr));
3815#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
3816      }
3817#endif
3818      if (opcode == LFSU) {
3819        DCHECK(ra != 0);
3820        set_register(ra, ra_val + offset);
3821      }
3822      break;
3823    }
3824
3825    case LFDU:
3826    case LFD: {
3827      int frt = instr->RTValue();
3828      int ra = instr->RAValue();
3829      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3830      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3831      int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
3832      set_d_register(frt, *dptr);
3833      if (opcode == LFDU) {
3834        DCHECK(ra != 0);
3835        set_register(ra, ra_val + offset);
3836      }
3837      break;
3838    }
3839
3840    case STFSU: {
3841      case STFS:
3842        int frs = instr->RSValue();
3843        int ra = instr->RAValue();
3844        int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3845        intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3846        float frs_val = static_cast<float>(get_double_from_d_register(frs));
3847        int32_t* p;
3848// Conversion using double changes sNan to qNan on ia32/x64
3849#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
3850        int64_t frs_isnan = get_d_register(frs);
3851        int32_t frs_nan_single = 0x7fa00000;
3852        if (frs_isnan == 0x7ff4000000000000) {
3853          p = &frs_nan_single;
3854        } else {
3855#endif
3856          p = reinterpret_cast<int32_t*>(&frs_val);
3857#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
3858        }
3859#endif
3860        WriteW(ra_val + offset, *p, instr);
3861        if (opcode == STFSU) {
3862          DCHECK(ra != 0);
3863          set_register(ra, ra_val + offset);
3864        }
3865        break;
3866    }
3867
3868    case STFDU:
3869    case STFD: {
3870      int frs = instr->RSValue();
3871      int ra = instr->RAValue();
3872      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3873      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3874      int64_t frs_val = get_d_register(frs);
3875      WriteDW(ra_val + offset, frs_val);
3876      if (opcode == STFDU) {
3877        DCHECK(ra != 0);
3878        set_register(ra, ra_val + offset);
3879      }
3880      break;
3881    }
3882
3883    case EXT3: {
3884      ExecuteExt3(instr);
3885      break;
3886    }
3887    case EXT4: {
3888      ExecuteExt4(instr);
3889      break;
3890    }
3891
3892#if V8_TARGET_ARCH_PPC64
3893    case EXT5: {
3894      ExecuteExt5(instr);
3895      break;
3896    }
3897    case LD: {
3898      int ra = instr->RAValue();
3899      int rt = instr->RTValue();
3900      int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3901      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3902      switch (instr->Bits(1, 0)) {
3903        case 0: {  // ld
3904          intptr_t* result = ReadDW(ra_val + offset);
3905          set_register(rt, *result);
3906          break;
3907        }
3908        case 1: {  // ldu
3909          intptr_t* result = ReadDW(ra_val + offset);
3910          set_register(rt, *result);
3911          DCHECK(ra != 0);
3912          set_register(ra, ra_val + offset);
3913          break;
3914        }
3915        case 2: {  // lwa
3916          intptr_t result = ReadW(ra_val + offset, instr);
3917          set_register(rt, result);
3918          break;
3919        }
3920      }
3921      break;
3922    }
3923
3924    case STD: {
3925      int ra = instr->RAValue();
3926      int rs = instr->RSValue();
3927      int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3928      int64_t rs_val = get_register(rs);
3929      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3930      WriteDW(ra_val + offset, rs_val);
3931      if (instr->Bit(0) == 1) {  // This is the STDU form
3932        DCHECK(ra != 0);
3933        set_register(ra, ra_val + offset);
3934      }
3935      break;
3936    }
3937#endif
3938    case EXT6: {
3939      ExecuteExt6(instr);
3940      break;
3941    }
3942
3943    default: {
3944      UNIMPLEMENTED();
3945      break;
3946    }
3947  }
3948}  // NOLINT
3949
3950
3951void Simulator::Trace(Instruction* instr) {
3952  disasm::NameConverter converter;
3953  disasm::Disassembler dasm(converter);
3954  // use a reasonably large buffer
3955  v8::internal::EmbeddedVector<char, 256> buffer;
3956  dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3957  PrintF("%05d  %08" V8PRIxPTR "  %s\n", icount_,
3958         reinterpret_cast<intptr_t>(instr), buffer.start());
3959}
3960
3961
3962// Executes the current instruction.
3963void Simulator::ExecuteInstruction(Instruction* instr) {
3964  if (v8::internal::FLAG_check_icache) {
3965    CheckICache(isolate_->simulator_i_cache(), instr);
3966  }
3967  pc_modified_ = false;
3968  if (::v8::internal::FLAG_trace_sim) {
3969    Trace(instr);
3970  }
3971  uint32_t opcode = instr->OpcodeField();
3972  if (opcode == TWI) {
3973    SoftwareInterrupt(instr);
3974  } else {
3975    ExecuteGeneric(instr);
3976  }
3977  if (!pc_modified_) {
3978    set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3979  }
3980}
3981
3982
3983void Simulator::Execute() {
3984  // Get the PC to simulate. Cannot use the accessor here as we need the
3985  // raw PC value and not the one used as input to arithmetic instructions.
3986  intptr_t program_counter = get_pc();
3987
3988  if (::v8::internal::FLAG_stop_sim_at == 0) {
3989    // Fast version of the dispatch loop without checking whether the simulator
3990    // should be stopping at a particular executed instruction.
3991    while (program_counter != end_sim_pc) {
3992      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3993      icount_++;
3994      ExecuteInstruction(instr);
3995      program_counter = get_pc();
3996    }
3997  } else {
3998    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3999    // we reach the particular instuction count.
4000    while (program_counter != end_sim_pc) {
4001      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4002      icount_++;
4003      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
4004        PPCDebugger dbg(this);
4005        dbg.Debug();
4006      } else {
4007        ExecuteInstruction(instr);
4008      }
4009      program_counter = get_pc();
4010    }
4011  }
4012}
4013
4014
4015void Simulator::CallInternal(byte* entry) {
4016  // Adjust JS-based stack limit to C-based stack limit.
4017  isolate_->stack_guard()->AdjustStackLimitForSimulator();
4018
4019  // Prepare to execute the code at entry
4020  if (ABI_USES_FUNCTION_DESCRIPTORS) {
4021    // entry is the function descriptor
4022    set_pc(*(reinterpret_cast<intptr_t*>(entry)));
4023  } else {
4024    // entry is the instruction address
4025    set_pc(reinterpret_cast<intptr_t>(entry));
4026  }
4027
4028  if (ABI_CALL_VIA_IP) {
4029    // Put target address in ip (for JS prologue).
4030    set_register(r12, get_pc());
4031  }
4032
4033  // Put down marker for end of simulation. The simulator will stop simulation
4034  // when the PC reaches this value. By saving the "end simulation" value into
4035  // the LR the simulation stops when returning to this call point.
4036  special_reg_lr_ = end_sim_pc;
4037
4038  // Remember the values of non-volatile registers.
4039  intptr_t r2_val = get_register(r2);
4040  intptr_t r13_val = get_register(r13);
4041  intptr_t r14_val = get_register(r14);
4042  intptr_t r15_val = get_register(r15);
4043  intptr_t r16_val = get_register(r16);
4044  intptr_t r17_val = get_register(r17);
4045  intptr_t r18_val = get_register(r18);
4046  intptr_t r19_val = get_register(r19);
4047  intptr_t r20_val = get_register(r20);
4048  intptr_t r21_val = get_register(r21);
4049  intptr_t r22_val = get_register(r22);
4050  intptr_t r23_val = get_register(r23);
4051  intptr_t r24_val = get_register(r24);
4052  intptr_t r25_val = get_register(r25);
4053  intptr_t r26_val = get_register(r26);
4054  intptr_t r27_val = get_register(r27);
4055  intptr_t r28_val = get_register(r28);
4056  intptr_t r29_val = get_register(r29);
4057  intptr_t r30_val = get_register(r30);
4058  intptr_t r31_val = get_register(fp);
4059
4060  // Set up the non-volatile registers with a known value. To be able to check
4061  // that they are preserved properly across JS execution.
4062  intptr_t callee_saved_value = icount_;
4063  set_register(r2, callee_saved_value);
4064  set_register(r13, callee_saved_value);
4065  set_register(r14, callee_saved_value);
4066  set_register(r15, callee_saved_value);
4067  set_register(r16, callee_saved_value);
4068  set_register(r17, callee_saved_value);
4069  set_register(r18, callee_saved_value);
4070  set_register(r19, callee_saved_value);
4071  set_register(r20, callee_saved_value);
4072  set_register(r21, callee_saved_value);
4073  set_register(r22, callee_saved_value);
4074  set_register(r23, callee_saved_value);
4075  set_register(r24, callee_saved_value);
4076  set_register(r25, callee_saved_value);
4077  set_register(r26, callee_saved_value);
4078  set_register(r27, callee_saved_value);
4079  set_register(r28, callee_saved_value);
4080  set_register(r29, callee_saved_value);
4081  set_register(r30, callee_saved_value);
4082  set_register(fp, callee_saved_value);
4083
4084  // Start the simulation
4085  Execute();
4086
4087  // Check that the non-volatile registers have been preserved.
4088  if (ABI_TOC_REGISTER != 2) {
4089    CHECK_EQ(callee_saved_value, get_register(r2));
4090  }
4091  if (ABI_TOC_REGISTER != 13) {
4092    CHECK_EQ(callee_saved_value, get_register(r13));
4093  }
4094  CHECK_EQ(callee_saved_value, get_register(r14));
4095  CHECK_EQ(callee_saved_value, get_register(r15));
4096  CHECK_EQ(callee_saved_value, get_register(r16));
4097  CHECK_EQ(callee_saved_value, get_register(r17));
4098  CHECK_EQ(callee_saved_value, get_register(r18));
4099  CHECK_EQ(callee_saved_value, get_register(r19));
4100  CHECK_EQ(callee_saved_value, get_register(r20));
4101  CHECK_EQ(callee_saved_value, get_register(r21));
4102  CHECK_EQ(callee_saved_value, get_register(r22));
4103  CHECK_EQ(callee_saved_value, get_register(r23));
4104  CHECK_EQ(callee_saved_value, get_register(r24));
4105  CHECK_EQ(callee_saved_value, get_register(r25));
4106  CHECK_EQ(callee_saved_value, get_register(r26));
4107  CHECK_EQ(callee_saved_value, get_register(r27));
4108  CHECK_EQ(callee_saved_value, get_register(r28));
4109  CHECK_EQ(callee_saved_value, get_register(r29));
4110  CHECK_EQ(callee_saved_value, get_register(r30));
4111  CHECK_EQ(callee_saved_value, get_register(fp));
4112
4113  // Restore non-volatile registers with the original value.
4114  set_register(r2, r2_val);
4115  set_register(r13, r13_val);
4116  set_register(r14, r14_val);
4117  set_register(r15, r15_val);
4118  set_register(r16, r16_val);
4119  set_register(r17, r17_val);
4120  set_register(r18, r18_val);
4121  set_register(r19, r19_val);
4122  set_register(r20, r20_val);
4123  set_register(r21, r21_val);
4124  set_register(r22, r22_val);
4125  set_register(r23, r23_val);
4126  set_register(r24, r24_val);
4127  set_register(r25, r25_val);
4128  set_register(r26, r26_val);
4129  set_register(r27, r27_val);
4130  set_register(r28, r28_val);
4131  set_register(r29, r29_val);
4132  set_register(r30, r30_val);
4133  set_register(fp, r31_val);
4134}
4135
4136
4137intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
4138  va_list parameters;
4139  va_start(parameters, argument_count);
4140  // Set up arguments
4141
4142  // First eight arguments passed in registers r3-r10.
4143  int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
4144  int stack_arg_count = argument_count - reg_arg_count;
4145  for (int i = 0; i < reg_arg_count; i++) {
4146    set_register(i + 3, va_arg(parameters, intptr_t));
4147  }
4148
4149  // Remaining arguments passed on stack.
4150  intptr_t original_stack = get_register(sp);
4151  // Compute position of stack on entry to generated code.
4152  intptr_t entry_stack =
4153      (original_stack -
4154       (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
4155  if (base::OS::ActivationFrameAlignment() != 0) {
4156    entry_stack &= -base::OS::ActivationFrameAlignment();
4157  }
4158  // Store remaining arguments on stack, from low to high memory.
4159  // +2 is a hack for the LR slot + old SP on PPC
4160  intptr_t* stack_argument =
4161      reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
4162  for (int i = 0; i < stack_arg_count; i++) {
4163    stack_argument[i] = va_arg(parameters, intptr_t);
4164  }
4165  va_end(parameters);
4166  set_register(sp, entry_stack);
4167
4168  CallInternal(entry);
4169
4170  // Pop stack passed arguments.
4171  CHECK_EQ(entry_stack, get_register(sp));
4172  set_register(sp, original_stack);
4173
4174  intptr_t result = get_register(r3);
4175  return result;
4176}
4177
4178
4179void Simulator::CallFP(byte* entry, double d0, double d1) {
4180  set_d_register_from_double(1, d0);
4181  set_d_register_from_double(2, d1);
4182  CallInternal(entry);
4183}
4184
4185
4186int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
4187  CallFP(entry, d0, d1);
4188  int32_t result = get_register(r3);
4189  return result;
4190}
4191
4192
4193double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
4194  CallFP(entry, d0, d1);
4195  return get_double_from_d_register(1);
4196}
4197
4198
4199uintptr_t Simulator::PushAddress(uintptr_t address) {
4200  uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
4201  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4202  *stack_slot = address;
4203  set_register(sp, new_sp);
4204  return new_sp;
4205}
4206
4207
4208uintptr_t Simulator::PopAddress() {
4209  uintptr_t current_sp = get_register(sp);
4210  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4211  uintptr_t address = *stack_slot;
4212  set_register(sp, current_sp + sizeof(uintptr_t));
4213  return address;
4214}
4215}  // namespace internal
4216}  // namespace v8
4217
4218#endif  // USE_SIMULATOR
4219#endif  // V8_TARGET_ARCH_PPC
4220