1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31//
32// Tests for Google Test itself.  This verifies that the basic constructs of
33// Google Test work.
34
35#include "gtest/gtest.h"
36
37// Verifies that the command line flag variables can be accessed
38// in code once <gtest/gtest.h> has been #included.
39// Do not move it after other #includes.
40TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42      || testing::GTEST_FLAG(break_on_failure)
43      || testing::GTEST_FLAG(catch_exceptions)
44      || testing::GTEST_FLAG(color) != "unknown"
45      || testing::GTEST_FLAG(filter) != "unknown"
46      || testing::GTEST_FLAG(list_tests)
47      || testing::GTEST_FLAG(output) != "unknown"
48      || testing::GTEST_FLAG(print_time)
49      || testing::GTEST_FLAG(random_seed)
50      || testing::GTEST_FLAG(repeat) > 0
51      || testing::GTEST_FLAG(show_internal_stack_frames)
52      || testing::GTEST_FLAG(shuffle)
53      || testing::GTEST_FLAG(stack_trace_depth) > 0
54      || testing::GTEST_FLAG(stream_result_to) != "unknown"
55      || testing::GTEST_FLAG(throw_on_failure);
56  EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57}
58
59#include <limits.h>  // For INT_MAX.
60#include <stdlib.h>
61#include <string.h>
62#include <time.h>
63
64#include <map>
65#include <vector>
66#include <ostream>
67
68#include "gtest/gtest-spi.h"
69
70// Indicates that this translation unit is part of Google Test's
71// implementation.  It must come before gtest-internal-inl.h is
72// included, or there will be a compiler error.  This trick is to
73// prevent a user from accidentally including gtest-internal-inl.h in
74// his code.
75#define GTEST_IMPLEMENTATION_ 1
76#include "src/gtest-internal-inl.h"
77#undef GTEST_IMPLEMENTATION_
78
79namespace testing {
80namespace internal {
81
82#if GTEST_CAN_STREAM_RESULTS_
83
84class StreamingListenerTest : public Test {
85 public:
86  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87   public:
88    // Sends a string to the socket.
89    virtual void Send(const string& message) { output_ += message; }
90
91    string output_;
92  };
93
94  StreamingListenerTest()
95      : fake_sock_writer_(new FakeSocketWriter),
96        streamer_(fake_sock_writer_),
97        test_info_obj_("FooTest", "Bar", NULL, NULL,
98                       CodeLocation(__FILE__, __LINE__), 0, NULL) {}
99
100 protected:
101  string* output() { return &(fake_sock_writer_->output_); }
102
103  FakeSocketWriter* const fake_sock_writer_;
104  StreamingListener streamer_;
105  UnitTest unit_test_;
106  TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
107};
108
109TEST_F(StreamingListenerTest, OnTestProgramEnd) {
110  *output() = "";
111  streamer_.OnTestProgramEnd(unit_test_);
112  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
113}
114
115TEST_F(StreamingListenerTest, OnTestIterationEnd) {
116  *output() = "";
117  streamer_.OnTestIterationEnd(unit_test_, 42);
118  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
119}
120
121TEST_F(StreamingListenerTest, OnTestCaseStart) {
122  *output() = "";
123  streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
124  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
125}
126
127TEST_F(StreamingListenerTest, OnTestCaseEnd) {
128  *output() = "";
129  streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
130  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
131}
132
133TEST_F(StreamingListenerTest, OnTestStart) {
134  *output() = "";
135  streamer_.OnTestStart(test_info_obj_);
136  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
137}
138
139TEST_F(StreamingListenerTest, OnTestEnd) {
140  *output() = "";
141  streamer_.OnTestEnd(test_info_obj_);
142  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
143}
144
145TEST_F(StreamingListenerTest, OnTestPartResult) {
146  *output() = "";
147  streamer_.OnTestPartResult(TestPartResult(
148      TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
149
150  // Meta characters in the failure message should be properly escaped.
151  EXPECT_EQ(
152      "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
153      *output());
154}
155
156#endif  // GTEST_CAN_STREAM_RESULTS_
157
158// Provides access to otherwise private parts of the TestEventListeners class
159// that are needed to test it.
160class TestEventListenersAccessor {
161 public:
162  static TestEventListener* GetRepeater(TestEventListeners* listeners) {
163    return listeners->repeater();
164  }
165
166  static void SetDefaultResultPrinter(TestEventListeners* listeners,
167                                      TestEventListener* listener) {
168    listeners->SetDefaultResultPrinter(listener);
169  }
170  static void SetDefaultXmlGenerator(TestEventListeners* listeners,
171                                     TestEventListener* listener) {
172    listeners->SetDefaultXmlGenerator(listener);
173  }
174
175  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
176    return listeners.EventForwardingEnabled();
177  }
178
179  static void SuppressEventForwarding(TestEventListeners* listeners) {
180    listeners->SuppressEventForwarding();
181  }
182};
183
184class UnitTestRecordPropertyTestHelper : public Test {
185 protected:
186  UnitTestRecordPropertyTestHelper() {}
187
188  // Forwards to UnitTest::RecordProperty() to bypass access controls.
189  void UnitTestRecordProperty(const char* key, const std::string& value) {
190    unit_test_.RecordProperty(key, value);
191  }
192
193  UnitTest unit_test_;
194};
195
196}  // namespace internal
197}  // namespace testing
198
199using testing::AssertionFailure;
200using testing::AssertionResult;
201using testing::AssertionSuccess;
202using testing::DoubleLE;
203using testing::EmptyTestEventListener;
204using testing::Environment;
205using testing::FloatLE;
206using testing::GTEST_FLAG(also_run_disabled_tests);
207using testing::GTEST_FLAG(break_on_failure);
208using testing::GTEST_FLAG(catch_exceptions);
209using testing::GTEST_FLAG(color);
210using testing::GTEST_FLAG(death_test_use_fork);
211using testing::GTEST_FLAG(filter);
212using testing::GTEST_FLAG(list_tests);
213using testing::GTEST_FLAG(output);
214using testing::GTEST_FLAG(print_time);
215using testing::GTEST_FLAG(random_seed);
216using testing::GTEST_FLAG(repeat);
217using testing::GTEST_FLAG(show_internal_stack_frames);
218using testing::GTEST_FLAG(shuffle);
219using testing::GTEST_FLAG(stack_trace_depth);
220using testing::GTEST_FLAG(stream_result_to);
221using testing::GTEST_FLAG(throw_on_failure);
222using testing::IsNotSubstring;
223using testing::IsSubstring;
224using testing::Message;
225using testing::ScopedFakeTestPartResultReporter;
226using testing::StaticAssertTypeEq;
227using testing::Test;
228using testing::TestCase;
229using testing::TestEventListeners;
230using testing::TestInfo;
231using testing::TestPartResult;
232using testing::TestPartResultArray;
233using testing::TestProperty;
234using testing::TestResult;
235using testing::TimeInMillis;
236using testing::UnitTest;
237using testing::internal::AddReference;
238using testing::internal::AlwaysFalse;
239using testing::internal::AlwaysTrue;
240using testing::internal::AppendUserMessage;
241using testing::internal::ArrayAwareFind;
242using testing::internal::ArrayEq;
243using testing::internal::CodePointToUtf8;
244using testing::internal::CompileAssertTypesEqual;
245using testing::internal::CopyArray;
246using testing::internal::CountIf;
247using testing::internal::EqFailure;
248using testing::internal::FloatingPoint;
249using testing::internal::ForEach;
250using testing::internal::FormatEpochTimeInMillisAsIso8601;
251using testing::internal::FormatTimeInMillisAsSeconds;
252using testing::internal::GTestFlagSaver;
253using testing::internal::GetCurrentOsStackTraceExceptTop;
254using testing::internal::GetElementOr;
255using testing::internal::GetNextRandomSeed;
256using testing::internal::GetRandomSeedFromFlag;
257using testing::internal::GetTestTypeId;
258using testing::internal::GetTimeInMillis;
259using testing::internal::GetTypeId;
260using testing::internal::GetUnitTestImpl;
261using testing::internal::ImplicitlyConvertible;
262using testing::internal::Int32;
263using testing::internal::Int32FromEnvOrDie;
264using testing::internal::IsAProtocolMessage;
265using testing::internal::IsContainer;
266using testing::internal::IsContainerTest;
267using testing::internal::IsNotContainer;
268using testing::internal::NativeArray;
269using testing::internal::ParseInt32Flag;
270using testing::internal::RelationToSourceCopy;
271using testing::internal::RelationToSourceReference;
272using testing::internal::RemoveConst;
273using testing::internal::RemoveReference;
274using testing::internal::ShouldRunTestOnShard;
275using testing::internal::ShouldShard;
276using testing::internal::ShouldUseColor;
277using testing::internal::Shuffle;
278using testing::internal::ShuffleRange;
279using testing::internal::SkipPrefix;
280using testing::internal::StreamableToString;
281using testing::internal::String;
282using testing::internal::TestEventListenersAccessor;
283using testing::internal::TestResultAccessor;
284using testing::internal::UInt32;
285using testing::internal::WideStringToUtf8;
286using testing::internal::edit_distance::CalculateOptimalEdits;
287using testing::internal::edit_distance::CreateUnifiedDiff;
288using testing::internal::edit_distance::EditType;
289using testing::internal::kMaxRandomSeed;
290using testing::internal::kTestTypeIdInGoogleTest;
291using testing::kMaxStackTraceDepth;
292
293#if GTEST_HAS_STREAM_REDIRECTION
294using testing::internal::CaptureStdout;
295using testing::internal::GetCapturedStdout;
296#endif
297
298#if GTEST_IS_THREADSAFE
299using testing::internal::ThreadWithParam;
300#endif
301
302class TestingVector : public std::vector<int> {
303};
304
305::std::ostream& operator<<(::std::ostream& os,
306                           const TestingVector& vector) {
307  os << "{ ";
308  for (size_t i = 0; i < vector.size(); i++) {
309    os << vector[i] << " ";
310  }
311  os << "}";
312  return os;
313}
314
315// This line tests that we can define tests in an unnamed namespace.
316namespace {
317
318TEST(GetRandomSeedFromFlagTest, HandlesZero) {
319  const int seed = GetRandomSeedFromFlag(0);
320  EXPECT_LE(1, seed);
321  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
322}
323
324TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
325  EXPECT_EQ(1, GetRandomSeedFromFlag(1));
326  EXPECT_EQ(2, GetRandomSeedFromFlag(2));
327  EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
328  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
329            GetRandomSeedFromFlag(kMaxRandomSeed));
330}
331
332TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
333  const int seed1 = GetRandomSeedFromFlag(-1);
334  EXPECT_LE(1, seed1);
335  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
336
337  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
338  EXPECT_LE(1, seed2);
339  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
340}
341
342TEST(GetNextRandomSeedTest, WorksForValidInput) {
343  EXPECT_EQ(2, GetNextRandomSeed(1));
344  EXPECT_EQ(3, GetNextRandomSeed(2));
345  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
346            GetNextRandomSeed(kMaxRandomSeed - 1));
347  EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
348
349  // We deliberately don't test GetNextRandomSeed() with invalid
350  // inputs, as that requires death tests, which are expensive.  This
351  // is fine as GetNextRandomSeed() is internal and has a
352  // straightforward definition.
353}
354
355static void ClearCurrentTestPartResults() {
356  TestResultAccessor::ClearTestPartResults(
357      GetUnitTestImpl()->current_test_result());
358}
359
360// Tests GetTypeId.
361
362TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
363  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
364  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
365}
366
367class SubClassOfTest : public Test {};
368class AnotherSubClassOfTest : public Test {};
369
370TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
371  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
372  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
373  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
374  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
375  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
376  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
377}
378
379// Verifies that GetTestTypeId() returns the same value, no matter it
380// is called from inside Google Test or outside of it.
381TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
382  EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
383}
384
385// Tests FormatTimeInMillisAsSeconds().
386
387TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
388  EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
389}
390
391TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
392  EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
393  EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
394  EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
395  EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
396  EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
397}
398
399TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
400  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
401  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
402  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
403  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
404  EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
405}
406
407// Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
408// for particular dates below was verified in Python using
409// datetime.datetime.fromutctimestamp(<timetamp>/1000).
410
411// FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
412// have to set up a particular timezone to obtain predictable results.
413class FormatEpochTimeInMillisAsIso8601Test : public Test {
414 public:
415  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
416  // 32 bits, even when 64-bit integer types are available.  We have to
417  // force the constants to have a 64-bit type here.
418  static const TimeInMillis kMillisPerSec = 1000;
419
420 private:
421  virtual void SetUp() {
422    saved_tz_ = NULL;
423
424    GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* getenv, strdup: deprecated */)
425    if (getenv("TZ"))
426      saved_tz_ = strdup(getenv("TZ"));
427    GTEST_DISABLE_MSC_WARNINGS_POP_()
428
429    // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
430    // cannot use the local time zone because the function's output depends
431    // on the time zone.
432    SetTimeZone("UTC+00");
433  }
434
435  virtual void TearDown() {
436    SetTimeZone(saved_tz_);
437    free(const_cast<char*>(saved_tz_));
438    saved_tz_ = NULL;
439  }
440
441  static void SetTimeZone(const char* time_zone) {
442    // tzset() distinguishes between the TZ variable being present and empty
443    // and not being present, so we have to consider the case of time_zone
444    // being NULL.
445#if _MSC_VER
446    // ...Unless it's MSVC, whose standard library's _putenv doesn't
447    // distinguish between an empty and a missing variable.
448    const std::string env_var =
449        std::string("TZ=") + (time_zone ? time_zone : "");
450    _putenv(env_var.c_str());
451    GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
452    tzset();
453    GTEST_DISABLE_MSC_WARNINGS_POP_()
454#else
455    if (time_zone) {
456      setenv(("TZ"), time_zone, 1);
457    } else {
458      unsetenv("TZ");
459    }
460    tzset();
461#endif
462  }
463
464  const char* saved_tz_;
465};
466
467const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
468
469TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
470  EXPECT_EQ("2011-10-31T18:52:42",
471            FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
472}
473
474TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
475  EXPECT_EQ(
476      "2011-10-31T18:52:42",
477      FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
478}
479
480TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
481  EXPECT_EQ("2011-09-03T05:07:02",
482            FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
483}
484
485TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
486  EXPECT_EQ("2011-09-28T17:08:22",
487            FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
488}
489
490TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
491  EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
492}
493
494#if GTEST_CAN_COMPARE_NULL
495
496# ifdef __BORLANDC__
497// Silences warnings: "Condition is always true", "Unreachable code"
498#  pragma option push -w-ccc -w-rch
499# endif
500
501// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
502// pointer literal.
503TEST(NullLiteralTest, IsTrueForNullLiterals) {
504  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
505  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
506  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
507  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
508}
509
510// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
511// pointer literal.
512TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
513  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
514  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
515  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
516  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
517}
518
519# ifdef __BORLANDC__
520// Restores warnings after previous "#pragma option push" suppressed them.
521#  pragma option pop
522# endif
523
524#endif  // GTEST_CAN_COMPARE_NULL
525//
526// Tests CodePointToUtf8().
527
528// Tests that the NUL character L'\0' is encoded correctly.
529TEST(CodePointToUtf8Test, CanEncodeNul) {
530  EXPECT_EQ("", CodePointToUtf8(L'\0'));
531}
532
533// Tests that ASCII characters are encoded correctly.
534TEST(CodePointToUtf8Test, CanEncodeAscii) {
535  EXPECT_EQ("a", CodePointToUtf8(L'a'));
536  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
537  EXPECT_EQ("&", CodePointToUtf8(L'&'));
538  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
539}
540
541// Tests that Unicode code-points that have 8 to 11 bits are encoded
542// as 110xxxxx 10xxxxxx.
543TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
544  // 000 1101 0011 => 110-00011 10-010011
545  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
546
547  // 101 0111 0110 => 110-10101 10-110110
548  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
549  // in wide strings and wide chars. In order to accomodate them, we have to
550  // introduce such character constants as integers.
551  EXPECT_EQ("\xD5\xB6",
552            CodePointToUtf8(static_cast<wchar_t>(0x576)));
553}
554
555// Tests that Unicode code-points that have 12 to 16 bits are encoded
556// as 1110xxxx 10xxxxxx 10xxxxxx.
557TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
558  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
559  EXPECT_EQ("\xE0\xA3\x93",
560            CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
561
562  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
563  EXPECT_EQ("\xEC\x9D\x8D",
564            CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
565}
566
567#if !GTEST_WIDE_STRING_USES_UTF16_
568// Tests in this group require a wchar_t to hold > 16 bits, and thus
569// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
570// 16-bit wide. This code may not compile on those systems.
571
572// Tests that Unicode code-points that have 17 to 21 bits are encoded
573// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
574TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
575  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
576  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
577
578  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
579  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
580
581  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
582  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
583}
584
585// Tests that encoding an invalid code-point generates the expected result.
586TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
587  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
588}
589
590#endif  // !GTEST_WIDE_STRING_USES_UTF16_
591
592// Tests WideStringToUtf8().
593
594// Tests that the NUL character L'\0' is encoded correctly.
595TEST(WideStringToUtf8Test, CanEncodeNul) {
596  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
597  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
598}
599
600// Tests that ASCII strings are encoded correctly.
601TEST(WideStringToUtf8Test, CanEncodeAscii) {
602  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
603  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
604  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
605  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
606}
607
608// Tests that Unicode code-points that have 8 to 11 bits are encoded
609// as 110xxxxx 10xxxxxx.
610TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
611  // 000 1101 0011 => 110-00011 10-010011
612  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
613  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
614
615  // 101 0111 0110 => 110-10101 10-110110
616  const wchar_t s[] = { 0x576, '\0' };
617  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
618  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
619}
620
621// Tests that Unicode code-points that have 12 to 16 bits are encoded
622// as 1110xxxx 10xxxxxx 10xxxxxx.
623TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
624  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
625  const wchar_t s1[] = { 0x8D3, '\0' };
626  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
627  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
628
629  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
630  const wchar_t s2[] = { 0xC74D, '\0' };
631  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
632  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
633}
634
635// Tests that the conversion stops when the function encounters \0 character.
636TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
637  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
638}
639
640// Tests that the conversion stops when the function reaches the limit
641// specified by the 'length' parameter.
642TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
643  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
644}
645
646#if !GTEST_WIDE_STRING_USES_UTF16_
647// Tests that Unicode code-points that have 17 to 21 bits are encoded
648// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
649// on the systems using UTF-16 encoding.
650TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
651  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
652  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
653  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
654
655  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
656  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
657  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
658}
659
660// Tests that encoding an invalid code-point generates the expected result.
661TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
662  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
663               WideStringToUtf8(L"\xABCDFF", -1).c_str());
664}
665#else  // !GTEST_WIDE_STRING_USES_UTF16_
666// Tests that surrogate pairs are encoded correctly on the systems using
667// UTF-16 encoding in the wide strings.
668TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
669  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
670  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
671}
672
673// Tests that encoding an invalid UTF-16 surrogate pair
674// generates the expected result.
675TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
676  // Leading surrogate is at the end of the string.
677  const wchar_t s1[] = { 0xD800, '\0' };
678  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
679  // Leading surrogate is not followed by the trailing surrogate.
680  const wchar_t s2[] = { 0xD800, 'M', '\0' };
681  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
682  // Trailing surrogate appearas without a leading surrogate.
683  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
684  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
685}
686#endif  // !GTEST_WIDE_STRING_USES_UTF16_
687
688// Tests that codepoint concatenation works correctly.
689#if !GTEST_WIDE_STRING_USES_UTF16_
690TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
691  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
692  EXPECT_STREQ(
693      "\xF4\x88\x98\xB4"
694          "\xEC\x9D\x8D"
695          "\n"
696          "\xD5\xB6"
697          "\xE0\xA3\x93"
698          "\xF4\x88\x98\xB4",
699      WideStringToUtf8(s, -1).c_str());
700}
701#else
702TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
703  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
704  EXPECT_STREQ(
705      "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
706      WideStringToUtf8(s, -1).c_str());
707}
708#endif  // !GTEST_WIDE_STRING_USES_UTF16_
709
710// Tests the Random class.
711
712TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
713  testing::internal::Random random(42);
714  EXPECT_DEATH_IF_SUPPORTED(
715      random.Generate(0),
716      "Cannot generate a number in the range \\[0, 0\\)");
717  EXPECT_DEATH_IF_SUPPORTED(
718      random.Generate(testing::internal::Random::kMaxRange + 1),
719      "Generation of a number in \\[0, 2147483649\\) was requested, "
720      "but this can only generate numbers in \\[0, 2147483648\\)");
721}
722
723TEST(RandomTest, GeneratesNumbersWithinRange) {
724  const UInt32 kRange = 10000;
725  testing::internal::Random random(12345);
726  for (int i = 0; i < 10; i++) {
727    EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
728  }
729
730  testing::internal::Random random2(testing::internal::Random::kMaxRange);
731  for (int i = 0; i < 10; i++) {
732    EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
733  }
734}
735
736TEST(RandomTest, RepeatsWhenReseeded) {
737  const int kSeed = 123;
738  const int kArraySize = 10;
739  const UInt32 kRange = 10000;
740  UInt32 values[kArraySize];
741
742  testing::internal::Random random(kSeed);
743  for (int i = 0; i < kArraySize; i++) {
744    values[i] = random.Generate(kRange);
745  }
746
747  random.Reseed(kSeed);
748  for (int i = 0; i < kArraySize; i++) {
749    EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
750  }
751}
752
753// Tests STL container utilities.
754
755// Tests CountIf().
756
757static bool IsPositive(int n) { return n > 0; }
758
759TEST(ContainerUtilityTest, CountIf) {
760  std::vector<int> v;
761  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
762
763  v.push_back(-1);
764  v.push_back(0);
765  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
766
767  v.push_back(2);
768  v.push_back(-10);
769  v.push_back(10);
770  EXPECT_EQ(2, CountIf(v, IsPositive));
771}
772
773// Tests ForEach().
774
775static int g_sum = 0;
776static void Accumulate(int n) { g_sum += n; }
777
778TEST(ContainerUtilityTest, ForEach) {
779  std::vector<int> v;
780  g_sum = 0;
781  ForEach(v, Accumulate);
782  EXPECT_EQ(0, g_sum);  // Works for an empty container;
783
784  g_sum = 0;
785  v.push_back(1);
786  ForEach(v, Accumulate);
787  EXPECT_EQ(1, g_sum);  // Works for a container with one element.
788
789  g_sum = 0;
790  v.push_back(20);
791  v.push_back(300);
792  ForEach(v, Accumulate);
793  EXPECT_EQ(321, g_sum);
794}
795
796// Tests GetElementOr().
797TEST(ContainerUtilityTest, GetElementOr) {
798  std::vector<char> a;
799  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
800
801  a.push_back('a');
802  a.push_back('b');
803  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
804  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
805  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
806  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
807}
808
809TEST(ContainerUtilityDeathTest, ShuffleRange) {
810  std::vector<int> a;
811  a.push_back(0);
812  a.push_back(1);
813  a.push_back(2);
814  testing::internal::Random random(1);
815
816  EXPECT_DEATH_IF_SUPPORTED(
817      ShuffleRange(&random, -1, 1, &a),
818      "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
819  EXPECT_DEATH_IF_SUPPORTED(
820      ShuffleRange(&random, 4, 4, &a),
821      "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
822  EXPECT_DEATH_IF_SUPPORTED(
823      ShuffleRange(&random, 3, 2, &a),
824      "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
825  EXPECT_DEATH_IF_SUPPORTED(
826      ShuffleRange(&random, 3, 4, &a),
827      "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
828}
829
830class VectorShuffleTest : public Test {
831 protected:
832  static const int kVectorSize = 20;
833
834  VectorShuffleTest() : random_(1) {
835    for (int i = 0; i < kVectorSize; i++) {
836      vector_.push_back(i);
837    }
838  }
839
840  static bool VectorIsCorrupt(const TestingVector& vector) {
841    if (kVectorSize != static_cast<int>(vector.size())) {
842      return true;
843    }
844
845    bool found_in_vector[kVectorSize] = { false };
846    for (size_t i = 0; i < vector.size(); i++) {
847      const int e = vector[i];
848      if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
849        return true;
850      }
851      found_in_vector[e] = true;
852    }
853
854    // Vector size is correct, elements' range is correct, no
855    // duplicate elements.  Therefore no corruption has occurred.
856    return false;
857  }
858
859  static bool VectorIsNotCorrupt(const TestingVector& vector) {
860    return !VectorIsCorrupt(vector);
861  }
862
863  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
864    for (int i = begin; i < end; i++) {
865      if (i != vector[i]) {
866        return true;
867      }
868    }
869    return false;
870  }
871
872  static bool RangeIsUnshuffled(
873      const TestingVector& vector, int begin, int end) {
874    return !RangeIsShuffled(vector, begin, end);
875  }
876
877  static bool VectorIsShuffled(const TestingVector& vector) {
878    return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
879  }
880
881  static bool VectorIsUnshuffled(const TestingVector& vector) {
882    return !VectorIsShuffled(vector);
883  }
884
885  testing::internal::Random random_;
886  TestingVector vector_;
887};  // class VectorShuffleTest
888
889const int VectorShuffleTest::kVectorSize;
890
891TEST_F(VectorShuffleTest, HandlesEmptyRange) {
892  // Tests an empty range at the beginning...
893  ShuffleRange(&random_, 0, 0, &vector_);
894  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
895  ASSERT_PRED1(VectorIsUnshuffled, vector_);
896
897  // ...in the middle...
898  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
899  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
900  ASSERT_PRED1(VectorIsUnshuffled, vector_);
901
902  // ...at the end...
903  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
904  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
905  ASSERT_PRED1(VectorIsUnshuffled, vector_);
906
907  // ...and past the end.
908  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
909  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
910  ASSERT_PRED1(VectorIsUnshuffled, vector_);
911}
912
913TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
914  // Tests a size one range at the beginning...
915  ShuffleRange(&random_, 0, 1, &vector_);
916  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917  ASSERT_PRED1(VectorIsUnshuffled, vector_);
918
919  // ...in the middle...
920  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
921  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
922  ASSERT_PRED1(VectorIsUnshuffled, vector_);
923
924  // ...and at the end.
925  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
926  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
927  ASSERT_PRED1(VectorIsUnshuffled, vector_);
928}
929
930// Because we use our own random number generator and a fixed seed,
931// we can guarantee that the following "random" tests will succeed.
932
933TEST_F(VectorShuffleTest, ShufflesEntireVector) {
934  Shuffle(&random_, &vector_);
935  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
936  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
937
938  // Tests the first and last elements in particular to ensure that
939  // there are no off-by-one problems in our shuffle algorithm.
940  EXPECT_NE(0, vector_[0]);
941  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
942}
943
944TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
945  const int kRangeSize = kVectorSize/2;
946
947  ShuffleRange(&random_, 0, kRangeSize, &vector_);
948
949  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
950  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
951  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
952}
953
954TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
955  const int kRangeSize = kVectorSize / 2;
956  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
957
958  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
959  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
960  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
961}
962
963TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
964  int kRangeSize = kVectorSize/3;
965  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
966
967  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
968  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
969  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
970  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
971}
972
973TEST_F(VectorShuffleTest, ShufflesRepeatably) {
974  TestingVector vector2;
975  for (int i = 0; i < kVectorSize; i++) {
976    vector2.push_back(i);
977  }
978
979  random_.Reseed(1234);
980  Shuffle(&random_, &vector_);
981  random_.Reseed(1234);
982  Shuffle(&random_, &vector2);
983
984  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
985  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
986
987  for (int i = 0; i < kVectorSize; i++) {
988    EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
989  }
990}
991
992// Tests the size of the AssertHelper class.
993
994TEST(AssertHelperTest, AssertHelperIsSmall) {
995  // To avoid breaking clients that use lots of assertions in one
996  // function, we cannot grow the size of AssertHelper.
997  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
998}
999
1000// Tests String::EndsWithCaseInsensitive().
1001TEST(StringTest, EndsWithCaseInsensitive) {
1002  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1003  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1004  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1005  EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1006
1007  EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1008  EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1009  EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1010}
1011
1012// C++Builder's preprocessor is buggy; it fails to expand macros that
1013// appear in macro parameters after wide char literals.  Provide an alias
1014// for NULL as a workaround.
1015static const wchar_t* const kNull = NULL;
1016
1017// Tests String::CaseInsensitiveWideCStringEquals
1018TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1019  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1020  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1021  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1022  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1023  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1024  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1025  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1026  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1027}
1028
1029#if GTEST_OS_WINDOWS
1030
1031// Tests String::ShowWideCString().
1032TEST(StringTest, ShowWideCString) {
1033  EXPECT_STREQ("(null)",
1034               String::ShowWideCString(NULL).c_str());
1035  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1036  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1037}
1038
1039# if GTEST_OS_WINDOWS_MOBILE
1040TEST(StringTest, AnsiAndUtf16Null) {
1041  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1042  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1043}
1044
1045TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1046  const char* ansi = String::Utf16ToAnsi(L"str");
1047  EXPECT_STREQ("str", ansi);
1048  delete [] ansi;
1049  const WCHAR* utf16 = String::AnsiToUtf16("str");
1050  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1051  delete [] utf16;
1052}
1053
1054TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1055  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1056  EXPECT_STREQ(".:\\ \"*?", ansi);
1057  delete [] ansi;
1058  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1059  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1060  delete [] utf16;
1061}
1062# endif  // GTEST_OS_WINDOWS_MOBILE
1063
1064#endif  // GTEST_OS_WINDOWS
1065
1066// Tests TestProperty construction.
1067TEST(TestPropertyTest, StringValue) {
1068  TestProperty property("key", "1");
1069  EXPECT_STREQ("key", property.key());
1070  EXPECT_STREQ("1", property.value());
1071}
1072
1073// Tests TestProperty replacing a value.
1074TEST(TestPropertyTest, ReplaceStringValue) {
1075  TestProperty property("key", "1");
1076  EXPECT_STREQ("1", property.value());
1077  property.SetValue("2");
1078  EXPECT_STREQ("2", property.value());
1079}
1080
1081// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1082// functions (i.e. their definitions cannot be inlined at the call
1083// sites), or C++Builder won't compile the code.
1084static void AddFatalFailure() {
1085  FAIL() << "Expected fatal failure.";
1086}
1087
1088static void AddNonfatalFailure() {
1089  ADD_FAILURE() << "Expected non-fatal failure.";
1090}
1091
1092class ScopedFakeTestPartResultReporterTest : public Test {
1093 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1094  enum FailureMode {
1095    FATAL_FAILURE,
1096    NONFATAL_FAILURE
1097  };
1098  static void AddFailure(FailureMode failure) {
1099    if (failure == FATAL_FAILURE) {
1100      AddFatalFailure();
1101    } else {
1102      AddNonfatalFailure();
1103    }
1104  }
1105};
1106
1107// Tests that ScopedFakeTestPartResultReporter intercepts test
1108// failures.
1109TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1110  TestPartResultArray results;
1111  {
1112    ScopedFakeTestPartResultReporter reporter(
1113        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1114        &results);
1115    AddFailure(NONFATAL_FAILURE);
1116    AddFailure(FATAL_FAILURE);
1117  }
1118
1119  EXPECT_EQ(2, results.size());
1120  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1121  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1122}
1123
1124TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1125  TestPartResultArray results;
1126  {
1127    // Tests, that the deprecated constructor still works.
1128    ScopedFakeTestPartResultReporter reporter(&results);
1129    AddFailure(NONFATAL_FAILURE);
1130  }
1131  EXPECT_EQ(1, results.size());
1132}
1133
1134#if GTEST_IS_THREADSAFE
1135
1136class ScopedFakeTestPartResultReporterWithThreadsTest
1137  : public ScopedFakeTestPartResultReporterTest {
1138 protected:
1139  static void AddFailureInOtherThread(FailureMode failure) {
1140    ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1141    thread.Join();
1142  }
1143};
1144
1145TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1146       InterceptsTestFailuresInAllThreads) {
1147  TestPartResultArray results;
1148  {
1149    ScopedFakeTestPartResultReporter reporter(
1150        ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1151    AddFailure(NONFATAL_FAILURE);
1152    AddFailure(FATAL_FAILURE);
1153    AddFailureInOtherThread(NONFATAL_FAILURE);
1154    AddFailureInOtherThread(FATAL_FAILURE);
1155  }
1156
1157  EXPECT_EQ(4, results.size());
1158  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1159  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1160  EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1161  EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1162}
1163
1164#endif  // GTEST_IS_THREADSAFE
1165
1166// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1167// work even if the failure is generated in a called function rather than
1168// the current context.
1169
1170typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1171
1172TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1173  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1174}
1175
1176#if GTEST_HAS_GLOBAL_STRING
1177TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1178  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1179}
1180#endif
1181
1182TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1183  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1184                       ::std::string("Expected fatal failure."));
1185}
1186
1187TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1188  // We have another test below to verify that the macro catches fatal
1189  // failures generated on another thread.
1190  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1191                                      "Expected fatal failure.");
1192}
1193
1194#ifdef __BORLANDC__
1195// Silences warnings: "Condition is always true"
1196# pragma option push -w-ccc
1197#endif
1198
1199// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1200// function even when the statement in it contains ASSERT_*.
1201
1202int NonVoidFunction() {
1203  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1204  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1205  return 0;
1206}
1207
1208TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1209  NonVoidFunction();
1210}
1211
1212// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1213// current function even though 'statement' generates a fatal failure.
1214
1215void DoesNotAbortHelper(bool* aborted) {
1216  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1217  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1218
1219  *aborted = false;
1220}
1221
1222#ifdef __BORLANDC__
1223// Restores warnings after previous "#pragma option push" suppressed them.
1224# pragma option pop
1225#endif
1226
1227TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1228  bool aborted = true;
1229  DoesNotAbortHelper(&aborted);
1230  EXPECT_FALSE(aborted);
1231}
1232
1233// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1234// statement that contains a macro which expands to code containing an
1235// unprotected comma.
1236
1237static int global_var = 0;
1238#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1239
1240TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1241#ifndef __BORLANDC__
1242  // ICE's in C++Builder.
1243  EXPECT_FATAL_FAILURE({
1244    GTEST_USE_UNPROTECTED_COMMA_;
1245    AddFatalFailure();
1246  }, "");
1247#endif
1248
1249  EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1250    GTEST_USE_UNPROTECTED_COMMA_;
1251    AddFatalFailure();
1252  }, "");
1253}
1254
1255// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1256
1257typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1258
1259TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1260  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1261                          "Expected non-fatal failure.");
1262}
1263
1264#if GTEST_HAS_GLOBAL_STRING
1265TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1266  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1267                          ::string("Expected non-fatal failure."));
1268}
1269#endif
1270
1271TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1272  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1273                          ::std::string("Expected non-fatal failure."));
1274}
1275
1276TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1277  // We have another test below to verify that the macro catches
1278  // non-fatal failures generated on another thread.
1279  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1280                                         "Expected non-fatal failure.");
1281}
1282
1283// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1284// statement that contains a macro which expands to code containing an
1285// unprotected comma.
1286TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1287  EXPECT_NONFATAL_FAILURE({
1288    GTEST_USE_UNPROTECTED_COMMA_;
1289    AddNonfatalFailure();
1290  }, "");
1291
1292  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1293    GTEST_USE_UNPROTECTED_COMMA_;
1294    AddNonfatalFailure();
1295  }, "");
1296}
1297
1298#if GTEST_IS_THREADSAFE
1299
1300typedef ScopedFakeTestPartResultReporterWithThreadsTest
1301    ExpectFailureWithThreadsTest;
1302
1303TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1304  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1305                                      "Expected fatal failure.");
1306}
1307
1308TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1309  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1310      AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1311}
1312
1313#endif  // GTEST_IS_THREADSAFE
1314
1315// Tests the TestProperty class.
1316
1317TEST(TestPropertyTest, ConstructorWorks) {
1318  const TestProperty property("key", "value");
1319  EXPECT_STREQ("key", property.key());
1320  EXPECT_STREQ("value", property.value());
1321}
1322
1323TEST(TestPropertyTest, SetValue) {
1324  TestProperty property("key", "value_1");
1325  EXPECT_STREQ("key", property.key());
1326  property.SetValue("value_2");
1327  EXPECT_STREQ("key", property.key());
1328  EXPECT_STREQ("value_2", property.value());
1329}
1330
1331// Tests the TestResult class
1332
1333// The test fixture for testing TestResult.
1334class TestResultTest : public Test {
1335 protected:
1336  typedef std::vector<TestPartResult> TPRVector;
1337
1338  // We make use of 2 TestPartResult objects,
1339  TestPartResult * pr1, * pr2;
1340
1341  // ... and 3 TestResult objects.
1342  TestResult * r0, * r1, * r2;
1343
1344  virtual void SetUp() {
1345    // pr1 is for success.
1346    pr1 = new TestPartResult(TestPartResult::kSuccess,
1347                             "foo/bar.cc",
1348                             10,
1349                             "Success!");
1350
1351    // pr2 is for fatal failure.
1352    pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1353                             "foo/bar.cc",
1354                             -1,  // This line number means "unknown"
1355                             "Failure!");
1356
1357    // Creates the TestResult objects.
1358    r0 = new TestResult();
1359    r1 = new TestResult();
1360    r2 = new TestResult();
1361
1362    // In order to test TestResult, we need to modify its internal
1363    // state, in particular the TestPartResult vector it holds.
1364    // test_part_results() returns a const reference to this vector.
1365    // We cast it to a non-const object s.t. it can be modified (yes,
1366    // this is a hack).
1367    TPRVector* results1 = const_cast<TPRVector*>(
1368        &TestResultAccessor::test_part_results(*r1));
1369    TPRVector* results2 = const_cast<TPRVector*>(
1370        &TestResultAccessor::test_part_results(*r2));
1371
1372    // r0 is an empty TestResult.
1373
1374    // r1 contains a single SUCCESS TestPartResult.
1375    results1->push_back(*pr1);
1376
1377    // r2 contains a SUCCESS, and a FAILURE.
1378    results2->push_back(*pr1);
1379    results2->push_back(*pr2);
1380  }
1381
1382  virtual void TearDown() {
1383    delete pr1;
1384    delete pr2;
1385
1386    delete r0;
1387    delete r1;
1388    delete r2;
1389  }
1390
1391  // Helper that compares two two TestPartResults.
1392  static void CompareTestPartResult(const TestPartResult& expected,
1393                                    const TestPartResult& actual) {
1394    EXPECT_EQ(expected.type(), actual.type());
1395    EXPECT_STREQ(expected.file_name(), actual.file_name());
1396    EXPECT_EQ(expected.line_number(), actual.line_number());
1397    EXPECT_STREQ(expected.summary(), actual.summary());
1398    EXPECT_STREQ(expected.message(), actual.message());
1399    EXPECT_EQ(expected.passed(), actual.passed());
1400    EXPECT_EQ(expected.failed(), actual.failed());
1401    EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1402    EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1403  }
1404};
1405
1406// Tests TestResult::total_part_count().
1407TEST_F(TestResultTest, total_part_count) {
1408  ASSERT_EQ(0, r0->total_part_count());
1409  ASSERT_EQ(1, r1->total_part_count());
1410  ASSERT_EQ(2, r2->total_part_count());
1411}
1412
1413// Tests TestResult::Passed().
1414TEST_F(TestResultTest, Passed) {
1415  ASSERT_TRUE(r0->Passed());
1416  ASSERT_TRUE(r1->Passed());
1417  ASSERT_FALSE(r2->Passed());
1418}
1419
1420// Tests TestResult::Failed().
1421TEST_F(TestResultTest, Failed) {
1422  ASSERT_FALSE(r0->Failed());
1423  ASSERT_FALSE(r1->Failed());
1424  ASSERT_TRUE(r2->Failed());
1425}
1426
1427// Tests TestResult::GetTestPartResult().
1428
1429typedef TestResultTest TestResultDeathTest;
1430
1431TEST_F(TestResultDeathTest, GetTestPartResult) {
1432  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1433  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1434  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1435  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1436}
1437
1438// Tests TestResult has no properties when none are added.
1439TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1440  TestResult test_result;
1441  ASSERT_EQ(0, test_result.test_property_count());
1442}
1443
1444// Tests TestResult has the expected property when added.
1445TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1446  TestResult test_result;
1447  TestProperty property("key_1", "1");
1448  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1449  ASSERT_EQ(1, test_result.test_property_count());
1450  const TestProperty& actual_property = test_result.GetTestProperty(0);
1451  EXPECT_STREQ("key_1", actual_property.key());
1452  EXPECT_STREQ("1", actual_property.value());
1453}
1454
1455// Tests TestResult has multiple properties when added.
1456TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1457  TestResult test_result;
1458  TestProperty property_1("key_1", "1");
1459  TestProperty property_2("key_2", "2");
1460  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1461  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1462  ASSERT_EQ(2, test_result.test_property_count());
1463  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1464  EXPECT_STREQ("key_1", actual_property_1.key());
1465  EXPECT_STREQ("1", actual_property_1.value());
1466
1467  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1468  EXPECT_STREQ("key_2", actual_property_2.key());
1469  EXPECT_STREQ("2", actual_property_2.value());
1470}
1471
1472// Tests TestResult::RecordProperty() overrides values for duplicate keys.
1473TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1474  TestResult test_result;
1475  TestProperty property_1_1("key_1", "1");
1476  TestProperty property_2_1("key_2", "2");
1477  TestProperty property_1_2("key_1", "12");
1478  TestProperty property_2_2("key_2", "22");
1479  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1480  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1481  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1482  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1483
1484  ASSERT_EQ(2, test_result.test_property_count());
1485  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1486  EXPECT_STREQ("key_1", actual_property_1.key());
1487  EXPECT_STREQ("12", actual_property_1.value());
1488
1489  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1490  EXPECT_STREQ("key_2", actual_property_2.key());
1491  EXPECT_STREQ("22", actual_property_2.value());
1492}
1493
1494// Tests TestResult::GetTestProperty().
1495TEST(TestResultPropertyTest, GetTestProperty) {
1496  TestResult test_result;
1497  TestProperty property_1("key_1", "1");
1498  TestProperty property_2("key_2", "2");
1499  TestProperty property_3("key_3", "3");
1500  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1501  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1502  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1503
1504  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1505  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1506  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1507
1508  EXPECT_STREQ("key_1", fetched_property_1.key());
1509  EXPECT_STREQ("1", fetched_property_1.value());
1510
1511  EXPECT_STREQ("key_2", fetched_property_2.key());
1512  EXPECT_STREQ("2", fetched_property_2.value());
1513
1514  EXPECT_STREQ("key_3", fetched_property_3.key());
1515  EXPECT_STREQ("3", fetched_property_3.value());
1516
1517  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1518  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1519}
1520
1521// Tests the Test class.
1522//
1523// It's difficult to test every public method of this class (we are
1524// already stretching the limit of Google Test by using it to test itself!).
1525// Fortunately, we don't have to do that, as we are already testing
1526// the functionalities of the Test class extensively by using Google Test
1527// alone.
1528//
1529// Therefore, this section only contains one test.
1530
1531// Tests that GTestFlagSaver works on Windows and Mac.
1532
1533class GTestFlagSaverTest : public Test {
1534 protected:
1535  // Saves the Google Test flags such that we can restore them later, and
1536  // then sets them to their default values.  This will be called
1537  // before the first test in this test case is run.
1538  static void SetUpTestCase() {
1539    saver_ = new GTestFlagSaver;
1540
1541    GTEST_FLAG(also_run_disabled_tests) = false;
1542    GTEST_FLAG(break_on_failure) = false;
1543    GTEST_FLAG(catch_exceptions) = false;
1544    GTEST_FLAG(death_test_use_fork) = false;
1545    GTEST_FLAG(color) = "auto";
1546    GTEST_FLAG(filter) = "";
1547    GTEST_FLAG(list_tests) = false;
1548    GTEST_FLAG(output) = "";
1549    GTEST_FLAG(print_time) = true;
1550    GTEST_FLAG(random_seed) = 0;
1551    GTEST_FLAG(repeat) = 1;
1552    GTEST_FLAG(shuffle) = false;
1553    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1554    GTEST_FLAG(stream_result_to) = "";
1555    GTEST_FLAG(throw_on_failure) = false;
1556  }
1557
1558  // Restores the Google Test flags that the tests have modified.  This will
1559  // be called after the last test in this test case is run.
1560  static void TearDownTestCase() {
1561    delete saver_;
1562    saver_ = NULL;
1563  }
1564
1565  // Verifies that the Google Test flags have their default values, and then
1566  // modifies each of them.
1567  void VerifyAndModifyFlags() {
1568    EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1569    EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1570    EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1571    EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1572    EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1573    EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1574    EXPECT_FALSE(GTEST_FLAG(list_tests));
1575    EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1576    EXPECT_TRUE(GTEST_FLAG(print_time));
1577    EXPECT_EQ(0, GTEST_FLAG(random_seed));
1578    EXPECT_EQ(1, GTEST_FLAG(repeat));
1579    EXPECT_FALSE(GTEST_FLAG(shuffle));
1580    EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1581    EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1582    EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1583
1584    GTEST_FLAG(also_run_disabled_tests) = true;
1585    GTEST_FLAG(break_on_failure) = true;
1586    GTEST_FLAG(catch_exceptions) = true;
1587    GTEST_FLAG(color) = "no";
1588    GTEST_FLAG(death_test_use_fork) = true;
1589    GTEST_FLAG(filter) = "abc";
1590    GTEST_FLAG(list_tests) = true;
1591    GTEST_FLAG(output) = "xml:foo.xml";
1592    GTEST_FLAG(print_time) = false;
1593    GTEST_FLAG(random_seed) = 1;
1594    GTEST_FLAG(repeat) = 100;
1595    GTEST_FLAG(shuffle) = true;
1596    GTEST_FLAG(stack_trace_depth) = 1;
1597    GTEST_FLAG(stream_result_to) = "localhost:1234";
1598    GTEST_FLAG(throw_on_failure) = true;
1599  }
1600
1601 private:
1602  // For saving Google Test flags during this test case.
1603  static GTestFlagSaver* saver_;
1604};
1605
1606GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1607
1608// Google Test doesn't guarantee the order of tests.  The following two
1609// tests are designed to work regardless of their order.
1610
1611// Modifies the Google Test flags in the test body.
1612TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1613  VerifyAndModifyFlags();
1614}
1615
1616// Verifies that the Google Test flags in the body of the previous test were
1617// restored to their original values.
1618TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1619  VerifyAndModifyFlags();
1620}
1621
1622// Sets an environment variable with the given name to the given
1623// value.  If the value argument is "", unsets the environment
1624// variable.  The caller must ensure that both arguments are not NULL.
1625static void SetEnv(const char* name, const char* value) {
1626#if GTEST_OS_WINDOWS_MOBILE
1627  // Environment variables are not supported on Windows CE.
1628  return;
1629#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1630  // C++Builder's putenv only stores a pointer to its parameter; we have to
1631  // ensure that the string remains valid as long as it might be needed.
1632  // We use an std::map to do so.
1633  static std::map<std::string, std::string*> added_env;
1634
1635  // Because putenv stores a pointer to the string buffer, we can't delete the
1636  // previous string (if present) until after it's replaced.
1637  std::string *prev_env = NULL;
1638  if (added_env.find(name) != added_env.end()) {
1639    prev_env = added_env[name];
1640  }
1641  added_env[name] = new std::string(
1642      (Message() << name << "=" << value).GetString());
1643
1644  // The standard signature of putenv accepts a 'char*' argument. Other
1645  // implementations, like C++Builder's, accept a 'const char*'.
1646  // We cast away the 'const' since that would work for both variants.
1647  putenv(const_cast<char*>(added_env[name]->c_str()));
1648  delete prev_env;
1649#elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1650  _putenv((Message() << name << "=" << value).GetString().c_str());
1651#else
1652  if (*value == '\0') {
1653    unsetenv(name);
1654  } else {
1655    setenv(name, value, 1);
1656  }
1657#endif  // GTEST_OS_WINDOWS_MOBILE
1658}
1659
1660#if !GTEST_OS_WINDOWS_MOBILE
1661// Environment variables are not supported on Windows CE.
1662
1663using testing::internal::Int32FromGTestEnv;
1664
1665// Tests Int32FromGTestEnv().
1666
1667// Tests that Int32FromGTestEnv() returns the default value when the
1668// environment variable is not set.
1669TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1670  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1671  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1672}
1673
1674# if !defined(GTEST_GET_INT32_FROM_ENV_)
1675
1676// Tests that Int32FromGTestEnv() returns the default value when the
1677// environment variable overflows as an Int32.
1678TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1679  printf("(expecting 2 warnings)\n");
1680
1681  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1682  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1683
1684  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1685  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1686}
1687
1688// Tests that Int32FromGTestEnv() returns the default value when the
1689// environment variable does not represent a valid decimal integer.
1690TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1691  printf("(expecting 2 warnings)\n");
1692
1693  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1694  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1695
1696  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1697  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1698}
1699
1700# endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1701
1702// Tests that Int32FromGTestEnv() parses and returns the value of the
1703// environment variable when it represents a valid decimal integer in
1704// the range of an Int32.
1705TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1706  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1707  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1708
1709  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1710  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1711}
1712#endif  // !GTEST_OS_WINDOWS_MOBILE
1713
1714// Tests ParseInt32Flag().
1715
1716// Tests that ParseInt32Flag() returns false and doesn't change the
1717// output value when the flag has wrong format
1718TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1719  Int32 value = 123;
1720  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1721  EXPECT_EQ(123, value);
1722
1723  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1724  EXPECT_EQ(123, value);
1725}
1726
1727// Tests that ParseInt32Flag() returns false and doesn't change the
1728// output value when the flag overflows as an Int32.
1729TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1730  printf("(expecting 2 warnings)\n");
1731
1732  Int32 value = 123;
1733  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1734  EXPECT_EQ(123, value);
1735
1736  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1737  EXPECT_EQ(123, value);
1738}
1739
1740// Tests that ParseInt32Flag() returns false and doesn't change the
1741// output value when the flag does not represent a valid decimal
1742// integer.
1743TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1744  printf("(expecting 2 warnings)\n");
1745
1746  Int32 value = 123;
1747  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1748  EXPECT_EQ(123, value);
1749
1750  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1751  EXPECT_EQ(123, value);
1752}
1753
1754// Tests that ParseInt32Flag() parses the value of the flag and
1755// returns true when the flag represents a valid decimal integer in
1756// the range of an Int32.
1757TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1758  Int32 value = 123;
1759  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1760  EXPECT_EQ(456, value);
1761
1762  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1763                             "abc", &value));
1764  EXPECT_EQ(-789, value);
1765}
1766
1767// Tests that Int32FromEnvOrDie() parses the value of the var or
1768// returns the correct default.
1769// Environment variables are not supported on Windows CE.
1770#if !GTEST_OS_WINDOWS_MOBILE
1771TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1772  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1773  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1774  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1775  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1776  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1777}
1778#endif  // !GTEST_OS_WINDOWS_MOBILE
1779
1780// Tests that Int32FromEnvOrDie() aborts with an error message
1781// if the variable is not an Int32.
1782TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1783  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1784  EXPECT_DEATH_IF_SUPPORTED(
1785      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1786      ".*");
1787}
1788
1789// Tests that Int32FromEnvOrDie() aborts with an error message
1790// if the variable cannot be represnted by an Int32.
1791TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1792  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1793  EXPECT_DEATH_IF_SUPPORTED(
1794      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1795      ".*");
1796}
1797
1798// Tests that ShouldRunTestOnShard() selects all tests
1799// where there is 1 shard.
1800TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1801  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1802  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1803  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1804  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1805  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1806}
1807
1808class ShouldShardTest : public testing::Test {
1809 protected:
1810  virtual void SetUp() {
1811    index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1812    total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1813  }
1814
1815  virtual void TearDown() {
1816    SetEnv(index_var_, "");
1817    SetEnv(total_var_, "");
1818  }
1819
1820  const char* index_var_;
1821  const char* total_var_;
1822};
1823
1824// Tests that sharding is disabled if neither of the environment variables
1825// are set.
1826TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1827  SetEnv(index_var_, "");
1828  SetEnv(total_var_, "");
1829
1830  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1831  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1832}
1833
1834// Tests that sharding is not enabled if total_shards  == 1.
1835TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1836  SetEnv(index_var_, "0");
1837  SetEnv(total_var_, "1");
1838  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1839  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1840}
1841
1842// Tests that sharding is enabled if total_shards > 1 and
1843// we are not in a death test subprocess.
1844// Environment variables are not supported on Windows CE.
1845#if !GTEST_OS_WINDOWS_MOBILE
1846TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1847  SetEnv(index_var_, "4");
1848  SetEnv(total_var_, "22");
1849  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1850  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1851
1852  SetEnv(index_var_, "8");
1853  SetEnv(total_var_, "9");
1854  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1855  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1856
1857  SetEnv(index_var_, "0");
1858  SetEnv(total_var_, "9");
1859  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1860  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1861}
1862#endif  // !GTEST_OS_WINDOWS_MOBILE
1863
1864// Tests that we exit in error if the sharding values are not valid.
1865
1866typedef ShouldShardTest ShouldShardDeathTest;
1867
1868TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1869  SetEnv(index_var_, "4");
1870  SetEnv(total_var_, "4");
1871  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1872
1873  SetEnv(index_var_, "4");
1874  SetEnv(total_var_, "-2");
1875  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1876
1877  SetEnv(index_var_, "5");
1878  SetEnv(total_var_, "");
1879  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1880
1881  SetEnv(index_var_, "");
1882  SetEnv(total_var_, "5");
1883  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1884}
1885
1886// Tests that ShouldRunTestOnShard is a partition when 5
1887// shards are used.
1888TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1889  // Choose an arbitrary number of tests and shards.
1890  const int num_tests = 17;
1891  const int num_shards = 5;
1892
1893  // Check partitioning: each test should be on exactly 1 shard.
1894  for (int test_id = 0; test_id < num_tests; test_id++) {
1895    int prev_selected_shard_index = -1;
1896    for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1897      if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1898        if (prev_selected_shard_index < 0) {
1899          prev_selected_shard_index = shard_index;
1900        } else {
1901          ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1902            << shard_index << " are both selected to run test " << test_id;
1903        }
1904      }
1905    }
1906  }
1907
1908  // Check balance: This is not required by the sharding protocol, but is a
1909  // desirable property for performance.
1910  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1911    int num_tests_on_shard = 0;
1912    for (int test_id = 0; test_id < num_tests; test_id++) {
1913      num_tests_on_shard +=
1914        ShouldRunTestOnShard(num_shards, shard_index, test_id);
1915    }
1916    EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1917  }
1918}
1919
1920// For the same reason we are not explicitly testing everything in the
1921// Test class, there are no separate tests for the following classes
1922// (except for some trivial cases):
1923//
1924//   TestCase, UnitTest, UnitTestResultPrinter.
1925//
1926// Similarly, there are no separate tests for the following macros:
1927//
1928//   TEST, TEST_F, RUN_ALL_TESTS
1929
1930TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1931  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1932  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1933}
1934
1935TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1936  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1937  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1938}
1939
1940// When a property using a reserved key is supplied to this function, it
1941// tests that a non-fatal failure is added, a fatal failure is not added,
1942// and that the property is not recorded.
1943void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1944    const TestResult& test_result, const char* key) {
1945  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1946  ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1947                                                  << "' recorded unexpectedly.";
1948}
1949
1950void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1951    const char* key) {
1952  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1953  ASSERT_TRUE(test_info != NULL);
1954  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1955                                                        key);
1956}
1957
1958void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1959    const char* key) {
1960  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1961  ASSERT_TRUE(test_case != NULL);
1962  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1963      test_case->ad_hoc_test_result(), key);
1964}
1965
1966void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1967    const char* key) {
1968  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1969      UnitTest::GetInstance()->ad_hoc_test_result(), key);
1970}
1971
1972// Tests that property recording functions in UnitTest outside of tests
1973// functions correcly.  Creating a separate instance of UnitTest ensures it
1974// is in a state similar to the UnitTest's singleton's between tests.
1975class UnitTestRecordPropertyTest :
1976    public testing::internal::UnitTestRecordPropertyTestHelper {
1977 public:
1978  static void SetUpTestCase() {
1979    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1980        "disabled");
1981    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1982        "errors");
1983    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1984        "failures");
1985    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1986        "name");
1987    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1988        "tests");
1989    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1990        "time");
1991
1992    Test::RecordProperty("test_case_key_1", "1");
1993    const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1994    ASSERT_TRUE(test_case != NULL);
1995
1996    ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1997    EXPECT_STREQ("test_case_key_1",
1998                 test_case->ad_hoc_test_result().GetTestProperty(0).key());
1999    EXPECT_STREQ("1",
2000                 test_case->ad_hoc_test_result().GetTestProperty(0).value());
2001  }
2002};
2003
2004// Tests TestResult has the expected property when added.
2005TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2006  UnitTestRecordProperty("key_1", "1");
2007
2008  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2009
2010  EXPECT_STREQ("key_1",
2011               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2012  EXPECT_STREQ("1",
2013               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2014}
2015
2016// Tests TestResult has multiple properties when added.
2017TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2018  UnitTestRecordProperty("key_1", "1");
2019  UnitTestRecordProperty("key_2", "2");
2020
2021  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2022
2023  EXPECT_STREQ("key_1",
2024               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2025  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2026
2027  EXPECT_STREQ("key_2",
2028               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2029  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2030}
2031
2032// Tests TestResult::RecordProperty() overrides values for duplicate keys.
2033TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2034  UnitTestRecordProperty("key_1", "1");
2035  UnitTestRecordProperty("key_2", "2");
2036  UnitTestRecordProperty("key_1", "12");
2037  UnitTestRecordProperty("key_2", "22");
2038
2039  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2040
2041  EXPECT_STREQ("key_1",
2042               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2043  EXPECT_STREQ("12",
2044               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2045
2046  EXPECT_STREQ("key_2",
2047               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2048  EXPECT_STREQ("22",
2049               unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2050}
2051
2052TEST_F(UnitTestRecordPropertyTest,
2053       AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2054  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2055      "name");
2056  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2057      "value_param");
2058  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2059      "type_param");
2060  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2061      "status");
2062  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2063      "time");
2064  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2065      "classname");
2066}
2067
2068TEST_F(UnitTestRecordPropertyTest,
2069       AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2070  EXPECT_NONFATAL_FAILURE(
2071      Test::RecordProperty("name", "1"),
2072      "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2073      " are reserved");
2074}
2075
2076class UnitTestRecordPropertyTestEnvironment : public Environment {
2077 public:
2078  virtual void TearDown() {
2079    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2080        "tests");
2081    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2082        "failures");
2083    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2084        "disabled");
2085    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2086        "errors");
2087    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2088        "name");
2089    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2090        "timestamp");
2091    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2092        "time");
2093    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2094        "random_seed");
2095  }
2096};
2097
2098// This will test property recording outside of any test or test case.
2099static Environment* record_property_env =
2100    AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2101
2102// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2103// of various arities.  They do not attempt to be exhaustive.  Rather,
2104// view them as smoke tests that can be easily reviewed and verified.
2105// A more complete set of tests for predicate assertions can be found
2106// in gtest_pred_impl_unittest.cc.
2107
2108// First, some predicates and predicate-formatters needed by the tests.
2109
2110// Returns true iff the argument is an even number.
2111bool IsEven(int n) {
2112  return (n % 2) == 0;
2113}
2114
2115// A functor that returns true iff the argument is an even number.
2116struct IsEvenFunctor {
2117  bool operator()(int n) { return IsEven(n); }
2118};
2119
2120// A predicate-formatter function that asserts the argument is an even
2121// number.
2122AssertionResult AssertIsEven(const char* expr, int n) {
2123  if (IsEven(n)) {
2124    return AssertionSuccess();
2125  }
2126
2127  Message msg;
2128  msg << expr << " evaluates to " << n << ", which is not even.";
2129  return AssertionFailure(msg);
2130}
2131
2132// A predicate function that returns AssertionResult for use in
2133// EXPECT/ASSERT_TRUE/FALSE.
2134AssertionResult ResultIsEven(int n) {
2135  if (IsEven(n))
2136    return AssertionSuccess() << n << " is even";
2137  else
2138    return AssertionFailure() << n << " is odd";
2139}
2140
2141// A predicate function that returns AssertionResult but gives no
2142// explanation why it succeeds. Needed for testing that
2143// EXPECT/ASSERT_FALSE handles such functions correctly.
2144AssertionResult ResultIsEvenNoExplanation(int n) {
2145  if (IsEven(n))
2146    return AssertionSuccess();
2147  else
2148    return AssertionFailure() << n << " is odd";
2149}
2150
2151// A predicate-formatter functor that asserts the argument is an even
2152// number.
2153struct AssertIsEvenFunctor {
2154  AssertionResult operator()(const char* expr, int n) {
2155    return AssertIsEven(expr, n);
2156  }
2157};
2158
2159// Returns true iff the sum of the arguments is an even number.
2160bool SumIsEven2(int n1, int n2) {
2161  return IsEven(n1 + n2);
2162}
2163
2164// A functor that returns true iff the sum of the arguments is an even
2165// number.
2166struct SumIsEven3Functor {
2167  bool operator()(int n1, int n2, int n3) {
2168    return IsEven(n1 + n2 + n3);
2169  }
2170};
2171
2172// A predicate-formatter function that asserts the sum of the
2173// arguments is an even number.
2174AssertionResult AssertSumIsEven4(
2175    const char* e1, const char* e2, const char* e3, const char* e4,
2176    int n1, int n2, int n3, int n4) {
2177  const int sum = n1 + n2 + n3 + n4;
2178  if (IsEven(sum)) {
2179    return AssertionSuccess();
2180  }
2181
2182  Message msg;
2183  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2184      << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2185      << ") evaluates to " << sum << ", which is not even.";
2186  return AssertionFailure(msg);
2187}
2188
2189// A predicate-formatter functor that asserts the sum of the arguments
2190// is an even number.
2191struct AssertSumIsEven5Functor {
2192  AssertionResult operator()(
2193      const char* e1, const char* e2, const char* e3, const char* e4,
2194      const char* e5, int n1, int n2, int n3, int n4, int n5) {
2195    const int sum = n1 + n2 + n3 + n4 + n5;
2196    if (IsEven(sum)) {
2197      return AssertionSuccess();
2198    }
2199
2200    Message msg;
2201    msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2202        << " ("
2203        << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2204        << ") evaluates to " << sum << ", which is not even.";
2205    return AssertionFailure(msg);
2206  }
2207};
2208
2209
2210// Tests unary predicate assertions.
2211
2212// Tests unary predicate assertions that don't use a custom formatter.
2213TEST(Pred1Test, WithoutFormat) {
2214  // Success cases.
2215  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2216  ASSERT_PRED1(IsEven, 4);
2217
2218  // Failure cases.
2219  EXPECT_NONFATAL_FAILURE({  // NOLINT
2220    EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2221  }, "This failure is expected.");
2222  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2223                       "evaluates to false");
2224}
2225
2226// Tests unary predicate assertions that use a custom formatter.
2227TEST(Pred1Test, WithFormat) {
2228  // Success cases.
2229  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2230  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2231    << "This failure is UNEXPECTED!";
2232
2233  // Failure cases.
2234  const int n = 5;
2235  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2236                          "n evaluates to 5, which is not even.");
2237  EXPECT_FATAL_FAILURE({  // NOLINT
2238    ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2239  }, "This failure is expected.");
2240}
2241
2242// Tests that unary predicate assertions evaluates their arguments
2243// exactly once.
2244TEST(Pred1Test, SingleEvaluationOnFailure) {
2245  // A success case.
2246  static int n = 0;
2247  EXPECT_PRED1(IsEven, n++);
2248  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2249
2250  // A failure case.
2251  EXPECT_FATAL_FAILURE({  // NOLINT
2252    ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2253        << "This failure is expected.";
2254  }, "This failure is expected.");
2255  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2256}
2257
2258
2259// Tests predicate assertions whose arity is >= 2.
2260
2261// Tests predicate assertions that don't use a custom formatter.
2262TEST(PredTest, WithoutFormat) {
2263  // Success cases.
2264  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2265  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2266
2267  // Failure cases.
2268  const int n1 = 1;
2269  const int n2 = 2;
2270  EXPECT_NONFATAL_FAILURE({  // NOLINT
2271    EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2272  }, "This failure is expected.");
2273  EXPECT_FATAL_FAILURE({  // NOLINT
2274    ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2275  }, "evaluates to false");
2276}
2277
2278// Tests predicate assertions that use a custom formatter.
2279TEST(PredTest, WithFormat) {
2280  // Success cases.
2281  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2282    "This failure is UNEXPECTED!";
2283  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2284
2285  // Failure cases.
2286  const int n1 = 1;
2287  const int n2 = 2;
2288  const int n3 = 4;
2289  const int n4 = 6;
2290  EXPECT_NONFATAL_FAILURE({  // NOLINT
2291    EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2292  }, "evaluates to 13, which is not even.");
2293  EXPECT_FATAL_FAILURE({  // NOLINT
2294    ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2295        << "This failure is expected.";
2296  }, "This failure is expected.");
2297}
2298
2299// Tests that predicate assertions evaluates their arguments
2300// exactly once.
2301TEST(PredTest, SingleEvaluationOnFailure) {
2302  // A success case.
2303  int n1 = 0;
2304  int n2 = 0;
2305  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2306  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2307  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2308
2309  // Another success case.
2310  n1 = n2 = 0;
2311  int n3 = 0;
2312  int n4 = 0;
2313  int n5 = 0;
2314  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2315                      n1++, n2++, n3++, n4++, n5++)
2316                        << "This failure is UNEXPECTED!";
2317  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2318  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2319  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2320  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2321  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2322
2323  // A failure case.
2324  n1 = n2 = n3 = 0;
2325  EXPECT_NONFATAL_FAILURE({  // NOLINT
2326    EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2327        << "This failure is expected.";
2328  }, "This failure is expected.");
2329  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2330  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2331  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2332
2333  // Another failure case.
2334  n1 = n2 = n3 = n4 = 0;
2335  EXPECT_NONFATAL_FAILURE({  // NOLINT
2336    EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2337  }, "evaluates to 1, which is not even.");
2338  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2339  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2340  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2341  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2342}
2343
2344
2345// Some helper functions for testing using overloaded/template
2346// functions with ASSERT_PREDn and EXPECT_PREDn.
2347
2348bool IsPositive(double x) {
2349  return x > 0;
2350}
2351
2352template <typename T>
2353bool IsNegative(T x) {
2354  return x < 0;
2355}
2356
2357template <typename T1, typename T2>
2358bool GreaterThan(T1 x1, T2 x2) {
2359  return x1 > x2;
2360}
2361
2362// Tests that overloaded functions can be used in *_PRED* as long as
2363// their types are explicitly specified.
2364TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2365  // C++Builder requires C-style casts rather than static_cast.
2366  EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2367  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2368}
2369
2370// Tests that template functions can be used in *_PRED* as long as
2371// their types are explicitly specified.
2372TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2373  EXPECT_PRED1(IsNegative<int>, -5);
2374  // Makes sure that we can handle templates with more than one
2375  // parameter.
2376  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2377}
2378
2379
2380// Some helper functions for testing using overloaded/template
2381// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2382
2383AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2384  return n > 0 ? AssertionSuccess() :
2385      AssertionFailure(Message() << "Failure");
2386}
2387
2388AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2389  return x > 0 ? AssertionSuccess() :
2390      AssertionFailure(Message() << "Failure");
2391}
2392
2393template <typename T>
2394AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2395  return x < 0 ? AssertionSuccess() :
2396      AssertionFailure(Message() << "Failure");
2397}
2398
2399template <typename T1, typename T2>
2400AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2401                             const T1& x1, const T2& x2) {
2402  return x1 == x2 ? AssertionSuccess() :
2403      AssertionFailure(Message() << "Failure");
2404}
2405
2406// Tests that overloaded functions can be used in *_PRED_FORMAT*
2407// without explicitly specifying their types.
2408TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2409  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2410  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2411}
2412
2413// Tests that template functions can be used in *_PRED_FORMAT* without
2414// explicitly specifying their types.
2415TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2416  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2417  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2418}
2419
2420
2421// Tests string assertions.
2422
2423// Tests ASSERT_STREQ with non-NULL arguments.
2424TEST(StringAssertionTest, ASSERT_STREQ) {
2425  const char * const p1 = "good";
2426  ASSERT_STREQ(p1, p1);
2427
2428  // Let p2 have the same content as p1, but be at a different address.
2429  const char p2[] = "good";
2430  ASSERT_STREQ(p1, p2);
2431
2432  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2433                       "Expected: \"bad\"");
2434}
2435
2436// Tests ASSERT_STREQ with NULL arguments.
2437TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2438  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2439  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2440                       "non-null");
2441}
2442
2443// Tests ASSERT_STREQ with NULL arguments.
2444TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2445  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2446                       "non-null");
2447}
2448
2449// Tests ASSERT_STRNE.
2450TEST(StringAssertionTest, ASSERT_STRNE) {
2451  ASSERT_STRNE("hi", "Hi");
2452  ASSERT_STRNE("Hi", NULL);
2453  ASSERT_STRNE(NULL, "Hi");
2454  ASSERT_STRNE("", NULL);
2455  ASSERT_STRNE(NULL, "");
2456  ASSERT_STRNE("", "Hi");
2457  ASSERT_STRNE("Hi", "");
2458  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2459                       "\"Hi\" vs \"Hi\"");
2460}
2461
2462// Tests ASSERT_STRCASEEQ.
2463TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2464  ASSERT_STRCASEEQ("hi", "Hi");
2465  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2466
2467  ASSERT_STRCASEEQ("", "");
2468  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2469                       "(ignoring case)");
2470}
2471
2472// Tests ASSERT_STRCASENE.
2473TEST(StringAssertionTest, ASSERT_STRCASENE) {
2474  ASSERT_STRCASENE("hi1", "Hi2");
2475  ASSERT_STRCASENE("Hi", NULL);
2476  ASSERT_STRCASENE(NULL, "Hi");
2477  ASSERT_STRCASENE("", NULL);
2478  ASSERT_STRCASENE(NULL, "");
2479  ASSERT_STRCASENE("", "Hi");
2480  ASSERT_STRCASENE("Hi", "");
2481  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2482                       "(ignoring case)");
2483}
2484
2485// Tests *_STREQ on wide strings.
2486TEST(StringAssertionTest, STREQ_Wide) {
2487  // NULL strings.
2488  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2489
2490  // Empty strings.
2491  ASSERT_STREQ(L"", L"");
2492
2493  // Non-null vs NULL.
2494  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2495                          "non-null");
2496
2497  // Equal strings.
2498  EXPECT_STREQ(L"Hi", L"Hi");
2499
2500  // Unequal strings.
2501  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2502                          "Abc");
2503
2504  // Strings containing wide characters.
2505  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2506                          "abc");
2507
2508  // The streaming variation.
2509  EXPECT_NONFATAL_FAILURE({  // NOLINT
2510    EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2511  }, "Expected failure");
2512}
2513
2514// Tests *_STRNE on wide strings.
2515TEST(StringAssertionTest, STRNE_Wide) {
2516  // NULL strings.
2517  EXPECT_NONFATAL_FAILURE({  // NOLINT
2518    EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2519  }, "");
2520
2521  // Empty strings.
2522  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2523                          "L\"\"");
2524
2525  // Non-null vs NULL.
2526  ASSERT_STRNE(L"non-null", NULL);
2527
2528  // Equal strings.
2529  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2530                          "L\"Hi\"");
2531
2532  // Unequal strings.
2533  EXPECT_STRNE(L"abc", L"Abc");
2534
2535  // Strings containing wide characters.
2536  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2537                          "abc");
2538
2539  // The streaming variation.
2540  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2541}
2542
2543// Tests for ::testing::IsSubstring().
2544
2545// Tests that IsSubstring() returns the correct result when the input
2546// argument type is const char*.
2547TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2548  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2549  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2550  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2551
2552  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2553  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2554}
2555
2556// Tests that IsSubstring() returns the correct result when the input
2557// argument type is const wchar_t*.
2558TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2559  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2560  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2561  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2562
2563  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2564  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2565}
2566
2567// Tests that IsSubstring() generates the correct message when the input
2568// argument type is const char*.
2569TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2570  EXPECT_STREQ("Value of: needle_expr\n"
2571               "  Actual: \"needle\"\n"
2572               "Expected: a substring of haystack_expr\n"
2573               "Which is: \"haystack\"",
2574               IsSubstring("needle_expr", "haystack_expr",
2575                           "needle", "haystack").failure_message());
2576}
2577
2578// Tests that IsSubstring returns the correct result when the input
2579// argument type is ::std::string.
2580TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2581  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2582  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2583}
2584
2585#if GTEST_HAS_STD_WSTRING
2586// Tests that IsSubstring returns the correct result when the input
2587// argument type is ::std::wstring.
2588TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2589  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2590  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2591}
2592
2593// Tests that IsSubstring() generates the correct message when the input
2594// argument type is ::std::wstring.
2595TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2596  EXPECT_STREQ("Value of: needle_expr\n"
2597               "  Actual: L\"needle\"\n"
2598               "Expected: a substring of haystack_expr\n"
2599               "Which is: L\"haystack\"",
2600               IsSubstring(
2601                   "needle_expr", "haystack_expr",
2602                   ::std::wstring(L"needle"), L"haystack").failure_message());
2603}
2604
2605#endif  // GTEST_HAS_STD_WSTRING
2606
2607// Tests for ::testing::IsNotSubstring().
2608
2609// Tests that IsNotSubstring() returns the correct result when the input
2610// argument type is const char*.
2611TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2612  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2613  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2614}
2615
2616// Tests that IsNotSubstring() returns the correct result when the input
2617// argument type is const wchar_t*.
2618TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2619  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2620  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2621}
2622
2623// Tests that IsNotSubstring() generates the correct message when the input
2624// argument type is const wchar_t*.
2625TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2626  EXPECT_STREQ("Value of: needle_expr\n"
2627               "  Actual: L\"needle\"\n"
2628               "Expected: not a substring of haystack_expr\n"
2629               "Which is: L\"two needles\"",
2630               IsNotSubstring(
2631                   "needle_expr", "haystack_expr",
2632                   L"needle", L"two needles").failure_message());
2633}
2634
2635// Tests that IsNotSubstring returns the correct result when the input
2636// argument type is ::std::string.
2637TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2638  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2639  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2640}
2641
2642// Tests that IsNotSubstring() generates the correct message when the input
2643// argument type is ::std::string.
2644TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2645  EXPECT_STREQ("Value of: needle_expr\n"
2646               "  Actual: \"needle\"\n"
2647               "Expected: not a substring of haystack_expr\n"
2648               "Which is: \"two needles\"",
2649               IsNotSubstring(
2650                   "needle_expr", "haystack_expr",
2651                   ::std::string("needle"), "two needles").failure_message());
2652}
2653
2654#if GTEST_HAS_STD_WSTRING
2655
2656// Tests that IsNotSubstring returns the correct result when the input
2657// argument type is ::std::wstring.
2658TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2659  EXPECT_FALSE(
2660      IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662}
2663
2664#endif  // GTEST_HAS_STD_WSTRING
2665
2666// Tests floating-point assertions.
2667
2668template <typename RawType>
2669class FloatingPointTest : public Test {
2670 protected:
2671  // Pre-calculated numbers to be used by the tests.
2672  struct TestValues {
2673    RawType close_to_positive_zero;
2674    RawType close_to_negative_zero;
2675    RawType further_from_negative_zero;
2676
2677    RawType close_to_one;
2678    RawType further_from_one;
2679
2680    RawType infinity;
2681    RawType close_to_infinity;
2682    RawType further_from_infinity;
2683
2684    RawType nan1;
2685    RawType nan2;
2686  };
2687
2688  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2689  typedef typename Floating::Bits Bits;
2690
2691  virtual void SetUp() {
2692    const size_t max_ulps = Floating::kMaxUlps;
2693
2694    // The bits that represent 0.0.
2695    const Bits zero_bits = Floating(0).bits();
2696
2697    // Makes some numbers close to 0.0.
2698    values_.close_to_positive_zero = Floating::ReinterpretBits(
2699        zero_bits + max_ulps/2);
2700    values_.close_to_negative_zero = -Floating::ReinterpretBits(
2701        zero_bits + max_ulps - max_ulps/2);
2702    values_.further_from_negative_zero = -Floating::ReinterpretBits(
2703        zero_bits + max_ulps + 1 - max_ulps/2);
2704
2705    // The bits that represent 1.0.
2706    const Bits one_bits = Floating(1).bits();
2707
2708    // Makes some numbers close to 1.0.
2709    values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2710    values_.further_from_one = Floating::ReinterpretBits(
2711        one_bits + max_ulps + 1);
2712
2713    // +infinity.
2714    values_.infinity = Floating::Infinity();
2715
2716    // The bits that represent +infinity.
2717    const Bits infinity_bits = Floating(values_.infinity).bits();
2718
2719    // Makes some numbers close to infinity.
2720    values_.close_to_infinity = Floating::ReinterpretBits(
2721        infinity_bits - max_ulps);
2722    values_.further_from_infinity = Floating::ReinterpretBits(
2723        infinity_bits - max_ulps - 1);
2724
2725    // Makes some NAN's.  Sets the most significant bit of the fraction so that
2726    // our NaN's are quiet; trying to process a signaling NaN would raise an
2727    // exception if our environment enables floating point exceptions.
2728    values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2729        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2730    values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2731        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2732  }
2733
2734  void TestSize() {
2735    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2736  }
2737
2738  static TestValues values_;
2739};
2740
2741template <typename RawType>
2742typename FloatingPointTest<RawType>::TestValues
2743    FloatingPointTest<RawType>::values_;
2744
2745// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2746typedef FloatingPointTest<float> FloatTest;
2747
2748// Tests that the size of Float::Bits matches the size of float.
2749TEST_F(FloatTest, Size) {
2750  TestSize();
2751}
2752
2753// Tests comparing with +0 and -0.
2754TEST_F(FloatTest, Zeros) {
2755  EXPECT_FLOAT_EQ(0.0, -0.0);
2756  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2757                          "1.0");
2758  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2759                       "1.5");
2760}
2761
2762// Tests comparing numbers close to 0.
2763//
2764// This ensures that *_FLOAT_EQ handles the sign correctly and no
2765// overflow occurs when comparing numbers whose absolute value is very
2766// small.
2767TEST_F(FloatTest, AlmostZeros) {
2768  // In C++Builder, names within local classes (such as used by
2769  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2770  // scoping class.  Use a static local alias as a workaround.
2771  // We use the assignment syntax since some compilers, like Sun Studio,
2772  // don't allow initializing references using construction syntax
2773  // (parentheses).
2774  static const FloatTest::TestValues& v = this->values_;
2775
2776  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2777  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2778  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2779
2780  EXPECT_FATAL_FAILURE({  // NOLINT
2781    ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2782                    v.further_from_negative_zero);
2783  }, "v.further_from_negative_zero");
2784}
2785
2786// Tests comparing numbers close to each other.
2787TEST_F(FloatTest, SmallDiff) {
2788  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2789  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2790                          "values_.further_from_one");
2791}
2792
2793// Tests comparing numbers far apart.
2794TEST_F(FloatTest, LargeDiff) {
2795  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2796                          "3.0");
2797}
2798
2799// Tests comparing with infinity.
2800//
2801// This ensures that no overflow occurs when comparing numbers whose
2802// absolute value is very large.
2803TEST_F(FloatTest, Infinity) {
2804  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2805  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2806#if !GTEST_OS_SYMBIAN
2807  // Nokia's STLport crashes if we try to output infinity or NaN.
2808  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2809                          "-values_.infinity");
2810
2811  // This is interesting as the representations of infinity and nan1
2812  // are only 1 DLP apart.
2813  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2814                          "values_.nan1");
2815#endif  // !GTEST_OS_SYMBIAN
2816}
2817
2818// Tests that comparing with NAN always returns false.
2819TEST_F(FloatTest, NaN) {
2820#if !GTEST_OS_SYMBIAN
2821// Nokia's STLport crashes if we try to output infinity or NaN.
2822
2823  // In C++Builder, names within local classes (such as used by
2824  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2825  // scoping class.  Use a static local alias as a workaround.
2826  // We use the assignment syntax since some compilers, like Sun Studio,
2827  // don't allow initializing references using construction syntax
2828  // (parentheses).
2829  static const FloatTest::TestValues& v = this->values_;
2830
2831  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2832                          "v.nan1");
2833  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2834                          "v.nan2");
2835  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2836                          "v.nan1");
2837
2838  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2839                       "v.infinity");
2840#endif  // !GTEST_OS_SYMBIAN
2841}
2842
2843// Tests that *_FLOAT_EQ are reflexive.
2844TEST_F(FloatTest, Reflexive) {
2845  EXPECT_FLOAT_EQ(0.0, 0.0);
2846  EXPECT_FLOAT_EQ(1.0, 1.0);
2847  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2848}
2849
2850// Tests that *_FLOAT_EQ are commutative.
2851TEST_F(FloatTest, Commutative) {
2852  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2853  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2854
2855  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2856  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2857                          "1.0");
2858}
2859
2860// Tests EXPECT_NEAR.
2861TEST_F(FloatTest, EXPECT_NEAR) {
2862  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2863  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2864  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2865                          "The difference between 1.0f and 1.5f is 0.5, "
2866                          "which exceeds 0.25f");
2867  // To work around a bug in gcc 2.95.0, there is intentionally no
2868  // space after the first comma in the previous line.
2869}
2870
2871// Tests ASSERT_NEAR.
2872TEST_F(FloatTest, ASSERT_NEAR) {
2873  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2874  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2875  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2876                       "The difference between 1.0f and 1.5f is 0.5, "
2877                       "which exceeds 0.25f");
2878  // To work around a bug in gcc 2.95.0, there is intentionally no
2879  // space after the first comma in the previous line.
2880}
2881
2882// Tests the cases where FloatLE() should succeed.
2883TEST_F(FloatTest, FloatLESucceeds) {
2884  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2885  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2886
2887  // or when val1 is greater than, but almost equals to, val2.
2888  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2889}
2890
2891// Tests the cases where FloatLE() should fail.
2892TEST_F(FloatTest, FloatLEFails) {
2893  // When val1 is greater than val2 by a large margin,
2894  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2895                          "(2.0f) <= (1.0f)");
2896
2897  // or by a small yet non-negligible margin,
2898  EXPECT_NONFATAL_FAILURE({  // NOLINT
2899    EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2900  }, "(values_.further_from_one) <= (1.0f)");
2901
2902#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2903  // Nokia's STLport crashes if we try to output infinity or NaN.
2904  // C++Builder gives bad results for ordered comparisons involving NaNs
2905  // due to compiler bugs.
2906  EXPECT_NONFATAL_FAILURE({  // NOLINT
2907    EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2908  }, "(values_.nan1) <= (values_.infinity)");
2909  EXPECT_NONFATAL_FAILURE({  // NOLINT
2910    EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2911  }, "(-values_.infinity) <= (values_.nan1)");
2912  EXPECT_FATAL_FAILURE({  // NOLINT
2913    ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2914  }, "(values_.nan1) <= (values_.nan1)");
2915#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2916}
2917
2918// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2919typedef FloatingPointTest<double> DoubleTest;
2920
2921// Tests that the size of Double::Bits matches the size of double.
2922TEST_F(DoubleTest, Size) {
2923  TestSize();
2924}
2925
2926// Tests comparing with +0 and -0.
2927TEST_F(DoubleTest, Zeros) {
2928  EXPECT_DOUBLE_EQ(0.0, -0.0);
2929  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2930                          "1.0");
2931  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2932                       "1.0");
2933}
2934
2935// Tests comparing numbers close to 0.
2936//
2937// This ensures that *_DOUBLE_EQ handles the sign correctly and no
2938// overflow occurs when comparing numbers whose absolute value is very
2939// small.
2940TEST_F(DoubleTest, AlmostZeros) {
2941  // In C++Builder, names within local classes (such as used by
2942  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2943  // scoping class.  Use a static local alias as a workaround.
2944  // We use the assignment syntax since some compilers, like Sun Studio,
2945  // don't allow initializing references using construction syntax
2946  // (parentheses).
2947  static const DoubleTest::TestValues& v = this->values_;
2948
2949  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2950  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2951  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2952
2953  EXPECT_FATAL_FAILURE({  // NOLINT
2954    ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2955                     v.further_from_negative_zero);
2956  }, "v.further_from_negative_zero");
2957}
2958
2959// Tests comparing numbers close to each other.
2960TEST_F(DoubleTest, SmallDiff) {
2961  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2962  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2963                          "values_.further_from_one");
2964}
2965
2966// Tests comparing numbers far apart.
2967TEST_F(DoubleTest, LargeDiff) {
2968  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2969                          "3.0");
2970}
2971
2972// Tests comparing with infinity.
2973//
2974// This ensures that no overflow occurs when comparing numbers whose
2975// absolute value is very large.
2976TEST_F(DoubleTest, Infinity) {
2977  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2978  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2979#if !GTEST_OS_SYMBIAN
2980  // Nokia's STLport crashes if we try to output infinity or NaN.
2981  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2982                          "-values_.infinity");
2983
2984  // This is interesting as the representations of infinity_ and nan1_
2985  // are only 1 DLP apart.
2986  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2987                          "values_.nan1");
2988#endif  // !GTEST_OS_SYMBIAN
2989}
2990
2991// Tests that comparing with NAN always returns false.
2992TEST_F(DoubleTest, NaN) {
2993#if !GTEST_OS_SYMBIAN
2994  // In C++Builder, names within local classes (such as used by
2995  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2996  // scoping class.  Use a static local alias as a workaround.
2997  // We use the assignment syntax since some compilers, like Sun Studio,
2998  // don't allow initializing references using construction syntax
2999  // (parentheses).
3000  static const DoubleTest::TestValues& v = this->values_;
3001
3002  // Nokia's STLport crashes if we try to output infinity or NaN.
3003  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3004                          "v.nan1");
3005  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3006  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3007  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3008                       "v.infinity");
3009#endif  // !GTEST_OS_SYMBIAN
3010}
3011
3012// Tests that *_DOUBLE_EQ are reflexive.
3013TEST_F(DoubleTest, Reflexive) {
3014  EXPECT_DOUBLE_EQ(0.0, 0.0);
3015  EXPECT_DOUBLE_EQ(1.0, 1.0);
3016#if !GTEST_OS_SYMBIAN
3017  // Nokia's STLport crashes if we try to output infinity or NaN.
3018  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3019#endif  // !GTEST_OS_SYMBIAN
3020}
3021
3022// Tests that *_DOUBLE_EQ are commutative.
3023TEST_F(DoubleTest, Commutative) {
3024  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3025  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3026
3027  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3028  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3029                          "1.0");
3030}
3031
3032// Tests EXPECT_NEAR.
3033TEST_F(DoubleTest, EXPECT_NEAR) {
3034  EXPECT_NEAR(-1.0, -1.1, 0.2);
3035  EXPECT_NEAR(2.0, 3.0, 1.0);
3036  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3037                          "The difference between 1.0 and 1.5 is 0.5, "
3038                          "which exceeds 0.25");
3039  // To work around a bug in gcc 2.95.0, there is intentionally no
3040  // space after the first comma in the previous statement.
3041}
3042
3043// Tests ASSERT_NEAR.
3044TEST_F(DoubleTest, ASSERT_NEAR) {
3045  ASSERT_NEAR(-1.0, -1.1, 0.2);
3046  ASSERT_NEAR(2.0, 3.0, 1.0);
3047  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3048                       "The difference between 1.0 and 1.5 is 0.5, "
3049                       "which exceeds 0.25");
3050  // To work around a bug in gcc 2.95.0, there is intentionally no
3051  // space after the first comma in the previous statement.
3052}
3053
3054// Tests the cases where DoubleLE() should succeed.
3055TEST_F(DoubleTest, DoubleLESucceeds) {
3056  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3057  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3058
3059  // or when val1 is greater than, but almost equals to, val2.
3060  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3061}
3062
3063// Tests the cases where DoubleLE() should fail.
3064TEST_F(DoubleTest, DoubleLEFails) {
3065  // When val1 is greater than val2 by a large margin,
3066  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3067                          "(2.0) <= (1.0)");
3068
3069  // or by a small yet non-negligible margin,
3070  EXPECT_NONFATAL_FAILURE({  // NOLINT
3071    EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3072  }, "(values_.further_from_one) <= (1.0)");
3073
3074#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3075  // Nokia's STLport crashes if we try to output infinity or NaN.
3076  // C++Builder gives bad results for ordered comparisons involving NaNs
3077  // due to compiler bugs.
3078  EXPECT_NONFATAL_FAILURE({  // NOLINT
3079    EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3080  }, "(values_.nan1) <= (values_.infinity)");
3081  EXPECT_NONFATAL_FAILURE({  // NOLINT
3082    EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3083  }, " (-values_.infinity) <= (values_.nan1)");
3084  EXPECT_FATAL_FAILURE({  // NOLINT
3085    ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3086  }, "(values_.nan1) <= (values_.nan1)");
3087#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3088}
3089
3090
3091// Verifies that a test or test case whose name starts with DISABLED_ is
3092// not run.
3093
3094// A test whose name starts with DISABLED_.
3095// Should not run.
3096TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3097  FAIL() << "Unexpected failure: Disabled test should not be run.";
3098}
3099
3100// A test whose name does not start with DISABLED_.
3101// Should run.
3102TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3103  EXPECT_EQ(1, 1);
3104}
3105
3106// A test case whose name starts with DISABLED_.
3107// Should not run.
3108TEST(DISABLED_TestCase, TestShouldNotRun) {
3109  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3110}
3111
3112// A test case and test whose names start with DISABLED_.
3113// Should not run.
3114TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3115  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3116}
3117
3118// Check that when all tests in a test case are disabled, SetupTestCase() and
3119// TearDownTestCase() are not called.
3120class DisabledTestsTest : public Test {
3121 protected:
3122  static void SetUpTestCase() {
3123    FAIL() << "Unexpected failure: All tests disabled in test case. "
3124              "SetupTestCase() should not be called.";
3125  }
3126
3127  static void TearDownTestCase() {
3128    FAIL() << "Unexpected failure: All tests disabled in test case. "
3129              "TearDownTestCase() should not be called.";
3130  }
3131};
3132
3133TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3134  FAIL() << "Unexpected failure: Disabled test should not be run.";
3135}
3136
3137TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3138  FAIL() << "Unexpected failure: Disabled test should not be run.";
3139}
3140
3141// Tests that disabled typed tests aren't run.
3142
3143#if GTEST_HAS_TYPED_TEST
3144
3145template <typename T>
3146class TypedTest : public Test {
3147};
3148
3149typedef testing::Types<int, double> NumericTypes;
3150TYPED_TEST_CASE(TypedTest, NumericTypes);
3151
3152TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3153  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3154}
3155
3156template <typename T>
3157class DISABLED_TypedTest : public Test {
3158};
3159
3160TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3161
3162TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3163  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3164}
3165
3166#endif  // GTEST_HAS_TYPED_TEST
3167
3168// Tests that disabled type-parameterized tests aren't run.
3169
3170#if GTEST_HAS_TYPED_TEST_P
3171
3172template <typename T>
3173class TypedTestP : public Test {
3174};
3175
3176TYPED_TEST_CASE_P(TypedTestP);
3177
3178TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3179  FAIL() << "Unexpected failure: "
3180         << "Disabled type-parameterized test should not run.";
3181}
3182
3183REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3184
3185INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3186
3187template <typename T>
3188class DISABLED_TypedTestP : public Test {
3189};
3190
3191TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3192
3193TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3194  FAIL() << "Unexpected failure: "
3195         << "Disabled type-parameterized test should not run.";
3196}
3197
3198REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3199
3200INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3201
3202#endif  // GTEST_HAS_TYPED_TEST_P
3203
3204// Tests that assertion macros evaluate their arguments exactly once.
3205
3206class SingleEvaluationTest : public Test {
3207 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3208  // This helper function is needed by the FailedASSERT_STREQ test
3209  // below.  It's public to work around C++Builder's bug with scoping local
3210  // classes.
3211  static void CompareAndIncrementCharPtrs() {
3212    ASSERT_STREQ(p1_++, p2_++);
3213  }
3214
3215  // This helper function is needed by the FailedASSERT_NE test below.  It's
3216  // public to work around C++Builder's bug with scoping local classes.
3217  static void CompareAndIncrementInts() {
3218    ASSERT_NE(a_++, b_++);
3219  }
3220
3221 protected:
3222  SingleEvaluationTest() {
3223    p1_ = s1_;
3224    p2_ = s2_;
3225    a_ = 0;
3226    b_ = 0;
3227  }
3228
3229  static const char* const s1_;
3230  static const char* const s2_;
3231  static const char* p1_;
3232  static const char* p2_;
3233
3234  static int a_;
3235  static int b_;
3236};
3237
3238const char* const SingleEvaluationTest::s1_ = "01234";
3239const char* const SingleEvaluationTest::s2_ = "abcde";
3240const char* SingleEvaluationTest::p1_;
3241const char* SingleEvaluationTest::p2_;
3242int SingleEvaluationTest::a_;
3243int SingleEvaluationTest::b_;
3244
3245// Tests that when ASSERT_STREQ fails, it evaluates its arguments
3246// exactly once.
3247TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3248  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3249                       "p2_++");
3250  EXPECT_EQ(s1_ + 1, p1_);
3251  EXPECT_EQ(s2_ + 1, p2_);
3252}
3253
3254// Tests that string assertion arguments are evaluated exactly once.
3255TEST_F(SingleEvaluationTest, ASSERT_STR) {
3256  // successful EXPECT_STRNE
3257  EXPECT_STRNE(p1_++, p2_++);
3258  EXPECT_EQ(s1_ + 1, p1_);
3259  EXPECT_EQ(s2_ + 1, p2_);
3260
3261  // failed EXPECT_STRCASEEQ
3262  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3263                          "ignoring case");
3264  EXPECT_EQ(s1_ + 2, p1_);
3265  EXPECT_EQ(s2_ + 2, p2_);
3266}
3267
3268// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3269// once.
3270TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3271  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3272                       "(a_++) != (b_++)");
3273  EXPECT_EQ(1, a_);
3274  EXPECT_EQ(1, b_);
3275}
3276
3277// Tests that assertion arguments are evaluated exactly once.
3278TEST_F(SingleEvaluationTest, OtherCases) {
3279  // successful EXPECT_TRUE
3280  EXPECT_TRUE(0 == a_++);  // NOLINT
3281  EXPECT_EQ(1, a_);
3282
3283  // failed EXPECT_TRUE
3284  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3285  EXPECT_EQ(2, a_);
3286
3287  // successful EXPECT_GT
3288  EXPECT_GT(a_++, b_++);
3289  EXPECT_EQ(3, a_);
3290  EXPECT_EQ(1, b_);
3291
3292  // failed EXPECT_LT
3293  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3294  EXPECT_EQ(4, a_);
3295  EXPECT_EQ(2, b_);
3296
3297  // successful ASSERT_TRUE
3298  ASSERT_TRUE(0 < a_++);  // NOLINT
3299  EXPECT_EQ(5, a_);
3300
3301  // successful ASSERT_GT
3302  ASSERT_GT(a_++, b_++);
3303  EXPECT_EQ(6, a_);
3304  EXPECT_EQ(3, b_);
3305}
3306
3307#if GTEST_HAS_EXCEPTIONS
3308
3309void ThrowAnInteger() {
3310  throw 1;
3311}
3312
3313// Tests that assertion arguments are evaluated exactly once.
3314TEST_F(SingleEvaluationTest, ExceptionTests) {
3315  // successful EXPECT_THROW
3316  EXPECT_THROW({  // NOLINT
3317    a_++;
3318    ThrowAnInteger();
3319  }, int);
3320  EXPECT_EQ(1, a_);
3321
3322  // failed EXPECT_THROW, throws different
3323  EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3324    a_++;
3325    ThrowAnInteger();
3326  }, bool), "throws a different type");
3327  EXPECT_EQ(2, a_);
3328
3329  // failed EXPECT_THROW, throws nothing
3330  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3331  EXPECT_EQ(3, a_);
3332
3333  // successful EXPECT_NO_THROW
3334  EXPECT_NO_THROW(a_++);
3335  EXPECT_EQ(4, a_);
3336
3337  // failed EXPECT_NO_THROW
3338  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3339    a_++;
3340    ThrowAnInteger();
3341  }), "it throws");
3342  EXPECT_EQ(5, a_);
3343
3344  // successful EXPECT_ANY_THROW
3345  EXPECT_ANY_THROW({  // NOLINT
3346    a_++;
3347    ThrowAnInteger();
3348  });
3349  EXPECT_EQ(6, a_);
3350
3351  // failed EXPECT_ANY_THROW
3352  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3353  EXPECT_EQ(7, a_);
3354}
3355
3356#endif  // GTEST_HAS_EXCEPTIONS
3357
3358// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3359class NoFatalFailureTest : public Test {
3360 protected:
3361  void Succeeds() {}
3362  void FailsNonFatal() {
3363    ADD_FAILURE() << "some non-fatal failure";
3364  }
3365  void Fails() {
3366    FAIL() << "some fatal failure";
3367  }
3368
3369  void DoAssertNoFatalFailureOnFails() {
3370    ASSERT_NO_FATAL_FAILURE(Fails());
3371    ADD_FAILURE() << "shold not reach here.";
3372  }
3373
3374  void DoExpectNoFatalFailureOnFails() {
3375    EXPECT_NO_FATAL_FAILURE(Fails());
3376    ADD_FAILURE() << "other failure";
3377  }
3378};
3379
3380TEST_F(NoFatalFailureTest, NoFailure) {
3381  EXPECT_NO_FATAL_FAILURE(Succeeds());
3382  ASSERT_NO_FATAL_FAILURE(Succeeds());
3383}
3384
3385TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3386  EXPECT_NONFATAL_FAILURE(
3387      EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3388      "some non-fatal failure");
3389  EXPECT_NONFATAL_FAILURE(
3390      ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3391      "some non-fatal failure");
3392}
3393
3394TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3395  TestPartResultArray gtest_failures;
3396  {
3397    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3398    DoAssertNoFatalFailureOnFails();
3399  }
3400  ASSERT_EQ(2, gtest_failures.size());
3401  EXPECT_EQ(TestPartResult::kFatalFailure,
3402            gtest_failures.GetTestPartResult(0).type());
3403  EXPECT_EQ(TestPartResult::kFatalFailure,
3404            gtest_failures.GetTestPartResult(1).type());
3405  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3406                      gtest_failures.GetTestPartResult(0).message());
3407  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3408                      gtest_failures.GetTestPartResult(1).message());
3409}
3410
3411TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3412  TestPartResultArray gtest_failures;
3413  {
3414    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3415    DoExpectNoFatalFailureOnFails();
3416  }
3417  ASSERT_EQ(3, gtest_failures.size());
3418  EXPECT_EQ(TestPartResult::kFatalFailure,
3419            gtest_failures.GetTestPartResult(0).type());
3420  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3421            gtest_failures.GetTestPartResult(1).type());
3422  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3423            gtest_failures.GetTestPartResult(2).type());
3424  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3425                      gtest_failures.GetTestPartResult(0).message());
3426  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3427                      gtest_failures.GetTestPartResult(1).message());
3428  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3429                      gtest_failures.GetTestPartResult(2).message());
3430}
3431
3432TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3433  TestPartResultArray gtest_failures;
3434  {
3435    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3436    EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3437  }
3438  ASSERT_EQ(2, gtest_failures.size());
3439  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3440            gtest_failures.GetTestPartResult(0).type());
3441  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3442            gtest_failures.GetTestPartResult(1).type());
3443  EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3444                      gtest_failures.GetTestPartResult(0).message());
3445  EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3446                      gtest_failures.GetTestPartResult(1).message());
3447}
3448
3449// Tests non-string assertions.
3450
3451std::string EditsToString(const std::vector<EditType>& edits) {
3452  std::string out;
3453  for (size_t i = 0; i < edits.size(); ++i) {
3454    static const char kEdits[] = " +-/";
3455    out.append(1, kEdits[edits[i]]);
3456  }
3457  return out;
3458}
3459
3460std::vector<size_t> CharsToIndices(const std::string& str) {
3461  std::vector<size_t> out;
3462  for (size_t i = 0; i < str.size(); ++i) {
3463    out.push_back(str[i]);
3464  }
3465  return out;
3466}
3467
3468std::vector<std::string> CharsToLines(const std::string& str) {
3469  std::vector<std::string> out;
3470  for (size_t i = 0; i < str.size(); ++i) {
3471    out.push_back(str.substr(i, 1));
3472  }
3473  return out;
3474}
3475
3476TEST(EditDistance, TestCases) {
3477  struct Case {
3478    int line;
3479    const char* left;
3480    const char* right;
3481    const char* expected_edits;
3482    const char* expected_diff;
3483  };
3484  static const Case kCases[] = {
3485      // No change.
3486      {__LINE__, "A", "A", " ", ""},
3487      {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3488      // Simple adds.
3489      {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3490      {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3491      // Simple removes.
3492      {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3493      {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3494      // Simple replaces.
3495      {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3496      {__LINE__, "ABCD", "abcd", "////",
3497       "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3498      // Path finding.
3499      {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3500       "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3501      {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3502       "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3503      {__LINE__, "ABCDE", "BCDCD", "-   +/",
3504       "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3505      {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3506       "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3507       "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3508      {}};
3509  for (const Case* c = kCases; c->left; ++c) {
3510    EXPECT_TRUE(c->expected_edits ==
3511                EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3512                                                    CharsToIndices(c->right))))
3513        << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3514        << EditsToString(CalculateOptimalEdits(
3515               CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3516    EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3517                                                      CharsToLines(c->right)))
3518        << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3519        << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3520        << ">";
3521  }
3522}
3523
3524// Tests EqFailure(), used for implementing *EQ* assertions.
3525TEST(AssertionTest, EqFailure) {
3526  const std::string foo_val("5"), bar_val("6");
3527  const std::string msg1(
3528      EqFailure("foo", "bar", foo_val, bar_val, false)
3529      .failure_message());
3530  EXPECT_STREQ(
3531      "Value of: bar\n"
3532      "  Actual: 6\n"
3533      "Expected: foo\n"
3534      "Which is: 5",
3535      msg1.c_str());
3536
3537  const std::string msg2(
3538      EqFailure("foo", "6", foo_val, bar_val, false)
3539      .failure_message());
3540  EXPECT_STREQ(
3541      "Value of: 6\n"
3542      "Expected: foo\n"
3543      "Which is: 5",
3544      msg2.c_str());
3545
3546  const std::string msg3(
3547      EqFailure("5", "bar", foo_val, bar_val, false)
3548      .failure_message());
3549  EXPECT_STREQ(
3550      "Value of: bar\n"
3551      "  Actual: 6\n"
3552      "Expected: 5",
3553      msg3.c_str());
3554
3555  const std::string msg4(
3556      EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3557  EXPECT_STREQ(
3558      "Value of: 6\n"
3559      "Expected: 5",
3560      msg4.c_str());
3561
3562  const std::string msg5(
3563      EqFailure("foo", "bar",
3564                std::string("\"x\""), std::string("\"y\""),
3565                true).failure_message());
3566  EXPECT_STREQ(
3567      "Value of: bar\n"
3568      "  Actual: \"y\"\n"
3569      "Expected: foo (ignoring case)\n"
3570      "Which is: \"x\"",
3571      msg5.c_str());
3572}
3573
3574TEST(AssertionTest, EqFailureWithDiff) {
3575  const std::string left(
3576      "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3577  const std::string right(
3578      "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3579  const std::string msg1(
3580      EqFailure("left", "right", left, right, false).failure_message());
3581  EXPECT_STREQ(
3582      "Value of: right\n"
3583      "  Actual: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3584      "Expected: left\n"
3585      "Which is: "
3586      "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3587      "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3588      "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3589      msg1.c_str());
3590}
3591
3592// Tests AppendUserMessage(), used for implementing the *EQ* macros.
3593TEST(AssertionTest, AppendUserMessage) {
3594  const std::string foo("foo");
3595
3596  Message msg;
3597  EXPECT_STREQ("foo",
3598               AppendUserMessage(foo, msg).c_str());
3599
3600  msg << "bar";
3601  EXPECT_STREQ("foo\nbar",
3602               AppendUserMessage(foo, msg).c_str());
3603}
3604
3605#ifdef __BORLANDC__
3606// Silences warnings: "Condition is always true", "Unreachable code"
3607# pragma option push -w-ccc -w-rch
3608#endif
3609
3610// Tests ASSERT_TRUE.
3611TEST(AssertionTest, ASSERT_TRUE) {
3612  ASSERT_TRUE(2 > 1);  // NOLINT
3613  EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3614                       "2 < 1");
3615}
3616
3617// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3618TEST(AssertionTest, AssertTrueWithAssertionResult) {
3619  ASSERT_TRUE(ResultIsEven(2));
3620#ifndef __BORLANDC__
3621  // ICE's in C++Builder.
3622  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3623                       "Value of: ResultIsEven(3)\n"
3624                       "  Actual: false (3 is odd)\n"
3625                       "Expected: true");
3626#endif
3627  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3628  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3629                       "Value of: ResultIsEvenNoExplanation(3)\n"
3630                       "  Actual: false (3 is odd)\n"
3631                       "Expected: true");
3632}
3633
3634// Tests ASSERT_FALSE.
3635TEST(AssertionTest, ASSERT_FALSE) {
3636  ASSERT_FALSE(2 < 1);  // NOLINT
3637  EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3638                       "Value of: 2 > 1\n"
3639                       "  Actual: true\n"
3640                       "Expected: false");
3641}
3642
3643// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3644TEST(AssertionTest, AssertFalseWithAssertionResult) {
3645  ASSERT_FALSE(ResultIsEven(3));
3646#ifndef __BORLANDC__
3647  // ICE's in C++Builder.
3648  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3649                       "Value of: ResultIsEven(2)\n"
3650                       "  Actual: true (2 is even)\n"
3651                       "Expected: false");
3652#endif
3653  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3654  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3655                       "Value of: ResultIsEvenNoExplanation(2)\n"
3656                       "  Actual: true\n"
3657                       "Expected: false");
3658}
3659
3660#ifdef __BORLANDC__
3661// Restores warnings after previous "#pragma option push" supressed them
3662# pragma option pop
3663#endif
3664
3665// Tests using ASSERT_EQ on double values.  The purpose is to make
3666// sure that the specialization we did for integer and anonymous enums
3667// isn't used for double arguments.
3668TEST(ExpectTest, ASSERT_EQ_Double) {
3669  // A success.
3670  ASSERT_EQ(5.6, 5.6);
3671
3672  // A failure.
3673  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3674                       "5.1");
3675}
3676
3677// Tests ASSERT_EQ.
3678TEST(AssertionTest, ASSERT_EQ) {
3679  ASSERT_EQ(5, 2 + 3);
3680  EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3681                       "Value of: 2*3\n"
3682                       "  Actual: 6\n"
3683                       "Expected: 5");
3684}
3685
3686// Tests ASSERT_EQ(NULL, pointer).
3687#if GTEST_CAN_COMPARE_NULL
3688TEST(AssertionTest, ASSERT_EQ_NULL) {
3689  // A success.
3690  const char* p = NULL;
3691  // Some older GCC versions may issue a spurious waring in this or the next
3692  // assertion statement. This warning should not be suppressed with
3693  // static_cast since the test verifies the ability to use bare NULL as the
3694  // expected parameter to the macro.
3695  ASSERT_EQ(NULL, p);
3696
3697  // A failure.
3698  static int n = 0;
3699  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3700                       "Value of: &n\n");
3701}
3702#endif  // GTEST_CAN_COMPARE_NULL
3703
3704// Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3705// treated as a null pointer by the compiler, we need to make sure
3706// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3707// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3708TEST(ExpectTest, ASSERT_EQ_0) {
3709  int n = 0;
3710
3711  // A success.
3712  ASSERT_EQ(0, n);
3713
3714  // A failure.
3715  EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3716                       "Expected: 0");
3717}
3718
3719// Tests ASSERT_NE.
3720TEST(AssertionTest, ASSERT_NE) {
3721  ASSERT_NE(6, 7);
3722  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3723                       "Expected: ('a') != ('a'), "
3724                       "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3725}
3726
3727// Tests ASSERT_LE.
3728TEST(AssertionTest, ASSERT_LE) {
3729  ASSERT_LE(2, 3);
3730  ASSERT_LE(2, 2);
3731  EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3732                       "Expected: (2) <= (0), actual: 2 vs 0");
3733}
3734
3735// Tests ASSERT_LT.
3736TEST(AssertionTest, ASSERT_LT) {
3737  ASSERT_LT(2, 3);
3738  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3739                       "Expected: (2) < (2), actual: 2 vs 2");
3740}
3741
3742// Tests ASSERT_GE.
3743TEST(AssertionTest, ASSERT_GE) {
3744  ASSERT_GE(2, 1);
3745  ASSERT_GE(2, 2);
3746  EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3747                       "Expected: (2) >= (3), actual: 2 vs 3");
3748}
3749
3750// Tests ASSERT_GT.
3751TEST(AssertionTest, ASSERT_GT) {
3752  ASSERT_GT(2, 1);
3753  EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3754                       "Expected: (2) > (2), actual: 2 vs 2");
3755}
3756
3757#if GTEST_HAS_EXCEPTIONS
3758
3759void ThrowNothing() {}
3760
3761// Tests ASSERT_THROW.
3762TEST(AssertionTest, ASSERT_THROW) {
3763  ASSERT_THROW(ThrowAnInteger(), int);
3764
3765# ifndef __BORLANDC__
3766
3767  // ICE's in C++Builder 2007 and 2009.
3768  EXPECT_FATAL_FAILURE(
3769      ASSERT_THROW(ThrowAnInteger(), bool),
3770      "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3771      "  Actual: it throws a different type.");
3772# endif
3773
3774  EXPECT_FATAL_FAILURE(
3775      ASSERT_THROW(ThrowNothing(), bool),
3776      "Expected: ThrowNothing() throws an exception of type bool.\n"
3777      "  Actual: it throws nothing.");
3778}
3779
3780// Tests ASSERT_NO_THROW.
3781TEST(AssertionTest, ASSERT_NO_THROW) {
3782  ASSERT_NO_THROW(ThrowNothing());
3783  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3784                       "Expected: ThrowAnInteger() doesn't throw an exception."
3785                       "\n  Actual: it throws.");
3786}
3787
3788// Tests ASSERT_ANY_THROW.
3789TEST(AssertionTest, ASSERT_ANY_THROW) {
3790  ASSERT_ANY_THROW(ThrowAnInteger());
3791  EXPECT_FATAL_FAILURE(
3792      ASSERT_ANY_THROW(ThrowNothing()),
3793      "Expected: ThrowNothing() throws an exception.\n"
3794      "  Actual: it doesn't.");
3795}
3796
3797#endif  // GTEST_HAS_EXCEPTIONS
3798
3799// Makes sure we deal with the precedence of <<.  This test should
3800// compile.
3801TEST(AssertionTest, AssertPrecedence) {
3802  ASSERT_EQ(1 < 2, true);
3803  bool false_value = false;
3804  ASSERT_EQ(true && false_value, false);
3805}
3806
3807// A subroutine used by the following test.
3808void TestEq1(int x) {
3809  ASSERT_EQ(1, x);
3810}
3811
3812// Tests calling a test subroutine that's not part of a fixture.
3813TEST(AssertionTest, NonFixtureSubroutine) {
3814  EXPECT_FATAL_FAILURE(TestEq1(2),
3815                       "Value of: x");
3816}
3817
3818// An uncopyable class.
3819class Uncopyable {
3820 public:
3821  explicit Uncopyable(int a_value) : value_(a_value) {}
3822
3823  int value() const { return value_; }
3824  bool operator==(const Uncopyable& rhs) const {
3825    return value() == rhs.value();
3826  }
3827 private:
3828  // This constructor deliberately has no implementation, as we don't
3829  // want this class to be copyable.
3830  Uncopyable(const Uncopyable&);  // NOLINT
3831
3832  int value_;
3833};
3834
3835::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3836  return os << value.value();
3837}
3838
3839
3840bool IsPositiveUncopyable(const Uncopyable& x) {
3841  return x.value() > 0;
3842}
3843
3844// A subroutine used by the following test.
3845void TestAssertNonPositive() {
3846  Uncopyable y(-1);
3847  ASSERT_PRED1(IsPositiveUncopyable, y);
3848}
3849// A subroutine used by the following test.
3850void TestAssertEqualsUncopyable() {
3851  Uncopyable x(5);
3852  Uncopyable y(-1);
3853  ASSERT_EQ(x, y);
3854}
3855
3856// Tests that uncopyable objects can be used in assertions.
3857TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3858  Uncopyable x(5);
3859  ASSERT_PRED1(IsPositiveUncopyable, x);
3860  ASSERT_EQ(x, x);
3861  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3862    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3863  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3864    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3865}
3866
3867// Tests that uncopyable objects can be used in expects.
3868TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3869  Uncopyable x(5);
3870  EXPECT_PRED1(IsPositiveUncopyable, x);
3871  Uncopyable y(-1);
3872  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3873    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3874  EXPECT_EQ(x, x);
3875  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3876    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3877}
3878
3879enum NamedEnum {
3880  kE1 = 0,
3881  kE2 = 1
3882};
3883
3884TEST(AssertionTest, NamedEnum) {
3885  EXPECT_EQ(kE1, kE1);
3886  EXPECT_LT(kE1, kE2);
3887  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3888  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3889}
3890
3891// The version of gcc used in XCode 2.2 has a bug and doesn't allow
3892// anonymous enums in assertions.  Therefore the following test is not
3893// done on Mac.
3894// Sun Studio and HP aCC also reject this code.
3895#if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3896
3897// Tests using assertions with anonymous enums.
3898enum {
3899  kCaseA = -1,
3900
3901# if GTEST_OS_LINUX
3902
3903  // We want to test the case where the size of the anonymous enum is
3904  // larger than sizeof(int), to make sure our implementation of the
3905  // assertions doesn't truncate the enums.  However, MSVC
3906  // (incorrectly) doesn't allow an enum value to exceed the range of
3907  // an int, so this has to be conditionally compiled.
3908  //
3909  // On Linux, kCaseB and kCaseA have the same value when truncated to
3910  // int size.  We want to test whether this will confuse the
3911  // assertions.
3912  kCaseB = testing::internal::kMaxBiggestInt,
3913
3914# else
3915
3916  kCaseB = INT_MAX,
3917
3918# endif  // GTEST_OS_LINUX
3919
3920  kCaseC = 42
3921};
3922
3923TEST(AssertionTest, AnonymousEnum) {
3924# if GTEST_OS_LINUX
3925
3926  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3927
3928# endif  // GTEST_OS_LINUX
3929
3930  EXPECT_EQ(kCaseA, kCaseA);
3931  EXPECT_NE(kCaseA, kCaseB);
3932  EXPECT_LT(kCaseA, kCaseB);
3933  EXPECT_LE(kCaseA, kCaseB);
3934  EXPECT_GT(kCaseB, kCaseA);
3935  EXPECT_GE(kCaseA, kCaseA);
3936  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3937                          "(kCaseA) >= (kCaseB)");
3938  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3939                          "-1 vs 42");
3940
3941  ASSERT_EQ(kCaseA, kCaseA);
3942  ASSERT_NE(kCaseA, kCaseB);
3943  ASSERT_LT(kCaseA, kCaseB);
3944  ASSERT_LE(kCaseA, kCaseB);
3945  ASSERT_GT(kCaseB, kCaseA);
3946  ASSERT_GE(kCaseA, kCaseA);
3947
3948# ifndef __BORLANDC__
3949
3950  // ICE's in C++Builder.
3951  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3952                       "Value of: kCaseB");
3953  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3954                       "Actual: 42");
3955# endif
3956
3957  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3958                       "Which is: -1");
3959}
3960
3961#endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3962
3963#if GTEST_OS_WINDOWS
3964
3965static HRESULT UnexpectedHRESULTFailure() {
3966  return E_UNEXPECTED;
3967}
3968
3969static HRESULT OkHRESULTSuccess() {
3970  return S_OK;
3971}
3972
3973static HRESULT FalseHRESULTSuccess() {
3974  return S_FALSE;
3975}
3976
3977// HRESULT assertion tests test both zero and non-zero
3978// success codes as well as failure message for each.
3979//
3980// Windows CE doesn't support message texts.
3981TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3982  EXPECT_HRESULT_SUCCEEDED(S_OK);
3983  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3984
3985  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3986    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3987    "  Actual: 0x8000FFFF");
3988}
3989
3990TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3991  ASSERT_HRESULT_SUCCEEDED(S_OK);
3992  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3993
3994  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3995    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3996    "  Actual: 0x8000FFFF");
3997}
3998
3999TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4000  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4001
4002  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4003    "Expected: (OkHRESULTSuccess()) fails.\n"
4004    "  Actual: 0x0");
4005  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4006    "Expected: (FalseHRESULTSuccess()) fails.\n"
4007    "  Actual: 0x1");
4008}
4009
4010TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4011  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4012
4013# ifndef __BORLANDC__
4014
4015  // ICE's in C++Builder 2007 and 2009.
4016  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4017    "Expected: (OkHRESULTSuccess()) fails.\n"
4018    "  Actual: 0x0");
4019# endif
4020
4021  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4022    "Expected: (FalseHRESULTSuccess()) fails.\n"
4023    "  Actual: 0x1");
4024}
4025
4026// Tests that streaming to the HRESULT macros works.
4027TEST(HRESULTAssertionTest, Streaming) {
4028  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4029  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4030  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4031  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4032
4033  EXPECT_NONFATAL_FAILURE(
4034      EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4035      "expected failure");
4036
4037# ifndef __BORLANDC__
4038
4039  // ICE's in C++Builder 2007 and 2009.
4040  EXPECT_FATAL_FAILURE(
4041      ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4042      "expected failure");
4043# endif
4044
4045  EXPECT_NONFATAL_FAILURE(
4046      EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4047      "expected failure");
4048
4049  EXPECT_FATAL_FAILURE(
4050      ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4051      "expected failure");
4052}
4053
4054#endif  // GTEST_OS_WINDOWS
4055
4056#ifdef __BORLANDC__
4057// Silences warnings: "Condition is always true", "Unreachable code"
4058# pragma option push -w-ccc -w-rch
4059#endif
4060
4061// Tests that the assertion macros behave like single statements.
4062TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4063  if (AlwaysFalse())
4064    ASSERT_TRUE(false) << "This should never be executed; "
4065                          "It's a compilation test only.";
4066
4067  if (AlwaysTrue())
4068    EXPECT_FALSE(false);
4069  else
4070    ;  // NOLINT
4071
4072  if (AlwaysFalse())
4073    ASSERT_LT(1, 3);
4074
4075  if (AlwaysFalse())
4076    ;  // NOLINT
4077  else
4078    EXPECT_GT(3, 2) << "";
4079}
4080
4081#if GTEST_HAS_EXCEPTIONS
4082// Tests that the compiler will not complain about unreachable code in the
4083// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
4084TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4085  int n = 0;
4086
4087  EXPECT_THROW(throw 1, int);
4088  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4089  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4090  EXPECT_NO_THROW(n++);
4091  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4092  EXPECT_ANY_THROW(throw 1);
4093  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4094}
4095
4096TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4097  if (AlwaysFalse())
4098    EXPECT_THROW(ThrowNothing(), bool);
4099
4100  if (AlwaysTrue())
4101    EXPECT_THROW(ThrowAnInteger(), int);
4102  else
4103    ;  // NOLINT
4104
4105  if (AlwaysFalse())
4106    EXPECT_NO_THROW(ThrowAnInteger());
4107
4108  if (AlwaysTrue())
4109    EXPECT_NO_THROW(ThrowNothing());
4110  else
4111    ;  // NOLINT
4112
4113  if (AlwaysFalse())
4114    EXPECT_ANY_THROW(ThrowNothing());
4115
4116  if (AlwaysTrue())
4117    EXPECT_ANY_THROW(ThrowAnInteger());
4118  else
4119    ;  // NOLINT
4120}
4121#endif  // GTEST_HAS_EXCEPTIONS
4122
4123TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4124  if (AlwaysFalse())
4125    EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4126                                    << "It's a compilation test only.";
4127  else
4128    ;  // NOLINT
4129
4130  if (AlwaysFalse())
4131    ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4132  else
4133    ;  // NOLINT
4134
4135  if (AlwaysTrue())
4136    EXPECT_NO_FATAL_FAILURE(SUCCEED());
4137  else
4138    ;  // NOLINT
4139
4140  if (AlwaysFalse())
4141    ;  // NOLINT
4142  else
4143    ASSERT_NO_FATAL_FAILURE(SUCCEED());
4144}
4145
4146// Tests that the assertion macros work well with switch statements.
4147TEST(AssertionSyntaxTest, WorksWithSwitch) {
4148  switch (0) {
4149    case 1:
4150      break;
4151    default:
4152      ASSERT_TRUE(true);
4153  }
4154
4155  switch (0)
4156    case 0:
4157      EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4158
4159  // Binary assertions are implemented using a different code path
4160  // than the Boolean assertions.  Hence we test them separately.
4161  switch (0) {
4162    case 1:
4163    default:
4164      ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4165  }
4166
4167  switch (0)
4168    case 0:
4169      EXPECT_NE(1, 2);
4170}
4171
4172#if GTEST_HAS_EXCEPTIONS
4173
4174void ThrowAString() {
4175    throw "std::string";
4176}
4177
4178// Test that the exception assertion macros compile and work with const
4179// type qualifier.
4180TEST(AssertionSyntaxTest, WorksWithConst) {
4181    ASSERT_THROW(ThrowAString(), const char*);
4182
4183    EXPECT_THROW(ThrowAString(), const char*);
4184}
4185
4186#endif  // GTEST_HAS_EXCEPTIONS
4187
4188}  // namespace
4189
4190namespace testing {
4191
4192// Tests that Google Test tracks SUCCEED*.
4193TEST(SuccessfulAssertionTest, SUCCEED) {
4194  SUCCEED();
4195  SUCCEED() << "OK";
4196  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4197}
4198
4199// Tests that Google Test doesn't track successful EXPECT_*.
4200TEST(SuccessfulAssertionTest, EXPECT) {
4201  EXPECT_TRUE(true);
4202  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4203}
4204
4205// Tests that Google Test doesn't track successful EXPECT_STR*.
4206TEST(SuccessfulAssertionTest, EXPECT_STR) {
4207  EXPECT_STREQ("", "");
4208  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4209}
4210
4211// Tests that Google Test doesn't track successful ASSERT_*.
4212TEST(SuccessfulAssertionTest, ASSERT) {
4213  ASSERT_TRUE(true);
4214  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4215}
4216
4217// Tests that Google Test doesn't track successful ASSERT_STR*.
4218TEST(SuccessfulAssertionTest, ASSERT_STR) {
4219  ASSERT_STREQ("", "");
4220  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4221}
4222
4223}  // namespace testing
4224
4225namespace {
4226
4227// Tests the message streaming variation of assertions.
4228
4229TEST(AssertionWithMessageTest, EXPECT) {
4230  EXPECT_EQ(1, 1) << "This should succeed.";
4231  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4232                          "Expected failure #1");
4233  EXPECT_LE(1, 2) << "This should succeed.";
4234  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4235                          "Expected failure #2.");
4236  EXPECT_GE(1, 0) << "This should succeed.";
4237  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4238                          "Expected failure #3.");
4239
4240  EXPECT_STREQ("1", "1") << "This should succeed.";
4241  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4242                          "Expected failure #4.");
4243  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4244  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4245                          "Expected failure #5.");
4246
4247  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4248  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4249                          "Expected failure #6.");
4250  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4251}
4252
4253TEST(AssertionWithMessageTest, ASSERT) {
4254  ASSERT_EQ(1, 1) << "This should succeed.";
4255  ASSERT_NE(1, 2) << "This should succeed.";
4256  ASSERT_LE(1, 2) << "This should succeed.";
4257  ASSERT_LT(1, 2) << "This should succeed.";
4258  ASSERT_GE(1, 0) << "This should succeed.";
4259  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4260                       "Expected failure.");
4261}
4262
4263TEST(AssertionWithMessageTest, ASSERT_STR) {
4264  ASSERT_STREQ("1", "1") << "This should succeed.";
4265  ASSERT_STRNE("1", "2") << "This should succeed.";
4266  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4267  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4268                       "Expected failure.");
4269}
4270
4271TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4272  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4273  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4274  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4275                       "Expect failure.");
4276  // To work around a bug in gcc 2.95.0, there is intentionally no
4277  // space after the first comma in the previous statement.
4278}
4279
4280// Tests using ASSERT_FALSE with a streamed message.
4281TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4282  ASSERT_FALSE(false) << "This shouldn't fail.";
4283  EXPECT_FATAL_FAILURE({  // NOLINT
4284    ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4285                       << " evaluates to " << true;
4286  }, "Expected failure");
4287}
4288
4289// Tests using FAIL with a streamed message.
4290TEST(AssertionWithMessageTest, FAIL) {
4291  EXPECT_FATAL_FAILURE(FAIL() << 0,
4292                       "0");
4293}
4294
4295// Tests using SUCCEED with a streamed message.
4296TEST(AssertionWithMessageTest, SUCCEED) {
4297  SUCCEED() << "Success == " << 1;
4298}
4299
4300// Tests using ASSERT_TRUE with a streamed message.
4301TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4302  ASSERT_TRUE(true) << "This should succeed.";
4303  ASSERT_TRUE(true) << true;
4304  EXPECT_FATAL_FAILURE({  // NOLINT
4305    ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4306                       << static_cast<char *>(NULL);
4307  }, "(null)(null)");
4308}
4309
4310#if GTEST_OS_WINDOWS
4311// Tests using wide strings in assertion messages.
4312TEST(AssertionWithMessageTest, WideStringMessage) {
4313  EXPECT_NONFATAL_FAILURE({  // NOLINT
4314    EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4315  }, "This failure is expected.");
4316  EXPECT_FATAL_FAILURE({  // NOLINT
4317    ASSERT_EQ(1, 2) << "This failure is "
4318                    << L"expected too.\x8120";
4319  }, "This failure is expected too.");
4320}
4321#endif  // GTEST_OS_WINDOWS
4322
4323// Tests EXPECT_TRUE.
4324TEST(ExpectTest, EXPECT_TRUE) {
4325  EXPECT_TRUE(true) << "Intentional success";
4326  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4327                          "Intentional failure #1.");
4328  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4329                          "Intentional failure #2.");
4330  EXPECT_TRUE(2 > 1);  // NOLINT
4331  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4332                          "Value of: 2 < 1\n"
4333                          "  Actual: false\n"
4334                          "Expected: true");
4335  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4336                          "2 > 3");
4337}
4338
4339// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4340TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4341  EXPECT_TRUE(ResultIsEven(2));
4342  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4343                          "Value of: ResultIsEven(3)\n"
4344                          "  Actual: false (3 is odd)\n"
4345                          "Expected: true");
4346  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4347  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4348                          "Value of: ResultIsEvenNoExplanation(3)\n"
4349                          "  Actual: false (3 is odd)\n"
4350                          "Expected: true");
4351}
4352
4353// Tests EXPECT_FALSE with a streamed message.
4354TEST(ExpectTest, EXPECT_FALSE) {
4355  EXPECT_FALSE(2 < 1);  // NOLINT
4356  EXPECT_FALSE(false) << "Intentional success";
4357  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4358                          "Intentional failure #1.");
4359  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4360                          "Intentional failure #2.");
4361  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4362                          "Value of: 2 > 1\n"
4363                          "  Actual: true\n"
4364                          "Expected: false");
4365  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4366                          "2 < 3");
4367}
4368
4369// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4370TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4371  EXPECT_FALSE(ResultIsEven(3));
4372  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4373                          "Value of: ResultIsEven(2)\n"
4374                          "  Actual: true (2 is even)\n"
4375                          "Expected: false");
4376  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4377  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4378                          "Value of: ResultIsEvenNoExplanation(2)\n"
4379                          "  Actual: true\n"
4380                          "Expected: false");
4381}
4382
4383#ifdef __BORLANDC__
4384// Restores warnings after previous "#pragma option push" supressed them
4385# pragma option pop
4386#endif
4387
4388// Tests EXPECT_EQ.
4389TEST(ExpectTest, EXPECT_EQ) {
4390  EXPECT_EQ(5, 2 + 3);
4391  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4392                          "Value of: 2*3\n"
4393                          "  Actual: 6\n"
4394                          "Expected: 5");
4395  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4396                          "2 - 3");
4397}
4398
4399// Tests using EXPECT_EQ on double values.  The purpose is to make
4400// sure that the specialization we did for integer and anonymous enums
4401// isn't used for double arguments.
4402TEST(ExpectTest, EXPECT_EQ_Double) {
4403  // A success.
4404  EXPECT_EQ(5.6, 5.6);
4405
4406  // A failure.
4407  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4408                          "5.1");
4409}
4410
4411#if GTEST_CAN_COMPARE_NULL
4412// Tests EXPECT_EQ(NULL, pointer).
4413TEST(ExpectTest, EXPECT_EQ_NULL) {
4414  // A success.
4415  const char* p = NULL;
4416  // Some older GCC versions may issue a spurious warning in this or the next
4417  // assertion statement. This warning should not be suppressed with
4418  // static_cast since the test verifies the ability to use bare NULL as the
4419  // expected parameter to the macro.
4420  EXPECT_EQ(NULL, p);
4421
4422  // A failure.
4423  int n = 0;
4424  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4425                          "Value of: &n\n");
4426}
4427#endif  // GTEST_CAN_COMPARE_NULL
4428
4429// Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4430// treated as a null pointer by the compiler, we need to make sure
4431// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4432// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4433TEST(ExpectTest, EXPECT_EQ_0) {
4434  int n = 0;
4435
4436  // A success.
4437  EXPECT_EQ(0, n);
4438
4439  // A failure.
4440  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4441                          "Expected: 0");
4442}
4443
4444// Tests EXPECT_NE.
4445TEST(ExpectTest, EXPECT_NE) {
4446  EXPECT_NE(6, 7);
4447
4448  EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4449                          "Expected: ('a') != ('a'), "
4450                          "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4451  EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4452                          "2");
4453  char* const p0 = NULL;
4454  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4455                          "p0");
4456  // Only way to get the Nokia compiler to compile the cast
4457  // is to have a separate void* variable first. Putting
4458  // the two casts on the same line doesn't work, neither does
4459  // a direct C-style to char*.
4460  void* pv1 = (void*)0x1234;  // NOLINT
4461  char* const p1 = reinterpret_cast<char*>(pv1);
4462  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4463                          "p1");
4464}
4465
4466// Tests EXPECT_LE.
4467TEST(ExpectTest, EXPECT_LE) {
4468  EXPECT_LE(2, 3);
4469  EXPECT_LE(2, 2);
4470  EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4471                          "Expected: (2) <= (0), actual: 2 vs 0");
4472  EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4473                          "(1.1) <= (0.9)");
4474}
4475
4476// Tests EXPECT_LT.
4477TEST(ExpectTest, EXPECT_LT) {
4478  EXPECT_LT(2, 3);
4479  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4480                          "Expected: (2) < (2), actual: 2 vs 2");
4481  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4482                          "(2) < (1)");
4483}
4484
4485// Tests EXPECT_GE.
4486TEST(ExpectTest, EXPECT_GE) {
4487  EXPECT_GE(2, 1);
4488  EXPECT_GE(2, 2);
4489  EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4490                          "Expected: (2) >= (3), actual: 2 vs 3");
4491  EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4492                          "(0.9) >= (1.1)");
4493}
4494
4495// Tests EXPECT_GT.
4496TEST(ExpectTest, EXPECT_GT) {
4497  EXPECT_GT(2, 1);
4498  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4499                          "Expected: (2) > (2), actual: 2 vs 2");
4500  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4501                          "(2) > (3)");
4502}
4503
4504#if GTEST_HAS_EXCEPTIONS
4505
4506// Tests EXPECT_THROW.
4507TEST(ExpectTest, EXPECT_THROW) {
4508  EXPECT_THROW(ThrowAnInteger(), int);
4509  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4510                          "Expected: ThrowAnInteger() throws an exception of "
4511                          "type bool.\n  Actual: it throws a different type.");
4512  EXPECT_NONFATAL_FAILURE(
4513      EXPECT_THROW(ThrowNothing(), bool),
4514      "Expected: ThrowNothing() throws an exception of type bool.\n"
4515      "  Actual: it throws nothing.");
4516}
4517
4518// Tests EXPECT_NO_THROW.
4519TEST(ExpectTest, EXPECT_NO_THROW) {
4520  EXPECT_NO_THROW(ThrowNothing());
4521  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4522                          "Expected: ThrowAnInteger() doesn't throw an "
4523                          "exception.\n  Actual: it throws.");
4524}
4525
4526// Tests EXPECT_ANY_THROW.
4527TEST(ExpectTest, EXPECT_ANY_THROW) {
4528  EXPECT_ANY_THROW(ThrowAnInteger());
4529  EXPECT_NONFATAL_FAILURE(
4530      EXPECT_ANY_THROW(ThrowNothing()),
4531      "Expected: ThrowNothing() throws an exception.\n"
4532      "  Actual: it doesn't.");
4533}
4534
4535#endif  // GTEST_HAS_EXCEPTIONS
4536
4537// Make sure we deal with the precedence of <<.
4538TEST(ExpectTest, ExpectPrecedence) {
4539  EXPECT_EQ(1 < 2, true);
4540  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4541                          "Value of: true && false");
4542}
4543
4544
4545// Tests the StreamableToString() function.
4546
4547// Tests using StreamableToString() on a scalar.
4548TEST(StreamableToStringTest, Scalar) {
4549  EXPECT_STREQ("5", StreamableToString(5).c_str());
4550}
4551
4552// Tests using StreamableToString() on a non-char pointer.
4553TEST(StreamableToStringTest, Pointer) {
4554  int n = 0;
4555  int* p = &n;
4556  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4557}
4558
4559// Tests using StreamableToString() on a NULL non-char pointer.
4560TEST(StreamableToStringTest, NullPointer) {
4561  int* p = NULL;
4562  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4563}
4564
4565// Tests using StreamableToString() on a C string.
4566TEST(StreamableToStringTest, CString) {
4567  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4568}
4569
4570// Tests using StreamableToString() on a NULL C string.
4571TEST(StreamableToStringTest, NullCString) {
4572  char* p = NULL;
4573  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4574}
4575
4576// Tests using streamable values as assertion messages.
4577
4578// Tests using std::string as an assertion message.
4579TEST(StreamableTest, string) {
4580  static const std::string str(
4581      "This failure message is a std::string, and is expected.");
4582  EXPECT_FATAL_FAILURE(FAIL() << str,
4583                       str.c_str());
4584}
4585
4586// Tests that we can output strings containing embedded NULs.
4587// Limited to Linux because we can only do this with std::string's.
4588TEST(StreamableTest, stringWithEmbeddedNUL) {
4589  static const char char_array_with_nul[] =
4590      "Here's a NUL\0 and some more string";
4591  static const std::string string_with_nul(char_array_with_nul,
4592                                           sizeof(char_array_with_nul)
4593                                           - 1);  // drops the trailing NUL
4594  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4595                       "Here's a NUL\\0 and some more string");
4596}
4597
4598// Tests that we can output a NUL char.
4599TEST(StreamableTest, NULChar) {
4600  EXPECT_FATAL_FAILURE({  // NOLINT
4601    FAIL() << "A NUL" << '\0' << " and some more string";
4602  }, "A NUL\\0 and some more string");
4603}
4604
4605// Tests using int as an assertion message.
4606TEST(StreamableTest, int) {
4607  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4608                       "900913");
4609}
4610
4611// Tests using NULL char pointer as an assertion message.
4612//
4613// In MSVC, streaming a NULL char * causes access violation.  Google Test
4614// implemented a workaround (substituting "(null)" for NULL).  This
4615// tests whether the workaround works.
4616TEST(StreamableTest, NullCharPtr) {
4617  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4618                       "(null)");
4619}
4620
4621// Tests that basic IO manipulators (endl, ends, and flush) can be
4622// streamed to testing::Message.
4623TEST(StreamableTest, BasicIoManip) {
4624  EXPECT_FATAL_FAILURE({  // NOLINT
4625    FAIL() << "Line 1." << std::endl
4626           << "A NUL char " << std::ends << std::flush << " in line 2.";
4627  }, "Line 1.\nA NUL char \\0 in line 2.");
4628}
4629
4630// Tests the macros that haven't been covered so far.
4631
4632void AddFailureHelper(bool* aborted) {
4633  *aborted = true;
4634  ADD_FAILURE() << "Intentional failure.";
4635  *aborted = false;
4636}
4637
4638// Tests ADD_FAILURE.
4639TEST(MacroTest, ADD_FAILURE) {
4640  bool aborted = true;
4641  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4642                          "Intentional failure.");
4643  EXPECT_FALSE(aborted);
4644}
4645
4646// Tests ADD_FAILURE_AT.
4647TEST(MacroTest, ADD_FAILURE_AT) {
4648  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4649  // the failure message contains the user-streamed part.
4650  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4651
4652  // Verifies that the user-streamed part is optional.
4653  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4654
4655  // Unfortunately, we cannot verify that the failure message contains
4656  // the right file path and line number the same way, as
4657  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4658  // line number.  Instead, we do that in gtest_output_test_.cc.
4659}
4660
4661// Tests FAIL.
4662TEST(MacroTest, FAIL) {
4663  EXPECT_FATAL_FAILURE(FAIL(),
4664                       "Failed");
4665  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4666                       "Intentional failure.");
4667}
4668
4669// Tests SUCCEED
4670TEST(MacroTest, SUCCEED) {
4671  SUCCEED();
4672  SUCCEED() << "Explicit success.";
4673}
4674
4675// Tests for EXPECT_EQ() and ASSERT_EQ().
4676//
4677// These tests fail *intentionally*, s.t. the failure messages can be
4678// generated and tested.
4679//
4680// We have different tests for different argument types.
4681
4682// Tests using bool values in {EXPECT|ASSERT}_EQ.
4683TEST(EqAssertionTest, Bool) {
4684  EXPECT_EQ(true,  true);
4685  EXPECT_FATAL_FAILURE({
4686      bool false_value = false;
4687      ASSERT_EQ(false_value, true);
4688    }, "Value of: true");
4689}
4690
4691// Tests using int values in {EXPECT|ASSERT}_EQ.
4692TEST(EqAssertionTest, Int) {
4693  ASSERT_EQ(32, 32);
4694  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4695                          "33");
4696}
4697
4698// Tests using time_t values in {EXPECT|ASSERT}_EQ.
4699TEST(EqAssertionTest, Time_T) {
4700  EXPECT_EQ(static_cast<time_t>(0),
4701            static_cast<time_t>(0));
4702  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4703                                 static_cast<time_t>(1234)),
4704                       "1234");
4705}
4706
4707// Tests using char values in {EXPECT|ASSERT}_EQ.
4708TEST(EqAssertionTest, Char) {
4709  ASSERT_EQ('z', 'z');
4710  const char ch = 'b';
4711  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4712                          "ch");
4713  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4714                          "ch");
4715}
4716
4717// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4718TEST(EqAssertionTest, WideChar) {
4719  EXPECT_EQ(L'b', L'b');
4720
4721  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4722                          "Value of: L'x'\n"
4723                          "  Actual: L'x' (120, 0x78)\n"
4724                          "Expected: L'\0'\n"
4725                          "Which is: L'\0' (0, 0x0)");
4726
4727  static wchar_t wchar;
4728  wchar = L'b';
4729  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4730                          "wchar");
4731  wchar = 0x8119;
4732  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4733                       "Value of: wchar");
4734}
4735
4736// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4737TEST(EqAssertionTest, StdString) {
4738  // Compares a const char* to an std::string that has identical
4739  // content.
4740  ASSERT_EQ("Test", ::std::string("Test"));
4741
4742  // Compares two identical std::strings.
4743  static const ::std::string str1("A * in the middle");
4744  static const ::std::string str2(str1);
4745  EXPECT_EQ(str1, str2);
4746
4747  // Compares a const char* to an std::string that has different
4748  // content
4749  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4750                          "\"test\"");
4751
4752  // Compares an std::string to a char* that has different content.
4753  char* const p1 = const_cast<char*>("foo");
4754  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4755                          "p1");
4756
4757  // Compares two std::strings that have different contents, one of
4758  // which having a NUL character in the middle.  This should fail.
4759  static ::std::string str3(str1);
4760  str3.at(2) = '\0';
4761  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4762                       "Value of: str3\n"
4763                       "  Actual: \"A \\0 in the middle\"");
4764}
4765
4766#if GTEST_HAS_STD_WSTRING
4767
4768// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4769TEST(EqAssertionTest, StdWideString) {
4770  // Compares two identical std::wstrings.
4771  const ::std::wstring wstr1(L"A * in the middle");
4772  const ::std::wstring wstr2(wstr1);
4773  ASSERT_EQ(wstr1, wstr2);
4774
4775  // Compares an std::wstring to a const wchar_t* that has identical
4776  // content.
4777  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4778  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4779
4780  // Compares an std::wstring to a const wchar_t* that has different
4781  // content.
4782  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4783  EXPECT_NONFATAL_FAILURE({  // NOLINT
4784    EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4785  }, "kTestX8120");
4786
4787  // Compares two std::wstrings that have different contents, one of
4788  // which having a NUL character in the middle.
4789  ::std::wstring wstr3(wstr1);
4790  wstr3.at(2) = L'\0';
4791  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4792                          "wstr3");
4793
4794  // Compares a wchar_t* to an std::wstring that has different
4795  // content.
4796  EXPECT_FATAL_FAILURE({  // NOLINT
4797    ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4798  }, "");
4799}
4800
4801#endif  // GTEST_HAS_STD_WSTRING
4802
4803#if GTEST_HAS_GLOBAL_STRING
4804// Tests using ::string values in {EXPECT|ASSERT}_EQ.
4805TEST(EqAssertionTest, GlobalString) {
4806  // Compares a const char* to a ::string that has identical content.
4807  EXPECT_EQ("Test", ::string("Test"));
4808
4809  // Compares two identical ::strings.
4810  const ::string str1("A * in the middle");
4811  const ::string str2(str1);
4812  ASSERT_EQ(str1, str2);
4813
4814  // Compares a ::string to a const char* that has different content.
4815  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4816                          "test");
4817
4818  // Compares two ::strings that have different contents, one of which
4819  // having a NUL character in the middle.
4820  ::string str3(str1);
4821  str3.at(2) = '\0';
4822  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4823                          "str3");
4824
4825  // Compares a ::string to a char* that has different content.
4826  EXPECT_FATAL_FAILURE({  // NOLINT
4827    ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4828  }, "");
4829}
4830
4831#endif  // GTEST_HAS_GLOBAL_STRING
4832
4833#if GTEST_HAS_GLOBAL_WSTRING
4834
4835// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4836TEST(EqAssertionTest, GlobalWideString) {
4837  // Compares two identical ::wstrings.
4838  static const ::wstring wstr1(L"A * in the middle");
4839  static const ::wstring wstr2(wstr1);
4840  EXPECT_EQ(wstr1, wstr2);
4841
4842  // Compares a const wchar_t* to a ::wstring that has identical content.
4843  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4844  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4845
4846  // Compares a const wchar_t* to a ::wstring that has different
4847  // content.
4848  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4849  EXPECT_NONFATAL_FAILURE({  // NOLINT
4850    EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4851  }, "Test\\x8119");
4852
4853  // Compares a wchar_t* to a ::wstring that has different content.
4854  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4855  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4856                          "bar");
4857
4858  // Compares two ::wstrings that have different contents, one of which
4859  // having a NUL character in the middle.
4860  static ::wstring wstr3;
4861  wstr3 = wstr1;
4862  wstr3.at(2) = L'\0';
4863  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4864                       "wstr3");
4865}
4866
4867#endif  // GTEST_HAS_GLOBAL_WSTRING
4868
4869// Tests using char pointers in {EXPECT|ASSERT}_EQ.
4870TEST(EqAssertionTest, CharPointer) {
4871  char* const p0 = NULL;
4872  // Only way to get the Nokia compiler to compile the cast
4873  // is to have a separate void* variable first. Putting
4874  // the two casts on the same line doesn't work, neither does
4875  // a direct C-style to char*.
4876  void* pv1 = (void*)0x1234;  // NOLINT
4877  void* pv2 = (void*)0xABC0;  // NOLINT
4878  char* const p1 = reinterpret_cast<char*>(pv1);
4879  char* const p2 = reinterpret_cast<char*>(pv2);
4880  ASSERT_EQ(p1, p1);
4881
4882  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4883                          "Value of: p2");
4884  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4885                          "p2");
4886  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4887                                 reinterpret_cast<char*>(0xABC0)),
4888                       "ABC0");
4889}
4890
4891// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4892TEST(EqAssertionTest, WideCharPointer) {
4893  wchar_t* const p0 = NULL;
4894  // Only way to get the Nokia compiler to compile the cast
4895  // is to have a separate void* variable first. Putting
4896  // the two casts on the same line doesn't work, neither does
4897  // a direct C-style to char*.
4898  void* pv1 = (void*)0x1234;  // NOLINT
4899  void* pv2 = (void*)0xABC0;  // NOLINT
4900  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4901  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4902  EXPECT_EQ(p0, p0);
4903
4904  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4905                          "Value of: p2");
4906  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4907                          "p2");
4908  void* pv3 = (void*)0x1234;  // NOLINT
4909  void* pv4 = (void*)0xABC0;  // NOLINT
4910  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4911  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4912  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4913                          "p4");
4914}
4915
4916// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4917TEST(EqAssertionTest, OtherPointer) {
4918  ASSERT_EQ(static_cast<const int*>(NULL),
4919            static_cast<const int*>(NULL));
4920  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4921                                 reinterpret_cast<const int*>(0x1234)),
4922                       "0x1234");
4923}
4924
4925// A class that supports binary comparison operators but not streaming.
4926class UnprintableChar {
4927 public:
4928  explicit UnprintableChar(char ch) : char_(ch) {}
4929
4930  bool operator==(const UnprintableChar& rhs) const {
4931    return char_ == rhs.char_;
4932  }
4933  bool operator!=(const UnprintableChar& rhs) const {
4934    return char_ != rhs.char_;
4935  }
4936  bool operator<(const UnprintableChar& rhs) const {
4937    return char_ < rhs.char_;
4938  }
4939  bool operator<=(const UnprintableChar& rhs) const {
4940    return char_ <= rhs.char_;
4941  }
4942  bool operator>(const UnprintableChar& rhs) const {
4943    return char_ > rhs.char_;
4944  }
4945  bool operator>=(const UnprintableChar& rhs) const {
4946    return char_ >= rhs.char_;
4947  }
4948
4949 private:
4950  char char_;
4951};
4952
4953// Tests that ASSERT_EQ() and friends don't require the arguments to
4954// be printable.
4955TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4956  const UnprintableChar x('x'), y('y');
4957  ASSERT_EQ(x, x);
4958  EXPECT_NE(x, y);
4959  ASSERT_LT(x, y);
4960  EXPECT_LE(x, y);
4961  ASSERT_GT(y, x);
4962  EXPECT_GE(x, x);
4963
4964  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4965  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4966  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4967  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4968  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4969
4970  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4971  // variables, so we have to write UnprintableChar('x') instead of x.
4972#ifndef __BORLANDC__
4973  // ICE's in C++Builder.
4974  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4975                       "1-byte object <78>");
4976  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4977                       "1-byte object <78>");
4978#endif
4979  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4980                       "1-byte object <79>");
4981  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4982                       "1-byte object <78>");
4983  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4984                       "1-byte object <79>");
4985}
4986
4987// Tests the FRIEND_TEST macro.
4988
4989// This class has a private member we want to test.  We will test it
4990// both in a TEST and in a TEST_F.
4991class Foo {
4992 public:
4993  Foo() {}
4994
4995 private:
4996  int Bar() const { return 1; }
4997
4998  // Declares the friend tests that can access the private member
4999  // Bar().
5000  FRIEND_TEST(FRIEND_TEST_Test, TEST);
5001  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5002};
5003
5004// Tests that the FRIEND_TEST declaration allows a TEST to access a
5005// class's private members.  This should compile.
5006TEST(FRIEND_TEST_Test, TEST) {
5007  ASSERT_EQ(1, Foo().Bar());
5008}
5009
5010// The fixture needed to test using FRIEND_TEST with TEST_F.
5011class FRIEND_TEST_Test2 : public Test {
5012 protected:
5013  Foo foo;
5014};
5015
5016// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5017// class's private members.  This should compile.
5018TEST_F(FRIEND_TEST_Test2, TEST_F) {
5019  ASSERT_EQ(1, foo.Bar());
5020}
5021
5022// Tests the life cycle of Test objects.
5023
5024// The test fixture for testing the life cycle of Test objects.
5025//
5026// This class counts the number of live test objects that uses this
5027// fixture.
5028class TestLifeCycleTest : public Test {
5029 protected:
5030  // Constructor.  Increments the number of test objects that uses
5031  // this fixture.
5032  TestLifeCycleTest() { count_++; }
5033
5034  // Destructor.  Decrements the number of test objects that uses this
5035  // fixture.
5036  ~TestLifeCycleTest() { count_--; }
5037
5038  // Returns the number of live test objects that uses this fixture.
5039  int count() const { return count_; }
5040
5041 private:
5042  static int count_;
5043};
5044
5045int TestLifeCycleTest::count_ = 0;
5046
5047// Tests the life cycle of test objects.
5048TEST_F(TestLifeCycleTest, Test1) {
5049  // There should be only one test object in this test case that's
5050  // currently alive.
5051  ASSERT_EQ(1, count());
5052}
5053
5054// Tests the life cycle of test objects.
5055TEST_F(TestLifeCycleTest, Test2) {
5056  // After Test1 is done and Test2 is started, there should still be
5057  // only one live test object, as the object for Test1 should've been
5058  // deleted.
5059  ASSERT_EQ(1, count());
5060}
5061
5062}  // namespace
5063
5064// Tests that the copy constructor works when it is NOT optimized away by
5065// the compiler.
5066TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5067  // Checks that the copy constructor doesn't try to dereference NULL pointers
5068  // in the source object.
5069  AssertionResult r1 = AssertionSuccess();
5070  AssertionResult r2 = r1;
5071  // The following line is added to prevent the compiler from optimizing
5072  // away the constructor call.
5073  r1 << "abc";
5074
5075  AssertionResult r3 = r1;
5076  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5077  EXPECT_STREQ("abc", r1.message());
5078}
5079
5080// Tests that AssertionSuccess and AssertionFailure construct
5081// AssertionResult objects as expected.
5082TEST(AssertionResultTest, ConstructionWorks) {
5083  AssertionResult r1 = AssertionSuccess();
5084  EXPECT_TRUE(r1);
5085  EXPECT_STREQ("", r1.message());
5086
5087  AssertionResult r2 = AssertionSuccess() << "abc";
5088  EXPECT_TRUE(r2);
5089  EXPECT_STREQ("abc", r2.message());
5090
5091  AssertionResult r3 = AssertionFailure();
5092  EXPECT_FALSE(r3);
5093  EXPECT_STREQ("", r3.message());
5094
5095  AssertionResult r4 = AssertionFailure() << "def";
5096  EXPECT_FALSE(r4);
5097  EXPECT_STREQ("def", r4.message());
5098
5099  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5100  EXPECT_FALSE(r5);
5101  EXPECT_STREQ("ghi", r5.message());
5102}
5103
5104// Tests that the negation flips the predicate result but keeps the message.
5105TEST(AssertionResultTest, NegationWorks) {
5106  AssertionResult r1 = AssertionSuccess() << "abc";
5107  EXPECT_FALSE(!r1);
5108  EXPECT_STREQ("abc", (!r1).message());
5109
5110  AssertionResult r2 = AssertionFailure() << "def";
5111  EXPECT_TRUE(!r2);
5112  EXPECT_STREQ("def", (!r2).message());
5113}
5114
5115TEST(AssertionResultTest, StreamingWorks) {
5116  AssertionResult r = AssertionSuccess();
5117  r << "abc" << 'd' << 0 << true;
5118  EXPECT_STREQ("abcd0true", r.message());
5119}
5120
5121TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5122  AssertionResult r = AssertionSuccess();
5123  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5124  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5125}
5126
5127// The next test uses explicit conversion operators -- a C++11 feature.
5128#if GTEST_LANG_CXX11
5129
5130TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5131  struct ExplicitlyConvertibleToBool {
5132    explicit operator bool() const { return value; }
5133    bool value;
5134  };
5135  ExplicitlyConvertibleToBool v1 = {false};
5136  ExplicitlyConvertibleToBool v2 = {true};
5137  EXPECT_FALSE(v1);
5138  EXPECT_TRUE(v2);
5139}
5140
5141#endif  // GTEST_LANG_CXX11
5142
5143struct ConvertibleToAssertionResult {
5144  operator AssertionResult() const { return AssertionResult(true); }
5145};
5146
5147TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5148  ConvertibleToAssertionResult obj;
5149  EXPECT_TRUE(obj);
5150}
5151
5152// Tests streaming a user type whose definition and operator << are
5153// both in the global namespace.
5154class Base {
5155 public:
5156  explicit Base(int an_x) : x_(an_x) {}
5157  int x() const { return x_; }
5158 private:
5159  int x_;
5160};
5161std::ostream& operator<<(std::ostream& os,
5162                         const Base& val) {
5163  return os << val.x();
5164}
5165std::ostream& operator<<(std::ostream& os,
5166                         const Base* pointer) {
5167  return os << "(" << pointer->x() << ")";
5168}
5169
5170TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5171  Message msg;
5172  Base a(1);
5173
5174  msg << a << &a;  // Uses ::operator<<.
5175  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5176}
5177
5178// Tests streaming a user type whose definition and operator<< are
5179// both in an unnamed namespace.
5180namespace {
5181class MyTypeInUnnamedNameSpace : public Base {
5182 public:
5183  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5184};
5185std::ostream& operator<<(std::ostream& os,
5186                         const MyTypeInUnnamedNameSpace& val) {
5187  return os << val.x();
5188}
5189std::ostream& operator<<(std::ostream& os,
5190                         const MyTypeInUnnamedNameSpace* pointer) {
5191  return os << "(" << pointer->x() << ")";
5192}
5193}  // namespace
5194
5195TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5196  Message msg;
5197  MyTypeInUnnamedNameSpace a(1);
5198
5199  msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5200  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5201}
5202
5203// Tests streaming a user type whose definition and operator<< are
5204// both in a user namespace.
5205namespace namespace1 {
5206class MyTypeInNameSpace1 : public Base {
5207 public:
5208  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5209};
5210std::ostream& operator<<(std::ostream& os,
5211                         const MyTypeInNameSpace1& val) {
5212  return os << val.x();
5213}
5214std::ostream& operator<<(std::ostream& os,
5215                         const MyTypeInNameSpace1* pointer) {
5216  return os << "(" << pointer->x() << ")";
5217}
5218}  // namespace namespace1
5219
5220TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5221  Message msg;
5222  namespace1::MyTypeInNameSpace1 a(1);
5223
5224  msg << a << &a;  // Uses namespace1::operator<<.
5225  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5226}
5227
5228// Tests streaming a user type whose definition is in a user namespace
5229// but whose operator<< is in the global namespace.
5230namespace namespace2 {
5231class MyTypeInNameSpace2 : public ::Base {
5232 public:
5233  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5234};
5235}  // namespace namespace2
5236std::ostream& operator<<(std::ostream& os,
5237                         const namespace2::MyTypeInNameSpace2& val) {
5238  return os << val.x();
5239}
5240std::ostream& operator<<(std::ostream& os,
5241                         const namespace2::MyTypeInNameSpace2* pointer) {
5242  return os << "(" << pointer->x() << ")";
5243}
5244
5245TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5246  Message msg;
5247  namespace2::MyTypeInNameSpace2 a(1);
5248
5249  msg << a << &a;  // Uses ::operator<<.
5250  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5251}
5252
5253// Tests streaming NULL pointers to testing::Message.
5254TEST(MessageTest, NullPointers) {
5255  Message msg;
5256  char* const p1 = NULL;
5257  unsigned char* const p2 = NULL;
5258  int* p3 = NULL;
5259  double* p4 = NULL;
5260  bool* p5 = NULL;
5261  Message* p6 = NULL;
5262
5263  msg << p1 << p2 << p3 << p4 << p5 << p6;
5264  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5265               msg.GetString().c_str());
5266}
5267
5268// Tests streaming wide strings to testing::Message.
5269TEST(MessageTest, WideStrings) {
5270  // Streams a NULL of type const wchar_t*.
5271  const wchar_t* const_wstr = NULL;
5272  EXPECT_STREQ("(null)",
5273               (Message() << const_wstr).GetString().c_str());
5274
5275  // Streams a NULL of type wchar_t*.
5276  wchar_t* wstr = NULL;
5277  EXPECT_STREQ("(null)",
5278               (Message() << wstr).GetString().c_str());
5279
5280  // Streams a non-NULL of type const wchar_t*.
5281  const_wstr = L"abc\x8119";
5282  EXPECT_STREQ("abc\xe8\x84\x99",
5283               (Message() << const_wstr).GetString().c_str());
5284
5285  // Streams a non-NULL of type wchar_t*.
5286  wstr = const_cast<wchar_t*>(const_wstr);
5287  EXPECT_STREQ("abc\xe8\x84\x99",
5288               (Message() << wstr).GetString().c_str());
5289}
5290
5291
5292// This line tests that we can define tests in the testing namespace.
5293namespace testing {
5294
5295// Tests the TestInfo class.
5296
5297class TestInfoTest : public Test {
5298 protected:
5299  static const TestInfo* GetTestInfo(const char* test_name) {
5300    const TestCase* const test_case = GetUnitTestImpl()->
5301        GetTestCase("TestInfoTest", "", NULL, NULL);
5302
5303    for (int i = 0; i < test_case->total_test_count(); ++i) {
5304      const TestInfo* const test_info = test_case->GetTestInfo(i);
5305      if (strcmp(test_name, test_info->name()) == 0)
5306        return test_info;
5307    }
5308    return NULL;
5309  }
5310
5311  static const TestResult* GetTestResult(
5312      const TestInfo* test_info) {
5313    return test_info->result();
5314  }
5315};
5316
5317// Tests TestInfo::test_case_name() and TestInfo::name().
5318TEST_F(TestInfoTest, Names) {
5319  const TestInfo* const test_info = GetTestInfo("Names");
5320
5321  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5322  ASSERT_STREQ("Names", test_info->name());
5323}
5324
5325// Tests TestInfo::result().
5326TEST_F(TestInfoTest, result) {
5327  const TestInfo* const test_info = GetTestInfo("result");
5328
5329  // Initially, there is no TestPartResult for this test.
5330  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5331
5332  // After the previous assertion, there is still none.
5333  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5334}
5335
5336#define VERIFY_CODE_LOCATION \
5337  const int expected_line = __LINE__ - 1; \
5338  const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5339  ASSERT_TRUE(test_info); \
5340  EXPECT_STREQ(__FILE__, test_info->file()); \
5341  EXPECT_EQ(expected_line, test_info->line())
5342
5343TEST(CodeLocationForTEST, Verify) {
5344  VERIFY_CODE_LOCATION;
5345}
5346
5347class CodeLocationForTESTF : public Test {
5348};
5349
5350TEST_F(CodeLocationForTESTF, Verify) {
5351  VERIFY_CODE_LOCATION;
5352}
5353
5354class CodeLocationForTESTP : public TestWithParam<int> {
5355};
5356
5357TEST_P(CodeLocationForTESTP, Verify) {
5358  VERIFY_CODE_LOCATION;
5359}
5360
5361INSTANTIATE_TEST_CASE_P(, CodeLocationForTESTP, Values(0));
5362
5363template <typename T>
5364class CodeLocationForTYPEDTEST : public Test {
5365};
5366
5367TYPED_TEST_CASE(CodeLocationForTYPEDTEST, int);
5368
5369TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5370  VERIFY_CODE_LOCATION;
5371}
5372
5373template <typename T>
5374class CodeLocationForTYPEDTESTP : public Test {
5375};
5376
5377TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP);
5378
5379TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5380  VERIFY_CODE_LOCATION;
5381}
5382
5383REGISTER_TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP, Verify);
5384
5385INSTANTIATE_TYPED_TEST_CASE_P(My, CodeLocationForTYPEDTESTP, int);
5386
5387#undef VERIFY_CODE_LOCATION
5388
5389// Tests setting up and tearing down a test case.
5390
5391class SetUpTestCaseTest : public Test {
5392 protected:
5393  // This will be called once before the first test in this test case
5394  // is run.
5395  static void SetUpTestCase() {
5396    printf("Setting up the test case . . .\n");
5397
5398    // Initializes some shared resource.  In this simple example, we
5399    // just create a C string.  More complex stuff can be done if
5400    // desired.
5401    shared_resource_ = "123";
5402
5403    // Increments the number of test cases that have been set up.
5404    counter_++;
5405
5406    // SetUpTestCase() should be called only once.
5407    EXPECT_EQ(1, counter_);
5408  }
5409
5410  // This will be called once after the last test in this test case is
5411  // run.
5412  static void TearDownTestCase() {
5413    printf("Tearing down the test case . . .\n");
5414
5415    // Decrements the number of test cases that have been set up.
5416    counter_--;
5417
5418    // TearDownTestCase() should be called only once.
5419    EXPECT_EQ(0, counter_);
5420
5421    // Cleans up the shared resource.
5422    shared_resource_ = NULL;
5423  }
5424
5425  // This will be called before each test in this test case.
5426  virtual void SetUp() {
5427    // SetUpTestCase() should be called only once, so counter_ should
5428    // always be 1.
5429    EXPECT_EQ(1, counter_);
5430  }
5431
5432  // Number of test cases that have been set up.
5433  static int counter_;
5434
5435  // Some resource to be shared by all tests in this test case.
5436  static const char* shared_resource_;
5437};
5438
5439int SetUpTestCaseTest::counter_ = 0;
5440const char* SetUpTestCaseTest::shared_resource_ = NULL;
5441
5442// A test that uses the shared resource.
5443TEST_F(SetUpTestCaseTest, Test1) {
5444  EXPECT_STRNE(NULL, shared_resource_);
5445}
5446
5447// Another test that uses the shared resource.
5448TEST_F(SetUpTestCaseTest, Test2) {
5449  EXPECT_STREQ("123", shared_resource_);
5450}
5451
5452// The InitGoogleTestTest test case tests testing::InitGoogleTest().
5453
5454// The Flags struct stores a copy of all Google Test flags.
5455struct Flags {
5456  // Constructs a Flags struct where each flag has its default value.
5457  Flags() : also_run_disabled_tests(false),
5458            break_on_failure(false),
5459            catch_exceptions(false),
5460            death_test_use_fork(false),
5461            filter(""),
5462            list_tests(false),
5463            output(""),
5464            print_time(true),
5465            random_seed(0),
5466            repeat(1),
5467            shuffle(false),
5468            stack_trace_depth(kMaxStackTraceDepth),
5469            stream_result_to(""),
5470            throw_on_failure(false) {}
5471
5472  // Factory methods.
5473
5474  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5475  // the given value.
5476  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5477    Flags flags;
5478    flags.also_run_disabled_tests = also_run_disabled_tests;
5479    return flags;
5480  }
5481
5482  // Creates a Flags struct where the gtest_break_on_failure flag has
5483  // the given value.
5484  static Flags BreakOnFailure(bool break_on_failure) {
5485    Flags flags;
5486    flags.break_on_failure = break_on_failure;
5487    return flags;
5488  }
5489
5490  // Creates a Flags struct where the gtest_catch_exceptions flag has
5491  // the given value.
5492  static Flags CatchExceptions(bool catch_exceptions) {
5493    Flags flags;
5494    flags.catch_exceptions = catch_exceptions;
5495    return flags;
5496  }
5497
5498  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5499  // the given value.
5500  static Flags DeathTestUseFork(bool death_test_use_fork) {
5501    Flags flags;
5502    flags.death_test_use_fork = death_test_use_fork;
5503    return flags;
5504  }
5505
5506  // Creates a Flags struct where the gtest_filter flag has the given
5507  // value.
5508  static Flags Filter(const char* filter) {
5509    Flags flags;
5510    flags.filter = filter;
5511    return flags;
5512  }
5513
5514  // Creates a Flags struct where the gtest_list_tests flag has the
5515  // given value.
5516  static Flags ListTests(bool list_tests) {
5517    Flags flags;
5518    flags.list_tests = list_tests;
5519    return flags;
5520  }
5521
5522  // Creates a Flags struct where the gtest_output flag has the given
5523  // value.
5524  static Flags Output(const char* output) {
5525    Flags flags;
5526    flags.output = output;
5527    return flags;
5528  }
5529
5530  // Creates a Flags struct where the gtest_print_time flag has the given
5531  // value.
5532  static Flags PrintTime(bool print_time) {
5533    Flags flags;
5534    flags.print_time = print_time;
5535    return flags;
5536  }
5537
5538  // Creates a Flags struct where the gtest_random_seed flag has
5539  // the given value.
5540  static Flags RandomSeed(Int32 random_seed) {
5541    Flags flags;
5542    flags.random_seed = random_seed;
5543    return flags;
5544  }
5545
5546  // Creates a Flags struct where the gtest_repeat flag has the given
5547  // value.
5548  static Flags Repeat(Int32 repeat) {
5549    Flags flags;
5550    flags.repeat = repeat;
5551    return flags;
5552  }
5553
5554  // Creates a Flags struct where the gtest_shuffle flag has
5555  // the given value.
5556  static Flags Shuffle(bool shuffle) {
5557    Flags flags;
5558    flags.shuffle = shuffle;
5559    return flags;
5560  }
5561
5562  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5563  // the given value.
5564  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5565    Flags flags;
5566    flags.stack_trace_depth = stack_trace_depth;
5567    return flags;
5568  }
5569
5570  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5571  // the given value.
5572  static Flags StreamResultTo(const char* stream_result_to) {
5573    Flags flags;
5574    flags.stream_result_to = stream_result_to;
5575    return flags;
5576  }
5577
5578  // Creates a Flags struct where the gtest_throw_on_failure flag has
5579  // the given value.
5580  static Flags ThrowOnFailure(bool throw_on_failure) {
5581    Flags flags;
5582    flags.throw_on_failure = throw_on_failure;
5583    return flags;
5584  }
5585
5586  // These fields store the flag values.
5587  bool also_run_disabled_tests;
5588  bool break_on_failure;
5589  bool catch_exceptions;
5590  bool death_test_use_fork;
5591  const char* filter;
5592  bool list_tests;
5593  const char* output;
5594  bool print_time;
5595  Int32 random_seed;
5596  Int32 repeat;
5597  bool shuffle;
5598  Int32 stack_trace_depth;
5599  const char* stream_result_to;
5600  bool throw_on_failure;
5601};
5602
5603// Fixture for testing InitGoogleTest().
5604class InitGoogleTestTest : public Test {
5605 protected:
5606  // Clears the flags before each test.
5607  virtual void SetUp() {
5608    GTEST_FLAG(also_run_disabled_tests) = false;
5609    GTEST_FLAG(break_on_failure) = false;
5610    GTEST_FLAG(catch_exceptions) = false;
5611    GTEST_FLAG(death_test_use_fork) = false;
5612    GTEST_FLAG(filter) = "";
5613    GTEST_FLAG(list_tests) = false;
5614    GTEST_FLAG(output) = "";
5615    GTEST_FLAG(print_time) = true;
5616    GTEST_FLAG(random_seed) = 0;
5617    GTEST_FLAG(repeat) = 1;
5618    GTEST_FLAG(shuffle) = false;
5619    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5620    GTEST_FLAG(stream_result_to) = "";
5621    GTEST_FLAG(throw_on_failure) = false;
5622  }
5623
5624  // Asserts that two narrow or wide string arrays are equal.
5625  template <typename CharType>
5626  static void AssertStringArrayEq(size_t size1, CharType** array1,
5627                                  size_t size2, CharType** array2) {
5628    ASSERT_EQ(size1, size2) << " Array sizes different.";
5629
5630    for (size_t i = 0; i != size1; i++) {
5631      ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5632    }
5633  }
5634
5635  // Verifies that the flag values match the expected values.
5636  static void CheckFlags(const Flags& expected) {
5637    EXPECT_EQ(expected.also_run_disabled_tests,
5638              GTEST_FLAG(also_run_disabled_tests));
5639    EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5640    EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5641    EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5642    EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5643    EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5644    EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5645    EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5646    EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5647    EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5648    EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5649    EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5650    EXPECT_STREQ(expected.stream_result_to,
5651                 GTEST_FLAG(stream_result_to).c_str());
5652    EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5653  }
5654
5655  // Parses a command line (specified by argc1 and argv1), then
5656  // verifies that the flag values are expected and that the
5657  // recognized flags are removed from the command line.
5658  template <typename CharType>
5659  static void TestParsingFlags(int argc1, const CharType** argv1,
5660                               int argc2, const CharType** argv2,
5661                               const Flags& expected, bool should_print_help) {
5662    const bool saved_help_flag = ::testing::internal::g_help_flag;
5663    ::testing::internal::g_help_flag = false;
5664
5665#if GTEST_HAS_STREAM_REDIRECTION
5666    CaptureStdout();
5667#endif
5668
5669    // Parses the command line.
5670    internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5671
5672#if GTEST_HAS_STREAM_REDIRECTION
5673    const std::string captured_stdout = GetCapturedStdout();
5674#endif
5675
5676    // Verifies the flag values.
5677    CheckFlags(expected);
5678
5679    // Verifies that the recognized flags are removed from the command
5680    // line.
5681    AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5682
5683    // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5684    // help message for the flags it recognizes.
5685    EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5686
5687#if GTEST_HAS_STREAM_REDIRECTION
5688    const char* const expected_help_fragment =
5689        "This program contains tests written using";
5690    if (should_print_help) {
5691      EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5692    } else {
5693      EXPECT_PRED_FORMAT2(IsNotSubstring,
5694                          expected_help_fragment, captured_stdout);
5695    }
5696#endif  // GTEST_HAS_STREAM_REDIRECTION
5697
5698    ::testing::internal::g_help_flag = saved_help_flag;
5699  }
5700
5701  // This macro wraps TestParsingFlags s.t. the user doesn't need
5702  // to specify the array sizes.
5703
5704#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5705  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5706                   sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5707                   expected, should_print_help)
5708};
5709
5710// Tests parsing an empty command line.
5711TEST_F(InitGoogleTestTest, Empty) {
5712  const char* argv[] = {
5713    NULL
5714  };
5715
5716  const char* argv2[] = {
5717    NULL
5718  };
5719
5720  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5721}
5722
5723// Tests parsing a command line that has no flag.
5724TEST_F(InitGoogleTestTest, NoFlag) {
5725  const char* argv[] = {
5726    "foo.exe",
5727    NULL
5728  };
5729
5730  const char* argv2[] = {
5731    "foo.exe",
5732    NULL
5733  };
5734
5735  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5736}
5737
5738// Tests parsing a bad --gtest_filter flag.
5739TEST_F(InitGoogleTestTest, FilterBad) {
5740  const char* argv[] = {
5741    "foo.exe",
5742    "--gtest_filter",
5743    NULL
5744  };
5745
5746  const char* argv2[] = {
5747    "foo.exe",
5748    "--gtest_filter",
5749    NULL
5750  };
5751
5752  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5753}
5754
5755// Tests parsing an empty --gtest_filter flag.
5756TEST_F(InitGoogleTestTest, FilterEmpty) {
5757  const char* argv[] = {
5758    "foo.exe",
5759    "--gtest_filter=",
5760    NULL
5761  };
5762
5763  const char* argv2[] = {
5764    "foo.exe",
5765    NULL
5766  };
5767
5768  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5769}
5770
5771// Tests parsing a non-empty --gtest_filter flag.
5772TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5773  const char* argv[] = {
5774    "foo.exe",
5775    "--gtest_filter=abc",
5776    NULL
5777  };
5778
5779  const char* argv2[] = {
5780    "foo.exe",
5781    NULL
5782  };
5783
5784  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5785}
5786
5787// Tests parsing --gtest_break_on_failure.
5788TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5789  const char* argv[] = {
5790    "foo.exe",
5791    "--gtest_break_on_failure",
5792    NULL
5793};
5794
5795  const char* argv2[] = {
5796    "foo.exe",
5797    NULL
5798  };
5799
5800  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5801}
5802
5803// Tests parsing --gtest_break_on_failure=0.
5804TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5805  const char* argv[] = {
5806    "foo.exe",
5807    "--gtest_break_on_failure=0",
5808    NULL
5809  };
5810
5811  const char* argv2[] = {
5812    "foo.exe",
5813    NULL
5814  };
5815
5816  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5817}
5818
5819// Tests parsing --gtest_break_on_failure=f.
5820TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5821  const char* argv[] = {
5822    "foo.exe",
5823    "--gtest_break_on_failure=f",
5824    NULL
5825  };
5826
5827  const char* argv2[] = {
5828    "foo.exe",
5829    NULL
5830  };
5831
5832  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5833}
5834
5835// Tests parsing --gtest_break_on_failure=F.
5836TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5837  const char* argv[] = {
5838    "foo.exe",
5839    "--gtest_break_on_failure=F",
5840    NULL
5841  };
5842
5843  const char* argv2[] = {
5844    "foo.exe",
5845    NULL
5846  };
5847
5848  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5849}
5850
5851// Tests parsing a --gtest_break_on_failure flag that has a "true"
5852// definition.
5853TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5854  const char* argv[] = {
5855    "foo.exe",
5856    "--gtest_break_on_failure=1",
5857    NULL
5858  };
5859
5860  const char* argv2[] = {
5861    "foo.exe",
5862    NULL
5863  };
5864
5865  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5866}
5867
5868// Tests parsing --gtest_catch_exceptions.
5869TEST_F(InitGoogleTestTest, CatchExceptions) {
5870  const char* argv[] = {
5871    "foo.exe",
5872    "--gtest_catch_exceptions",
5873    NULL
5874  };
5875
5876  const char* argv2[] = {
5877    "foo.exe",
5878    NULL
5879  };
5880
5881  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5882}
5883
5884// Tests parsing --gtest_death_test_use_fork.
5885TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5886  const char* argv[] = {
5887    "foo.exe",
5888    "--gtest_death_test_use_fork",
5889    NULL
5890  };
5891
5892  const char* argv2[] = {
5893    "foo.exe",
5894    NULL
5895  };
5896
5897  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5898}
5899
5900// Tests having the same flag twice with different values.  The
5901// expected behavior is that the one coming last takes precedence.
5902TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5903  const char* argv[] = {
5904    "foo.exe",
5905    "--gtest_filter=a",
5906    "--gtest_filter=b",
5907    NULL
5908  };
5909
5910  const char* argv2[] = {
5911    "foo.exe",
5912    NULL
5913  };
5914
5915  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5916}
5917
5918// Tests having an unrecognized flag on the command line.
5919TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5920  const char* argv[] = {
5921    "foo.exe",
5922    "--gtest_break_on_failure",
5923    "bar",  // Unrecognized by Google Test.
5924    "--gtest_filter=b",
5925    NULL
5926  };
5927
5928  const char* argv2[] = {
5929    "foo.exe",
5930    "bar",
5931    NULL
5932  };
5933
5934  Flags flags;
5935  flags.break_on_failure = true;
5936  flags.filter = "b";
5937  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5938}
5939
5940// Tests having a --gtest_list_tests flag
5941TEST_F(InitGoogleTestTest, ListTestsFlag) {
5942    const char* argv[] = {
5943      "foo.exe",
5944      "--gtest_list_tests",
5945      NULL
5946    };
5947
5948    const char* argv2[] = {
5949      "foo.exe",
5950      NULL
5951    };
5952
5953    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5954}
5955
5956// Tests having a --gtest_list_tests flag with a "true" value
5957TEST_F(InitGoogleTestTest, ListTestsTrue) {
5958    const char* argv[] = {
5959      "foo.exe",
5960      "--gtest_list_tests=1",
5961      NULL
5962    };
5963
5964    const char* argv2[] = {
5965      "foo.exe",
5966      NULL
5967    };
5968
5969    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5970}
5971
5972// Tests having a --gtest_list_tests flag with a "false" value
5973TEST_F(InitGoogleTestTest, ListTestsFalse) {
5974    const char* argv[] = {
5975      "foo.exe",
5976      "--gtest_list_tests=0",
5977      NULL
5978    };
5979
5980    const char* argv2[] = {
5981      "foo.exe",
5982      NULL
5983    };
5984
5985    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5986}
5987
5988// Tests parsing --gtest_list_tests=f.
5989TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5990  const char* argv[] = {
5991    "foo.exe",
5992    "--gtest_list_tests=f",
5993    NULL
5994  };
5995
5996  const char* argv2[] = {
5997    "foo.exe",
5998    NULL
5999  };
6000
6001  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6002}
6003
6004// Tests parsing --gtest_list_tests=F.
6005TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
6006  const char* argv[] = {
6007    "foo.exe",
6008    "--gtest_list_tests=F",
6009    NULL
6010  };
6011
6012  const char* argv2[] = {
6013    "foo.exe",
6014    NULL
6015  };
6016
6017  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6018}
6019
6020// Tests parsing --gtest_output (invalid).
6021TEST_F(InitGoogleTestTest, OutputEmpty) {
6022  const char* argv[] = {
6023    "foo.exe",
6024    "--gtest_output",
6025    NULL
6026  };
6027
6028  const char* argv2[] = {
6029    "foo.exe",
6030    "--gtest_output",
6031    NULL
6032  };
6033
6034  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6035}
6036
6037// Tests parsing --gtest_output=xml
6038TEST_F(InitGoogleTestTest, OutputXml) {
6039  const char* argv[] = {
6040    "foo.exe",
6041    "--gtest_output=xml",
6042    NULL
6043  };
6044
6045  const char* argv2[] = {
6046    "foo.exe",
6047    NULL
6048  };
6049
6050  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6051}
6052
6053// Tests parsing --gtest_output=xml:file
6054TEST_F(InitGoogleTestTest, OutputXmlFile) {
6055  const char* argv[] = {
6056    "foo.exe",
6057    "--gtest_output=xml:file",
6058    NULL
6059  };
6060
6061  const char* argv2[] = {
6062    "foo.exe",
6063    NULL
6064  };
6065
6066  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6067}
6068
6069// Tests parsing --gtest_output=xml:directory/path/
6070TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
6071  const char* argv[] = {
6072    "foo.exe",
6073    "--gtest_output=xml:directory/path/",
6074    NULL
6075  };
6076
6077  const char* argv2[] = {
6078    "foo.exe",
6079    NULL
6080  };
6081
6082  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6083                            Flags::Output("xml:directory/path/"), false);
6084}
6085
6086// Tests having a --gtest_print_time flag
6087TEST_F(InitGoogleTestTest, PrintTimeFlag) {
6088    const char* argv[] = {
6089      "foo.exe",
6090      "--gtest_print_time",
6091      NULL
6092    };
6093
6094    const char* argv2[] = {
6095      "foo.exe",
6096      NULL
6097    };
6098
6099    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6100}
6101
6102// Tests having a --gtest_print_time flag with a "true" value
6103TEST_F(InitGoogleTestTest, PrintTimeTrue) {
6104    const char* argv[] = {
6105      "foo.exe",
6106      "--gtest_print_time=1",
6107      NULL
6108    };
6109
6110    const char* argv2[] = {
6111      "foo.exe",
6112      NULL
6113    };
6114
6115    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6116}
6117
6118// Tests having a --gtest_print_time flag with a "false" value
6119TEST_F(InitGoogleTestTest, PrintTimeFalse) {
6120    const char* argv[] = {
6121      "foo.exe",
6122      "--gtest_print_time=0",
6123      NULL
6124    };
6125
6126    const char* argv2[] = {
6127      "foo.exe",
6128      NULL
6129    };
6130
6131    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6132}
6133
6134// Tests parsing --gtest_print_time=f.
6135TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
6136  const char* argv[] = {
6137    "foo.exe",
6138    "--gtest_print_time=f",
6139    NULL
6140  };
6141
6142  const char* argv2[] = {
6143    "foo.exe",
6144    NULL
6145  };
6146
6147  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6148}
6149
6150// Tests parsing --gtest_print_time=F.
6151TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
6152  const char* argv[] = {
6153    "foo.exe",
6154    "--gtest_print_time=F",
6155    NULL
6156  };
6157
6158  const char* argv2[] = {
6159    "foo.exe",
6160    NULL
6161  };
6162
6163  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6164}
6165
6166// Tests parsing --gtest_random_seed=number
6167TEST_F(InitGoogleTestTest, RandomSeed) {
6168  const char* argv[] = {
6169    "foo.exe",
6170    "--gtest_random_seed=1000",
6171    NULL
6172  };
6173
6174  const char* argv2[] = {
6175    "foo.exe",
6176    NULL
6177  };
6178
6179  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6180}
6181
6182// Tests parsing --gtest_repeat=number
6183TEST_F(InitGoogleTestTest, Repeat) {
6184  const char* argv[] = {
6185    "foo.exe",
6186    "--gtest_repeat=1000",
6187    NULL
6188  };
6189
6190  const char* argv2[] = {
6191    "foo.exe",
6192    NULL
6193  };
6194
6195  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6196}
6197
6198// Tests having a --gtest_also_run_disabled_tests flag
6199TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6200    const char* argv[] = {
6201      "foo.exe",
6202      "--gtest_also_run_disabled_tests",
6203      NULL
6204    };
6205
6206    const char* argv2[] = {
6207      "foo.exe",
6208      NULL
6209    };
6210
6211    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6212                              Flags::AlsoRunDisabledTests(true), false);
6213}
6214
6215// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6216TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6217    const char* argv[] = {
6218      "foo.exe",
6219      "--gtest_also_run_disabled_tests=1",
6220      NULL
6221    };
6222
6223    const char* argv2[] = {
6224      "foo.exe",
6225      NULL
6226    };
6227
6228    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6229                              Flags::AlsoRunDisabledTests(true), false);
6230}
6231
6232// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6233TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6234    const char* argv[] = {
6235      "foo.exe",
6236      "--gtest_also_run_disabled_tests=0",
6237      NULL
6238    };
6239
6240    const char* argv2[] = {
6241      "foo.exe",
6242      NULL
6243    };
6244
6245    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6246                              Flags::AlsoRunDisabledTests(false), false);
6247}
6248
6249// Tests parsing --gtest_shuffle.
6250TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6251  const char* argv[] = {
6252    "foo.exe",
6253    "--gtest_shuffle",
6254    NULL
6255};
6256
6257  const char* argv2[] = {
6258    "foo.exe",
6259    NULL
6260  };
6261
6262  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6263}
6264
6265// Tests parsing --gtest_shuffle=0.
6266TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6267  const char* argv[] = {
6268    "foo.exe",
6269    "--gtest_shuffle=0",
6270    NULL
6271  };
6272
6273  const char* argv2[] = {
6274    "foo.exe",
6275    NULL
6276  };
6277
6278  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6279}
6280
6281// Tests parsing a --gtest_shuffle flag that has a "true"
6282// definition.
6283TEST_F(InitGoogleTestTest, ShuffleTrue) {
6284  const char* argv[] = {
6285    "foo.exe",
6286    "--gtest_shuffle=1",
6287    NULL
6288  };
6289
6290  const char* argv2[] = {
6291    "foo.exe",
6292    NULL
6293  };
6294
6295  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6296}
6297
6298// Tests parsing --gtest_stack_trace_depth=number.
6299TEST_F(InitGoogleTestTest, StackTraceDepth) {
6300  const char* argv[] = {
6301    "foo.exe",
6302    "--gtest_stack_trace_depth=5",
6303    NULL
6304  };
6305
6306  const char* argv2[] = {
6307    "foo.exe",
6308    NULL
6309  };
6310
6311  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6312}
6313
6314TEST_F(InitGoogleTestTest, StreamResultTo) {
6315  const char* argv[] = {
6316    "foo.exe",
6317    "--gtest_stream_result_to=localhost:1234",
6318    NULL
6319  };
6320
6321  const char* argv2[] = {
6322    "foo.exe",
6323    NULL
6324  };
6325
6326  GTEST_TEST_PARSING_FLAGS_(
6327      argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6328}
6329
6330// Tests parsing --gtest_throw_on_failure.
6331TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6332  const char* argv[] = {
6333    "foo.exe",
6334    "--gtest_throw_on_failure",
6335    NULL
6336};
6337
6338  const char* argv2[] = {
6339    "foo.exe",
6340    NULL
6341  };
6342
6343  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6344}
6345
6346// Tests parsing --gtest_throw_on_failure=0.
6347TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6348  const char* argv[] = {
6349    "foo.exe",
6350    "--gtest_throw_on_failure=0",
6351    NULL
6352  };
6353
6354  const char* argv2[] = {
6355    "foo.exe",
6356    NULL
6357  };
6358
6359  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6360}
6361
6362// Tests parsing a --gtest_throw_on_failure flag that has a "true"
6363// definition.
6364TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6365  const char* argv[] = {
6366    "foo.exe",
6367    "--gtest_throw_on_failure=1",
6368    NULL
6369  };
6370
6371  const char* argv2[] = {
6372    "foo.exe",
6373    NULL
6374  };
6375
6376  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6377}
6378
6379#if GTEST_OS_WINDOWS
6380// Tests parsing wide strings.
6381TEST_F(InitGoogleTestTest, WideStrings) {
6382  const wchar_t* argv[] = {
6383    L"foo.exe",
6384    L"--gtest_filter=Foo*",
6385    L"--gtest_list_tests=1",
6386    L"--gtest_break_on_failure",
6387    L"--non_gtest_flag",
6388    NULL
6389  };
6390
6391  const wchar_t* argv2[] = {
6392    L"foo.exe",
6393    L"--non_gtest_flag",
6394    NULL
6395  };
6396
6397  Flags expected_flags;
6398  expected_flags.break_on_failure = true;
6399  expected_flags.filter = "Foo*";
6400  expected_flags.list_tests = true;
6401
6402  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6403}
6404# endif  // GTEST_OS_WINDOWS
6405
6406#if GTEST_USE_OWN_FLAGFILE_FLAG_
6407class FlagfileTest : public InitGoogleTestTest {
6408 public:
6409  virtual void SetUp() {
6410    InitGoogleTestTest::SetUp();
6411
6412    testdata_path_.Set(internal::FilePath(
6413        internal::TempDir() + internal::GetCurrentExecutableName().string() +
6414        "_flagfile_test"));
6415    testing::internal::posix::RmDir(testdata_path_.c_str());
6416    EXPECT_TRUE(testdata_path_.CreateFolder());
6417  }
6418
6419  virtual void TearDown() {
6420    testing::internal::posix::RmDir(testdata_path_.c_str());
6421    InitGoogleTestTest::TearDown();
6422  }
6423
6424  internal::FilePath CreateFlagfile(const char* contents) {
6425    internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6426        testdata_path_, internal::FilePath("unique"), "txt"));
6427    FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6428    fprintf(f, "%s", contents);
6429    fclose(f);
6430    return file_path;
6431  }
6432
6433 private:
6434  internal::FilePath testdata_path_;
6435};
6436
6437// Tests an empty flagfile.
6438TEST_F(FlagfileTest, Empty) {
6439  internal::FilePath flagfile_path(CreateFlagfile(""));
6440  std::string flagfile_flag =
6441      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6442
6443  const char* argv[] = {
6444    "foo.exe",
6445    flagfile_flag.c_str(),
6446    NULL
6447  };
6448
6449  const char* argv2[] = {
6450    "foo.exe",
6451    NULL
6452  };
6453
6454  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6455}
6456
6457// Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
6458TEST_F(FlagfileTest, FilterNonEmpty) {
6459  internal::FilePath flagfile_path(CreateFlagfile(
6460      "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
6461  std::string flagfile_flag =
6462      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6463
6464  const char* argv[] = {
6465    "foo.exe",
6466    flagfile_flag.c_str(),
6467    NULL
6468  };
6469
6470  const char* argv2[] = {
6471    "foo.exe",
6472    NULL
6473  };
6474
6475  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6476}
6477
6478// Tests passing several flags via --gtest_flagfile.
6479TEST_F(FlagfileTest, SeveralFlags) {
6480  internal::FilePath flagfile_path(CreateFlagfile(
6481      "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
6482      "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
6483      "--"  GTEST_FLAG_PREFIX_  "list_tests"));
6484  std::string flagfile_flag =
6485      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6486
6487  const char* argv[] = {
6488    "foo.exe",
6489    flagfile_flag.c_str(),
6490    NULL
6491  };
6492
6493  const char* argv2[] = {
6494    "foo.exe",
6495    NULL
6496  };
6497
6498  Flags expected_flags;
6499  expected_flags.break_on_failure = true;
6500  expected_flags.filter = "abc";
6501  expected_flags.list_tests = true;
6502
6503  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6504}
6505#endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6506
6507// Tests current_test_info() in UnitTest.
6508class CurrentTestInfoTest : public Test {
6509 protected:
6510  // Tests that current_test_info() returns NULL before the first test in
6511  // the test case is run.
6512  static void SetUpTestCase() {
6513    // There should be no tests running at this point.
6514    const TestInfo* test_info =
6515      UnitTest::GetInstance()->current_test_info();
6516    EXPECT_TRUE(test_info == NULL)
6517        << "There should be no tests running at this point.";
6518  }
6519
6520  // Tests that current_test_info() returns NULL after the last test in
6521  // the test case has run.
6522  static void TearDownTestCase() {
6523    const TestInfo* test_info =
6524      UnitTest::GetInstance()->current_test_info();
6525    EXPECT_TRUE(test_info == NULL)
6526        << "There should be no tests running at this point.";
6527  }
6528};
6529
6530// Tests that current_test_info() returns TestInfo for currently running
6531// test by checking the expected test name against the actual one.
6532TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6533  const TestInfo* test_info =
6534    UnitTest::GetInstance()->current_test_info();
6535  ASSERT_TRUE(NULL != test_info)
6536      << "There is a test running so we should have a valid TestInfo.";
6537  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6538      << "Expected the name of the currently running test case.";
6539  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6540      << "Expected the name of the currently running test.";
6541}
6542
6543// Tests that current_test_info() returns TestInfo for currently running
6544// test by checking the expected test name against the actual one.  We
6545// use this test to see that the TestInfo object actually changed from
6546// the previous invocation.
6547TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6548  const TestInfo* test_info =
6549    UnitTest::GetInstance()->current_test_info();
6550  ASSERT_TRUE(NULL != test_info)
6551      << "There is a test running so we should have a valid TestInfo.";
6552  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6553      << "Expected the name of the currently running test case.";
6554  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6555      << "Expected the name of the currently running test.";
6556}
6557
6558}  // namespace testing
6559
6560// These two lines test that we can define tests in a namespace that
6561// has the name "testing" and is nested in another namespace.
6562namespace my_namespace {
6563namespace testing {
6564
6565// Makes sure that TEST knows to use ::testing::Test instead of
6566// ::my_namespace::testing::Test.
6567class Test {};
6568
6569// Makes sure that an assertion knows to use ::testing::Message instead of
6570// ::my_namespace::testing::Message.
6571class Message {};
6572
6573// Makes sure that an assertion knows to use
6574// ::testing::AssertionResult instead of
6575// ::my_namespace::testing::AssertionResult.
6576class AssertionResult {};
6577
6578// Tests that an assertion that should succeed works as expected.
6579TEST(NestedTestingNamespaceTest, Success) {
6580  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6581}
6582
6583// Tests that an assertion that should fail works as expected.
6584TEST(NestedTestingNamespaceTest, Failure) {
6585  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6586                       "This failure is expected.");
6587}
6588
6589}  // namespace testing
6590}  // namespace my_namespace
6591
6592// Tests that one can call superclass SetUp and TearDown methods--
6593// that is, that they are not private.
6594// No tests are based on this fixture; the test "passes" if it compiles
6595// successfully.
6596class ProtectedFixtureMethodsTest : public Test {
6597 protected:
6598  virtual void SetUp() {
6599    Test::SetUp();
6600  }
6601  virtual void TearDown() {
6602    Test::TearDown();
6603  }
6604};
6605
6606// StreamingAssertionsTest tests the streaming versions of a representative
6607// sample of assertions.
6608TEST(StreamingAssertionsTest, Unconditional) {
6609  SUCCEED() << "expected success";
6610  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6611                          "expected failure");
6612  EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6613                       "expected failure");
6614}
6615
6616#ifdef __BORLANDC__
6617// Silences warnings: "Condition is always true", "Unreachable code"
6618# pragma option push -w-ccc -w-rch
6619#endif
6620
6621TEST(StreamingAssertionsTest, Truth) {
6622  EXPECT_TRUE(true) << "unexpected failure";
6623  ASSERT_TRUE(true) << "unexpected failure";
6624  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6625                          "expected failure");
6626  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6627                       "expected failure");
6628}
6629
6630TEST(StreamingAssertionsTest, Truth2) {
6631  EXPECT_FALSE(false) << "unexpected failure";
6632  ASSERT_FALSE(false) << "unexpected failure";
6633  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6634                          "expected failure");
6635  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6636                       "expected failure");
6637}
6638
6639#ifdef __BORLANDC__
6640// Restores warnings after previous "#pragma option push" supressed them
6641# pragma option pop
6642#endif
6643
6644TEST(StreamingAssertionsTest, IntegerEquals) {
6645  EXPECT_EQ(1, 1) << "unexpected failure";
6646  ASSERT_EQ(1, 1) << "unexpected failure";
6647  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6648                          "expected failure");
6649  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6650                       "expected failure");
6651}
6652
6653TEST(StreamingAssertionsTest, IntegerLessThan) {
6654  EXPECT_LT(1, 2) << "unexpected failure";
6655  ASSERT_LT(1, 2) << "unexpected failure";
6656  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6657                          "expected failure");
6658  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6659                       "expected failure");
6660}
6661
6662TEST(StreamingAssertionsTest, StringsEqual) {
6663  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6664  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6665  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6666                          "expected failure");
6667  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6668                       "expected failure");
6669}
6670
6671TEST(StreamingAssertionsTest, StringsNotEqual) {
6672  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6673  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6674  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6675                          "expected failure");
6676  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6677                       "expected failure");
6678}
6679
6680TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6681  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6682  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6683  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6684                          "expected failure");
6685  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6686                       "expected failure");
6687}
6688
6689TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6690  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6691  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6692  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6693                          "expected failure");
6694  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6695                       "expected failure");
6696}
6697
6698TEST(StreamingAssertionsTest, FloatingPointEquals) {
6699  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6700  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6701  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6702                          "expected failure");
6703  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6704                       "expected failure");
6705}
6706
6707#if GTEST_HAS_EXCEPTIONS
6708
6709TEST(StreamingAssertionsTest, Throw) {
6710  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6711  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6712  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6713                          "expected failure", "expected failure");
6714  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6715                       "expected failure", "expected failure");
6716}
6717
6718TEST(StreamingAssertionsTest, NoThrow) {
6719  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6720  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6721  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6722                          "expected failure", "expected failure");
6723  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6724                       "expected failure", "expected failure");
6725}
6726
6727TEST(StreamingAssertionsTest, AnyThrow) {
6728  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6729  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6730  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6731                          "expected failure", "expected failure");
6732  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6733                       "expected failure", "expected failure");
6734}
6735
6736#endif  // GTEST_HAS_EXCEPTIONS
6737
6738// Tests that Google Test correctly decides whether to use colors in the output.
6739
6740TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6741  GTEST_FLAG(color) = "yes";
6742
6743  SetEnv("TERM", "xterm");  // TERM supports colors.
6744  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6745  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6746
6747  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6748  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6749  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6750}
6751
6752TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6753  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6754
6755  GTEST_FLAG(color) = "True";
6756  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6757
6758  GTEST_FLAG(color) = "t";
6759  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6760
6761  GTEST_FLAG(color) = "1";
6762  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6763}
6764
6765TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6766  GTEST_FLAG(color) = "no";
6767
6768  SetEnv("TERM", "xterm");  // TERM supports colors.
6769  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6770  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6771
6772  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6773  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6774  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6775}
6776
6777TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6778  SetEnv("TERM", "xterm");  // TERM supports colors.
6779
6780  GTEST_FLAG(color) = "F";
6781  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6782
6783  GTEST_FLAG(color) = "0";
6784  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6785
6786  GTEST_FLAG(color) = "unknown";
6787  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6788}
6789
6790TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6791  GTEST_FLAG(color) = "auto";
6792
6793  SetEnv("TERM", "xterm");  // TERM supports colors.
6794  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6795  EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6796}
6797
6798TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6799  GTEST_FLAG(color) = "auto";
6800
6801#if GTEST_OS_WINDOWS
6802  // On Windows, we ignore the TERM variable as it's usually not set.
6803
6804  SetEnv("TERM", "dumb");
6805  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6806
6807  SetEnv("TERM", "");
6808  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6809
6810  SetEnv("TERM", "xterm");
6811  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6812#else
6813  // On non-Windows platforms, we rely on TERM to determine if the
6814  // terminal supports colors.
6815
6816  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6817  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6818
6819  SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6820  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6821
6822  SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6823  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6824
6825  SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6826  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6827
6828  SetEnv("TERM", "xterm");  // TERM supports colors.
6829  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6830
6831  SetEnv("TERM", "xterm-color");  // TERM supports colors.
6832  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6833
6834  SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6835  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6836
6837  SetEnv("TERM", "screen");  // TERM supports colors.
6838  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6839
6840  SetEnv("TERM", "screen-256color");  // TERM supports colors.
6841  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6842
6843  SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
6844  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6845
6846  SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6847  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6848
6849  SetEnv("TERM", "linux");  // TERM supports colors.
6850  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6851
6852  SetEnv("TERM", "cygwin");  // TERM supports colors.
6853  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6854#endif  // GTEST_OS_WINDOWS
6855}
6856
6857// Verifies that StaticAssertTypeEq works in a namespace scope.
6858
6859static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6860static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6861    StaticAssertTypeEq<const int, const int>();
6862
6863// Verifies that StaticAssertTypeEq works in a class.
6864
6865template <typename T>
6866class StaticAssertTypeEqTestHelper {
6867 public:
6868  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6869};
6870
6871TEST(StaticAssertTypeEqTest, WorksInClass) {
6872  StaticAssertTypeEqTestHelper<bool>();
6873}
6874
6875// Verifies that StaticAssertTypeEq works inside a function.
6876
6877typedef int IntAlias;
6878
6879TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6880  StaticAssertTypeEq<int, IntAlias>();
6881  StaticAssertTypeEq<int*, IntAlias*>();
6882}
6883
6884TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6885  testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6886
6887  // We don't have a stack walker in Google Test yet.
6888  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6889  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6890}
6891
6892TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6893  EXPECT_FALSE(HasNonfatalFailure());
6894}
6895
6896static void FailFatally() { FAIL(); }
6897
6898TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6899  FailFatally();
6900  const bool has_nonfatal_failure = HasNonfatalFailure();
6901  ClearCurrentTestPartResults();
6902  EXPECT_FALSE(has_nonfatal_failure);
6903}
6904
6905TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6906  ADD_FAILURE();
6907  const bool has_nonfatal_failure = HasNonfatalFailure();
6908  ClearCurrentTestPartResults();
6909  EXPECT_TRUE(has_nonfatal_failure);
6910}
6911
6912TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6913  FailFatally();
6914  ADD_FAILURE();
6915  const bool has_nonfatal_failure = HasNonfatalFailure();
6916  ClearCurrentTestPartResults();
6917  EXPECT_TRUE(has_nonfatal_failure);
6918}
6919
6920// A wrapper for calling HasNonfatalFailure outside of a test body.
6921static bool HasNonfatalFailureHelper() {
6922  return testing::Test::HasNonfatalFailure();
6923}
6924
6925TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6926  EXPECT_FALSE(HasNonfatalFailureHelper());
6927}
6928
6929TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6930  ADD_FAILURE();
6931  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6932  ClearCurrentTestPartResults();
6933  EXPECT_TRUE(has_nonfatal_failure);
6934}
6935
6936TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6937  EXPECT_FALSE(HasFailure());
6938}
6939
6940TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6941  FailFatally();
6942  const bool has_failure = HasFailure();
6943  ClearCurrentTestPartResults();
6944  EXPECT_TRUE(has_failure);
6945}
6946
6947TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6948  ADD_FAILURE();
6949  const bool has_failure = HasFailure();
6950  ClearCurrentTestPartResults();
6951  EXPECT_TRUE(has_failure);
6952}
6953
6954TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6955  FailFatally();
6956  ADD_FAILURE();
6957  const bool has_failure = HasFailure();
6958  ClearCurrentTestPartResults();
6959  EXPECT_TRUE(has_failure);
6960}
6961
6962// A wrapper for calling HasFailure outside of a test body.
6963static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6964
6965TEST(HasFailureTest, WorksOutsideOfTestBody) {
6966  EXPECT_FALSE(HasFailureHelper());
6967}
6968
6969TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6970  ADD_FAILURE();
6971  const bool has_failure = HasFailureHelper();
6972  ClearCurrentTestPartResults();
6973  EXPECT_TRUE(has_failure);
6974}
6975
6976class TestListener : public EmptyTestEventListener {
6977 public:
6978  TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
6979  TestListener(int* on_start_counter, bool* is_destroyed)
6980      : on_start_counter_(on_start_counter),
6981        is_destroyed_(is_destroyed) {}
6982
6983  virtual ~TestListener() {
6984    if (is_destroyed_)
6985      *is_destroyed_ = true;
6986  }
6987
6988 protected:
6989  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6990    if (on_start_counter_ != NULL)
6991      (*on_start_counter_)++;
6992  }
6993
6994 private:
6995  int* on_start_counter_;
6996  bool* is_destroyed_;
6997};
6998
6999// Tests the constructor.
7000TEST(TestEventListenersTest, ConstructionWorks) {
7001  TestEventListeners listeners;
7002
7003  EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
7004  EXPECT_TRUE(listeners.default_result_printer() == NULL);
7005  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7006}
7007
7008// Tests that the TestEventListeners destructor deletes all the listeners it
7009// owns.
7010TEST(TestEventListenersTest, DestructionWorks) {
7011  bool default_result_printer_is_destroyed = false;
7012  bool default_xml_printer_is_destroyed = false;
7013  bool extra_listener_is_destroyed = false;
7014  TestListener* default_result_printer = new TestListener(
7015      NULL, &default_result_printer_is_destroyed);
7016  TestListener* default_xml_printer = new TestListener(
7017      NULL, &default_xml_printer_is_destroyed);
7018  TestListener* extra_listener = new TestListener(
7019      NULL, &extra_listener_is_destroyed);
7020
7021  {
7022    TestEventListeners listeners;
7023    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
7024                                                        default_result_printer);
7025    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
7026                                                       default_xml_printer);
7027    listeners.Append(extra_listener);
7028  }
7029  EXPECT_TRUE(default_result_printer_is_destroyed);
7030  EXPECT_TRUE(default_xml_printer_is_destroyed);
7031  EXPECT_TRUE(extra_listener_is_destroyed);
7032}
7033
7034// Tests that a listener Append'ed to a TestEventListeners list starts
7035// receiving events.
7036TEST(TestEventListenersTest, Append) {
7037  int on_start_counter = 0;
7038  bool is_destroyed = false;
7039  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7040  {
7041    TestEventListeners listeners;
7042    listeners.Append(listener);
7043    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7044        *UnitTest::GetInstance());
7045    EXPECT_EQ(1, on_start_counter);
7046  }
7047  EXPECT_TRUE(is_destroyed);
7048}
7049
7050// Tests that listeners receive events in the order they were appended to
7051// the list, except for *End requests, which must be received in the reverse
7052// order.
7053class SequenceTestingListener : public EmptyTestEventListener {
7054 public:
7055  SequenceTestingListener(std::vector<std::string>* vector, const char* id)
7056      : vector_(vector), id_(id) {}
7057
7058 protected:
7059  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
7060    vector_->push_back(GetEventDescription("OnTestProgramStart"));
7061  }
7062
7063  virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
7064    vector_->push_back(GetEventDescription("OnTestProgramEnd"));
7065  }
7066
7067  virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
7068                                    int /*iteration*/) {
7069    vector_->push_back(GetEventDescription("OnTestIterationStart"));
7070  }
7071
7072  virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
7073                                  int /*iteration*/) {
7074    vector_->push_back(GetEventDescription("OnTestIterationEnd"));
7075  }
7076
7077 private:
7078  std::string GetEventDescription(const char* method) {
7079    Message message;
7080    message << id_ << "." << method;
7081    return message.GetString();
7082  }
7083
7084  std::vector<std::string>* vector_;
7085  const char* const id_;
7086
7087  GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
7088};
7089
7090TEST(EventListenerTest, AppendKeepsOrder) {
7091  std::vector<std::string> vec;
7092  TestEventListeners listeners;
7093  listeners.Append(new SequenceTestingListener(&vec, "1st"));
7094  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
7095  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
7096
7097  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7098      *UnitTest::GetInstance());
7099  ASSERT_EQ(3U, vec.size());
7100  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
7101  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
7102  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
7103
7104  vec.clear();
7105  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
7106      *UnitTest::GetInstance());
7107  ASSERT_EQ(3U, vec.size());
7108  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
7109  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
7110  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
7111
7112  vec.clear();
7113  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
7114      *UnitTest::GetInstance(), 0);
7115  ASSERT_EQ(3U, vec.size());
7116  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
7117  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
7118  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
7119
7120  vec.clear();
7121  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
7122      *UnitTest::GetInstance(), 0);
7123  ASSERT_EQ(3U, vec.size());
7124  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
7125  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
7126  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
7127}
7128
7129// Tests that a listener removed from a TestEventListeners list stops receiving
7130// events and is not deleted when the list is destroyed.
7131TEST(TestEventListenersTest, Release) {
7132  int on_start_counter = 0;
7133  bool is_destroyed = false;
7134  // Although Append passes the ownership of this object to the list,
7135  // the following calls release it, and we need to delete it before the
7136  // test ends.
7137  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7138  {
7139    TestEventListeners listeners;
7140    listeners.Append(listener);
7141    EXPECT_EQ(listener, listeners.Release(listener));
7142    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7143        *UnitTest::GetInstance());
7144    EXPECT_TRUE(listeners.Release(listener) == NULL);
7145  }
7146  EXPECT_EQ(0, on_start_counter);
7147  EXPECT_FALSE(is_destroyed);
7148  delete listener;
7149}
7150
7151// Tests that no events are forwarded when event forwarding is disabled.
7152TEST(EventListenerTest, SuppressEventForwarding) {
7153  int on_start_counter = 0;
7154  TestListener* listener = new TestListener(&on_start_counter, NULL);
7155
7156  TestEventListeners listeners;
7157  listeners.Append(listener);
7158  ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7159  TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7160  ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7161  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7162      *UnitTest::GetInstance());
7163  EXPECT_EQ(0, on_start_counter);
7164}
7165
7166// Tests that events generated by Google Test are not forwarded in
7167// death test subprocesses.
7168TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
7169  EXPECT_DEATH_IF_SUPPORTED({
7170      GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7171          *GetUnitTestImpl()->listeners())) << "expected failure";},
7172      "expected failure");
7173}
7174
7175// Tests that a listener installed via SetDefaultResultPrinter() starts
7176// receiving events and is returned via default_result_printer() and that
7177// the previous default_result_printer is removed from the list and deleted.
7178TEST(EventListenerTest, default_result_printer) {
7179  int on_start_counter = 0;
7180  bool is_destroyed = false;
7181  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7182
7183  TestEventListeners listeners;
7184  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7185
7186  EXPECT_EQ(listener, listeners.default_result_printer());
7187
7188  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7189      *UnitTest::GetInstance());
7190
7191  EXPECT_EQ(1, on_start_counter);
7192
7193  // Replacing default_result_printer with something else should remove it
7194  // from the list and destroy it.
7195  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
7196
7197  EXPECT_TRUE(listeners.default_result_printer() == NULL);
7198  EXPECT_TRUE(is_destroyed);
7199
7200  // After broadcasting an event the counter is still the same, indicating
7201  // the listener is not in the list anymore.
7202  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7203      *UnitTest::GetInstance());
7204  EXPECT_EQ(1, on_start_counter);
7205}
7206
7207// Tests that the default_result_printer listener stops receiving events
7208// when removed via Release and that is not owned by the list anymore.
7209TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7210  int on_start_counter = 0;
7211  bool is_destroyed = false;
7212  // Although Append passes the ownership of this object to the list,
7213  // the following calls release it, and we need to delete it before the
7214  // test ends.
7215  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7216  {
7217    TestEventListeners listeners;
7218    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7219
7220    EXPECT_EQ(listener, listeners.Release(listener));
7221    EXPECT_TRUE(listeners.default_result_printer() == NULL);
7222    EXPECT_FALSE(is_destroyed);
7223
7224    // Broadcasting events now should not affect default_result_printer.
7225    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7226        *UnitTest::GetInstance());
7227    EXPECT_EQ(0, on_start_counter);
7228  }
7229  // Destroying the list should not affect the listener now, too.
7230  EXPECT_FALSE(is_destroyed);
7231  delete listener;
7232}
7233
7234// Tests that a listener installed via SetDefaultXmlGenerator() starts
7235// receiving events and is returned via default_xml_generator() and that
7236// the previous default_xml_generator is removed from the list and deleted.
7237TEST(EventListenerTest, default_xml_generator) {
7238  int on_start_counter = 0;
7239  bool is_destroyed = false;
7240  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7241
7242  TestEventListeners listeners;
7243  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7244
7245  EXPECT_EQ(listener, listeners.default_xml_generator());
7246
7247  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7248      *UnitTest::GetInstance());
7249
7250  EXPECT_EQ(1, on_start_counter);
7251
7252  // Replacing default_xml_generator with something else should remove it
7253  // from the list and destroy it.
7254  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
7255
7256  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7257  EXPECT_TRUE(is_destroyed);
7258
7259  // After broadcasting an event the counter is still the same, indicating
7260  // the listener is not in the list anymore.
7261  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7262      *UnitTest::GetInstance());
7263  EXPECT_EQ(1, on_start_counter);
7264}
7265
7266// Tests that the default_xml_generator listener stops receiving events
7267// when removed via Release and that is not owned by the list anymore.
7268TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7269  int on_start_counter = 0;
7270  bool is_destroyed = false;
7271  // Although Append passes the ownership of this object to the list,
7272  // the following calls release it, and we need to delete it before the
7273  // test ends.
7274  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7275  {
7276    TestEventListeners listeners;
7277    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7278
7279    EXPECT_EQ(listener, listeners.Release(listener));
7280    EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7281    EXPECT_FALSE(is_destroyed);
7282
7283    // Broadcasting events now should not affect default_xml_generator.
7284    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7285        *UnitTest::GetInstance());
7286    EXPECT_EQ(0, on_start_counter);
7287  }
7288  // Destroying the list should not affect the listener now, too.
7289  EXPECT_FALSE(is_destroyed);
7290  delete listener;
7291}
7292
7293// Sanity tests to ensure that the alternative, verbose spellings of
7294// some of the macros work.  We don't test them thoroughly as that
7295// would be quite involved.  Since their implementations are
7296// straightforward, and they are rarely used, we'll just rely on the
7297// users to tell us when they are broken.
7298GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7299  GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7300
7301  // GTEST_FAIL is the same as FAIL.
7302  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7303                       "An expected failure");
7304
7305  // GTEST_ASSERT_XY is the same as ASSERT_XY.
7306
7307  GTEST_ASSERT_EQ(0, 0);
7308  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7309                       "An expected failure");
7310  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7311                       "An expected failure");
7312
7313  GTEST_ASSERT_NE(0, 1);
7314  GTEST_ASSERT_NE(1, 0);
7315  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7316                       "An expected failure");
7317
7318  GTEST_ASSERT_LE(0, 0);
7319  GTEST_ASSERT_LE(0, 1);
7320  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7321                       "An expected failure");
7322
7323  GTEST_ASSERT_LT(0, 1);
7324  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7325                       "An expected failure");
7326  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7327                       "An expected failure");
7328
7329  GTEST_ASSERT_GE(0, 0);
7330  GTEST_ASSERT_GE(1, 0);
7331  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7332                       "An expected failure");
7333
7334  GTEST_ASSERT_GT(1, 0);
7335  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7336                       "An expected failure");
7337  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7338                       "An expected failure");
7339}
7340
7341// Tests for internal utilities necessary for implementation of the universal
7342// printing.
7343// TODO(vladl@google.com): Find a better home for them.
7344
7345class ConversionHelperBase {};
7346class ConversionHelperDerived : public ConversionHelperBase {};
7347
7348// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
7349TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7350  GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7351                        const_true);
7352  GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7353}
7354
7355// Tests that IsAProtocolMessage<T>::value is true when T is
7356// proto2::Message or a sub-class of it.
7357TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7358  EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7359  EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7360}
7361
7362// Tests that IsAProtocolMessage<T>::value is false when T is neither
7363// ProtocolMessage nor a sub-class of it.
7364TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7365  EXPECT_FALSE(IsAProtocolMessage<int>::value);
7366  EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7367}
7368
7369// Tests that CompileAssertTypesEqual compiles when the type arguments are
7370// equal.
7371TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7372  CompileAssertTypesEqual<void, void>();
7373  CompileAssertTypesEqual<int*, int*>();
7374}
7375
7376// Tests that RemoveReference does not affect non-reference types.
7377TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7378  CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7379  CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7380}
7381
7382// Tests that RemoveReference removes reference from reference types.
7383TEST(RemoveReferenceTest, RemovesReference) {
7384  CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7385  CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7386}
7387
7388// Tests GTEST_REMOVE_REFERENCE_.
7389
7390template <typename T1, typename T2>
7391void TestGTestRemoveReference() {
7392  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7393}
7394
7395TEST(RemoveReferenceTest, MacroVersion) {
7396  TestGTestRemoveReference<int, int>();
7397  TestGTestRemoveReference<const char, const char&>();
7398}
7399
7400
7401// Tests that RemoveConst does not affect non-const types.
7402TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7403  CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7404  CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7405}
7406
7407// Tests that RemoveConst removes const from const types.
7408TEST(RemoveConstTest, RemovesConst) {
7409  CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7410  CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7411  CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7412}
7413
7414// Tests GTEST_REMOVE_CONST_.
7415
7416template <typename T1, typename T2>
7417void TestGTestRemoveConst() {
7418  CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7419}
7420
7421TEST(RemoveConstTest, MacroVersion) {
7422  TestGTestRemoveConst<int, int>();
7423  TestGTestRemoveConst<double&, double&>();
7424  TestGTestRemoveConst<char, const char>();
7425}
7426
7427// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7428
7429template <typename T1, typename T2>
7430void TestGTestRemoveReferenceAndConst() {
7431  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7432}
7433
7434TEST(RemoveReferenceToConstTest, Works) {
7435  TestGTestRemoveReferenceAndConst<int, int>();
7436  TestGTestRemoveReferenceAndConst<double, double&>();
7437  TestGTestRemoveReferenceAndConst<char, const char>();
7438  TestGTestRemoveReferenceAndConst<char, const char&>();
7439  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7440}
7441
7442// Tests that AddReference does not affect reference types.
7443TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7444  CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7445  CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7446}
7447
7448// Tests that AddReference adds reference to non-reference types.
7449TEST(AddReferenceTest, AddsReference) {
7450  CompileAssertTypesEqual<int&, AddReference<int>::type>();
7451  CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7452}
7453
7454// Tests GTEST_ADD_REFERENCE_.
7455
7456template <typename T1, typename T2>
7457void TestGTestAddReference() {
7458  CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7459}
7460
7461TEST(AddReferenceTest, MacroVersion) {
7462  TestGTestAddReference<int&, int>();
7463  TestGTestAddReference<const char&, const char&>();
7464}
7465
7466// Tests GTEST_REFERENCE_TO_CONST_.
7467
7468template <typename T1, typename T2>
7469void TestGTestReferenceToConst() {
7470  CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7471}
7472
7473TEST(GTestReferenceToConstTest, Works) {
7474  TestGTestReferenceToConst<const char&, char>();
7475  TestGTestReferenceToConst<const int&, const int>();
7476  TestGTestReferenceToConst<const double&, double>();
7477  TestGTestReferenceToConst<const std::string&, const std::string&>();
7478}
7479
7480// Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
7481TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7482  GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7483  GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7484                        const_false);
7485}
7486
7487// Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7488// be implicitly converted to T2.
7489TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7490  EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7491  EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7492  EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7493  EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7494  EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7495                                     const ConversionHelperBase&>::value));
7496  EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7497                                     ConversionHelperBase>::value));
7498}
7499
7500// Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7501// cannot be implicitly converted to T2.
7502TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7503  EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7504  EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7505  EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7506  EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7507                                      ConversionHelperDerived&>::value));
7508}
7509
7510// Tests IsContainerTest.
7511
7512class NonContainer {};
7513
7514TEST(IsContainerTestTest, WorksForNonContainer) {
7515  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7516  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7517  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7518}
7519
7520TEST(IsContainerTestTest, WorksForContainer) {
7521  EXPECT_EQ(sizeof(IsContainer),
7522            sizeof(IsContainerTest<std::vector<bool> >(0)));
7523  EXPECT_EQ(sizeof(IsContainer),
7524            sizeof(IsContainerTest<std::map<int, double> >(0)));
7525}
7526
7527// Tests ArrayEq().
7528
7529TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7530  EXPECT_TRUE(ArrayEq(5, 5L));
7531  EXPECT_FALSE(ArrayEq('a', 0));
7532}
7533
7534TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7535  // Note that a and b are distinct but compatible types.
7536  const int a[] = { 0, 1 };
7537  long b[] = { 0, 1 };
7538  EXPECT_TRUE(ArrayEq(a, b));
7539  EXPECT_TRUE(ArrayEq(a, 2, b));
7540
7541  b[0] = 2;
7542  EXPECT_FALSE(ArrayEq(a, b));
7543  EXPECT_FALSE(ArrayEq(a, 1, b));
7544}
7545
7546TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7547  const char a[][3] = { "hi", "lo" };
7548  const char b[][3] = { "hi", "lo" };
7549  const char c[][3] = { "hi", "li" };
7550
7551  EXPECT_TRUE(ArrayEq(a, b));
7552  EXPECT_TRUE(ArrayEq(a, 2, b));
7553
7554  EXPECT_FALSE(ArrayEq(a, c));
7555  EXPECT_FALSE(ArrayEq(a, 2, c));
7556}
7557
7558// Tests ArrayAwareFind().
7559
7560TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7561  const char a[] = "hello";
7562  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7563  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7564}
7565
7566TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7567  int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7568  const int b[2] = { 2, 3 };
7569  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7570
7571  const int c[2] = { 6, 7 };
7572  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7573}
7574
7575// Tests CopyArray().
7576
7577TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7578  int n = 0;
7579  CopyArray('a', &n);
7580  EXPECT_EQ('a', n);
7581}
7582
7583TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7584  const char a[3] = "hi";
7585  int b[3];
7586#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7587  CopyArray(a, &b);
7588  EXPECT_TRUE(ArrayEq(a, b));
7589#endif
7590
7591  int c[3];
7592  CopyArray(a, 3, c);
7593  EXPECT_TRUE(ArrayEq(a, c));
7594}
7595
7596TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7597  const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7598  int b[2][3];
7599#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7600  CopyArray(a, &b);
7601  EXPECT_TRUE(ArrayEq(a, b));
7602#endif
7603
7604  int c[2][3];
7605  CopyArray(a, 2, c);
7606  EXPECT_TRUE(ArrayEq(a, c));
7607}
7608
7609// Tests NativeArray.
7610
7611TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7612  const int a[3] = { 0, 1, 2 };
7613  NativeArray<int> na(a, 3, RelationToSourceReference());
7614  EXPECT_EQ(3U, na.size());
7615  EXPECT_EQ(a, na.begin());
7616}
7617
7618TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7619  typedef int Array[2];
7620  Array* a = new Array[1];
7621  (*a)[0] = 0;
7622  (*a)[1] = 1;
7623  NativeArray<int> na(*a, 2, RelationToSourceCopy());
7624  EXPECT_NE(*a, na.begin());
7625  delete[] a;
7626  EXPECT_EQ(0, na.begin()[0]);
7627  EXPECT_EQ(1, na.begin()[1]);
7628
7629  // We rely on the heap checker to verify that na deletes the copy of
7630  // array.
7631}
7632
7633TEST(NativeArrayTest, TypeMembersAreCorrect) {
7634  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7635  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7636
7637  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7638  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7639}
7640
7641TEST(NativeArrayTest, MethodsWork) {
7642  const int a[3] = { 0, 1, 2 };
7643  NativeArray<int> na(a, 3, RelationToSourceCopy());
7644  ASSERT_EQ(3U, na.size());
7645  EXPECT_EQ(3, na.end() - na.begin());
7646
7647  NativeArray<int>::const_iterator it = na.begin();
7648  EXPECT_EQ(0, *it);
7649  ++it;
7650  EXPECT_EQ(1, *it);
7651  it++;
7652  EXPECT_EQ(2, *it);
7653  ++it;
7654  EXPECT_EQ(na.end(), it);
7655
7656  EXPECT_TRUE(na == na);
7657
7658  NativeArray<int> na2(a, 3, RelationToSourceReference());
7659  EXPECT_TRUE(na == na2);
7660
7661  const int b1[3] = { 0, 1, 1 };
7662  const int b2[4] = { 0, 1, 2, 3 };
7663  EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7664  EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7665}
7666
7667TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7668  const char a[2][3] = { "hi", "lo" };
7669  NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7670  ASSERT_EQ(2U, na.size());
7671  EXPECT_EQ(a, na.begin());
7672}
7673
7674// Tests SkipPrefix().
7675
7676TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7677  const char* const str = "hello";
7678
7679  const char* p = str;
7680  EXPECT_TRUE(SkipPrefix("", &p));
7681  EXPECT_EQ(str, p);
7682
7683  p = str;
7684  EXPECT_TRUE(SkipPrefix("hell", &p));
7685  EXPECT_EQ(str + 4, p);
7686}
7687
7688TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7689  const char* const str = "world";
7690
7691  const char* p = str;
7692  EXPECT_FALSE(SkipPrefix("W", &p));
7693  EXPECT_EQ(str, p);
7694
7695  p = str;
7696  EXPECT_FALSE(SkipPrefix("world!", &p));
7697  EXPECT_EQ(str, p);
7698}
7699
7700