1//--------------------------------------------------------------------*/ 2//--- Massif: a heap profiling tool. ms_main.c ---*/ 3//--------------------------------------------------------------------*/ 4 5/* 6 This file is part of Massif, a Valgrind tool for profiling memory 7 usage of programs. 8 9 Copyright (C) 2003-2017 Nicholas Nethercote 10 njn@valgrind.org 11 12 This program is free software; you can redistribute it and/or 13 modify it under the terms of the GNU General Public License as 14 published by the Free Software Foundation; either version 2 of the 15 License, or (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, but 18 WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 25 02111-1307, USA. 26 27 The GNU General Public License is contained in the file COPYING. 28*/ 29 30//--------------------------------------------------------------------------- 31// XXX: 32//--------------------------------------------------------------------------- 33// Todo -- nice, but less critical: 34// - do a graph-drawing test 35// - make file format more generic. Obstacles: 36// - unit prefixes are not generic 37// - preset column widths for stats are not generic 38// - preset column headers are not generic 39// - "Massif arguments:" line is not generic 40// - do snapshots on some specific client requests 41// - "show me the extra allocations since the last snapshot" 42// - "start/stop logging" (eg. quickly skip boring bits) 43// - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. 44// Give each graph a title. (try to do it generically!) 45// - make --show-below-main=no work 46// - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' 47// don't work in a .valgrindrc file or in $VALGRIND_OPTS. 48// m_commandline.c:add_args_from_string() needs to respect single quotes. 49// - With --stack=yes, want to add a stack trace for detailed snapshots so 50// it's clear where/why the peak is occurring. (Mattieu Castet) Also, 51// possibly useful even with --stack=no? (Andi Yin) 52// 53// Performance: 54// - To run the benchmarks: 55// 56// perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif 57// time valgrind --tool=massif --depth=100 konqueror 58// 59// The other benchmarks don't do much allocation, and so give similar speeds 60// to Nulgrind. 61// 62// Timing results on 'nevermore' (njn's machine) as of r7013: 63// 64// heap 0.53s ma:12.4s (23.5x, -----) 65// tinycc 0.46s ma: 4.9s (10.7x, -----) 66// many-xpts 0.08s ma: 2.0s (25.0x, -----) 67// konqueror 29.6s real 0:21.0s user 68// 69// [Introduction of --time-unit=i as the default slowed things down by 70// roughly 0--20%.] 71// 72// Todo -- low priority: 73// - In each XPt, record both bytes and the number of allocations, and 74// possibly the global number of allocations. 75// - (Andy Lin) Give a stack trace on detailed snapshots? 76// - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger 77// than a certain size! Because: "linux's malloc allows to set a 78// MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will 79// be handled directly by the kernel, and are guaranteed to be returned to 80// the system when freed. So we needed to profile only blocks below this 81// limit." 82// 83// File format working notes: 84 85#if 0 86desc: --heap-admin=foo 87cmd: date 88time_unit: ms 89#----------- 90snapshot=0 91#----------- 92time=0 93mem_heap_B=0 94mem_heap_admin_B=0 95mem_stacks_B=0 96heap_tree=empty 97#----------- 98snapshot=1 99#----------- 100time=353 101mem_heap_B=5 102mem_heap_admin_B=0 103mem_stacks_B=0 104heap_tree=detailed 105n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 106 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 107 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) 108 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) 109 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) 110 n1: 5 0x8049821: (within /bin/date) 111 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) 112 113 114n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 115t_events: B 116n 0 0 0 0 0 117n 0 0 0 0 0 118t1: 5 <string...> 119 t1: 6 <string...> 120 121Ideas: 122- each snapshot specifies an x-axis value and one or more y-axis values. 123- can display the y-axis values separately if you like 124- can completely separate connection between snapshots and trees. 125 126Challenges: 127- how to specify and scale/abbreviate units on axes? 128- how to combine multiple values into the y-axis? 129 130--------------------------------------------------------------------------------Command: date 131Massif arguments: --heap-admin=foo 132ms_print arguments: massif.out 133-------------------------------------------------------------------------------- 134 KB 1356.472^ :# 136 | :# :: . . 137 ... 138 | ::@ :@ :@ :@:::# :: : :::: 139 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 140 141Number of snapshots: 50 142 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] 143-------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 144-------------------------------------------------------------------------------- 0 0 0 0 0 0 145 1 345 5 5 0 0 146 2 353 5 5 0 0 147100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 148->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 149#endif 150 151//--------------------------------------------------------------------------- 152 153#include "pub_tool_basics.h" 154#include "pub_tool_vki.h" 155#include "pub_tool_aspacemgr.h" 156#include "pub_tool_debuginfo.h" 157#include "pub_tool_hashtable.h" 158#include "pub_tool_libcbase.h" 159#include "pub_tool_libcassert.h" 160#include "pub_tool_libcfile.h" 161#include "pub_tool_libcprint.h" 162#include "pub_tool_libcproc.h" 163#include "pub_tool_machine.h" 164#include "pub_tool_mallocfree.h" 165#include "pub_tool_options.h" 166#include "pub_tool_poolalloc.h" 167#include "pub_tool_replacemalloc.h" 168#include "pub_tool_stacktrace.h" 169#include "pub_tool_threadstate.h" 170#include "pub_tool_tooliface.h" 171#include "pub_tool_xarray.h" 172#include "pub_tool_xtree.h" 173#include "pub_tool_xtmemory.h" 174#include "pub_tool_clientstate.h" 175#include "pub_tool_gdbserver.h" 176 177#include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK 178 179//------------------------------------------------------------*/ 180//--- Overview of operation ---*/ 181//------------------------------------------------------------*/ 182 183// The size of the stacks and heap is tracked. The heap is tracked in a lot 184// of detail, enough to tell how many bytes each line of code is responsible 185// for, more or less. The main data structure is an xtree maintaining the 186// call tree beneath all the allocation functions like malloc(). 187// (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at 188// the page level, and each page is treated much like a heap block. We use 189// "heap" throughout below to cover this case because the concepts are all the 190// same.) 191// 192// "Snapshots" are recordings of the memory usage. There are two basic 193// kinds: 194// - Normal: these record the current time, total memory size, total heap 195// size, heap admin size and stack size. 196// - Detailed: these record those things in a normal snapshot, plus a very 197// detailed XTree (see below) indicating how the heap is structured. 198// 199// Snapshots are taken every so often. There are two storage classes of 200// snapshots: 201// - Temporary: Massif does a temporary snapshot every so often. The idea 202// is to always have a certain number of temporary snapshots around. So 203// we take them frequently to begin with, but decreasingly often as the 204// program continues to run. Also, we remove some old ones after a while. 205// Overall it's a kind of exponential decay thing. Most of these are 206// normal snapshots, a small fraction are detailed snapshots. 207// - Permanent: Massif takes a permanent (detailed) snapshot in some 208// circumstances. They are: 209// - Peak snapshot: When the memory usage peak is reached, it takes a 210// snapshot. It keeps this, unless the peak is subsequently exceeded, 211// in which case it will overwrite the peak snapshot. 212// - User-requested snapshots: These are done in response to client 213// requests. They are always kept. 214 215// Used for printing things when clo_verbosity > 1. 216#define VERB(verb, format, args...) \ 217 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \ 218 VG_(dmsg)("Massif: " format, ##args); \ 219 } 220 221//------------------------------------------------------------// 222//--- Statistics ---// 223//------------------------------------------------------------// 224 225// Konqueror startup, to give an idea of the numbers involved with a biggish 226// program, with default depth: 227// 228// depth=3 depth=40 229// - 310,000 allocations 230// - 300,000 frees 231// - 15,000 XPts 800,000 XPts 232// - 1,800 top-XPts 233 234static UInt n_heap_allocs = 0; 235static UInt n_heap_reallocs = 0; 236static UInt n_heap_frees = 0; 237static UInt n_ignored_heap_allocs = 0; 238static UInt n_ignored_heap_frees = 0; 239static UInt n_ignored_heap_reallocs = 0; 240static UInt n_stack_allocs = 0; 241static UInt n_stack_frees = 0; 242 243static UInt n_skipped_snapshots = 0; 244static UInt n_real_snapshots = 0; 245static UInt n_detailed_snapshots = 0; 246static UInt n_peak_snapshots = 0; 247static UInt n_cullings = 0; 248 249//------------------------------------------------------------// 250//--- Globals ---// 251//------------------------------------------------------------// 252 253// Number of guest instructions executed so far. Only used with 254// --time-unit=i. 255static Long guest_instrs_executed = 0; 256 257static SizeT heap_szB = 0; // Live heap size 258static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes 259static SizeT stacks_szB = 0; // Live stacks size 260 261// This is the total size from the current peak snapshot, or 0 if no peak 262// snapshot has been taken yet. 263static SizeT peak_snapshot_total_szB = 0; 264 265// Incremented every time memory is allocated/deallocated, by the 266// allocated/deallocated amount; includes heap, heap-admin and stack 267// memory. An alternative to milliseconds as a unit of program "time". 268static ULong total_allocs_deallocs_szB = 0; 269 270// When running with --heap=yes --pages-as-heap=no, we don't start taking 271// snapshots until the first basic block is executed, rather than doing it in 272// ms_post_clo_init (which is the obvious spot), for two reasons. 273// - It lets us ignore stack events prior to that, because they're not 274// really proper ones and just would screw things up. 275// - Because there's still some core initialisation to do, and so there 276// would be an artificial time gap between the first and second snapshots. 277// 278// When running with --heap=yes --pages-as-heap=yes, snapshots start much 279// earlier due to new_mem_startup so this isn't relevant. 280// 281static Bool have_started_executing_code = False; 282 283//------------------------------------------------------------// 284//--- Alloc fns ---// 285//------------------------------------------------------------// 286 287static XArray* alloc_fns; 288static XArray* ignore_fns; 289 290static void init_alloc_fns(void) 291{ 292 // Create the list, and add the default elements. 293 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", 294 VG_(free), sizeof(HChar*)); 295 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); } 296 297 // Ordered roughly according to (presumed) frequency. 298 // Nb: The C++ "operator new*" ones are overloadable. We include them 299 // always anyway, because even if they're overloaded, it would be a 300 // prodigiously stupid overloading that caused them to not allocate 301 // memory. 302 // 303 // XXX: because we don't look at the first stack entry (unless it's a 304 // custom allocation) there's not much point to having all these alloc 305 // functions here -- they should never appear anywhere (I think?) other 306 // than the top stack entry. The only exceptions are those that in 307 // vg_replace_malloc.c are partly or fully implemented in terms of another 308 // alloc function: realloc (which uses malloc); valloc, 309 // malloc_zone_valloc, posix_memalign and memalign_common (which use 310 // memalign). 311 // 312 DO("malloc" ); 313 DO("__builtin_new" ); 314 DO("operator new(unsigned)" ); 315 DO("operator new(unsigned long)" ); 316 DO("__builtin_vec_new" ); 317 DO("operator new[](unsigned)" ); 318 DO("operator new[](unsigned long)" ); 319 DO("calloc" ); 320 DO("realloc" ); 321 DO("memalign" ); 322 DO("posix_memalign" ); 323 DO("valloc" ); 324 DO("operator new(unsigned, std::nothrow_t const&)" ); 325 DO("operator new[](unsigned, std::nothrow_t const&)" ); 326 DO("operator new(unsigned long, std::nothrow_t const&)" ); 327 DO("operator new[](unsigned long, std::nothrow_t const&)"); 328#if defined(VGO_darwin) 329 DO("malloc_zone_malloc" ); 330 DO("malloc_zone_calloc" ); 331 DO("malloc_zone_realloc" ); 332 DO("malloc_zone_memalign" ); 333 DO("malloc_zone_valloc" ); 334#endif 335} 336 337static void init_ignore_fns(void) 338{ 339 // Create the (empty) list. 340 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", 341 VG_(free), sizeof(HChar*)); 342} 343 344//------------------------------------------------------------// 345//--- Command line args ---// 346//------------------------------------------------------------// 347 348#define MAX_DEPTH 200 349 350typedef enum { TimeI, TimeMS, TimeB } TimeUnit; 351 352static const HChar* TimeUnit_to_string(TimeUnit time_unit) 353{ 354 switch (time_unit) { 355 case TimeI: return "i"; 356 case TimeMS: return "ms"; 357 case TimeB: return "B"; 358 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); 359 } 360} 361 362static Bool clo_heap = True; 363 // clo_heap_admin is deliberately a word-sized type. At one point it was 364 // a UInt, but this caused problems on 64-bit machines when it was 365 // multiplied by a small negative number and then promoted to a 366 // word-sized type -- it ended up with a value of 4.2 billion. Sigh. 367static SSizeT clo_heap_admin = 8; 368static Bool clo_pages_as_heap = False; 369static Bool clo_stacks = False; 370static Int clo_depth = 30; 371static double clo_threshold = 1.0; // percentage 372static double clo_peak_inaccuracy = 1.0; // percentage 373static Int clo_time_unit = TimeI; 374static Int clo_detailed_freq = 10; 375static Int clo_max_snapshots = 100; 376static const HChar* clo_massif_out_file = "massif.out.%p"; 377 378static XArray* args_for_massif; 379 380static Bool ms_process_cmd_line_option(const HChar* arg) 381{ 382 const HChar* tmp_str; 383 384 // Remember the arg for later use. 385 VG_(addToXA)(args_for_massif, &arg); 386 387 if VG_BOOL_CLO(arg, "--heap", clo_heap) {} 388 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} 389 390 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} 391 392 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {} 393 394 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} 395 396 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { 397 VG_(addToXA)(alloc_fns, &tmp_str); 398 } 399 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { 400 VG_(addToXA)(ignore_fns, &tmp_str); 401 } 402 403 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) { 404 if (clo_threshold < 0 || clo_threshold > 100) { 405 VG_(fmsg_bad_option)(arg, 406 "--threshold must be between 0.0 and 100.0\n"); 407 } 408 } 409 410 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} 411 412 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} 413 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} 414 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} 415 416 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {} 417 418 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} 419 420 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} 421 422 else 423 return VG_(replacement_malloc_process_cmd_line_option)(arg); 424 425 return True; 426} 427 428static void ms_print_usage(void) 429{ 430 VG_(printf)( 431" --heap=no|yes profile heap blocks [yes]\n" 432" --heap-admin=<size> average admin bytes per heap block;\n" 433" ignored if --heap=no [8]\n" 434" --stacks=no|yes profile stack(s) [no]\n" 435" --pages-as-heap=no|yes profile memory at the page level [no]\n" 436" --depth=<number> depth of contexts [30]\n" 437" --alloc-fn=<name> specify <name> as an alloc function [empty]\n" 438" --ignore-fn=<name> ignore heap allocations within <name> [empty]\n" 439" --threshold=<m.n> significance threshold, as a percentage [1.0]\n" 440" --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" 441" --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" 442" or heap bytes alloc'd/dealloc'd [i]\n" 443" --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" 444" --max-snapshots=<N> maximum number of snapshots recorded [100]\n" 445" --massif-out-file=<file> output file name [massif.out.%%p]\n" 446 ); 447} 448 449static void ms_print_debug_usage(void) 450{ 451 VG_(printf)( 452" (none)\n" 453 ); 454} 455 456 457//------------------------------------------------------------// 458//--- XTrees ---// 459//------------------------------------------------------------// 460 461// The details of the heap are represented by a single XTree. 462// This XTree maintains the nr of allocated bytes for each 463// stacktrace/execontext. 464// 465// The root of the Xtree will be output as a top node 'alloc functions', 466// which represents all allocation functions, eg: 467// - malloc/calloc/realloc/memalign/new/new[]; 468// - user-specified allocation functions (using --alloc-fn); 469// - custom allocation (MALLOCLIKE) points 470static XTree* heap_xt; 471/* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */ 472static void init_szB(void* value) 473{ 474 *((SizeT*)value) = 0; 475} 476static void add_szB(void* to, const void* value) 477{ 478 *((SizeT*)to) += *((const SizeT*)value); 479} 480static void sub_szB(void* from, const void* value) 481{ 482 *((SizeT*)from) -= *((const SizeT*)value); 483} 484static ULong alloc_szB(const void* value) 485{ 486 return (ULong)*((const SizeT*)value); 487} 488 489 490//------------------------------------------------------------// 491//--- XTree Operations ---// 492//------------------------------------------------------------// 493 494// This is the limit on the number of filtered alloc-fns that can be in a 495// single stacktrace. 496#define MAX_OVERESTIMATE 50 497#define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) 498 499// filtering out uninteresting entries: 500// alloc-fns and entries above alloc-fns, and entries below main-or-below-main. 501// Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c 502// becomes: a / b / main 503// Nb: it's possible to end up with an empty trace, eg. if 'main' is marked 504// as an alloc-fn. This is ok. 505static 506void filter_IPs (Addr* ips, Int n_ips, 507 UInt* top, UInt* n_ips_sel) 508{ 509 Int i; 510 Bool top_has_fnname; 511 const HChar *fnname; 512 513 *top = 0; 514 *n_ips_sel = n_ips; 515 516 // Advance *top as long as we find alloc functions 517 // PW Nov 2016 xtree work: 518 // old massif code was doing something really strange(?buggy): 519 // 'sliding' a bunch of functions without names by removing an 520 // alloc function 'inside' a stacktrace e.g. 521 // 0x1 0x2 0x3 alloc func1 main 522 // becomes 0x1 0x2 0x3 func1 main 523 for (i = *top; i < n_ips; i++) { 524 top_has_fnname = VG_(get_fnname)(ips[*top], &fnname); 525 if (top_has_fnname && VG_(strIsMemberXA)(alloc_fns, fnname)) { 526 VERB(4, "filtering alloc fn %s\n", fnname); 527 (*top)++; 528 (*n_ips_sel)--; 529 } else { 530 break; 531 } 532 } 533 534 // filter the whole stacktrace if this allocation has to be ignored. 535 if (*n_ips_sel > 0 536 && top_has_fnname 537 && VG_(strIsMemberXA)(ignore_fns, fnname)) { 538 VERB(4, "ignored allocation from fn %s\n", fnname); 539 *top = n_ips; 540 *n_ips_sel = 0; 541 } 542 543 544 if (!VG_(clo_show_below_main) && *n_ips_sel > 0 ) { 545 Int mbm = VG_(XT_offset_main_or_below_main)(ips, n_ips); 546 547 if (mbm < *top) { 548 // Special case: the first main (or below main) function is an 549 // alloc function. 550 *n_ips_sel = 1; 551 VERB(4, "main/below main: keeping 1 fn\n"); 552 } else { 553 *n_ips_sel -= n_ips - mbm - 1; 554 VERB(4, "main/below main: filtering %d\n", n_ips - mbm - 1); 555 } 556 } 557 558 // filter the frames if we have more than clo_depth 559 if (*n_ips_sel > clo_depth) { 560 VERB(4, "filtering IPs above clo_depth\n"); 561 *n_ips_sel = clo_depth; 562 } 563} 564 565// Capture a stacktrace, and make an ec of it, without the first entry 566// if exclude_first_entry is True. 567static ExeContext* make_ec(ThreadId tid, Bool exclude_first_entry) 568{ 569 static Addr ips[MAX_IPS]; 570 571 // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. 572 Int n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + MAX_OVERESTIMATE, 573 NULL/*array to dump SP values in*/, 574 NULL/*array to dump FP values in*/, 575 0/*first_ip_delta*/ ); 576 if (exclude_first_entry && n_ips > 0) { 577 const HChar *fnname; 578 VERB(4, "removing top fn %s from stacktrace\n", 579 VG_(get_fnname)(ips[0], &fnname) ? fnname : "???"); 580 return VG_(make_ExeContext_from_StackTrace)(ips+1, n_ips-1); 581 } else 582 return VG_(make_ExeContext_from_StackTrace)(ips, n_ips); 583} 584 585// Create (or update) in heap_xt an xec corresponding to the stacktrace of tid. 586// req_szB is added to the xec (unless ec is fully filtered). 587// Returns the correspding XTree xec. 588// exclude_first_entry is an optimisation: if True, automatically removes 589// the top level IP from the stacktrace. Should be set to True if it is known 590// that this is an alloc fn. The top function presumably will be something like 591// malloc or __builtin_new that we're sure to filter out). 592static Xecu add_heap_xt( ThreadId tid, SizeT req_szB, Bool exclude_first_entry) 593{ 594 ExeContext *ec = make_ec(tid, exclude_first_entry); 595 596 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) 597 VG_(XTMemory_Full_alloc)(req_szB, ec); 598 return VG_(XT_add_to_ec) (heap_xt, ec, &req_szB); 599} 600 601// Substract req_szB from the heap_xt where. 602static void sub_heap_xt(Xecu where, SizeT req_szB, Bool exclude_first_entry) 603{ 604 tl_assert(clo_heap); 605 606 if (0 == req_szB) 607 return; 608 609 VG_(XT_sub_from_xecu) (heap_xt, where, &req_szB); 610 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) { 611 ExeContext *ec_free = make_ec(VG_(get_running_tid)(), 612 exclude_first_entry); 613 VG_(XTMemory_Full_free)(req_szB, 614 VG_(XT_get_ec_from_xecu)(heap_xt, where), 615 ec_free); 616 } 617} 618 619 620//------------------------------------------------------------// 621//--- Snapshots ---// 622//------------------------------------------------------------// 623 624// Snapshots are done in a way so that we always have a reasonable number of 625// them. We start by taking them quickly. Once we hit our limit, we cull 626// some (eg. half), and start taking them more slowly. Once we hit the 627// limit again, we again cull and then take them even more slowly, and so 628// on. 629 630#define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. 631 632typedef 633 enum { 634 Normal = 77, 635 Peak, 636 Unused 637 } 638 SnapshotKind; 639 640typedef 641 struct { 642 SnapshotKind kind; 643 Time time; 644 SizeT heap_szB; 645 SizeT heap_extra_szB;// Heap slop + admin bytes. 646 SizeT stacks_szB; 647 XTree* xt; // Snapshot of heap_xt, if a detailed snapshot, 648 } // otherwise NULL. 649 Snapshot; 650 651static UInt next_snapshot_i = 0; // Index of where next snapshot will go. 652static Snapshot* snapshots; // Array of snapshots. 653 654static Bool is_snapshot_in_use(Snapshot* snapshot) 655{ 656 if (Unused == snapshot->kind) { 657 // If snapshot is unused, check all the fields are unset. 658 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); 659 tl_assert(snapshot->heap_extra_szB == 0); 660 tl_assert(snapshot->heap_szB == 0); 661 tl_assert(snapshot->stacks_szB == 0); 662 tl_assert(snapshot->xt == NULL); 663 return False; 664 } else { 665 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); 666 return True; 667 } 668} 669 670static Bool is_detailed_snapshot(Snapshot* snapshot) 671{ 672 return (snapshot->xt ? True : False); 673} 674 675static Bool is_uncullable_snapshot(Snapshot* snapshot) 676{ 677 return &snapshots[0] == snapshot // First snapshot 678 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot 679 || snapshot->kind == Peak; // Peak snapshot 680} 681 682static void sanity_check_snapshot(Snapshot* snapshot) 683{ 684 // Not much we can sanity check. 685 tl_assert(snapshot->xt == NULL || snapshot->kind != Unused); 686} 687 688// All the used entries should look used, all the unused ones should be clear. 689static void sanity_check_snapshots_array(void) 690{ 691 Int i; 692 for (i = 0; i < next_snapshot_i; i++) { 693 tl_assert( is_snapshot_in_use( & snapshots[i] )); 694 } 695 for ( ; i < clo_max_snapshots; i++) { 696 tl_assert(!is_snapshot_in_use( & snapshots[i] )); 697 } 698} 699 700// This zeroes all the fields in the snapshot, but does not free the xt 701// XTree if present. It also does a sanity check unless asked not to; we 702// can't sanity check at startup when clearing the initial snapshots because 703// they're full of junk. 704static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) 705{ 706 if (do_sanity_check) sanity_check_snapshot(snapshot); 707 snapshot->kind = Unused; 708 snapshot->time = UNUSED_SNAPSHOT_TIME; 709 snapshot->heap_extra_szB = 0; 710 snapshot->heap_szB = 0; 711 snapshot->stacks_szB = 0; 712 snapshot->xt = NULL; 713} 714 715// This zeroes all the fields in the snapshot, and frees the heap XTree xt if 716// present. 717static void delete_snapshot(Snapshot* snapshot) 718{ 719 // Nb: if there's an XTree, we free it after calling clear_snapshot, 720 // because clear_snapshot does a sanity check which includes checking the 721 // XTree. 722 XTree* tmp_xt = snapshot->xt; 723 clear_snapshot(snapshot, /*do_sanity_check*/True); 724 if (tmp_xt) { 725 VG_(XT_delete)(tmp_xt); 726 } 727} 728 729static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i) 730{ 731 Snapshot* snapshot = &snapshots[i]; 732 const HChar* suffix; 733 switch (snapshot->kind) { 734 case Peak: suffix = "p"; break; 735 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; 736 case Unused: suffix = "u"; break; 737 default: 738 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); 739 } 740 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n", 741 prefix, suffix, i, 742 snapshot->time, 743 snapshot->heap_szB, 744 snapshot->heap_extra_szB, 745 snapshot->stacks_szB 746 ); 747} 748 749// Cull half the snapshots; we choose those that represent the smallest 750// time-spans, because that gives us the most even distribution of snapshots 751// over time. (It's possible to lose interesting spikes, however.) 752// 753// Algorithm for N snapshots: We find the snapshot representing the smallest 754// timeframe, and remove it. We repeat this until (N/2) snapshots are gone. 755// We have to do this one snapshot at a time, rather than finding the (N/2) 756// smallest snapshots in one hit, because when a snapshot is removed, its 757// neighbours immediately cover greater timespans. So it's O(N^2), but N is 758// small, and it's not done very often. 759// 760// Once we're done, we return the new smallest interval between snapshots. 761// That becomes our minimum time interval. 762static UInt cull_snapshots(void) 763{ 764 Int i, jp, j, jn, min_timespan_i; 765 Int n_deleted = 0; 766 Time min_timespan; 767 768 n_cullings++; 769 770 // Sets j to the index of the first not-yet-removed snapshot at or after i 771 #define FIND_SNAPSHOT(i, j) \ 772 for (j = i; \ 773 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ 774 j++) { } 775 776 VERB(2, "Culling...\n"); 777 778 // First we remove enough snapshots by clearing them in-place. Once 779 // that's done, we can slide the remaining ones down. 780 for (i = 0; i < clo_max_snapshots/2; i++) { 781 // Find the snapshot representing the smallest timespan. The timespan 782 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between 783 // snapshot A and B. We don't consider the first and last snapshots for 784 // removal. 785 Snapshot* min_snapshot; 786 Int min_j; 787 788 // Initial triple: (prev, curr, next) == (jp, j, jn) 789 // Initial min_timespan is the first one. 790 jp = 0; 791 FIND_SNAPSHOT(1, j); 792 FIND_SNAPSHOT(j+1, jn); 793 min_timespan = 0x7fffffffffffffffLL; 794 min_j = -1; 795 while (jn < clo_max_snapshots) { 796 Time timespan = snapshots[jn].time - snapshots[jp].time; 797 tl_assert(timespan >= 0); 798 // Nb: We never cull the peak snapshot. 799 if (Peak != snapshots[j].kind && timespan < min_timespan) { 800 min_timespan = timespan; 801 min_j = j; 802 } 803 // Move on to next triple 804 jp = j; 805 j = jn; 806 FIND_SNAPSHOT(jn+1, jn); 807 } 808 // We've found the least important snapshot, now delete it. First 809 // print it if necessary. 810 tl_assert(-1 != min_j); // Check we found a minimum. 811 min_snapshot = & snapshots[ min_j ]; 812 if (VG_(clo_verbosity) > 1) { 813 HChar buf[64]; // large enough 814 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); 815 VERB_snapshot(2, buf, min_j); 816 } 817 delete_snapshot(min_snapshot); 818 n_deleted++; 819 } 820 821 // Slide down the remaining snapshots over the removed ones. First set i 822 // to point to the first empty slot, and j to the first full slot after 823 // i. Then slide everything down. 824 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } 825 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } 826 for ( ; j < clo_max_snapshots; j++) { 827 if (is_snapshot_in_use( &snapshots[j] )) { 828 snapshots[i++] = snapshots[j]; 829 clear_snapshot(&snapshots[j], /*do_sanity_check*/True); 830 } 831 } 832 next_snapshot_i = i; 833 834 // Check snapshots array looks ok after changes. 835 sanity_check_snapshots_array(); 836 837 // Find the minimum timespan remaining; that will be our new minimum 838 // time interval. Note that above we were finding timespans by measuring 839 // two intervals around a snapshot that was under consideration for 840 // deletion. Here we only measure single intervals because all the 841 // deletions have occurred. 842 // 843 // But we have to be careful -- some snapshots (eg. snapshot 0, and the 844 // peak snapshot) are uncullable. If two uncullable snapshots end up 845 // next to each other, they'll never be culled (assuming the peak doesn't 846 // change), and the time gap between them will not change. However, the 847 // time between the remaining cullable snapshots will grow ever larger. 848 // This means that the min_timespan found will always be that between the 849 // two uncullable snapshots, and it will be much smaller than it should 850 // be. To avoid this problem, when computing the minimum timespan, we 851 // ignore any timespans between two uncullable snapshots. 852 tl_assert(next_snapshot_i > 1); 853 min_timespan = 0x7fffffffffffffffLL; 854 min_timespan_i = -1; 855 for (i = 1; i < next_snapshot_i; i++) { 856 if (is_uncullable_snapshot(&snapshots[i]) && 857 is_uncullable_snapshot(&snapshots[i-1])) 858 { 859 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i); 860 } else { 861 Time timespan = snapshots[i].time - snapshots[i-1].time; 862 tl_assert(timespan >= 0); 863 if (timespan < min_timespan) { 864 min_timespan = timespan; 865 min_timespan_i = i; 866 } 867 } 868 } 869 tl_assert(-1 != min_timespan_i); // Check we found a minimum. 870 871 // Print remaining snapshots, if necessary. 872 if (VG_(clo_verbosity) > 1) { 873 VERB(2, "Finished culling (%3d of %3d deleted)\n", 874 n_deleted, clo_max_snapshots); 875 for (i = 0; i < next_snapshot_i; i++) { 876 VERB_snapshot(2, " post-cull", i); 877 } 878 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n", 879 min_timespan, min_timespan_i-1, min_timespan_i); 880 } 881 882 return min_timespan; 883} 884 885static Time get_time(void) 886{ 887 // Get current time, in whatever time unit we're using. 888 if (clo_time_unit == TimeI) { 889 return guest_instrs_executed; 890 } else if (clo_time_unit == TimeMS) { 891 // Some stuff happens between the millisecond timer being initialised 892 // to zero and us taking our first snapshot. We determine that time 893 // gap so we can subtract it from all subsequent times so that our 894 // first snapshot is considered to be at t = 0ms. Unfortunately, a 895 // bunch of symbols get read after the first snapshot is taken but 896 // before the second one (which is triggered by the first allocation), 897 // so when the time-unit is 'ms' we always have a big gap between the 898 // first two snapshots. But at least users won't have to wonder why 899 // the first snapshot isn't at t=0. 900 static Bool is_first_get_time = True; 901 static Time start_time_ms; 902 if (is_first_get_time) { 903 start_time_ms = VG_(read_millisecond_timer)(); 904 is_first_get_time = False; 905 return 0; 906 } else { 907 return VG_(read_millisecond_timer)() - start_time_ms; 908 } 909 } else if (clo_time_unit == TimeB) { 910 return total_allocs_deallocs_szB; 911 } else { 912 tl_assert2(0, "bad --time-unit value"); 913 } 914} 915 916// Take a snapshot, and only that -- decisions on whether to take a 917// snapshot, or what kind of snapshot, are made elsewhere. 918// Nb: we call the arg "my_time" because "time" shadows a global declaration 919// in /usr/include/time.h on Darwin. 920static void 921take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, 922 Bool is_detailed) 923{ 924 tl_assert(!is_snapshot_in_use(snapshot)); 925 if (!clo_pages_as_heap) { 926 tl_assert(have_started_executing_code); 927 } 928 929 // Heap and heap admin. 930 if (clo_heap) { 931 snapshot->heap_szB = heap_szB; 932 if (is_detailed) { 933 snapshot->xt = VG_(XT_snapshot)(heap_xt); 934 } 935 snapshot->heap_extra_szB = heap_extra_szB; 936 } 937 938 // Stack(s). 939 if (clo_stacks) { 940 snapshot->stacks_szB = stacks_szB; 941 } 942 943 // Rest of snapshot. 944 snapshot->kind = kind; 945 snapshot->time = my_time; 946 sanity_check_snapshot(snapshot); 947 948 // Update stats. 949 if (Peak == kind) n_peak_snapshots++; 950 if (is_detailed) n_detailed_snapshots++; 951 n_real_snapshots++; 952} 953 954 955// Take a snapshot, if it's time, or if we've hit a peak. 956static void 957maybe_take_snapshot(SnapshotKind kind, const HChar* what) 958{ 959 // 'min_time_interval' is the minimum time interval between snapshots. 960 // If we try to take a snapshot and less than this much time has passed, 961 // we don't take it. It gets larger as the program runs longer. It's 962 // initialised to zero so that we begin by taking snapshots as quickly as 963 // possible. 964 static Time min_time_interval = 0; 965 // Zero allows startup snapshot. 966 static Time earliest_possible_time_of_next_snapshot = 0; 967 static Int n_snapshots_since_last_detailed = 0; 968 static Int n_skipped_snapshots_since_last_snapshot = 0; 969 970 Snapshot* snapshot; 971 Bool is_detailed; 972 // Nb: we call this variable "my_time" because "time" shadows a global 973 // declaration in /usr/include/time.h on Darwin. 974 Time my_time = get_time(); 975 976 switch (kind) { 977 case Normal: 978 // Only do a snapshot if it's time. 979 if (my_time < earliest_possible_time_of_next_snapshot) { 980 n_skipped_snapshots++; 981 n_skipped_snapshots_since_last_snapshot++; 982 return; 983 } 984 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); 985 break; 986 987 case Peak: { 988 // Because we're about to do a deallocation, we're coming down from a 989 // local peak. If it is (a) actually a global peak, and (b) a certain 990 // amount bigger than the previous peak, then we take a peak snapshot. 991 // By not taking a snapshot for every peak, we save a lot of effort -- 992 // because many peaks remain peak only for a short time. 993 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 994 SizeT excess_szB_for_new_peak = 995 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); 996 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { 997 return; 998 } 999 is_detailed = True; 1000 break; 1001 } 1002 1003 default: 1004 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); 1005 } 1006 1007 // Take the snapshot. 1008 snapshot = & snapshots[next_snapshot_i]; 1009 take_snapshot(snapshot, kind, my_time, is_detailed); 1010 1011 // Record if it was detailed. 1012 if (is_detailed) { 1013 n_snapshots_since_last_detailed = 0; 1014 } else { 1015 n_snapshots_since_last_detailed++; 1016 } 1017 1018 // Update peak data, if it's a Peak snapshot. 1019 if (Peak == kind) { 1020 Int i, number_of_peaks_snapshots_found = 0; 1021 1022 // Sanity check the size, then update our recorded peak. 1023 SizeT snapshot_total_szB = 1024 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 1025 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, 1026 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); 1027 peak_snapshot_total_szB = snapshot_total_szB; 1028 1029 // Find the old peak snapshot, if it exists, and mark it as normal. 1030 for (i = 0; i < next_snapshot_i; i++) { 1031 if (Peak == snapshots[i].kind) { 1032 snapshots[i].kind = Normal; 1033 number_of_peaks_snapshots_found++; 1034 } 1035 } 1036 tl_assert(number_of_peaks_snapshots_found <= 1); 1037 } 1038 1039 // Finish up verbosity and stats stuff. 1040 if (n_skipped_snapshots_since_last_snapshot > 0) { 1041 VERB(2, " (skipped %d snapshot%s)\n", 1042 n_skipped_snapshots_since_last_snapshot, 1043 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); 1044 } 1045 VERB_snapshot(2, what, next_snapshot_i); 1046 n_skipped_snapshots_since_last_snapshot = 0; 1047 1048 // Cull the entries, if our snapshot table is full. 1049 next_snapshot_i++; 1050 if (clo_max_snapshots == next_snapshot_i) { 1051 min_time_interval = cull_snapshots(); 1052 } 1053 1054 // Work out the earliest time when the next snapshot can happen. 1055 earliest_possible_time_of_next_snapshot = my_time + min_time_interval; 1056} 1057 1058 1059//------------------------------------------------------------// 1060//--- Sanity checking ---// 1061//------------------------------------------------------------// 1062 1063static Bool ms_cheap_sanity_check ( void ) 1064{ 1065 return True; // Nothing useful we can cheaply check. 1066} 1067 1068static Bool ms_expensive_sanity_check ( void ) 1069{ 1070 tl_assert(heap_xt); 1071 sanity_check_snapshots_array(); 1072 return True; 1073} 1074 1075 1076//------------------------------------------------------------// 1077//--- Heap management ---// 1078//------------------------------------------------------------// 1079 1080// Metadata for heap blocks. Each one contains an Xecu, 1081// which identifies the XTree ec at which it was allocated. From 1082// HP_Chunks, XTree ec 'space' field is incremented (at allocation) and 1083// decremented (at deallocation). 1084// 1085// Nb: first two fields must match core's VgHashNode. 1086typedef 1087 struct _HP_Chunk { 1088 struct _HP_Chunk* next; 1089 Addr data; // Ptr to actual block 1090 SizeT req_szB; // Size requested 1091 SizeT slop_szB; // Extra bytes given above those requested 1092 Xecu where; // Where allocated; XTree xecu from heap_xt 1093 } 1094 HP_Chunk; 1095 1096/* Pool allocator for HP_Chunk. */ 1097static PoolAlloc *HP_chunk_poolalloc = NULL; 1098 1099static VgHashTable *malloc_list = NULL; // HP_Chunks 1100 1101static void update_alloc_stats(SSizeT szB_delta) 1102{ 1103 // Update total_allocs_deallocs_szB. 1104 if (szB_delta < 0) szB_delta = -szB_delta; 1105 total_allocs_deallocs_szB += szB_delta; 1106} 1107 1108static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) 1109{ 1110 if (heap_szB_delta < 0) 1111 tl_assert(heap_szB >= -heap_szB_delta); 1112 if (heap_extra_szB_delta < 0) 1113 tl_assert(heap_extra_szB >= -heap_extra_szB_delta); 1114 1115 heap_extra_szB += heap_extra_szB_delta; 1116 heap_szB += heap_szB_delta; 1117 1118 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); 1119} 1120 1121static 1122void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB, 1123 Bool exclude_first_entry, Bool maybe_snapshot ) 1124{ 1125 // Make new HP_Chunk node, add to malloc_list 1126 HP_Chunk* hc = VG_(allocEltPA)(HP_chunk_poolalloc); 1127 hc->req_szB = req_szB; 1128 hc->slop_szB = slop_szB; 1129 hc->data = (Addr)p; 1130 hc->where = 0; 1131 VG_(HT_add_node)(malloc_list, hc); 1132 1133 if (clo_heap) { 1134 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB); 1135 1136 hc->where = add_heap_xt( tid, req_szB, exclude_first_entry); 1137 1138 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) { 1139 // Update statistics. 1140 n_heap_allocs++; 1141 1142 // Update heap stats. 1143 update_heap_stats(req_szB, clo_heap_admin + slop_szB); 1144 1145 // Maybe take a snapshot. 1146 if (maybe_snapshot) { 1147 maybe_take_snapshot(Normal, " alloc"); 1148 } 1149 1150 } else { 1151 // Ignored allocation. 1152 n_ignored_heap_allocs++; 1153 1154 VERB(3, "(ignored)\n"); 1155 } 1156 1157 VERB(3, ">>>\n"); 1158 } 1159 1160 return p; 1161} 1162 1163static __inline__ 1164void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB, 1165 Bool is_zeroed ) 1166{ 1167 SizeT actual_szB, slop_szB; 1168 void* p; 1169 1170 if ((SSizeT)req_szB < 0) return NULL; 1171 1172 // Allocate and zero if necessary. 1173 p = VG_(cli_malloc)( req_alignB, req_szB ); 1174 if (!p) { 1175 return NULL; 1176 } 1177 if (is_zeroed) VG_(memset)(p, 0, req_szB); 1178 actual_szB = VG_(cli_malloc_usable_size)(p); 1179 tl_assert(actual_szB >= req_szB); 1180 slop_szB = actual_szB - req_szB; 1181 1182 // Record block. 1183 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True, 1184 /*maybe_snapshot*/True); 1185 1186 return p; 1187} 1188 1189static __inline__ 1190void unrecord_block ( void* p, Bool maybe_snapshot, Bool exclude_first_entry ) 1191{ 1192 // Remove HP_Chunk from malloc_list 1193 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); 1194 if (NULL == hc) { 1195 return; // must have been a bogus free() 1196 } 1197 1198 if (clo_heap) { 1199 VERB(3, "<<< unrecord_block\n"); 1200 1201 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) { 1202 // Update statistics. 1203 n_heap_frees++; 1204 1205 // Maybe take a peak snapshot, since it's a deallocation. 1206 if (maybe_snapshot) { 1207 maybe_take_snapshot(Peak, "de-PEAK"); 1208 } 1209 1210 // Update heap stats. 1211 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); 1212 1213 // Update XTree. 1214 sub_heap_xt(hc->where, hc->req_szB, exclude_first_entry); 1215 1216 // Maybe take a snapshot. 1217 if (maybe_snapshot) { 1218 maybe_take_snapshot(Normal, "dealloc"); 1219 } 1220 1221 } else { 1222 n_ignored_heap_frees++; 1223 1224 VERB(3, "(ignored)\n"); 1225 } 1226 1227 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB); 1228 } 1229 1230 // Actually free the chunk, and the heap block (if necessary) 1231 VG_(freeEltPA) (HP_chunk_poolalloc, hc); hc = NULL; 1232} 1233 1234// Nb: --ignore-fn is tricky for realloc. If the block's original alloc was 1235// ignored, but the realloc is not requested to be ignored, and we are 1236// shrinking the block, then we have to ignore the realloc -- otherwise we 1237// could end up with negative heap sizes. This isn't a danger if we are 1238// growing such a block, but for consistency (it also simplifies things) we 1239// ignore such reallocs as well. 1240// PW Nov 2016 xtree work: why can't we just consider that a realloc of an 1241// ignored alloc is just a new alloc (i.e. do not remove the old sz from the 1242// stats). Then everything would be fine, and a non ignored realloc would be 1243// counted properly. 1244static __inline__ 1245void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) 1246{ 1247 HP_Chunk* hc; 1248 void* p_new; 1249 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; 1250 Xecu old_where; 1251 Bool is_ignored = False; 1252 1253 // Remove the old block 1254 hc = VG_(HT_remove)(malloc_list, (UWord)p_old); 1255 if (hc == NULL) { 1256 return NULL; // must have been a bogus realloc() 1257 } 1258 1259 old_req_szB = hc->req_szB; 1260 old_slop_szB = hc->slop_szB; 1261 1262 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes. 1263 if (clo_heap) { 1264 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB); 1265 1266 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) { 1267 // Update statistics. 1268 n_heap_reallocs++; 1269 1270 // Maybe take a peak snapshot, if it's (effectively) a deallocation. 1271 if (new_req_szB < old_req_szB) { 1272 maybe_take_snapshot(Peak, "re-PEAK"); 1273 } 1274 } else { 1275 // The original malloc was ignored, so we have to ignore the 1276 // realloc as well. 1277 is_ignored = True; 1278 } 1279 } 1280 1281 // Actually do the allocation, if necessary. 1282 if (new_req_szB <= old_req_szB + old_slop_szB) { 1283 // New size is smaller or same; block not moved. 1284 p_new = p_old; 1285 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); 1286 1287 } else { 1288 // New size is bigger; make new block, copy shared contents, free old. 1289 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); 1290 if (!p_new) { 1291 // Nb: if realloc fails, NULL is returned but the old block is not 1292 // touched. What an awful function. 1293 return NULL; 1294 } 1295 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB); 1296 VG_(cli_free)(p_old); 1297 new_actual_szB = VG_(cli_malloc_usable_size)(p_new); 1298 tl_assert(new_actual_szB >= new_req_szB); 1299 new_slop_szB = new_actual_szB - new_req_szB; 1300 } 1301 1302 if (p_new) { 1303 // Update HP_Chunk. 1304 hc->data = (Addr)p_new; 1305 hc->req_szB = new_req_szB; 1306 hc->slop_szB = new_slop_szB; 1307 old_where = hc->where; 1308 hc->where = 0; 1309 1310 // Update XTree. 1311 if (clo_heap) { 1312 hc->where = add_heap_xt( tid, new_req_szB, 1313 /*exclude_first_entry*/True); 1314 if (!is_ignored && VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) { 1315 sub_heap_xt(old_where, old_req_szB, /*exclude_first_entry*/True); 1316 } else { 1317 // The realloc itself is ignored. 1318 is_ignored = True; 1319 1320 /* XTREE??? hack to have something compatible with pre 1321 m_xtree massif: if the previous alloc/realloc was 1322 ignored, and this one is not ignored, then keep the 1323 previous where, to continue marking this memory as 1324 ignored. */ 1325 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0 1326 && VG_(XT_n_ips_sel)(heap_xt, old_where) == 0) 1327 hc->where = old_where; 1328 1329 // Update statistics. 1330 n_ignored_heap_reallocs++; 1331 } 1332 } 1333 } 1334 1335 // Now insert the new hc (with a possibly new 'data' field) into 1336 // malloc_list. If this realloc() did not increase the memory size, we 1337 // will have removed and then re-added hc unnecessarily. But that's ok 1338 // because shrinking a block with realloc() is (presumably) much rarer 1339 // than growing it, and this way simplifies the growing case. 1340 VG_(HT_add_node)(malloc_list, hc); 1341 1342 if (clo_heap) { 1343 if (!is_ignored) { 1344 // Update heap stats. 1345 update_heap_stats(new_req_szB - old_req_szB, 1346 new_slop_szB - old_slop_szB); 1347 1348 // Maybe take a snapshot. 1349 maybe_take_snapshot(Normal, "realloc"); 1350 } else { 1351 1352 VERB(3, "(ignored)\n"); 1353 } 1354 1355 VERB(3, ">>> (%ld, %ld)\n", 1356 (SSizeT)(new_req_szB - old_req_szB), 1357 (SSizeT)(new_slop_szB - old_slop_szB)); 1358 } 1359 1360 return p_new; 1361} 1362 1363 1364//------------------------------------------------------------// 1365//--- malloc() et al replacement wrappers ---// 1366//------------------------------------------------------------// 1367 1368static void* ms_malloc ( ThreadId tid, SizeT szB ) 1369{ 1370 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1371} 1372 1373static void* ms___builtin_new ( ThreadId tid, SizeT szB ) 1374{ 1375 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1376} 1377 1378static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) 1379{ 1380 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1381} 1382 1383static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) 1384{ 1385 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); 1386} 1387 1388static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) 1389{ 1390 return alloc_and_record_block( tid, szB, alignB, False ); 1391} 1392 1393static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) 1394{ 1395 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True); 1396 VG_(cli_free)(p); 1397} 1398 1399static void ms___builtin_delete ( ThreadId tid, void* p ) 1400{ 1401 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True); 1402 VG_(cli_free)(p); 1403} 1404 1405static void ms___builtin_vec_delete ( ThreadId tid, void* p ) 1406{ 1407 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True); 1408 VG_(cli_free)(p); 1409} 1410 1411static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) 1412{ 1413 return realloc_block(tid, p_old, new_szB); 1414} 1415 1416static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) 1417{ 1418 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); 1419 1420 return ( hc ? hc->req_szB + hc->slop_szB : 0 ); 1421} 1422 1423//------------------------------------------------------------// 1424//--- Page handling ---// 1425//------------------------------------------------------------// 1426 1427static 1428void ms_record_page_mem ( Addr a, SizeT len ) 1429{ 1430 ThreadId tid = VG_(get_running_tid)(); 1431 Addr end; 1432 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1433 tl_assert(len >= VKI_PAGE_SIZE); 1434 // Record the first N-1 pages as blocks, but don't do any snapshots. 1435 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1436 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1437 /*exclude_first_entry*/False, /*maybe_snapshot*/False ); 1438 } 1439 // Record the last page as a block, and maybe do a snapshot afterwards. 1440 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1441 /*exclude_first_entry*/False, /*maybe_snapshot*/True ); 1442} 1443 1444static 1445void ms_unrecord_page_mem( Addr a, SizeT len ) 1446{ 1447 Addr end; 1448 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1449 tl_assert(len >= VKI_PAGE_SIZE); 1450 // Unrecord the first page. This might be the peak, so do a snapshot. 1451 unrecord_block((void*)a, /*maybe_snapshot*/True, 1452 /*exclude_first_entry*/False); 1453 a += VKI_PAGE_SIZE; 1454 // Then unrecord the remaining pages, but without snapshots. 1455 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1456 unrecord_block((void*)a, /*maybe_snapshot*/False, 1457 /*exclude_first_entry*/False); 1458 } 1459} 1460 1461//------------------------------------------------------------// 1462 1463static 1464void ms_new_mem_mmap ( Addr a, SizeT len, 1465 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1466{ 1467 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1468 ms_record_page_mem(a, len); 1469} 1470 1471static 1472void ms_new_mem_startup( Addr a, SizeT len, 1473 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1474{ 1475 // startup maps are always be page-sized, except the trampoline page is 1476 // marked by the core as only being the size of the trampoline itself, 1477 // which is something like 57 bytes. Round it up to page size. 1478 len = VG_PGROUNDUP(len); 1479 ms_record_page_mem(a, len); 1480} 1481 1482static 1483void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid ) 1484{ 1485 // brk limit is not necessarily aligned on a page boundary. 1486 // If new memory being brk-ed implies to allocate a new page, 1487 // then call ms_record_page_mem with page aligned parameters 1488 // otherwise just ignore. 1489 Addr old_bottom_page = VG_PGROUNDDN(a - 1); 1490 Addr new_top_page = VG_PGROUNDDN(a + len - 1); 1491 if (old_bottom_page != new_top_page) 1492 ms_record_page_mem(VG_PGROUNDDN(a), 1493 (new_top_page - old_bottom_page)); 1494} 1495 1496static 1497void ms_copy_mem_remap( Addr from, Addr to, SizeT len) 1498{ 1499 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1500 ms_unrecord_page_mem(from, len); 1501 ms_record_page_mem(to, len); 1502} 1503 1504static 1505void ms_die_mem_munmap( Addr a, SizeT len ) 1506{ 1507 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1508 ms_unrecord_page_mem(a, len); 1509} 1510 1511static 1512void ms_die_mem_brk( Addr a, SizeT len ) 1513{ 1514 // Call ms_unrecord_page_mem only if one or more pages are de-allocated. 1515 // See ms_new_mem_brk for more details. 1516 Addr new_bottom_page = VG_PGROUNDDN(a - 1); 1517 Addr old_top_page = VG_PGROUNDDN(a + len - 1); 1518 if (old_top_page != new_bottom_page) 1519 ms_unrecord_page_mem(VG_PGROUNDDN(a), 1520 (old_top_page - new_bottom_page)); 1521 1522} 1523 1524//------------------------------------------------------------// 1525//--- Stacks ---// 1526//------------------------------------------------------------// 1527 1528// We really want the inlining to occur... 1529#define INLINE inline __attribute__((always_inline)) 1530 1531static void update_stack_stats(SSizeT stack_szB_delta) 1532{ 1533 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); 1534 stacks_szB += stack_szB_delta; 1535 1536 update_alloc_stats(stack_szB_delta); 1537} 1538 1539static INLINE void new_mem_stack_2(SizeT len, const HChar* what) 1540{ 1541 if (have_started_executing_code) { 1542 VERB(3, "<<< new_mem_stack (%lu)\n", len); 1543 n_stack_allocs++; 1544 update_stack_stats(len); 1545 maybe_take_snapshot(Normal, what); 1546 VERB(3, ">>>\n"); 1547 } 1548} 1549 1550static INLINE void die_mem_stack_2(SizeT len, const HChar* what) 1551{ 1552 if (have_started_executing_code) { 1553 VERB(3, "<<< die_mem_stack (-%lu)\n", len); 1554 n_stack_frees++; 1555 maybe_take_snapshot(Peak, "stkPEAK"); 1556 update_stack_stats(-len); 1557 maybe_take_snapshot(Normal, what); 1558 VERB(3, ">>>\n"); 1559 } 1560} 1561 1562static void new_mem_stack(Addr a, SizeT len) 1563{ 1564 new_mem_stack_2(len, "stk-new"); 1565} 1566 1567static void die_mem_stack(Addr a, SizeT len) 1568{ 1569 die_mem_stack_2(len, "stk-die"); 1570} 1571 1572static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) 1573{ 1574 new_mem_stack_2(len, "sig-new"); 1575} 1576 1577static void die_mem_stack_signal(Addr a, SizeT len) 1578{ 1579 die_mem_stack_2(len, "sig-die"); 1580} 1581 1582 1583//------------------------------------------------------------// 1584//--- Client Requests ---// 1585//------------------------------------------------------------// 1586 1587static void print_monitor_help ( void ) 1588{ 1589 VG_(gdb_printf) ( 1590"\n" 1591"massif monitor commands:\n" 1592" snapshot [<filename>]\n" 1593" detailed_snapshot [<filename>]\n" 1594" takes a snapshot (or a detailed snapshot)\n" 1595" and saves it in <filename>\n" 1596" default <filename> is massif.vgdb.out\n" 1597" all_snapshots [<filename>]\n" 1598" saves all snapshot(s) taken so far in <filename>\n" 1599" default <filename> is massif.vgdb.out\n" 1600" xtmemory [<filename>]\n" 1601" dump xtree memory profile in <filename> (default xtmemory.kcg)\n" 1602"\n"); 1603} 1604 1605 1606/* Forward declaration. 1607 return True if request recognised, False otherwise */ 1608static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req); 1609static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) 1610{ 1611 switch (argv[0]) { 1612 case VG_USERREQ__MALLOCLIKE_BLOCK: { 1613 void* p = (void*)argv[1]; 1614 SizeT szB = argv[2]; 1615 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False, 1616 /*maybe_snapshot*/True ); 1617 *ret = 0; 1618 return True; 1619 } 1620 case VG_USERREQ__RESIZEINPLACE_BLOCK: { 1621 void* p = (void*)argv[1]; 1622 SizeT newSizeB = argv[3]; 1623 1624 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False); 1625 record_block(tid, p, newSizeB, /*slop_szB*/0, 1626 /*exclude_first_entry*/False, /*maybe_snapshot*/True); 1627 return True; 1628 } 1629 case VG_USERREQ__FREELIKE_BLOCK: { 1630 void* p = (void*)argv[1]; 1631 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False); 1632 *ret = 0; 1633 return True; 1634 } 1635 case VG_USERREQ__GDB_MONITOR_COMMAND: { 1636 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]); 1637 if (handled) 1638 *ret = 1; 1639 else 1640 *ret = 0; 1641 return handled; 1642 } 1643 1644 default: 1645 *ret = 0; 1646 return False; 1647 } 1648} 1649 1650//------------------------------------------------------------// 1651//--- Instrumentation ---// 1652//------------------------------------------------------------// 1653 1654static void add_counter_update(IRSB* sbOut, Int n) 1655{ 1656 #if defined(VG_BIGENDIAN) 1657 # define END Iend_BE 1658 #elif defined(VG_LITTLEENDIAN) 1659 # define END Iend_LE 1660 #else 1661 # error "Unknown endianness" 1662 #endif 1663 // Add code to increment 'guest_instrs_executed' by 'n', like this: 1664 // WrTmp(t1, Load64(&guest_instrs_executed)) 1665 // WrTmp(t2, Add64(RdTmp(t1), Const(n))) 1666 // Store(&guest_instrs_executed, t2) 1667 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); 1668 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); 1669 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); 1670 1671 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); 1672 IRStmt* st2 = 1673 IRStmt_WrTmp(t2, 1674 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), 1675 IRExpr_Const(IRConst_U64(n)))); 1676 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); 1677 1678 addStmtToIRSB( sbOut, st1 ); 1679 addStmtToIRSB( sbOut, st2 ); 1680 addStmtToIRSB( sbOut, st3 ); 1681} 1682 1683static IRSB* ms_instrument2( IRSB* sbIn ) 1684{ 1685 Int i, n = 0; 1686 IRSB* sbOut; 1687 1688 // We increment the instruction count in two places: 1689 // - just before any Ist_Exit statements; 1690 // - just before the IRSB's end. 1691 // In the former case, we zero 'n' and then continue instrumenting. 1692 1693 sbOut = deepCopyIRSBExceptStmts(sbIn); 1694 1695 for (i = 0; i < sbIn->stmts_used; i++) { 1696 IRStmt* st = sbIn->stmts[i]; 1697 1698 if (!st || st->tag == Ist_NoOp) continue; 1699 1700 if (st->tag == Ist_IMark) { 1701 n++; 1702 } else if (st->tag == Ist_Exit) { 1703 if (n > 0) { 1704 // Add an increment before the Exit statement, then reset 'n'. 1705 add_counter_update(sbOut, n); 1706 n = 0; 1707 } 1708 } 1709 addStmtToIRSB( sbOut, st ); 1710 } 1711 1712 if (n > 0) { 1713 // Add an increment before the SB end. 1714 add_counter_update(sbOut, n); 1715 } 1716 return sbOut; 1717} 1718 1719static 1720IRSB* ms_instrument ( VgCallbackClosure* closure, 1721 IRSB* sbIn, 1722 const VexGuestLayout* layout, 1723 const VexGuestExtents* vge, 1724 const VexArchInfo* archinfo_host, 1725 IRType gWordTy, IRType hWordTy ) 1726{ 1727 if (! have_started_executing_code) { 1728 // Do an initial sample to guarantee that we have at least one. 1729 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure 1730 // 'maybe_take_snapshot's internal static variables are initialised. 1731 have_started_executing_code = True; 1732 maybe_take_snapshot(Normal, "startup"); 1733 } 1734 1735 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } 1736 else if (clo_time_unit == TimeMS) { return sbIn; } 1737 else if (clo_time_unit == TimeB) { return sbIn; } 1738 else { tl_assert2(0, "bad --time-unit value"); } 1739} 1740 1741 1742//------------------------------------------------------------// 1743//--- Writing snapshots ---// 1744//------------------------------------------------------------// 1745 1746static void pp_snapshot(MsFile *fp, Snapshot* snapshot, Int snapshot_n) 1747{ 1748 const Massif_Header header = (Massif_Header) { 1749 .snapshot_n = snapshot_n, 1750 .time = snapshot->time, 1751 .sz_B = snapshot->heap_szB, 1752 .extra_B = snapshot->heap_extra_szB, 1753 .stacks_B = snapshot->stacks_szB, 1754 .detailed = is_detailed_snapshot(snapshot), 1755 .peak = Peak == snapshot->kind, 1756 .top_node_desc = clo_pages_as_heap ? 1757 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc." 1758 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.", 1759 .sig_threshold = clo_threshold 1760 }; 1761 1762 sanity_check_snapshot(snapshot); 1763 1764 VG_(XT_massif_print)(fp, snapshot->xt, &header, alloc_szB); 1765} 1766 1767static void write_snapshots_to_file(const HChar* massif_out_file, 1768 Snapshot snapshots_array[], 1769 Int nr_elements) 1770{ 1771 Int i; 1772 MsFile *fp; 1773 1774 fp = VG_(XT_massif_open)(massif_out_file, 1775 NULL, 1776 args_for_massif, 1777 TimeUnit_to_string(clo_time_unit)); 1778 if (fp == NULL) 1779 return; // Error reported by VG_(XT_massif_open) 1780 1781 for (i = 0; i < nr_elements; i++) { 1782 Snapshot* snapshot = & snapshots_array[i]; 1783 pp_snapshot(fp, snapshot, i); // Detailed snapshot! 1784 } 1785 VG_(XT_massif_close) (fp); 1786} 1787 1788static void write_snapshots_array_to_file(void) 1789{ 1790 // Setup output filename. Nb: it's important to do this now, ie. as late 1791 // as possible. If we do it at start-up and the program forks and the 1792 // output file format string contains a %p (pid) specifier, both the 1793 // parent and child will incorrectly write to the same file; this 1794 // happened in 3.3.0. 1795 HChar* massif_out_file = 1796 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); 1797 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i); 1798 VG_(free)(massif_out_file); 1799} 1800 1801static void handle_snapshot_monitor_command (const HChar *filename, 1802 Bool detailed) 1803{ 1804 Snapshot snapshot; 1805 1806 if (!clo_pages_as_heap && !have_started_executing_code) { 1807 // See comments of variable have_started_executing_code. 1808 VG_(gdb_printf) 1809 ("error: cannot take snapshot before execution has started\n"); 1810 return; 1811 } 1812 1813 clear_snapshot(&snapshot, /* do_sanity_check */ False); 1814 take_snapshot(&snapshot, Normal, get_time(), detailed); 1815 write_snapshots_to_file ((filename == NULL) ? 1816 "massif.vgdb.out" : filename, 1817 &snapshot, 1818 1); 1819 delete_snapshot(&snapshot); 1820} 1821 1822static void handle_all_snapshots_monitor_command (const HChar *filename) 1823{ 1824 if (!clo_pages_as_heap && !have_started_executing_code) { 1825 // See comments of variable have_started_executing_code. 1826 VG_(gdb_printf) 1827 ("error: cannot take snapshot before execution has started\n"); 1828 return; 1829 } 1830 1831 write_snapshots_to_file ((filename == NULL) ? 1832 "massif.vgdb.out" : filename, 1833 snapshots, next_snapshot_i); 1834} 1835 1836static void xtmemory_report_next_block(XT_Allocs* xta, ExeContext** ec_alloc) 1837{ 1838 const HP_Chunk* hc = VG_(HT_Next)(malloc_list); 1839 if (hc) { 1840 xta->nbytes = hc->req_szB; 1841 xta->nblocks = 1; 1842 *ec_alloc = VG_(XT_get_ec_from_xecu)(heap_xt, hc->where); 1843 } else 1844 xta->nblocks = 0; 1845} 1846static void ms_xtmemory_report ( const HChar* filename, Bool fini ) 1847{ 1848 // Make xtmemory_report_next_block ready to be called. 1849 VG_(HT_ResetIter)(malloc_list); 1850 VG_(XTMemory_report)(filename, fini, xtmemory_report_next_block, 1851 VG_(XT_filter_maybe_below_main)); 1852 /* As massif already filters one top function, use as filter 1853 VG_(XT_filter_maybe_below_main). */ 1854} 1855 1856static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req) 1857{ 1858 HChar* wcmd; 1859 HChar s[VG_(strlen)(req) + 1]; /* copy for strtok_r */ 1860 HChar *ssaveptr; 1861 1862 VG_(strcpy) (s, req); 1863 1864 wcmd = VG_(strtok_r) (s, " ", &ssaveptr); 1865 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots" 1866 " xtmemory", 1867 wcmd, kwd_report_duplicated_matches)) { 1868 case -2: /* multiple matches */ 1869 return True; 1870 case -1: /* not found */ 1871 return False; 1872 case 0: /* help */ 1873 print_monitor_help(); 1874 return True; 1875 case 1: { /* snapshot */ 1876 HChar* filename; 1877 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 1878 handle_snapshot_monitor_command (filename, False /* detailed */); 1879 return True; 1880 } 1881 case 2: { /* detailed_snapshot */ 1882 HChar* filename; 1883 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 1884 handle_snapshot_monitor_command (filename, True /* detailed */); 1885 return True; 1886 } 1887 case 3: { /* all_snapshots */ 1888 HChar* filename; 1889 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 1890 handle_all_snapshots_monitor_command (filename); 1891 return True; 1892 } 1893 case 4: { /* xtmemory */ 1894 HChar* filename; 1895 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 1896 ms_xtmemory_report (filename, False); 1897 return True; 1898 } 1899 default: 1900 tl_assert(0); 1901 return False; 1902 } 1903} 1904 1905static void ms_print_stats (void) 1906{ 1907#define STATS(format, args...) \ 1908 VG_(dmsg)("Massif: " format, ##args) 1909 1910 STATS("heap allocs: %u\n", n_heap_allocs); 1911 STATS("heap reallocs: %u\n", n_heap_reallocs); 1912 STATS("heap frees: %u\n", n_heap_frees); 1913 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs); 1914 STATS("ignored heap frees: %u\n", n_ignored_heap_frees); 1915 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs); 1916 STATS("stack allocs: %u\n", n_stack_allocs); 1917 STATS("skipped snapshots: %u\n", n_skipped_snapshots); 1918 STATS("real snapshots: %u\n", n_real_snapshots); 1919 STATS("detailed snapshots: %u\n", n_detailed_snapshots); 1920 STATS("peak snapshots: %u\n", n_peak_snapshots); 1921 STATS("cullings: %u\n", n_cullings); 1922#undef STATS 1923} 1924 1925 1926//------------------------------------------------------------// 1927//--- Finalisation ---// 1928//------------------------------------------------------------// 1929 1930static void ms_fini(Int exit_status) 1931{ 1932 ms_xtmemory_report(VG_(clo_xtree_memory_file), True); 1933 1934 // Output. 1935 write_snapshots_array_to_file(); 1936 1937 if (VG_(clo_stats)) 1938 ms_print_stats(); 1939} 1940 1941 1942//------------------------------------------------------------// 1943//--- Initialisation ---// 1944//------------------------------------------------------------// 1945 1946static void ms_post_clo_init(void) 1947{ 1948 Int i; 1949 HChar* LD_PRELOAD_val; 1950 1951 /* We will record execontext up to clo_depth + overestimate and 1952 we will store this as ec => we need to increase the backtrace size 1953 if smaller than what we will store. */ 1954 if (VG_(clo_backtrace_size) < clo_depth + MAX_OVERESTIMATE) 1955 VG_(clo_backtrace_size) = clo_depth + MAX_OVERESTIMATE; 1956 1957 // Check options. 1958 if (clo_pages_as_heap) { 1959 if (clo_stacks) { 1960 VG_(fmsg_bad_option)("--pages-as-heap=yes", 1961 "Cannot be used together with --stacks=yes"); 1962 } 1963 } 1964 if (!clo_heap) { 1965 clo_pages_as_heap = False; 1966 } 1967 1968 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we 1969 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or 1970 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup 1971 // well before tool initialisation, so this seems the best way to do it. 1972 if (clo_pages_as_heap) { 1973 HChar* s1; 1974 HChar* s2; 1975 1976 clo_heap_admin = 0; // No heap admin on pages. 1977 1978 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) ); 1979 tl_assert(LD_PRELOAD_val); 1980 1981 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val); 1982 1983 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity. 1984 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core"); 1985 tl_assert(s1); 1986 1987 // Now find the vgpreload_massif-$PLATFORM entry. 1988 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif"); 1989 tl_assert(s1); 1990 s2 = s1; 1991 1992 // Position s1 on the previous ':', which must be there because 1993 // of the preceding vgpreload_core-$PLATFORM entry. 1994 for (; *s1 != ':'; s1--) 1995 ; 1996 1997 // Position s2 on the next ':' or \0 1998 for (; *s2 != ':' && *s2 != '\0'; s2++) 1999 ; 2000 2001 // Move all characters from s2 to s1 2002 while ((*s1++ = *s2++)) 2003 ; 2004 2005 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val); 2006 } 2007 2008 // Print alloc-fns and ignore-fns, if necessary. 2009 if (VG_(clo_verbosity) > 1) { 2010 VERB(1, "alloc-fns:\n"); 2011 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { 2012 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i); 2013 VERB(1, " %s\n", *fn_ptr); 2014 } 2015 2016 VERB(1, "ignore-fns:\n"); 2017 if (0 == VG_(sizeXA)(ignore_fns)) { 2018 VERB(1, " <empty>\n"); 2019 } 2020 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { 2021 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i); 2022 VERB(1, " %d: %s\n", i, *fn_ptr); 2023 } 2024 } 2025 2026 // Events to track. 2027 if (clo_stacks) { 2028 VG_(track_new_mem_stack) ( new_mem_stack ); 2029 VG_(track_die_mem_stack) ( die_mem_stack ); 2030 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); 2031 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); 2032 } 2033 2034 if (clo_pages_as_heap) { 2035 VG_(track_new_mem_startup) ( ms_new_mem_startup ); 2036 VG_(track_new_mem_brk) ( ms_new_mem_brk ); 2037 VG_(track_new_mem_mmap) ( ms_new_mem_mmap ); 2038 2039 VG_(track_copy_mem_remap) ( ms_copy_mem_remap ); 2040 2041 VG_(track_die_mem_brk) ( ms_die_mem_brk ); 2042 VG_(track_die_mem_munmap) ( ms_die_mem_munmap ); 2043 } 2044 2045 // Initialise snapshot array, and sanity-check it. 2046 snapshots = VG_(malloc)("ms.main.mpoci.1", 2047 sizeof(Snapshot) * clo_max_snapshots); 2048 // We don't want to do snapshot sanity checks here, because they're 2049 // currently uninitialised. 2050 for (i = 0; i < clo_max_snapshots; i++) { 2051 clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); 2052 } 2053 sanity_check_snapshots_array(); 2054 2055 if (VG_(clo_xtree_memory) == Vg_XTMemory_Full) 2056 // Activate full xtree memory profiling. 2057 // As massif already filters one top function, use as filter 2058 // VG_(XT_filter_maybe_below_main). 2059 VG_(XTMemory_Full_init)(VG_(XT_filter_maybe_below_main)); 2060 2061} 2062 2063static void ms_pre_clo_init(void) 2064{ 2065 VG_(details_name) ("Massif"); 2066 VG_(details_version) (NULL); 2067 VG_(details_description) ("a heap profiler"); 2068 VG_(details_copyright_author)( 2069 "Copyright (C) 2003-2017, and GNU GPL'd, by Nicholas Nethercote"); 2070 VG_(details_bug_reports_to) (VG_BUGS_TO); 2071 2072 VG_(details_avg_translation_sizeB) ( 330 ); 2073 2074 VG_(clo_vex_control).iropt_register_updates_default 2075 = VG_(clo_px_file_backed) 2076 = VexRegUpdSpAtMemAccess; // overridable by the user. 2077 2078 // Basic functions. 2079 VG_(basic_tool_funcs) (ms_post_clo_init, 2080 ms_instrument, 2081 ms_fini); 2082 2083 // Needs. 2084 VG_(needs_libc_freeres)(); 2085 VG_(needs_cxx_freeres)(); 2086 VG_(needs_command_line_options)(ms_process_cmd_line_option, 2087 ms_print_usage, 2088 ms_print_debug_usage); 2089 VG_(needs_client_requests) (ms_handle_client_request); 2090 VG_(needs_sanity_checks) (ms_cheap_sanity_check, 2091 ms_expensive_sanity_check); 2092 VG_(needs_print_stats) (ms_print_stats); 2093 VG_(needs_malloc_replacement) (ms_malloc, 2094 ms___builtin_new, 2095 ms___builtin_vec_new, 2096 ms_memalign, 2097 ms_calloc, 2098 ms_free, 2099 ms___builtin_delete, 2100 ms___builtin_vec_delete, 2101 ms_realloc, 2102 ms_malloc_usable_size, 2103 0 ); 2104 2105 // HP_Chunks. 2106 HP_chunk_poolalloc = VG_(newPA) 2107 (sizeof(HP_Chunk), 2108 1000, 2109 VG_(malloc), 2110 "massif MC_Chunk pool", 2111 VG_(free)); 2112 malloc_list = VG_(HT_construct)( "Massif's malloc list" ); 2113 2114 // Heap XTree 2115 heap_xt = VG_(XT_create)(VG_(malloc), 2116 "ms.xtrees", 2117 VG_(free), 2118 sizeof(SizeT), 2119 init_szB, add_szB, sub_szB, 2120 filter_IPs); 2121 2122 // Initialise alloc_fns and ignore_fns. 2123 init_alloc_fns(); 2124 init_ignore_fns(); 2125 2126 // Initialise args_for_massif. 2127 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", 2128 VG_(free), sizeof(HChar*)); 2129} 2130 2131VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) 2132 2133//--------------------------------------------------------------------// 2134//--- end ---// 2135//--------------------------------------------------------------------// 2136