1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of some decoding functions (idct, loop filtering).
11//
12// Author: somnath@google.com (Somnath Banerjee)
13//         cduvivier@google.com (Christian Duvivier)
14
15#include "src/dsp/dsp.h"
16
17#if defined(WEBP_USE_SSE2)
18
19// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20// one it seems => disable it by default. Uncomment the following to enable:
21#if !defined(USE_TRANSFORM_AC3)
22#define USE_TRANSFORM_AC3 0   // ALTERNATE_CODE
23#endif
24
25#include <emmintrin.h>
26#include "src/dsp/common_sse2.h"
27#include "src/dec/vp8i_dec.h"
28#include "src/utils/utils.h"
29
30//------------------------------------------------------------------------------
31// Transforms (Paragraph 14.4)
32
33static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) {
34  // This implementation makes use of 16-bit fixed point versions of two
35  // multiply constants:
36  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
37  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
38  //
39  // To be able to use signed 16-bit integers, we use the following trick to
40  // have constants within range:
41  // - Associated constants are obtained by subtracting the 16-bit fixed point
42  //   version of one:
43  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
44  //      K1 = 85267  =>  k1 =  20091
45  //      K2 = 35468  =>  k2 = -30068
46  // - The multiplication of a variable by a constant become the sum of the
47  //   variable and the multiplication of that variable by the associated
48  //   constant:
49  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
50  const __m128i k1 = _mm_set1_epi16(20091);
51  const __m128i k2 = _mm_set1_epi16(-30068);
52  __m128i T0, T1, T2, T3;
53
54  // Load and concatenate the transform coefficients (we'll do two transforms
55  // in parallel). In the case of only one transform, the second half of the
56  // vectors will just contain random value we'll never use nor store.
57  __m128i in0, in1, in2, in3;
58  {
59    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
60    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
61    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
62    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
63    // a00 a10 a20 a30   x x x x
64    // a01 a11 a21 a31   x x x x
65    // a02 a12 a22 a32   x x x x
66    // a03 a13 a23 a33   x x x x
67    if (do_two) {
68      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
69      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
70      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
71      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
72      in0 = _mm_unpacklo_epi64(in0, inB0);
73      in1 = _mm_unpacklo_epi64(in1, inB1);
74      in2 = _mm_unpacklo_epi64(in2, inB2);
75      in3 = _mm_unpacklo_epi64(in3, inB3);
76      // a00 a10 a20 a30   b00 b10 b20 b30
77      // a01 a11 a21 a31   b01 b11 b21 b31
78      // a02 a12 a22 a32   b02 b12 b22 b32
79      // a03 a13 a23 a33   b03 b13 b23 b33
80    }
81  }
82
83  // Vertical pass and subsequent transpose.
84  {
85    // First pass, c and d calculations are longer because of the "trick"
86    // multiplications.
87    const __m128i a = _mm_add_epi16(in0, in2);
88    const __m128i b = _mm_sub_epi16(in0, in2);
89    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
90    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
91    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
92    const __m128i c3 = _mm_sub_epi16(in1, in3);
93    const __m128i c4 = _mm_sub_epi16(c1, c2);
94    const __m128i c = _mm_add_epi16(c3, c4);
95    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
96    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
97    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
98    const __m128i d3 = _mm_add_epi16(in1, in3);
99    const __m128i d4 = _mm_add_epi16(d1, d2);
100    const __m128i d = _mm_add_epi16(d3, d4);
101
102    // Second pass.
103    const __m128i tmp0 = _mm_add_epi16(a, d);
104    const __m128i tmp1 = _mm_add_epi16(b, c);
105    const __m128i tmp2 = _mm_sub_epi16(b, c);
106    const __m128i tmp3 = _mm_sub_epi16(a, d);
107
108    // Transpose the two 4x4.
109    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
110  }
111
112  // Horizontal pass and subsequent transpose.
113  {
114    // First pass, c and d calculations are longer because of the "trick"
115    // multiplications.
116    const __m128i four = _mm_set1_epi16(4);
117    const __m128i dc = _mm_add_epi16(T0, four);
118    const __m128i a =  _mm_add_epi16(dc, T2);
119    const __m128i b =  _mm_sub_epi16(dc, T2);
120    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
121    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
122    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
123    const __m128i c3 = _mm_sub_epi16(T1, T3);
124    const __m128i c4 = _mm_sub_epi16(c1, c2);
125    const __m128i c = _mm_add_epi16(c3, c4);
126    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
127    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
128    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
129    const __m128i d3 = _mm_add_epi16(T1, T3);
130    const __m128i d4 = _mm_add_epi16(d1, d2);
131    const __m128i d = _mm_add_epi16(d3, d4);
132
133    // Second pass.
134    const __m128i tmp0 = _mm_add_epi16(a, d);
135    const __m128i tmp1 = _mm_add_epi16(b, c);
136    const __m128i tmp2 = _mm_sub_epi16(b, c);
137    const __m128i tmp3 = _mm_sub_epi16(a, d);
138    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
139    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
140    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
141    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
142
143    // Transpose the two 4x4.
144    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
145                           &T2, &T3);
146  }
147
148  // Add inverse transform to 'dst' and store.
149  {
150    const __m128i zero = _mm_setzero_si128();
151    // Load the reference(s).
152    __m128i dst0, dst1, dst2, dst3;
153    if (do_two) {
154      // Load eight bytes/pixels per line.
155      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
156      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
157      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
158      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
159    } else {
160      // Load four bytes/pixels per line.
161      dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
162      dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
163      dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
164      dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
165    }
166    // Convert to 16b.
167    dst0 = _mm_unpacklo_epi8(dst0, zero);
168    dst1 = _mm_unpacklo_epi8(dst1, zero);
169    dst2 = _mm_unpacklo_epi8(dst2, zero);
170    dst3 = _mm_unpacklo_epi8(dst3, zero);
171    // Add the inverse transform(s).
172    dst0 = _mm_add_epi16(dst0, T0);
173    dst1 = _mm_add_epi16(dst1, T1);
174    dst2 = _mm_add_epi16(dst2, T2);
175    dst3 = _mm_add_epi16(dst3, T3);
176    // Unsigned saturate to 8b.
177    dst0 = _mm_packus_epi16(dst0, dst0);
178    dst1 = _mm_packus_epi16(dst1, dst1);
179    dst2 = _mm_packus_epi16(dst2, dst2);
180    dst3 = _mm_packus_epi16(dst3, dst3);
181    // Store the results.
182    if (do_two) {
183      // Store eight bytes/pixels per line.
184      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
185      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
186      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
187      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
188    } else {
189      // Store four bytes/pixels per line.
190      WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
191      WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
192      WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
193      WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
194    }
195  }
196}
197
198#if (USE_TRANSFORM_AC3 == 1)
199#define MUL(a, b) (((a) * (b)) >> 16)
200static void TransformAC3(const int16_t* in, uint8_t* dst) {
201  static const int kC1 = 20091 + (1 << 16);
202  static const int kC2 = 35468;
203  const __m128i A = _mm_set1_epi16(in[0] + 4);
204  const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
205  const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
206  const int c1 = MUL(in[1], kC2);
207  const int d1 = MUL(in[1], kC1);
208  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
209  const __m128i B = _mm_adds_epi16(A, CD);
210  const __m128i m0 = _mm_adds_epi16(B, d4);
211  const __m128i m1 = _mm_adds_epi16(B, c4);
212  const __m128i m2 = _mm_subs_epi16(B, c4);
213  const __m128i m3 = _mm_subs_epi16(B, d4);
214  const __m128i zero = _mm_setzero_si128();
215  // Load the source pixels.
216  __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
217  __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
218  __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
219  __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
220  // Convert to 16b.
221  dst0 = _mm_unpacklo_epi8(dst0, zero);
222  dst1 = _mm_unpacklo_epi8(dst1, zero);
223  dst2 = _mm_unpacklo_epi8(dst2, zero);
224  dst3 = _mm_unpacklo_epi8(dst3, zero);
225  // Add the inverse transform.
226  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
227  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
228  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
229  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
230  // Unsigned saturate to 8b.
231  dst0 = _mm_packus_epi16(dst0, dst0);
232  dst1 = _mm_packus_epi16(dst1, dst1);
233  dst2 = _mm_packus_epi16(dst2, dst2);
234  dst3 = _mm_packus_epi16(dst3, dst3);
235  // Store the results.
236  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
237  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
238  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
239  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
240}
241#undef MUL
242#endif   // USE_TRANSFORM_AC3
243
244//------------------------------------------------------------------------------
245// Loop Filter (Paragraph 15)
246
247// Compute abs(p - q) = subs(p - q) OR subs(q - p)
248#define MM_ABS(p, q)  _mm_or_si128(                                            \
249    _mm_subs_epu8((q), (p)),                                                   \
250    _mm_subs_epu8((p), (q)))
251
252// Shift each byte of "x" by 3 bits while preserving by the sign bit.
253static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
254  const __m128i zero = _mm_setzero_si128();
255  const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
256  const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
257  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
258  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
259  *x = _mm_packs_epi16(lo_1, hi_1);
260}
261
262#define FLIP_SIGN_BIT2(a, b) {                                                 \
263  (a) = _mm_xor_si128(a, sign_bit);                                            \
264  (b) = _mm_xor_si128(b, sign_bit);                                            \
265}
266
267#define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
268  FLIP_SIGN_BIT2(a, b);                                                        \
269  FLIP_SIGN_BIT2(c, d);                                                        \
270}
271
272// input/output is uint8_t
273static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
274                                       const __m128i* const p0,
275                                       const __m128i* const q0,
276                                       const __m128i* const q1,
277                                       int hev_thresh, __m128i* const not_hev) {
278  const __m128i zero = _mm_setzero_si128();
279  const __m128i t_1 = MM_ABS(*p1, *p0);
280  const __m128i t_2 = MM_ABS(*q1, *q0);
281
282  const __m128i h = _mm_set1_epi8(hev_thresh);
283  const __m128i t_max = _mm_max_epu8(t_1, t_2);
284
285  const __m128i t_max_h = _mm_subs_epu8(t_max, h);
286  *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
287}
288
289// input pixels are int8_t
290static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
291                                          const __m128i* const p0,
292                                          const __m128i* const q0,
293                                          const __m128i* const q1,
294                                          __m128i* const delta) {
295  // beware of addition order, for saturation!
296  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
297  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
298  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
299  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
300  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
301  *delta = s3;
302}
303
304// input and output are int8_t
305static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
306                                            __m128i* const q0,
307                                            const __m128i* const fl) {
308  const __m128i k3 = _mm_set1_epi8(3);
309  const __m128i k4 = _mm_set1_epi8(4);
310  __m128i v3 = _mm_adds_epi8(*fl, k3);
311  __m128i v4 = _mm_adds_epi8(*fl, k4);
312
313  SignedShift8b_SSE2(&v4);             // v4 >> 3
314  SignedShift8b_SSE2(&v3);             // v3 >> 3
315  *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
316  *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
317}
318
319// Updates values of 2 pixels at MB edge during complex filtering.
320// Update operations:
321// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
322// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
323static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
324                                           const __m128i* const a0_lo,
325                                           const __m128i* const a0_hi) {
326  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
327  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
328  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
329  const __m128i sign_bit = _mm_set1_epi8(0x80);
330  *pi = _mm_adds_epi8(*pi, delta);
331  *qi = _mm_subs_epi8(*qi, delta);
332  FLIP_SIGN_BIT2(*pi, *qi);
333}
334
335// input pixels are uint8_t
336static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
337                                         const __m128i* const p0,
338                                         const __m128i* const q0,
339                                         const __m128i* const q1,
340                                         int thresh, __m128i* const mask) {
341  const __m128i m_thresh = _mm_set1_epi8(thresh);
342  const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
343  const __m128i kFE = _mm_set1_epi8(0xFE);
344  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
345  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
346
347  const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
348  const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
349  const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
350
351  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
352  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
353}
354
355//------------------------------------------------------------------------------
356// Edge filtering functions
357
358// Applies filter on 2 pixels (p0 and q0)
359static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
360                                       __m128i* const q0, __m128i* const q1,
361                                       int thresh) {
362  __m128i a, mask;
363  const __m128i sign_bit = _mm_set1_epi8(0x80);
364  // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
365  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
366  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
367
368  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
369
370  FLIP_SIGN_BIT2(*p0, *q0);
371  GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
372  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
373  DoSimpleFilter_SSE2(p0, q0, &a);
374  FLIP_SIGN_BIT2(*p0, *q0);
375}
376
377// Applies filter on 4 pixels (p1, p0, q0 and q1)
378static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
379                                       __m128i* const q0, __m128i* const q1,
380                                       const __m128i* const mask,
381                                       int hev_thresh) {
382  const __m128i zero = _mm_setzero_si128();
383  const __m128i sign_bit = _mm_set1_epi8(0x80);
384  const __m128i k64 = _mm_set1_epi8(64);
385  const __m128i k3 = _mm_set1_epi8(3);
386  const __m128i k4 = _mm_set1_epi8(4);
387  __m128i not_hev;
388  __m128i t1, t2, t3;
389
390  // compute hev mask
391  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
392
393  // convert to signed values
394  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
395
396  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
397  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
398  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
399  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
400  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
401  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
402  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
403
404  t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
405  t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
406  SignedShift8b_SSE2(&t2);           // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
407  SignedShift8b_SSE2(&t3);           // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
408  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
409  *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
410  FLIP_SIGN_BIT2(*p0, *q0);
411
412  // this is equivalent to signed (a + 1) >> 1 calculation
413  t2 = _mm_add_epi8(t3, sign_bit);
414  t3 = _mm_avg_epu8(t2, zero);
415  t3 = _mm_sub_epi8(t3, k64);
416
417  t3 = _mm_and_si128(not_hev, t3);   // if !hev
418  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
419  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
420  FLIP_SIGN_BIT2(*p1, *q1);
421}
422
423// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
424static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
425                                       __m128i* const p0, __m128i* const q0,
426                                       __m128i* const q1, __m128i* const q2,
427                                       const __m128i* const mask,
428                                       int hev_thresh) {
429  const __m128i zero = _mm_setzero_si128();
430  const __m128i sign_bit = _mm_set1_epi8(0x80);
431  __m128i a, not_hev;
432
433  // compute hev mask
434  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
435
436  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
437  FLIP_SIGN_BIT2(*p2, *q2);
438  GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
439
440  { // do simple filter on pixels with hev
441    const __m128i m = _mm_andnot_si128(not_hev, *mask);
442    const __m128i f = _mm_and_si128(a, m);
443    DoSimpleFilter_SSE2(p0, q0, &f);
444  }
445
446  { // do strong filter on pixels with not hev
447    const __m128i k9 = _mm_set1_epi16(0x0900);
448    const __m128i k63 = _mm_set1_epi16(63);
449
450    const __m128i m = _mm_and_si128(not_hev, *mask);
451    const __m128i f = _mm_and_si128(a, m);
452
453    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
454    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
455
456    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
457    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
458
459    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
460    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
461
462    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
463    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
464
465    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
466    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
467
468    Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
469    Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
470    Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
471  }
472}
473
474// reads 8 rows across a vertical edge.
475static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
476                                     __m128i* const p, __m128i* const q) {
477  // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
478  // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
479  const __m128i A0 = _mm_set_epi32(
480      WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
481      WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
482  const __m128i A1 = _mm_set_epi32(
483      WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
484      WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
485
486  // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
487  // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
488  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
489  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
490
491  // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
492  // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
493  const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
494  const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
495
496  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
497  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
498  *p = _mm_unpacklo_epi32(C0, C1);
499  *q = _mm_unpackhi_epi32(C0, C1);
500}
501
502static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
503                                      const uint8_t* const r8,
504                                      int stride,
505                                      __m128i* const p1, __m128i* const p0,
506                                      __m128i* const q0, __m128i* const q1) {
507  // Assume the pixels around the edge (|) are numbered as follows
508  //                00 01 | 02 03
509  //                10 11 | 12 13
510  //                 ...  |  ...
511  //                e0 e1 | e2 e3
512  //                f0 f1 | f2 f3
513  //
514  // r0 is pointing to the 0th row (00)
515  // r8 is pointing to the 8th row (80)
516
517  // Load
518  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
519  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
520  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
521  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
522  Load8x4_SSE2(r0, stride, p1, q0);
523  Load8x4_SSE2(r8, stride, p0, q1);
524
525  {
526    // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
527    // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
528    // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
529    // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
530    const __m128i t1 = *p1;
531    const __m128i t2 = *q0;
532    *p1 = _mm_unpacklo_epi64(t1, *p0);
533    *p0 = _mm_unpackhi_epi64(t1, *p0);
534    *q0 = _mm_unpacklo_epi64(t2, *q1);
535    *q1 = _mm_unpackhi_epi64(t2, *q1);
536  }
537}
538
539static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
540                                      uint8_t* dst, int stride) {
541  int i;
542  for (i = 0; i < 4; ++i, dst += stride) {
543    WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
544    *x = _mm_srli_si128(*x, 4);
545  }
546}
547
548// Transpose back and store
549static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
550                                       const __m128i* const p0,
551                                       const __m128i* const q0,
552                                       const __m128i* const q1,
553                                       uint8_t* r0, uint8_t* r8,
554                                       int stride) {
555  __m128i t1, p1_s, p0_s, q0_s, q1_s;
556
557  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
558  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
559  t1 = *p0;
560  p0_s = _mm_unpacklo_epi8(*p1, t1);
561  p1_s = _mm_unpackhi_epi8(*p1, t1);
562
563  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
564  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
565  t1 = *q0;
566  q0_s = _mm_unpacklo_epi8(t1, *q1);
567  q1_s = _mm_unpackhi_epi8(t1, *q1);
568
569  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
570  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
571  t1 = p0_s;
572  p0_s = _mm_unpacklo_epi16(t1, q0_s);
573  q0_s = _mm_unpackhi_epi16(t1, q0_s);
574
575  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
576  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
577  t1 = p1_s;
578  p1_s = _mm_unpacklo_epi16(t1, q1_s);
579  q1_s = _mm_unpackhi_epi16(t1, q1_s);
580
581  Store4x4_SSE2(&p0_s, r0, stride);
582  r0 += 4 * stride;
583  Store4x4_SSE2(&q0_s, r0, stride);
584
585  Store4x4_SSE2(&p1_s, r8, stride);
586  r8 += 4 * stride;
587  Store4x4_SSE2(&q1_s, r8, stride);
588}
589
590//------------------------------------------------------------------------------
591// Simple In-loop filtering (Paragraph 15.2)
592
593static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
594  // Load
595  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
596  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
597  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
598  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
599
600  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
601
602  // Store
603  _mm_storeu_si128((__m128i*)&p[-stride], p0);
604  _mm_storeu_si128((__m128i*)&p[0], q0);
605}
606
607static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
608  __m128i p1, p0, q0, q1;
609
610  p -= 2;  // beginning of p1
611
612  Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
613  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
614  Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
615}
616
617static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
618  int k;
619  for (k = 3; k > 0; --k) {
620    p += 4 * stride;
621    SimpleVFilter16_SSE2(p, stride, thresh);
622  }
623}
624
625static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
626  int k;
627  for (k = 3; k > 0; --k) {
628    p += 4;
629    SimpleHFilter16_SSE2(p, stride, thresh);
630  }
631}
632
633//------------------------------------------------------------------------------
634// Complex In-loop filtering (Paragraph 15.3)
635
636#define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
637  (m) = MM_ABS(p1, p0);                                                        \
638  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
639  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
640} while (0)
641
642#define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
643  (m) = _mm_max_epu8(m, MM_ABS(p1, p0));                                       \
644  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
645  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
646} while (0)
647
648#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
649  (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]);                        \
650  (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]);                        \
651  (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]);                        \
652  (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]);                        \
653}
654
655#define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
656  const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
657  const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
658  (p) = _mm_unpacklo_epi64(U, V);                                              \
659} while (0)
660
661#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
662  LOADUV_H_EDGE(e1, u, v, 0 * (stride));                                       \
663  LOADUV_H_EDGE(e2, u, v, 1 * (stride));                                       \
664  LOADUV_H_EDGE(e3, u, v, 2 * (stride));                                       \
665  LOADUV_H_EDGE(e4, u, v, 3 * (stride));                                       \
666}
667
668#define STOREUV(p, u, v, stride) {                                             \
669  _mm_storel_epi64((__m128i*)&(u)[(stride)], p);                               \
670  (p) = _mm_srli_si128(p, 8);                                                  \
671  _mm_storel_epi64((__m128i*)&(v)[(stride)], p);                               \
672}
673
674static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
675                                         const __m128i* const p0,
676                                         const __m128i* const q0,
677                                         const __m128i* const q1,
678                                         int thresh, int ithresh,
679                                         __m128i* const mask) {
680  const __m128i it = _mm_set1_epi8(ithresh);
681  const __m128i diff = _mm_subs_epu8(*mask, it);
682  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
683  __m128i filter_mask;
684  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
685  *mask = _mm_and_si128(thresh_mask, filter_mask);
686}
687
688// on macroblock edges
689static void VFilter16_SSE2(uint8_t* p, int stride,
690                           int thresh, int ithresh, int hev_thresh) {
691  __m128i t1;
692  __m128i mask;
693  __m128i p2, p1, p0, q0, q1, q2;
694
695  // Load p3, p2, p1, p0
696  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
697  MAX_DIFF1(t1, p2, p1, p0, mask);
698
699  // Load q0, q1, q2, q3
700  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
701  MAX_DIFF2(t1, q2, q1, q0, mask);
702
703  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
704  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
705
706  // Store
707  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
708  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
709  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
710  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
711  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
712  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
713}
714
715static void HFilter16_SSE2(uint8_t* p, int stride,
716                           int thresh, int ithresh, int hev_thresh) {
717  __m128i mask;
718  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
719
720  uint8_t* const b = p - 4;
721  Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
722  MAX_DIFF1(p3, p2, p1, p0, mask);
723
724  Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
725  MAX_DIFF2(q3, q2, q1, q0, mask);
726
727  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
728  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
729
730  Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
731  Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
732}
733
734// on three inner edges
735static void VFilter16i_SSE2(uint8_t* p, int stride,
736                            int thresh, int ithresh, int hev_thresh) {
737  int k;
738  __m128i p3, p2, p1, p0;   // loop invariants
739
740  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
741
742  for (k = 3; k > 0; --k) {
743    __m128i mask, tmp1, tmp2;
744    uint8_t* const b = p + 2 * stride;   // beginning of p1
745    p += 4 * stride;
746
747    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
748    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
749    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
750
751    // p3 and p2 are not just temporary variables here: they will be
752    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
753    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
754    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
755
756    // Store
757    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
758    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
759    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
760    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
761
762    // rotate samples
763    p1 = tmp1;
764    p0 = tmp2;
765  }
766}
767
768static void HFilter16i_SSE2(uint8_t* p, int stride,
769                            int thresh, int ithresh, int hev_thresh) {
770  int k;
771  __m128i p3, p2, p1, p0;   // loop invariants
772
773  Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
774
775  for (k = 3; k > 0; --k) {
776    __m128i mask, tmp1, tmp2;
777    uint8_t* const b = p + 2;   // beginning of p1
778
779    p += 4;  // beginning of q0 (and next span)
780
781    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
782    Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
783    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
784
785    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
786    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
787
788    Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
789
790    // rotate samples
791    p1 = tmp1;
792    p0 = tmp2;
793  }
794}
795
796// 8-pixels wide variant, for chroma filtering
797static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
798                          int thresh, int ithresh, int hev_thresh) {
799  __m128i mask;
800  __m128i t1, p2, p1, p0, q0, q1, q2;
801
802  // Load p3, p2, p1, p0
803  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
804  MAX_DIFF1(t1, p2, p1, p0, mask);
805
806  // Load q0, q1, q2, q3
807  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
808  MAX_DIFF2(t1, q2, q1, q0, mask);
809
810  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
811  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
812
813  // Store
814  STOREUV(p2, u, v, -3 * stride);
815  STOREUV(p1, u, v, -2 * stride);
816  STOREUV(p0, u, v, -1 * stride);
817  STOREUV(q0, u, v, 0 * stride);
818  STOREUV(q1, u, v, 1 * stride);
819  STOREUV(q2, u, v, 2 * stride);
820}
821
822static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
823                          int thresh, int ithresh, int hev_thresh) {
824  __m128i mask;
825  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
826
827  uint8_t* const tu = u - 4;
828  uint8_t* const tv = v - 4;
829  Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
830  MAX_DIFF1(p3, p2, p1, p0, mask);
831
832  Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
833  MAX_DIFF2(q3, q2, q1, q0, mask);
834
835  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
836  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
837
838  Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
839  Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
840}
841
842static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
843                           int thresh, int ithresh, int hev_thresh) {
844  __m128i mask;
845  __m128i t1, t2, p1, p0, q0, q1;
846
847  // Load p3, p2, p1, p0
848  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
849  MAX_DIFF1(t2, t1, p1, p0, mask);
850
851  u += 4 * stride;
852  v += 4 * stride;
853
854  // Load q0, q1, q2, q3
855  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
856  MAX_DIFF2(t2, t1, q1, q0, mask);
857
858  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
859  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
860
861  // Store
862  STOREUV(p1, u, v, -2 * stride);
863  STOREUV(p0, u, v, -1 * stride);
864  STOREUV(q0, u, v, 0 * stride);
865  STOREUV(q1, u, v, 1 * stride);
866}
867
868static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
869                           int thresh, int ithresh, int hev_thresh) {
870  __m128i mask;
871  __m128i t1, t2, p1, p0, q0, q1;
872  Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
873  MAX_DIFF1(t2, t1, p1, p0, mask);
874
875  u += 4;  // beginning of q0
876  v += 4;
877  Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
878  MAX_DIFF2(t2, t1, q1, q0, mask);
879
880  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
881  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
882
883  u -= 2;  // beginning of p1
884  v -= 2;
885  Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
886}
887
888//------------------------------------------------------------------------------
889// 4x4 predictions
890
891#define DST(x, y) dst[(x) + (y) * BPS]
892#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
893
894// We use the following 8b-arithmetic tricks:
895//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
896//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
897// and:
898//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
899//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
900//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
901
902static void VE4_SSE2(uint8_t* dst) {    // vertical
903  const __m128i one = _mm_set1_epi8(1);
904  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
905  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
906  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
907  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
908  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
909  const __m128i b = _mm_subs_epu8(a, lsb);
910  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
911  const uint32_t vals = _mm_cvtsi128_si32(avg);
912  int i;
913  for (i = 0; i < 4; ++i) {
914    WebPUint32ToMem(dst + i * BPS, vals);
915  }
916}
917
918static void LD4_SSE2(uint8_t* dst) {   // Down-Left
919  const __m128i one = _mm_set1_epi8(1);
920  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
921  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
922  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
923  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
924  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
925  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
926  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
927  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
928  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
929  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
930  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
931  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
932}
933
934static void VR4_SSE2(uint8_t* dst) {   // Vertical-Right
935  const __m128i one = _mm_set1_epi8(1);
936  const int I = dst[-1 + 0 * BPS];
937  const int J = dst[-1 + 1 * BPS];
938  const int K = dst[-1 + 2 * BPS];
939  const int X = dst[-1 - BPS];
940  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
941  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
942  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
943  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
944  const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
945  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
946  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
947  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
948  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
949  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
950  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
951  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
952  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
953
954  // these two are hard to implement in SSE2, so we keep the C-version:
955  DST(0, 2) = AVG3(J, I, X);
956  DST(0, 3) = AVG3(K, J, I);
957}
958
959static void VL4_SSE2(uint8_t* dst) {   // Vertical-Left
960  const __m128i one = _mm_set1_epi8(1);
961  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
962  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
963  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
964  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
965  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
966  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
967  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
968  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
969  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
970  const __m128i abbc = _mm_or_si128(ab, bc);
971  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
972  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
973  const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
974  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
975  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
976  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
977  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
978
979  // these two are hard to get and irregular
980  DST(3, 2) = (extra_out >> 0) & 0xff;
981  DST(3, 3) = (extra_out >> 8) & 0xff;
982}
983
984static void RD4_SSE2(uint8_t* dst) {   // Down-right
985  const __m128i one = _mm_set1_epi8(1);
986  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
987  const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
988  const uint32_t I = dst[-1 + 0 * BPS];
989  const uint32_t J = dst[-1 + 1 * BPS];
990  const uint32_t K = dst[-1 + 2 * BPS];
991  const uint32_t L = dst[-1 + 3 * BPS];
992  const __m128i LKJI_____ =
993      _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
994  const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
995  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
996  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
997  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
998  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
999  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1000  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1001  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
1002  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1003  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1004  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1005}
1006
1007#undef DST
1008#undef AVG3
1009
1010//------------------------------------------------------------------------------
1011// Luma 16x16
1012
1013static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1014  const uint8_t* top = dst - BPS;
1015  const __m128i zero = _mm_setzero_si128();
1016  int y;
1017  if (size == 4) {
1018    const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1019    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1020    for (y = 0; y < 4; ++y, dst += BPS) {
1021      const int val = dst[-1] - top[-1];
1022      const __m128i base = _mm_set1_epi16(val);
1023      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1024      WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1025    }
1026  } else if (size == 8) {
1027    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1028    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1029    for (y = 0; y < 8; ++y, dst += BPS) {
1030      const int val = dst[-1] - top[-1];
1031      const __m128i base = _mm_set1_epi16(val);
1032      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1033      _mm_storel_epi64((__m128i*)dst, out);
1034    }
1035  } else {
1036    const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1037    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1038    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1039    for (y = 0; y < 16; ++y, dst += BPS) {
1040      const int val = dst[-1] - top[-1];
1041      const __m128i base = _mm_set1_epi16(val);
1042      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1043      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1044      const __m128i out = _mm_packus_epi16(out_0, out_1);
1045      _mm_storeu_si128((__m128i*)dst, out);
1046    }
1047  }
1048}
1049
1050static void TM4_SSE2(uint8_t* dst)   { TrueMotion_SSE2(dst, 4); }
1051static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
1052static void TM16_SSE2(uint8_t* dst)  { TrueMotion_SSE2(dst, 16); }
1053
1054static void VE16_SSE2(uint8_t* dst) {
1055  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1056  int j;
1057  for (j = 0; j < 16; ++j) {
1058    _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1059  }
1060}
1061
1062static void HE16_SSE2(uint8_t* dst) {     // horizontal
1063  int j;
1064  for (j = 16; j > 0; --j) {
1065    const __m128i values = _mm_set1_epi8(dst[-1]);
1066    _mm_storeu_si128((__m128i*)dst, values);
1067    dst += BPS;
1068  }
1069}
1070
1071static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1072  int j;
1073  const __m128i values = _mm_set1_epi8(v);
1074  for (j = 0; j < 16; ++j) {
1075    _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1076  }
1077}
1078
1079static void DC16_SSE2(uint8_t* dst) {  // DC
1080  const __m128i zero = _mm_setzero_si128();
1081  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1082  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1083  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1084  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1085  int left = 0;
1086  int j;
1087  for (j = 0; j < 16; ++j) {
1088    left += dst[-1 + j * BPS];
1089  }
1090  {
1091    const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1092    Put16_SSE2(DC >> 5, dst);
1093  }
1094}
1095
1096static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
1097  int DC = 8;
1098  int j;
1099  for (j = 0; j < 16; ++j) {
1100    DC += dst[-1 + j * BPS];
1101  }
1102  Put16_SSE2(DC >> 4, dst);
1103}
1104
1105static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
1106  const __m128i zero = _mm_setzero_si128();
1107  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1108  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1109  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1110  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1111  const int DC = _mm_cvtsi128_si32(sum) + 8;
1112  Put16_SSE2(DC >> 4, dst);
1113}
1114
1115static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
1116  Put16_SSE2(0x80, dst);
1117}
1118
1119//------------------------------------------------------------------------------
1120// Chroma
1121
1122static void VE8uv_SSE2(uint8_t* dst) {    // vertical
1123  int j;
1124  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1125  for (j = 0; j < 8; ++j) {
1126    _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1127  }
1128}
1129
1130// helper for chroma-DC predictions
1131static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1132  int j;
1133  const __m128i values = _mm_set1_epi8(v);
1134  for (j = 0; j < 8; ++j) {
1135    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1136  }
1137}
1138
1139static void DC8uv_SSE2(uint8_t* dst) {     // DC
1140  const __m128i zero = _mm_setzero_si128();
1141  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1142  const __m128i sum = _mm_sad_epu8(top, zero);
1143  int left = 0;
1144  int j;
1145  for (j = 0; j < 8; ++j) {
1146    left += dst[-1 + j * BPS];
1147  }
1148  {
1149    const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1150    Put8x8uv_SSE2(DC >> 4, dst);
1151  }
1152}
1153
1154static void DC8uvNoLeft_SSE2(uint8_t* dst) {   // DC with no left samples
1155  const __m128i zero = _mm_setzero_si128();
1156  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1157  const __m128i sum = _mm_sad_epu8(top, zero);
1158  const int DC = _mm_cvtsi128_si32(sum) + 4;
1159  Put8x8uv_SSE2(DC >> 3, dst);
1160}
1161
1162static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
1163  int dc0 = 4;
1164  int i;
1165  for (i = 0; i < 8; ++i) {
1166    dc0 += dst[-1 + i * BPS];
1167  }
1168  Put8x8uv_SSE2(dc0 >> 3, dst);
1169}
1170
1171static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {    // DC with nothing
1172  Put8x8uv_SSE2(0x80, dst);
1173}
1174
1175//------------------------------------------------------------------------------
1176// Entry point
1177
1178extern void VP8DspInitSSE2(void);
1179
1180WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1181  VP8Transform = Transform_SSE2;
1182#if (USE_TRANSFORM_AC3 == 1)
1183  VP8TransformAC3 = TransformAC3_SSE2;
1184#endif
1185
1186  VP8VFilter16 = VFilter16_SSE2;
1187  VP8HFilter16 = HFilter16_SSE2;
1188  VP8VFilter8 = VFilter8_SSE2;
1189  VP8HFilter8 = HFilter8_SSE2;
1190  VP8VFilter16i = VFilter16i_SSE2;
1191  VP8HFilter16i = HFilter16i_SSE2;
1192  VP8VFilter8i = VFilter8i_SSE2;
1193  VP8HFilter8i = HFilter8i_SSE2;
1194
1195  VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1196  VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1197  VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1198  VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1199
1200  VP8PredLuma4[1] = TM4_SSE2;
1201  VP8PredLuma4[2] = VE4_SSE2;
1202  VP8PredLuma4[4] = RD4_SSE2;
1203  VP8PredLuma4[5] = VR4_SSE2;
1204  VP8PredLuma4[6] = LD4_SSE2;
1205  VP8PredLuma4[7] = VL4_SSE2;
1206
1207  VP8PredLuma16[0] = DC16_SSE2;
1208  VP8PredLuma16[1] = TM16_SSE2;
1209  VP8PredLuma16[2] = VE16_SSE2;
1210  VP8PredLuma16[3] = HE16_SSE2;
1211  VP8PredLuma16[4] = DC16NoTop_SSE2;
1212  VP8PredLuma16[5] = DC16NoLeft_SSE2;
1213  VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1214
1215  VP8PredChroma8[0] = DC8uv_SSE2;
1216  VP8PredChroma8[1] = TM8uv_SSE2;
1217  VP8PredChroma8[2] = VE8uv_SSE2;
1218  VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1219  VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1220  VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1221}
1222
1223#else  // !WEBP_USE_SSE2
1224
1225WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1226
1227#endif  // WEBP_USE_SSE2
1228