1/*
2 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11/*
12 * The rdft AEC algorithm, neon version of speed-critical functions.
13 *
14 * Based on the sse2 version.
15 */
16
17
18#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
19
20#include <arm_neon.h>
21
22static const ALIGN16_BEG float ALIGN16_END
23    k_swap_sign[4] = {-1.f, 1.f, -1.f, 1.f};
24
25static void cft1st_128_neon(float* a) {
26  const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
27  int j, k2;
28
29  for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
30    float32x4_t a00v = vld1q_f32(&a[j + 0]);
31    float32x4_t a04v = vld1q_f32(&a[j + 4]);
32    float32x4_t a08v = vld1q_f32(&a[j + 8]);
33    float32x4_t a12v = vld1q_f32(&a[j + 12]);
34    float32x4_t a01v = vcombine_f32(vget_low_f32(a00v), vget_low_f32(a08v));
35    float32x4_t a23v = vcombine_f32(vget_high_f32(a00v), vget_high_f32(a08v));
36    float32x4_t a45v = vcombine_f32(vget_low_f32(a04v), vget_low_f32(a12v));
37    float32x4_t a67v = vcombine_f32(vget_high_f32(a04v), vget_high_f32(a12v));
38    const float32x4_t wk1rv = vld1q_f32(&rdft_wk1r[k2]);
39    const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2]);
40    const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2]);
41    const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2]);
42    const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2]);
43    const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2]);
44    float32x4_t x0v = vaddq_f32(a01v, a23v);
45    const float32x4_t x1v = vsubq_f32(a01v, a23v);
46    const float32x4_t x2v = vaddq_f32(a45v, a67v);
47    const float32x4_t x3v = vsubq_f32(a45v, a67v);
48    const float32x4_t x3w = vrev64q_f32(x3v);
49    float32x4_t x0w;
50    a01v = vaddq_f32(x0v, x2v);
51    x0v = vsubq_f32(x0v, x2v);
52    x0w = vrev64q_f32(x0v);
53    a45v = vmulq_f32(wk2rv, x0v);
54    a45v = vmlaq_f32(a45v, wk2iv, x0w);
55    x0v = vmlaq_f32(x1v, x3w, vec_swap_sign);
56    x0w = vrev64q_f32(x0v);
57    a23v = vmulq_f32(wk1rv, x0v);
58    a23v = vmlaq_f32(a23v, wk1iv, x0w);
59    x0v = vmlsq_f32(x1v, x3w, vec_swap_sign);
60    x0w = vrev64q_f32(x0v);
61    a67v = vmulq_f32(wk3rv, x0v);
62    a67v = vmlaq_f32(a67v, wk3iv, x0w);
63    a00v = vcombine_f32(vget_low_f32(a01v), vget_low_f32(a23v));
64    a04v = vcombine_f32(vget_low_f32(a45v), vget_low_f32(a67v));
65    a08v = vcombine_f32(vget_high_f32(a01v), vget_high_f32(a23v));
66    a12v = vcombine_f32(vget_high_f32(a45v), vget_high_f32(a67v));
67    vst1q_f32(&a[j + 0], a00v);
68    vst1q_f32(&a[j + 4], a04v);
69    vst1q_f32(&a[j + 8], a08v);
70    vst1q_f32(&a[j + 12], a12v);
71  }
72}
73
74static void cftmdl_128_neon(float* a) {
75  int j;
76  const int l = 8;
77  const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
78  float32x4_t wk1rv = vld1q_f32(cftmdl_wk1r);
79
80  for (j = 0; j < l; j += 2) {
81    const float32x2_t a_00 = vld1_f32(&a[j + 0]);
82    const float32x2_t a_08 = vld1_f32(&a[j + 8]);
83    const float32x2_t a_32 = vld1_f32(&a[j + 32]);
84    const float32x2_t a_40 = vld1_f32(&a[j + 40]);
85    const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
86    const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
87    const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
88    const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
89    const float32x2_t a_16 = vld1_f32(&a[j + 16]);
90    const float32x2_t a_24 = vld1_f32(&a[j + 24]);
91    const float32x2_t a_48 = vld1_f32(&a[j + 48]);
92    const float32x2_t a_56 = vld1_f32(&a[j + 56]);
93    const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
94    const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
95    const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
96    const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
97    const float32x4_t xx0 = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
98    const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
99    const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
100    const float32x4_t x1_x3_add =
101        vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
102    const float32x4_t x1_x3_sub =
103        vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
104    const float32x2_t yy0_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 0);
105    const float32x2_t yy0_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 0);
106    const float32x4_t yy0_as = vcombine_f32(yy0_a, yy0_s);
107    const float32x2_t yy1_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 1);
108    const float32x2_t yy1_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 1);
109    const float32x4_t yy1_as = vcombine_f32(yy1_a, yy1_s);
110    const float32x4_t yy0 = vmlaq_f32(yy0_as, vec_swap_sign, yy1_as);
111    const float32x4_t yy4 = vmulq_f32(wk1rv, yy0);
112    const float32x4_t xx1_rev = vrev64q_f32(xx1);
113    const float32x4_t yy4_rev = vrev64q_f32(yy4);
114
115    vst1_f32(&a[j + 0], vget_low_f32(xx0));
116    vst1_f32(&a[j + 32], vget_high_f32(xx0));
117    vst1_f32(&a[j + 16], vget_low_f32(xx1));
118    vst1_f32(&a[j + 48], vget_high_f32(xx1_rev));
119
120    a[j + 48] = -a[j + 48];
121
122    vst1_f32(&a[j + 8], vget_low_f32(x1_x3_add));
123    vst1_f32(&a[j + 24], vget_low_f32(x1_x3_sub));
124    vst1_f32(&a[j + 40], vget_low_f32(yy4));
125    vst1_f32(&a[j + 56], vget_high_f32(yy4_rev));
126  }
127
128  {
129    const int k = 64;
130    const int k1 = 2;
131    const int k2 = 2 * k1;
132    const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2 + 0]);
133    const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2 + 0]);
134    const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2 + 0]);
135    const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2 + 0]);
136    const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2 + 0]);
137    wk1rv = vld1q_f32(&rdft_wk1r[k2 + 0]);
138    for (j = k; j < l + k; j += 2) {
139      const float32x2_t a_00 = vld1_f32(&a[j + 0]);
140      const float32x2_t a_08 = vld1_f32(&a[j + 8]);
141      const float32x2_t a_32 = vld1_f32(&a[j + 32]);
142      const float32x2_t a_40 = vld1_f32(&a[j + 40]);
143      const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
144      const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
145      const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
146      const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
147      const float32x2_t a_16 = vld1_f32(&a[j + 16]);
148      const float32x2_t a_24 = vld1_f32(&a[j + 24]);
149      const float32x2_t a_48 = vld1_f32(&a[j + 48]);
150      const float32x2_t a_56 = vld1_f32(&a[j + 56]);
151      const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
152      const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
153      const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
154      const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
155      const float32x4_t xx = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
156      const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
157      const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
158      const float32x4_t x1_x3_add =
159          vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
160      const float32x4_t x1_x3_sub =
161          vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
162      float32x4_t xx4 = vmulq_f32(wk2rv, xx1);
163      float32x4_t xx12 = vmulq_f32(wk1rv, x1_x3_add);
164      float32x4_t xx22 = vmulq_f32(wk3rv, x1_x3_sub);
165      xx4 = vmlaq_f32(xx4, wk2iv, vrev64q_f32(xx1));
166      xx12 = vmlaq_f32(xx12, wk1iv, vrev64q_f32(x1_x3_add));
167      xx22 = vmlaq_f32(xx22, wk3iv, vrev64q_f32(x1_x3_sub));
168
169      vst1_f32(&a[j + 0], vget_low_f32(xx));
170      vst1_f32(&a[j + 32], vget_high_f32(xx));
171      vst1_f32(&a[j + 16], vget_low_f32(xx4));
172      vst1_f32(&a[j + 48], vget_high_f32(xx4));
173      vst1_f32(&a[j + 8], vget_low_f32(xx12));
174      vst1_f32(&a[j + 40], vget_high_f32(xx12));
175      vst1_f32(&a[j + 24], vget_low_f32(xx22));
176      vst1_f32(&a[j + 56], vget_high_f32(xx22));
177    }
178  }
179}
180
181__inline static float32x4_t reverse_order_f32x4(float32x4_t in) {
182  // A B C D -> C D A B
183  const float32x4_t rev = vcombine_f32(vget_high_f32(in), vget_low_f32(in));
184  // C D A B -> D C B A
185  return vrev64q_f32(rev);
186}
187
188static void rftfsub_128_neon(float* a) {
189  const float* c = rdft_w + 32;
190  int j1, j2;
191  const float32x4_t mm_half = vdupq_n_f32(0.5f);
192
193  // Vectorized code (four at once).
194  // Note: commented number are indexes for the first iteration of the loop.
195  for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
196    // Load 'wk'.
197    const float32x4_t c_j1 = vld1q_f32(&c[j1]);          //  1,  2,  3,  4,
198    const float32x4_t c_k1 = vld1q_f32(&c[29 - j1]);     // 28, 29, 30, 31,
199    const float32x4_t wkrt = vsubq_f32(mm_half, c_k1);   // 28, 29, 30, 31,
200    const float32x4_t wkr_ = reverse_order_f32x4(wkrt);  // 31, 30, 29, 28,
201    const float32x4_t wki_ = c_j1;                       //  1,  2,  3,  4,
202    // Load and shuffle 'a'.
203    //   2,   4,   6,   8,   3,   5,   7,   9
204    float32x4x2_t a_j2_p = vld2q_f32(&a[0 + j2]);
205    // 120, 122, 124, 126, 121, 123, 125, 127,
206    const float32x4x2_t k2_0_4 = vld2q_f32(&a[122 - j2]);
207    // 126, 124, 122, 120
208    const float32x4_t a_k2_p0 = reverse_order_f32x4(k2_0_4.val[0]);
209    // 127, 125, 123, 121
210    const float32x4_t a_k2_p1 = reverse_order_f32x4(k2_0_4.val[1]);
211    // Calculate 'x'.
212    const float32x4_t xr_ = vsubq_f32(a_j2_p.val[0], a_k2_p0);
213    // 2-126, 4-124, 6-122, 8-120,
214    const float32x4_t xi_ = vaddq_f32(a_j2_p.val[1], a_k2_p1);
215    // 3-127, 5-125, 7-123, 9-121,
216    // Calculate product into 'y'.
217    //    yr = wkr * xr - wki * xi;
218    //    yi = wkr * xi + wki * xr;
219    const float32x4_t a_ = vmulq_f32(wkr_, xr_);
220    const float32x4_t b_ = vmulq_f32(wki_, xi_);
221    const float32x4_t c_ = vmulq_f32(wkr_, xi_);
222    const float32x4_t d_ = vmulq_f32(wki_, xr_);
223    const float32x4_t yr_ = vsubq_f32(a_, b_);  // 2-126, 4-124, 6-122, 8-120,
224    const float32x4_t yi_ = vaddq_f32(c_, d_);  // 3-127, 5-125, 7-123, 9-121,
225                                                // Update 'a'.
226                                                //    a[j2 + 0] -= yr;
227                                                //    a[j2 + 1] -= yi;
228                                                //    a[k2 + 0] += yr;
229                                                //    a[k2 + 1] -= yi;
230    // 126, 124, 122, 120,
231    const float32x4_t a_k2_p0n = vaddq_f32(a_k2_p0, yr_);
232    // 127, 125, 123, 121,
233    const float32x4_t a_k2_p1n = vsubq_f32(a_k2_p1, yi_);
234    // Shuffle in right order and store.
235    const float32x4_t a_k2_p0nr = vrev64q_f32(a_k2_p0n);
236    const float32x4_t a_k2_p1nr = vrev64q_f32(a_k2_p1n);
237    // 124, 125, 126, 127, 120, 121, 122, 123
238    const float32x4x2_t a_k2_n = vzipq_f32(a_k2_p0nr, a_k2_p1nr);
239    //   2,   4,   6,   8,
240    a_j2_p.val[0] = vsubq_f32(a_j2_p.val[0], yr_);
241    //   3,   5,   7,   9,
242    a_j2_p.val[1] = vsubq_f32(a_j2_p.val[1], yi_);
243    //   2,   3,   4,   5,   6,   7,   8,   9,
244    vst2q_f32(&a[0 + j2], a_j2_p);
245
246    vst1q_f32(&a[122 - j2], a_k2_n.val[1]);
247    vst1q_f32(&a[126 - j2], a_k2_n.val[0]);
248  }
249
250  // Scalar code for the remaining items.
251  for (; j2 < 64; j1 += 1, j2 += 2) {
252    const int k2 = 128 - j2;
253    const int k1 = 32 - j1;
254    const float wkr = 0.5f - c[k1];
255    const float wki = c[j1];
256    const float xr = a[j2 + 0] - a[k2 + 0];
257    const float xi = a[j2 + 1] + a[k2 + 1];
258    const float yr = wkr * xr - wki * xi;
259    const float yi = wkr * xi + wki * xr;
260    a[j2 + 0] -= yr;
261    a[j2 + 1] -= yi;
262    a[k2 + 0] += yr;
263    a[k2 + 1] -= yi;
264  }
265}
266
267static void rftbsub_128_neon(float* a) {
268  const float* c = rdft_w + 32;
269  int j1, j2;
270  const float32x4_t mm_half = vdupq_n_f32(0.5f);
271
272  a[1] = -a[1];
273  // Vectorized code (four at once).
274  //    Note: commented number are indexes for the first iteration of the loop.
275  for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
276    // Load 'wk'.
277    const float32x4_t c_j1 = vld1q_f32(&c[j1]);         //  1,  2,  3,  4,
278    const float32x4_t c_k1 = vld1q_f32(&c[29 - j1]);    // 28, 29, 30, 31,
279    const float32x4_t wkrt = vsubq_f32(mm_half, c_k1);  // 28, 29, 30, 31,
280    const float32x4_t wkr_ = reverse_order_f32x4(wkrt); // 31, 30, 29, 28,
281    const float32x4_t wki_ = c_j1;                      //  1,  2,  3,  4,
282    // Load and shuffle 'a'.
283    //   2,   4,   6,   8,   3,   5,   7,   9
284    float32x4x2_t a_j2_p = vld2q_f32(&a[0 + j2]);
285    // 120, 122, 124, 126, 121, 123, 125, 127,
286    const float32x4x2_t k2_0_4 = vld2q_f32(&a[122 - j2]);
287    // 126, 124, 122, 120
288    const float32x4_t a_k2_p0 = reverse_order_f32x4(k2_0_4.val[0]);
289    // 127, 125, 123, 121
290    const float32x4_t a_k2_p1 = reverse_order_f32x4(k2_0_4.val[1]);
291    // Calculate 'x'.
292    const float32x4_t xr_ = vsubq_f32(a_j2_p.val[0], a_k2_p0);
293    // 2-126, 4-124, 6-122, 8-120,
294    const float32x4_t xi_ = vaddq_f32(a_j2_p.val[1], a_k2_p1);
295    // 3-127, 5-125, 7-123, 9-121,
296    // Calculate product into 'y'.
297    //    yr = wkr * xr - wki * xi;
298    //    yi = wkr * xi + wki * xr;
299    const float32x4_t a_ = vmulq_f32(wkr_, xr_);
300    const float32x4_t b_ = vmulq_f32(wki_, xi_);
301    const float32x4_t c_ = vmulq_f32(wkr_, xi_);
302    const float32x4_t d_ = vmulq_f32(wki_, xr_);
303    const float32x4_t yr_ = vaddq_f32(a_, b_);  // 2-126, 4-124, 6-122, 8-120,
304    const float32x4_t yi_ = vsubq_f32(c_, d_);  // 3-127, 5-125, 7-123, 9-121,
305                                                // Update 'a'.
306                                                //    a[j2 + 0] -= yr;
307                                                //    a[j2 + 1] -= yi;
308                                                //    a[k2 + 0] += yr;
309                                                //    a[k2 + 1] -= yi;
310    // 126, 124, 122, 120,
311    const float32x4_t a_k2_p0n = vaddq_f32(a_k2_p0, yr_);
312    // 127, 125, 123, 121,
313    const float32x4_t a_k2_p1n = vsubq_f32(yi_, a_k2_p1);
314    // Shuffle in right order and store.
315    //   2,   3,   4,   5,   6,   7,   8,   9,
316    const float32x4_t a_k2_p0nr = vrev64q_f32(a_k2_p0n);
317    const float32x4_t a_k2_p1nr = vrev64q_f32(a_k2_p1n);
318    // 124, 125, 126, 127, 120, 121, 122, 123
319    const float32x4x2_t a_k2_n = vzipq_f32(a_k2_p0nr, a_k2_p1nr);
320    //   2,   4,   6,   8,
321    a_j2_p.val[0] = vsubq_f32(a_j2_p.val[0], yr_);
322    //   3,   5,   7,   9,
323    a_j2_p.val[1] = vsubq_f32(yi_, a_j2_p.val[1]);
324    //   2,   3,   4,   5,   6,   7,   8,   9,
325    vst2q_f32(&a[0 + j2], a_j2_p);
326
327    vst1q_f32(&a[122 - j2], a_k2_n.val[1]);
328    vst1q_f32(&a[126 - j2], a_k2_n.val[0]);
329  }
330
331  // Scalar code for the remaining items.
332  for (; j2 < 64; j1 += 1, j2 += 2) {
333    const int k2 = 128 - j2;
334    const int k1 = 32 - j1;
335    const float wkr = 0.5f - c[k1];
336    const float wki = c[j1];
337    const float xr = a[j2 + 0] - a[k2 + 0];
338    const float xi = a[j2 + 1] + a[k2 + 1];
339    const float yr = wkr * xr + wki * xi;
340    const float yi = wkr * xi - wki * xr;
341    a[j2 + 0] = a[j2 + 0] - yr;
342    a[j2 + 1] = yi - a[j2 + 1];
343    a[k2 + 0] = yr + a[k2 + 0];
344    a[k2 + 1] = yi - a[k2 + 1];
345  }
346  a[65] = -a[65];
347}
348
349void aec_rdft_init_neon(void) {
350  cft1st_128 = cft1st_128_neon;
351  cftmdl_128 = cftmdl_128_neon;
352  rftfsub_128 = rftfsub_128_neon;
353  rftbsub_128 = rftbsub_128_neon;
354}
355
356