1/*
2 * MD5 hash implementation and interface functions
3 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10
11#include "common.h"
12#include "md5.h"
13#include "md5_i.h"
14#include "crypto.h"
15
16
17static void MD5Transform(u32 buf[4], u32 const in[16]);
18
19
20typedef struct MD5Context MD5_CTX;
21
22
23/**
24 * md5_vector - MD5 hash for data vector
25 * @num_elem: Number of elements in the data vector
26 * @addr: Pointers to the data areas
27 * @len: Lengths of the data blocks
28 * @mac: Buffer for the hash
29 * Returns: 0 on success, -1 of failure
30 */
31int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
32{
33	MD5_CTX ctx;
34	size_t i;
35
36	if (TEST_FAIL())
37		return -1;
38
39	MD5Init(&ctx);
40	for (i = 0; i < num_elem; i++)
41		MD5Update(&ctx, addr[i], len[i]);
42	MD5Final(mac, &ctx);
43	return 0;
44}
45
46
47/* ===== start - public domain MD5 implementation ===== */
48/*
49 * This code implements the MD5 message-digest algorithm.
50 * The algorithm is due to Ron Rivest.  This code was
51 * written by Colin Plumb in 1993, no copyright is claimed.
52 * This code is in the public domain; do with it what you wish.
53 *
54 * Equivalent code is available from RSA Data Security, Inc.
55 * This code has been tested against that, and is equivalent,
56 * except that you don't need to include two pages of legalese
57 * with every copy.
58 *
59 * To compute the message digest of a chunk of bytes, declare an
60 * MD5Context structure, pass it to MD5Init, call MD5Update as
61 * needed on buffers full of bytes, and then call MD5Final, which
62 * will fill a supplied 16-byte array with the digest.
63 */
64
65#ifndef WORDS_BIGENDIAN
66#define byteReverse(buf, len)	/* Nothing */
67#else
68/*
69 * Note: this code is harmless on little-endian machines.
70 */
71static void byteReverse(unsigned char *buf, unsigned longs)
72{
73    u32 t;
74    do {
75	t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
76	    ((unsigned) buf[1] << 8 | buf[0]);
77	*(u32 *) buf = t;
78	buf += 4;
79    } while (--longs);
80}
81#endif
82
83/*
84 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
85 * initialization constants.
86 */
87void MD5Init(struct MD5Context *ctx)
88{
89    ctx->buf[0] = 0x67452301;
90    ctx->buf[1] = 0xefcdab89;
91    ctx->buf[2] = 0x98badcfe;
92    ctx->buf[3] = 0x10325476;
93
94    ctx->bits[0] = 0;
95    ctx->bits[1] = 0;
96}
97
98/*
99 * Update context to reflect the concatenation of another buffer full
100 * of bytes.
101 */
102void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
103{
104    u32 t;
105
106    /* Update bitcount */
107
108    t = ctx->bits[0];
109    if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
110	ctx->bits[1]++;		/* Carry from low to high */
111    ctx->bits[1] += len >> 29;
112
113    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
114
115    /* Handle any leading odd-sized chunks */
116
117    if (t) {
118	unsigned char *p = (unsigned char *) ctx->in + t;
119
120	t = 64 - t;
121	if (len < t) {
122	    os_memcpy(p, buf, len);
123	    return;
124	}
125	os_memcpy(p, buf, t);
126	byteReverse(ctx->in, 16);
127	MD5Transform(ctx->buf, (u32 *) ctx->in);
128	buf += t;
129	len -= t;
130    }
131    /* Process data in 64-byte chunks */
132
133    while (len >= 64) {
134	os_memcpy(ctx->in, buf, 64);
135	byteReverse(ctx->in, 16);
136	MD5Transform(ctx->buf, (u32 *) ctx->in);
137	buf += 64;
138	len -= 64;
139    }
140
141    /* Handle any remaining bytes of data. */
142
143    os_memcpy(ctx->in, buf, len);
144}
145
146/*
147 * Final wrapup - pad to 64-byte boundary with the bit pattern
148 * 1 0* (64-bit count of bits processed, MSB-first)
149 */
150void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
151{
152    unsigned count;
153    unsigned char *p;
154
155    /* Compute number of bytes mod 64 */
156    count = (ctx->bits[0] >> 3) & 0x3F;
157
158    /* Set the first char of padding to 0x80.  This is safe since there is
159       always at least one byte free */
160    p = ctx->in + count;
161    *p++ = 0x80;
162
163    /* Bytes of padding needed to make 64 bytes */
164    count = 64 - 1 - count;
165
166    /* Pad out to 56 mod 64 */
167    if (count < 8) {
168	/* Two lots of padding:  Pad the first block to 64 bytes */
169	os_memset(p, 0, count);
170	byteReverse(ctx->in, 16);
171	MD5Transform(ctx->buf, (u32 *) ctx->in);
172
173	/* Now fill the next block with 56 bytes */
174	os_memset(ctx->in, 0, 56);
175    } else {
176	/* Pad block to 56 bytes */
177	os_memset(p, 0, count - 8);
178    }
179    byteReverse(ctx->in, 14);
180
181    /* Append length in bits and transform */
182    ((u32 *) aliasing_hide_typecast(ctx->in, u32))[14] = ctx->bits[0];
183    ((u32 *) aliasing_hide_typecast(ctx->in, u32))[15] = ctx->bits[1];
184
185    MD5Transform(ctx->buf, (u32 *) ctx->in);
186    byteReverse((unsigned char *) ctx->buf, 4);
187    os_memcpy(digest, ctx->buf, 16);
188    os_memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
189}
190
191/* The four core functions - F1 is optimized somewhat */
192
193/* #define F1(x, y, z) (x & y | ~x & z) */
194#define F1(x, y, z) (z ^ (x & (y ^ z)))
195#define F2(x, y, z) F1(z, x, y)
196#define F3(x, y, z) (x ^ y ^ z)
197#define F4(x, y, z) (y ^ (x | ~z))
198
199/* This is the central step in the MD5 algorithm. */
200#define MD5STEP(f, w, x, y, z, data, s) \
201	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
202
203/*
204 * The core of the MD5 algorithm, this alters an existing MD5 hash to
205 * reflect the addition of 16 longwords of new data.  MD5Update blocks
206 * the data and converts bytes into longwords for this routine.
207 */
208static void MD5Transform(u32 buf[4], u32 const in[16])
209{
210    register u32 a, b, c, d;
211
212    a = buf[0];
213    b = buf[1];
214    c = buf[2];
215    d = buf[3];
216
217    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
218    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
219    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
220    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
221    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
222    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
223    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
224    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
225    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
226    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
227    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
228    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
229    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
230    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
231    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
232    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
233
234    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
235    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
236    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
237    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
238    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
239    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
240    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
241    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
242    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
243    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
244    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
245    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
246    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
247    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
248    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
249    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
250
251    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
252    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
253    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
254    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
255    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
256    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
257    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
258    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
259    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
260    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
261    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
262    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
263    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
264    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
265    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
266    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
267
268    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
269    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
270    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
271    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
272    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
273    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
274    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
275    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
276    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
277    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
278    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
279    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
280    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
281    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
282    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
283    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
284
285    buf[0] += a;
286    buf[1] += b;
287    buf[2] += c;
288    buf[3] += d;
289}
290/* ===== end - public domain MD5 implementation ===== */
291