1/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License
15 */
16
17package com.android.server.pm.dex;
18
19import android.content.pm.ApplicationInfo;
20import android.util.Slog;
21import android.util.SparseArray;
22
23import com.android.internal.os.ClassLoaderFactory;
24import com.android.server.pm.PackageDexOptimizer;
25
26import java.io.File;
27import java.util.ArrayList;
28import java.util.Arrays;
29import java.util.List;
30
31public final class DexoptUtils {
32    private static final String TAG = "DexoptUtils";
33
34    private DexoptUtils() {}
35
36    /**
37     * Creates the class loader context dependencies for each of the application code paths.
38     * The returned array contains the class loader contexts that needs to be passed to dexopt in
39     * order to ensure correct optimizations. "Code" paths with no actual code, as specified by
40     * {@param pathsWithCode}, are ignored and will have null as their context in the returned array
41     * (configuration splits are an example of paths without code).
42     *
43     * A class loader context describes how the class loader chain should be built by dex2oat
44     * in order to ensure that classes are resolved during compilation as they would be resolved
45     * at runtime. The context will be encoded in the compiled code. If at runtime the dex file is
46     * loaded in a different context (with a different set of class loaders or a different
47     * classpath), the compiled code will be rejected.
48     *
49     * Note that the class loader context only includes dependencies and not the code path itself.
50     * The contexts are created based on the application split dependency list and
51     * the provided shared libraries.
52     *
53     * All the code paths encoded in the context will be relative to the base directory. This
54     * enables stage compilation where compiler artifacts may be moved around.
55     *
56     * The result is indexed as follows:
57     *   - index 0 contains the context for the base apk
58     *   - index 1 to n contain the context for the splits in the order determined by
59     *     {@code info.getSplitCodePaths()}
60     *
61     * IMPORTANT: keep this logic in sync with the loading code in {@link android.app.LoadedApk}
62     * and pay attention to the way the classpath is created for the non isolated mode in:
63     * {@link android.app.LoadedApk#makePaths(
64     * android.app.ActivityThread, boolean, ApplicationInfo, List, List)}.
65     */
66    public static String[] getClassLoaderContexts(ApplicationInfo info,
67            String[] sharedLibraries, boolean[] pathsWithCode) {
68        // The base class loader context contains only the shared library.
69        String sharedLibrariesClassPath = encodeClasspath(sharedLibraries);
70        String baseApkContextClassLoader = encodeClassLoader(
71                sharedLibrariesClassPath, info.classLoaderName);
72
73        if (info.getSplitCodePaths() == null) {
74            // The application has no splits.
75            return new String[] {baseApkContextClassLoader};
76        }
77
78        // The application has splits. Compute their class loader contexts.
79
80        // First, cache the relative paths of the splits and do some sanity checks
81        String[] splitRelativeCodePaths = getSplitRelativeCodePaths(info);
82
83        // The splits have an implicit dependency on the base apk.
84        // This means that we have to add the base apk file in addition to the shared libraries.
85        String baseApkName = new File(info.getBaseCodePath()).getName();
86        String sharedLibrariesAndBaseClassPath =
87                encodeClasspath(sharedLibrariesClassPath, baseApkName);
88
89        // The result is stored in classLoaderContexts.
90        // Index 0 is the class loaded context for the base apk.
91        // Index `i` is the class loader context encoding for split `i`.
92        String[] classLoaderContexts = new String[/*base apk*/ 1 + splitRelativeCodePaths.length];
93        classLoaderContexts[0] = pathsWithCode[0] ? baseApkContextClassLoader : null;
94
95        if (!info.requestsIsolatedSplitLoading() || info.splitDependencies == null) {
96            // If the app didn't request for the splits to be loaded in isolation or if it does not
97            // declare inter-split dependencies, then all the splits will be loaded in the base
98            // apk class loader (in the order of their definition).
99            String classpath = sharedLibrariesAndBaseClassPath;
100            for (int i = 1; i < classLoaderContexts.length; i++) {
101                classLoaderContexts[i] = pathsWithCode[i]
102                        ? encodeClassLoader(classpath, info.classLoaderName) : null;
103                // Note that the splits with no code are not removed from the classpath computation.
104                // i.e. split_n might get the split_n-1 in its classpath dependency even
105                // if split_n-1 has no code.
106                // The splits with no code do not matter for the runtime which ignores
107                // apks without code when doing the classpath checks. As such we could actually
108                // filter them but we don't do it in order to keep consistency with how the apps
109                // are loaded.
110                classpath = encodeClasspath(classpath, splitRelativeCodePaths[i - 1]);
111            }
112        } else {
113            // In case of inter-split dependencies, we need to walk the dependency chain of each
114            // split. We do this recursively and store intermediate results in classLoaderContexts.
115
116            // First, look at the split class loaders and cache their individual contexts (i.e.
117            // the class loader + the name of the split). This is an optimization to avoid
118            // re-computing them during the recursive call.
119            // The cache is stored in splitClassLoaderEncodingCache. The difference between this and
120            // classLoaderContexts is that the later contains the full chain of class loaders for
121            // a given split while splitClassLoaderEncodingCache only contains a single class loader
122            // encoding.
123            String[] splitClassLoaderEncodingCache = new String[splitRelativeCodePaths.length];
124            for (int i = 0; i < splitRelativeCodePaths.length; i++) {
125                splitClassLoaderEncodingCache[i] = encodeClassLoader(splitRelativeCodePaths[i],
126                        info.splitClassLoaderNames[i]);
127            }
128            String splitDependencyOnBase = encodeClassLoader(
129                    sharedLibrariesAndBaseClassPath, info.classLoaderName);
130            SparseArray<int[]> splitDependencies = info.splitDependencies;
131
132            // Note that not all splits have dependencies (e.g. configuration splits)
133            // The splits without dependencies will have classLoaderContexts[config_split_index]
134            // set to null after this step.
135            for (int i = 1; i < splitDependencies.size(); i++) {
136                int splitIndex = splitDependencies.keyAt(i);
137                if (pathsWithCode[splitIndex]) {
138                    // Compute the class loader context only for the splits with code.
139                    getParentDependencies(splitIndex, splitClassLoaderEncodingCache,
140                            splitDependencies, classLoaderContexts, splitDependencyOnBase);
141                }
142            }
143
144            // At this point classLoaderContexts contains only the parent dependencies.
145            // We also need to add the class loader of the current split which should
146            // come first in the context.
147            for (int i = 1; i < classLoaderContexts.length; i++) {
148                String splitClassLoader = encodeClassLoader("", info.splitClassLoaderNames[i - 1]);
149                if (pathsWithCode[i]) {
150                    // If classLoaderContexts[i] is null it means that the split does not have
151                    // any dependency. In this case its context equals its declared class loader.
152                    classLoaderContexts[i] = classLoaderContexts[i] == null
153                            ? splitClassLoader
154                            : encodeClassLoaderChain(splitClassLoader, classLoaderContexts[i]);
155                } else {
156                    // This is a split without code, it has no dependency and it is not compiled.
157                    // Its context will be null.
158                    classLoaderContexts[i] = null;
159                }
160            }
161        }
162
163        return classLoaderContexts;
164    }
165
166    /**
167     * Recursive method to generate the class loader context dependencies for the split with the
168     * given index. {@param classLoaderContexts} acts as an accumulator. Upton return
169     * {@code classLoaderContexts[index]} will contain the split dependency.
170     * During computation, the method may resolve the dependencies of other splits as it traverses
171     * the entire parent chain. The result will also be stored in {@param classLoaderContexts}.
172     *
173     * Note that {@code index 0} denotes the base apk and it is special handled. When the
174     * recursive call hits {@code index 0} the method returns {@code splitDependencyOnBase}.
175     * {@code classLoaderContexts[0]} is not modified in this method.
176     *
177     * @param index the index of the split (Note that index 0 denotes the base apk)
178     * @param splitClassLoaderEncodingCache the class loader encoding for the individual splits.
179     *    It contains only the split class loader and not the the base. The split
180     *    with {@code index} has its context at {@code splitClassLoaderEncodingCache[index - 1]}.
181     * @param splitDependencies the dependencies for all splits. Note that in this array index 0
182     *    is the base and splits start from index 1.
183     * @param classLoaderContexts the result accumulator. index 0 is the base and never set. Splits
184     *    start at index 1.
185     * @param splitDependencyOnBase the encoding of the implicit split dependency on base.
186     */
187    private static String getParentDependencies(int index, String[] splitClassLoaderEncodingCache,
188            SparseArray<int[]> splitDependencies, String[] classLoaderContexts,
189            String splitDependencyOnBase) {
190        // If we hit the base apk return its custom dependency list which is
191        // sharedLibraries + base.apk
192        if (index == 0) {
193            return splitDependencyOnBase;
194        }
195        // Return the result if we've computed the splitDependencies for this index already.
196        if (classLoaderContexts[index] != null) {
197            return classLoaderContexts[index];
198        }
199        // Get the splitDependencies for the parent of this index and append its path to it.
200        int parent = splitDependencies.get(index)[0];
201        String parentDependencies = getParentDependencies(parent, splitClassLoaderEncodingCache,
202                splitDependencies, classLoaderContexts, splitDependencyOnBase);
203
204        // The split context is: `parent context + parent dependencies context`.
205        String splitContext = (parent == 0) ?
206                parentDependencies :
207                encodeClassLoaderChain(splitClassLoaderEncodingCache[parent - 1], parentDependencies);
208        classLoaderContexts[index] = splitContext;
209        return splitContext;
210    }
211
212    /**
213     * Encodes the shared libraries classpathElements in a format accepted by dexopt.
214     * NOTE: Keep this in sync with the dexopt expectations! Right now that is
215     * a list separated by ':'.
216     */
217    private static String encodeClasspath(String[] classpathElements) {
218        if (classpathElements == null || classpathElements.length == 0) {
219            return "";
220        }
221        StringBuilder sb = new StringBuilder();
222        for (String element : classpathElements) {
223            if (sb.length() != 0) {
224                sb.append(":");
225            }
226            sb.append(element);
227        }
228        return sb.toString();
229    }
230
231    /**
232     * Adds an element to the encoding of an existing classpath.
233     * {@see PackageDexOptimizer.encodeClasspath(String[])}
234     */
235    private static String encodeClasspath(String classpath, String newElement) {
236        return classpath.isEmpty() ? newElement : (classpath + ":" + newElement);
237    }
238
239    /**
240     * Encodes a single class loader dependency starting from {@param path} and
241     * {@param classLoaderName}.
242     * When classpath is {@link PackageDexOptimizer#SKIP_SHARED_LIBRARY_CHECK}, the method returns
243     * the same. This special property is used only during OTA.
244     * NOTE: Keep this in sync with the dexopt expectations! Right now that is either "PCL[path]"
245     * for a PathClassLoader or "DLC[path]" for a DelegateLastClassLoader.
246     */
247    /*package*/ static String encodeClassLoader(String classpath, String classLoaderName) {
248        if (classpath.equals(PackageDexOptimizer.SKIP_SHARED_LIBRARY_CHECK)) {
249            return classpath;
250        }
251        String classLoaderDexoptEncoding = classLoaderName;
252        if (ClassLoaderFactory.isPathClassLoaderName(classLoaderName)) {
253            classLoaderDexoptEncoding = "PCL";
254        } else if (ClassLoaderFactory.isDelegateLastClassLoaderName(classLoaderName)) {
255            classLoaderDexoptEncoding = "DLC";
256        } else {
257            Slog.wtf(TAG, "Unsupported classLoaderName: " + classLoaderName);
258        }
259        return classLoaderDexoptEncoding + "[" + classpath + "]";
260    }
261
262    /**
263     * Links to dependencies together in a format accepted by dexopt.
264     * For the special case when either of cl1 or cl2 equals
265     * {@link PackageDexOptimizer#SKIP_SHARED_LIBRARY_CHECK}, the method returns the same. This
266     * property is used only during OTA.
267     * NOTE: Keep this in sync with the dexopt expectations! Right now that is a list of split
268     * dependencies {@see encodeClassLoader} separated by ';'.
269     */
270    /*package*/ static String encodeClassLoaderChain(String cl1, String cl2) {
271        if (cl1.equals(PackageDexOptimizer.SKIP_SHARED_LIBRARY_CHECK) ||
272                cl2.equals(PackageDexOptimizer.SKIP_SHARED_LIBRARY_CHECK)) {
273            return PackageDexOptimizer.SKIP_SHARED_LIBRARY_CHECK;
274        }
275        if (cl1.isEmpty()) return cl2;
276        if (cl2.isEmpty()) return cl1;
277        return cl1 + ";" + cl2;
278    }
279
280    /**
281     * Compute the class loader context for the dex files present in the classpath of the first
282     * class loader from the given list (referred in the code as the {@code loadingClassLoader}).
283     * Each dex files gets its own class loader context in the returned array.
284     *
285     * Example:
286     *    If classLoadersNames = {"dalvik.system.DelegateLastClassLoader",
287     *    "dalvik.system.PathClassLoader"} and classPaths = {"foo.dex:bar.dex", "other.dex"}
288     *    The output will be
289     *    {"DLC[];PCL[other.dex]", "DLC[foo.dex];PCL[other.dex]"}
290     *    with "DLC[];PCL[other.dex]" being the context for "foo.dex"
291     *    and "DLC[foo.dex];PCL[other.dex]" the context for "bar.dex".
292     *
293     * If any of the class loaders names is unsupported the method will return null.
294     *
295     * The argument lists must be non empty and of the same size.
296     *
297     * @param classLoadersNames the names of the class loaders present in the loading chain. The
298     *    list encodes the class loader chain in the natural order. The first class loader has
299     *    the second one as its parent and so on.
300     * @param classPaths the class paths for the elements of {@param classLoadersNames}. The
301     *     the first element corresponds to the first class loader and so on. A classpath is
302     *     represented as a list of dex files separated by {@code File.pathSeparator}.
303     *     The return context will be for the dex files found in the first class path.
304     */
305    /*package*/ static String[] processContextForDexLoad(List<String> classLoadersNames,
306            List<String> classPaths) {
307        if (classLoadersNames.size() != classPaths.size()) {
308            throw new IllegalArgumentException(
309                    "The size of the class loader names and the dex paths do not match.");
310        }
311        if (classLoadersNames.isEmpty()) {
312            throw new IllegalArgumentException("Empty classLoadersNames");
313        }
314
315        // Compute the context for the parent class loaders.
316        String parentContext = "";
317        // We know that these lists are actually ArrayLists so getting the elements by index
318        // is fine (they come over binder). Even if something changes we expect the sizes to be
319        // very small and it shouldn't matter much.
320        for (int i = 1; i < classLoadersNames.size(); i++) {
321            if (!ClassLoaderFactory.isValidClassLoaderName(classLoadersNames.get(i))) {
322                return null;
323            }
324            String classpath = encodeClasspath(classPaths.get(i).split(File.pathSeparator));
325            parentContext = encodeClassLoaderChain(parentContext,
326                    encodeClassLoader(classpath, classLoadersNames.get(i)));
327        }
328
329        // Now compute the class loader context for each dex file from the first classpath.
330        String loadingClassLoader = classLoadersNames.get(0);
331        if (!ClassLoaderFactory.isValidClassLoaderName(loadingClassLoader)) {
332            return null;
333        }
334        String[] loadedDexPaths = classPaths.get(0).split(File.pathSeparator);
335        String[] loadedDexPathsContext = new String[loadedDexPaths.length];
336        String currentLoadedDexPathClasspath = "";
337        for (int i = 0; i < loadedDexPaths.length; i++) {
338            String dexPath = loadedDexPaths[i];
339            String currentContext = encodeClassLoader(
340                    currentLoadedDexPathClasspath, loadingClassLoader);
341            loadedDexPathsContext[i] = encodeClassLoaderChain(currentContext, parentContext);
342            currentLoadedDexPathClasspath = encodeClasspath(currentLoadedDexPathClasspath, dexPath);
343        }
344        return loadedDexPathsContext;
345    }
346
347    /**
348     * Returns the relative paths of the splits declared by the application {@code info}.
349     * Assumes that the application declares a non-null array of splits.
350     */
351    private static String[] getSplitRelativeCodePaths(ApplicationInfo info) {
352        String baseCodePath = new File(info.getBaseCodePath()).getParent();
353        String[] splitCodePaths = info.getSplitCodePaths();
354        String[] splitRelativeCodePaths = new String[splitCodePaths.length];
355        for (int i = 0; i < splitCodePaths.length; i++) {
356            File pathFile = new File(splitCodePaths[i]);
357            splitRelativeCodePaths[i] = pathFile.getName();
358            // Sanity check that the base paths of the splits are all the same.
359            String basePath = pathFile.getParent();
360            if (!basePath.equals(baseCodePath)) {
361                Slog.wtf(TAG, "Split paths have different base paths: " + basePath + " and " +
362                        baseCodePath);
363            }
364        }
365        return splitRelativeCodePaths;
366    }
367}
368