1/* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "format/binary/TableFlattener.h" 18 19#include <algorithm> 20#include <numeric> 21#include <sstream> 22#include <type_traits> 23 24#include "android-base/logging.h" 25#include "android-base/macros.h" 26#include "android-base/stringprintf.h" 27 28#include "ResourceTable.h" 29#include "ResourceValues.h" 30#include "SdkConstants.h" 31#include "ValueVisitor.h" 32#include "format/binary/ChunkWriter.h" 33#include "format/binary/ResourceTypeExtensions.h" 34#include "util/BigBuffer.h" 35 36using namespace android; 37 38namespace aapt { 39 40namespace { 41 42template <typename T> 43static bool cmp_ids(const T* a, const T* b) { 44 return a->id.value() < b->id.value(); 45} 46 47static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) { 48 if (len == 0) { 49 return; 50 } 51 52 size_t i; 53 const char16_t* src_data = src.data(); 54 for (i = 0; i < len - 1 && i < src.size(); i++) { 55 dst[i] = util::HostToDevice16((uint16_t)src_data[i]); 56 } 57 dst[i] = 0; 58} 59 60static bool cmp_style_entries(const Style::Entry& a, const Style::Entry& b) { 61 if (a.key.id) { 62 if (b.key.id) { 63 return a.key.id.value() < b.key.id.value(); 64 } 65 return true; 66 } else if (!b.key.id) { 67 return a.key.name.value() < b.key.name.value(); 68 } 69 return false; 70} 71 72struct FlatEntry { 73 ResourceEntry* entry; 74 Value* value; 75 76 // The entry string pool index to the entry's name. 77 uint32_t entry_key; 78}; 79 80class MapFlattenVisitor : public ValueVisitor { 81 public: 82 using ValueVisitor::Visit; 83 84 MapFlattenVisitor(ResTable_entry_ext* out_entry, BigBuffer* buffer) 85 : out_entry_(out_entry), buffer_(buffer) { 86 } 87 88 void Visit(Attribute* attr) override { 89 { 90 Reference key = Reference(ResourceId(ResTable_map::ATTR_TYPE)); 91 BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->type_mask); 92 FlattenEntry(&key, &val); 93 } 94 95 if (attr->min_int != std::numeric_limits<int32_t>::min()) { 96 Reference key = Reference(ResourceId(ResTable_map::ATTR_MIN)); 97 BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->min_int)); 98 FlattenEntry(&key, &val); 99 } 100 101 if (attr->max_int != std::numeric_limits<int32_t>::max()) { 102 Reference key = Reference(ResourceId(ResTable_map::ATTR_MAX)); 103 BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->max_int)); 104 FlattenEntry(&key, &val); 105 } 106 107 for (Attribute::Symbol& s : attr->symbols) { 108 BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value); 109 FlattenEntry(&s.symbol, &val); 110 } 111 } 112 113 void Visit(Style* style) override { 114 if (style->parent) { 115 const Reference& parent_ref = style->parent.value(); 116 CHECK(bool(parent_ref.id)) << "parent has no ID"; 117 out_entry_->parent.ident = util::HostToDevice32(parent_ref.id.value().id); 118 } 119 120 // Sort the style. 121 std::sort(style->entries.begin(), style->entries.end(), cmp_style_entries); 122 123 for (Style::Entry& entry : style->entries) { 124 FlattenEntry(&entry.key, entry.value.get()); 125 } 126 } 127 128 void Visit(Styleable* styleable) override { 129 for (auto& attr_ref : styleable->entries) { 130 BinaryPrimitive val(Res_value{}); 131 FlattenEntry(&attr_ref, &val); 132 } 133 } 134 135 void Visit(Array* array) override { 136 for (auto& item : array->elements) { 137 ResTable_map* out_entry = buffer_->NextBlock<ResTable_map>(); 138 FlattenValue(item.get(), out_entry); 139 out_entry->value.size = util::HostToDevice16(sizeof(out_entry->value)); 140 entry_count_++; 141 } 142 } 143 144 void Visit(Plural* plural) override { 145 const size_t count = plural->values.size(); 146 for (size_t i = 0; i < count; i++) { 147 if (!plural->values[i]) { 148 continue; 149 } 150 151 ResourceId q; 152 switch (i) { 153 case Plural::Zero: 154 q.id = android::ResTable_map::ATTR_ZERO; 155 break; 156 157 case Plural::One: 158 q.id = android::ResTable_map::ATTR_ONE; 159 break; 160 161 case Plural::Two: 162 q.id = android::ResTable_map::ATTR_TWO; 163 break; 164 165 case Plural::Few: 166 q.id = android::ResTable_map::ATTR_FEW; 167 break; 168 169 case Plural::Many: 170 q.id = android::ResTable_map::ATTR_MANY; 171 break; 172 173 case Plural::Other: 174 q.id = android::ResTable_map::ATTR_OTHER; 175 break; 176 177 default: 178 LOG(FATAL) << "unhandled plural type"; 179 break; 180 } 181 182 Reference key(q); 183 FlattenEntry(&key, plural->values[i].get()); 184 } 185 } 186 187 /** 188 * Call this after visiting a Value. This will finish any work that 189 * needs to be done to prepare the entry. 190 */ 191 void Finish() { 192 out_entry_->count = util::HostToDevice32(entry_count_); 193 } 194 195 private: 196 DISALLOW_COPY_AND_ASSIGN(MapFlattenVisitor); 197 198 void FlattenKey(Reference* key, ResTable_map* out_entry) { 199 CHECK(bool(key->id)) << "key has no ID"; 200 out_entry->name.ident = util::HostToDevice32(key->id.value().id); 201 } 202 203 void FlattenValue(Item* value, ResTable_map* out_entry) { 204 CHECK(value->Flatten(&out_entry->value)) << "flatten failed"; 205 } 206 207 void FlattenEntry(Reference* key, Item* value) { 208 ResTable_map* out_entry = buffer_->NextBlock<ResTable_map>(); 209 FlattenKey(key, out_entry); 210 FlattenValue(value, out_entry); 211 out_entry->value.size = util::HostToDevice16(sizeof(out_entry->value)); 212 entry_count_++; 213 } 214 215 ResTable_entry_ext* out_entry_; 216 BigBuffer* buffer_; 217 size_t entry_count_ = 0; 218}; 219 220class PackageFlattener { 221 public: 222 PackageFlattener(IAaptContext* context, ResourceTablePackage* package, 223 const std::map<size_t, std::string>* shared_libs, bool use_sparse_entries, 224 bool collapse_key_stringpool, const std::set<std::string>& whitelisted_resources) 225 : context_(context), 226 diag_(context->GetDiagnostics()), 227 package_(package), 228 shared_libs_(shared_libs), 229 use_sparse_entries_(use_sparse_entries), 230 collapse_key_stringpool_(collapse_key_stringpool), 231 whitelisted_resources_(whitelisted_resources) { 232 } 233 234 bool FlattenPackage(BigBuffer* buffer) { 235 ChunkWriter pkg_writer(buffer); 236 ResTable_package* pkg_header = pkg_writer.StartChunk<ResTable_package>(RES_TABLE_PACKAGE_TYPE); 237 pkg_header->id = util::HostToDevice32(package_->id.value()); 238 239 // AAPT truncated the package name, so do the same. 240 // Shared libraries require full package names, so don't truncate theirs. 241 if (context_->GetPackageType() != PackageType::kApp && 242 package_->name.size() >= arraysize(pkg_header->name)) { 243 diag_->Error(DiagMessage() << "package name '" << package_->name 244 << "' is too long. " 245 "Shared libraries cannot have truncated package names"); 246 return false; 247 } 248 249 // Copy the package name in device endianness. 250 strcpy16_htod(pkg_header->name, arraysize(pkg_header->name), util::Utf8ToUtf16(package_->name)); 251 252 // Serialize the types. We do this now so that our type and key strings 253 // are populated. We write those first. 254 BigBuffer type_buffer(1024); 255 FlattenTypes(&type_buffer); 256 257 pkg_header->typeStrings = util::HostToDevice32(pkg_writer.size()); 258 StringPool::FlattenUtf16(pkg_writer.buffer(), type_pool_, diag_); 259 260 pkg_header->keyStrings = util::HostToDevice32(pkg_writer.size()); 261 StringPool::FlattenUtf8(pkg_writer.buffer(), key_pool_, diag_); 262 263 // Append the types. 264 buffer->AppendBuffer(std::move(type_buffer)); 265 266 // If there are libraries (or if the package ID is 0x00), encode a library chunk. 267 if (package_->id.value() == 0x00 || !shared_libs_->empty()) { 268 FlattenLibrarySpec(buffer); 269 } 270 271 pkg_writer.Finish(); 272 return true; 273 } 274 275 private: 276 DISALLOW_COPY_AND_ASSIGN(PackageFlattener); 277 278 template <typename T, bool IsItem> 279 T* WriteEntry(FlatEntry* entry, BigBuffer* buffer) { 280 static_assert( 281 std::is_same<ResTable_entry, T>::value || std::is_same<ResTable_entry_ext, T>::value, 282 "T must be ResTable_entry or ResTable_entry_ext"); 283 284 T* result = buffer->NextBlock<T>(); 285 ResTable_entry* out_entry = (ResTable_entry*)result; 286 if (entry->entry->visibility.level == Visibility::Level::kPublic) { 287 out_entry->flags |= ResTable_entry::FLAG_PUBLIC; 288 } 289 290 if (entry->value->IsWeak()) { 291 out_entry->flags |= ResTable_entry::FLAG_WEAK; 292 } 293 294 if (!IsItem) { 295 out_entry->flags |= ResTable_entry::FLAG_COMPLEX; 296 } 297 298 out_entry->flags = util::HostToDevice16(out_entry->flags); 299 out_entry->key.index = util::HostToDevice32(entry->entry_key); 300 out_entry->size = util::HostToDevice16(sizeof(T)); 301 return result; 302 } 303 304 bool FlattenValue(FlatEntry* entry, BigBuffer* buffer) { 305 if (Item* item = ValueCast<Item>(entry->value)) { 306 WriteEntry<ResTable_entry, true>(entry, buffer); 307 Res_value* outValue = buffer->NextBlock<Res_value>(); 308 CHECK(item->Flatten(outValue)) << "flatten failed"; 309 outValue->size = util::HostToDevice16(sizeof(*outValue)); 310 } else { 311 ResTable_entry_ext* out_entry = WriteEntry<ResTable_entry_ext, false>(entry, buffer); 312 MapFlattenVisitor visitor(out_entry, buffer); 313 entry->value->Accept(&visitor); 314 visitor.Finish(); 315 } 316 return true; 317 } 318 319 bool FlattenConfig(const ResourceTableType* type, const ConfigDescription& config, 320 const size_t num_total_entries, std::vector<FlatEntry>* entries, 321 BigBuffer* buffer) { 322 CHECK(num_total_entries != 0); 323 CHECK(num_total_entries <= std::numeric_limits<uint16_t>::max()); 324 325 ChunkWriter type_writer(buffer); 326 ResTable_type* type_header = type_writer.StartChunk<ResTable_type>(RES_TABLE_TYPE_TYPE); 327 type_header->id = type->id.value(); 328 type_header->config = config; 329 type_header->config.swapHtoD(); 330 331 std::vector<uint32_t> offsets; 332 offsets.resize(num_total_entries, 0xffffffffu); 333 334 BigBuffer values_buffer(512); 335 for (FlatEntry& flat_entry : *entries) { 336 CHECK(static_cast<size_t>(flat_entry.entry->id.value()) < num_total_entries); 337 offsets[flat_entry.entry->id.value()] = values_buffer.size(); 338 if (!FlattenValue(&flat_entry, &values_buffer)) { 339 diag_->Error(DiagMessage() 340 << "failed to flatten resource '" 341 << ResourceNameRef(package_->name, type->type, flat_entry.entry->name) 342 << "' for configuration '" << config << "'"); 343 return false; 344 } 345 } 346 347 bool sparse_encode = use_sparse_entries_; 348 349 // Only sparse encode if the entries will be read on platforms O+. 350 sparse_encode = 351 sparse_encode && (context_->GetMinSdkVersion() >= SDK_O || config.sdkVersion >= SDK_O); 352 353 // Only sparse encode if the offsets are representable in 2 bytes. 354 sparse_encode = 355 sparse_encode && (values_buffer.size() / 4u) <= std::numeric_limits<uint16_t>::max(); 356 357 // Only sparse encode if the ratio of populated entries to total entries is below some 358 // threshold. 359 sparse_encode = 360 sparse_encode && ((100 * entries->size()) / num_total_entries) < kSparseEncodingThreshold; 361 362 if (sparse_encode) { 363 type_header->entryCount = util::HostToDevice32(entries->size()); 364 type_header->flags |= ResTable_type::FLAG_SPARSE; 365 ResTable_sparseTypeEntry* indices = 366 type_writer.NextBlock<ResTable_sparseTypeEntry>(entries->size()); 367 for (size_t i = 0; i < num_total_entries; i++) { 368 if (offsets[i] != ResTable_type::NO_ENTRY) { 369 CHECK((offsets[i] & 0x03) == 0); 370 indices->idx = util::HostToDevice16(i); 371 indices->offset = util::HostToDevice16(offsets[i] / 4u); 372 indices++; 373 } 374 } 375 } else { 376 type_header->entryCount = util::HostToDevice32(num_total_entries); 377 uint32_t* indices = type_writer.NextBlock<uint32_t>(num_total_entries); 378 for (size_t i = 0; i < num_total_entries; i++) { 379 indices[i] = util::HostToDevice32(offsets[i]); 380 } 381 } 382 383 type_header->entriesStart = util::HostToDevice32(type_writer.size()); 384 type_writer.buffer()->AppendBuffer(std::move(values_buffer)); 385 type_writer.Finish(); 386 return true; 387 } 388 389 std::vector<ResourceTableType*> CollectAndSortTypes() { 390 std::vector<ResourceTableType*> sorted_types; 391 for (auto& type : package_->types) { 392 if (type->type == ResourceType::kStyleable) { 393 // Styleables aren't real Resource Types, they are represented in the 394 // R.java file. 395 continue; 396 } 397 398 CHECK(bool(type->id)) << "type must have an ID set"; 399 400 sorted_types.push_back(type.get()); 401 } 402 std::sort(sorted_types.begin(), sorted_types.end(), cmp_ids<ResourceTableType>); 403 return sorted_types; 404 } 405 406 std::vector<ResourceEntry*> CollectAndSortEntries(ResourceTableType* type) { 407 // Sort the entries by entry ID. 408 std::vector<ResourceEntry*> sorted_entries; 409 for (auto& entry : type->entries) { 410 CHECK(bool(entry->id)) << "entry must have an ID set"; 411 sorted_entries.push_back(entry.get()); 412 } 413 std::sort(sorted_entries.begin(), sorted_entries.end(), cmp_ids<ResourceEntry>); 414 return sorted_entries; 415 } 416 417 bool FlattenTypeSpec(ResourceTableType* type, std::vector<ResourceEntry*>* sorted_entries, 418 BigBuffer* buffer) { 419 ChunkWriter type_spec_writer(buffer); 420 ResTable_typeSpec* spec_header = 421 type_spec_writer.StartChunk<ResTable_typeSpec>(RES_TABLE_TYPE_SPEC_TYPE); 422 spec_header->id = type->id.value(); 423 424 if (sorted_entries->empty()) { 425 type_spec_writer.Finish(); 426 return true; 427 } 428 429 // We can't just take the size of the vector. There may be holes in the 430 // entry ID space. 431 // Since the entries are sorted by ID, the last one will be the biggest. 432 const size_t num_entries = sorted_entries->back()->id.value() + 1; 433 434 spec_header->entryCount = util::HostToDevice32(num_entries); 435 436 // Reserve space for the masks of each resource in this type. These 437 // show for which configuration axis the resource changes. 438 uint32_t* config_masks = type_spec_writer.NextBlock<uint32_t>(num_entries); 439 440 const size_t actual_num_entries = sorted_entries->size(); 441 for (size_t entryIndex = 0; entryIndex < actual_num_entries; entryIndex++) { 442 ResourceEntry* entry = sorted_entries->at(entryIndex); 443 444 // Populate the config masks for this entry. 445 446 if (entry->visibility.level == Visibility::Level::kPublic) { 447 config_masks[entry->id.value()] |= util::HostToDevice32(ResTable_typeSpec::SPEC_PUBLIC); 448 } 449 450 if (entry->overlayable) { 451 config_masks[entry->id.value()] |= 452 util::HostToDevice32(ResTable_typeSpec::SPEC_OVERLAYABLE); 453 } 454 455 const size_t config_count = entry->values.size(); 456 for (size_t i = 0; i < config_count; i++) { 457 const ConfigDescription& config = entry->values[i]->config; 458 for (size_t j = i + 1; j < config_count; j++) { 459 config_masks[entry->id.value()] |= 460 util::HostToDevice32(config.diff(entry->values[j]->config)); 461 } 462 } 463 } 464 type_spec_writer.Finish(); 465 return true; 466 } 467 468 bool FlattenTypes(BigBuffer* buffer) { 469 // Sort the types by their IDs. They will be inserted into the StringPool in 470 // this order. 471 std::vector<ResourceTableType*> sorted_types = CollectAndSortTypes(); 472 473 size_t expected_type_id = 1; 474 for (ResourceTableType* type : sorted_types) { 475 // If there is a gap in the type IDs, fill in the StringPool 476 // with empty values until we reach the ID we expect. 477 while (type->id.value() > expected_type_id) { 478 std::stringstream type_name; 479 type_name << "?" << expected_type_id; 480 type_pool_.MakeRef(type_name.str()); 481 expected_type_id++; 482 } 483 expected_type_id++; 484 type_pool_.MakeRef(to_string(type->type)); 485 486 std::vector<ResourceEntry*> sorted_entries = CollectAndSortEntries(type); 487 if (sorted_entries.empty()) { 488 continue; 489 } 490 491 if (!FlattenTypeSpec(type, &sorted_entries, buffer)) { 492 return false; 493 } 494 495 // Since the entries are sorted by ID, the last ID will be the largest. 496 const size_t num_entries = sorted_entries.back()->id.value() + 1; 497 498 // The binary resource table lists resource entries for each 499 // configuration. 500 // We store them inverted, where a resource entry lists the values for 501 // each 502 // configuration available. Here we reverse this to match the binary 503 // table. 504 std::map<ConfigDescription, std::vector<FlatEntry>> config_to_entry_list_map; 505 506 // hardcoded string uses characters which make it an invalid resource name 507 const std::string obfuscated_resource_name = "0_resource_name_obfuscated"; 508 509 for (ResourceEntry* entry : sorted_entries) { 510 uint32_t local_key_index; 511 if (!collapse_key_stringpool_ || 512 whitelisted_resources_.find(entry->name) != whitelisted_resources_.end()) { 513 local_key_index = (uint32_t)key_pool_.MakeRef(entry->name).index(); 514 } else { 515 // resource isn't whitelisted, add it as obfuscated value 516 local_key_index = (uint32_t)key_pool_.MakeRef(obfuscated_resource_name).index(); 517 } 518 // Group values by configuration. 519 for (auto& config_value : entry->values) { 520 config_to_entry_list_map[config_value->config].push_back( 521 FlatEntry{entry, config_value->value.get(), local_key_index}); 522 } 523 } 524 525 // Flatten a configuration value. 526 for (auto& entry : config_to_entry_list_map) { 527 if (!FlattenConfig(type, entry.first, num_entries, &entry.second, buffer)) { 528 return false; 529 } 530 } 531 } 532 return true; 533 } 534 535 void FlattenLibrarySpec(BigBuffer* buffer) { 536 ChunkWriter lib_writer(buffer); 537 ResTable_lib_header* lib_header = 538 lib_writer.StartChunk<ResTable_lib_header>(RES_TABLE_LIBRARY_TYPE); 539 540 const size_t num_entries = (package_->id.value() == 0x00 ? 1 : 0) + shared_libs_->size(); 541 CHECK(num_entries > 0); 542 543 lib_header->count = util::HostToDevice32(num_entries); 544 545 ResTable_lib_entry* lib_entry = buffer->NextBlock<ResTable_lib_entry>(num_entries); 546 if (package_->id.value() == 0x00) { 547 // Add this package 548 lib_entry->packageId = util::HostToDevice32(0x00); 549 strcpy16_htod(lib_entry->packageName, arraysize(lib_entry->packageName), 550 util::Utf8ToUtf16(package_->name)); 551 ++lib_entry; 552 } 553 554 for (auto& map_entry : *shared_libs_) { 555 lib_entry->packageId = util::HostToDevice32(map_entry.first); 556 strcpy16_htod(lib_entry->packageName, arraysize(lib_entry->packageName), 557 util::Utf8ToUtf16(map_entry.second)); 558 ++lib_entry; 559 } 560 lib_writer.Finish(); 561 } 562 563 IAaptContext* context_; 564 IDiagnostics* diag_; 565 ResourceTablePackage* package_; 566 const std::map<size_t, std::string>* shared_libs_; 567 bool use_sparse_entries_; 568 StringPool type_pool_; 569 StringPool key_pool_; 570 bool collapse_key_stringpool_; 571 const std::set<std::string>& whitelisted_resources_; 572}; 573 574} // namespace 575 576bool TableFlattener::Consume(IAaptContext* context, ResourceTable* table) { 577 // We must do this before writing the resources, since the string pool IDs may change. 578 table->string_pool.Prune(); 579 table->string_pool.Sort([](const StringPool::Context& a, const StringPool::Context& b) -> int { 580 int diff = util::compare(a.priority, b.priority); 581 if (diff == 0) { 582 diff = a.config.compare(b.config); 583 } 584 return diff; 585 }); 586 587 // Write the ResTable header. 588 ChunkWriter table_writer(buffer_); 589 ResTable_header* table_header = table_writer.StartChunk<ResTable_header>(RES_TABLE_TYPE); 590 table_header->packageCount = util::HostToDevice32(table->packages.size()); 591 592 // Flatten the values string pool. 593 StringPool::FlattenUtf8(table_writer.buffer(), table->string_pool, 594 context->GetDiagnostics()); 595 596 BigBuffer package_buffer(1024); 597 598 // Flatten each package. 599 for (auto& package : table->packages) { 600 if (context->GetPackageType() == PackageType::kApp) { 601 // Write a self mapping entry for this package if the ID is non-standard (0x7f). 602 const uint8_t package_id = package->id.value(); 603 if (package_id != kFrameworkPackageId && package_id != kAppPackageId) { 604 auto result = table->included_packages_.insert({package_id, package->name}); 605 if (!result.second && result.first->second != package->name) { 606 // A mapping for this package ID already exists, and is a different package. Error! 607 context->GetDiagnostics()->Error( 608 DiagMessage() << android::base::StringPrintf( 609 "can't map package ID %02x to '%s'. Already mapped to '%s'", package_id, 610 package->name.c_str(), result.first->second.c_str())); 611 return false; 612 } 613 } 614 } 615 616 PackageFlattener flattener(context, package.get(), &table->included_packages_, 617 options_.use_sparse_entries, options_.collapse_key_stringpool, 618 options_.whitelisted_resources); 619 if (!flattener.FlattenPackage(&package_buffer)) { 620 return false; 621 } 622 } 623 624 // Finally merge all the packages into the main buffer. 625 table_writer.buffer()->AppendBuffer(std::move(package_buffer)); 626 table_writer.Finish(); 627 return true; 628} 629 630} // namespace aapt 631