1/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef C2_H_
18#define C2_H_
19
20#include <errno.h>
21
22#include <string>
23
24/** nanoseconds with arbitrary origin. */
25typedef int64_t c2_nsecs_t;
26
27/** \mainpage Codec2
28 *
29 * Codec2 is a generic frame-based data processing API.
30 *
31 * The media subsystem accesses components via the \ref API.
32 */
33
34/** \ingroup API
35 *
36 * The Codec2 API defines the operation of data processing components and their interaction with
37 * the rest of the system.
38 *
39 * Coding Conventions
40 *
41 * Mitigating Binary Compatibility.
42 *
43 * While full binary compatibility is not a goal of the API (due to our use of STL), we try to
44 * mitigate binary breaks by adhering to the following conventions:
45 *
46 * - at most one vtable with placeholder virtual methods
47 * - all optional/placeholder virtual methods returning a c2_status_t, with C2_OMITTED not requiring
48 *   any update to input/output arguments.
49 * - limiting symbol export of inline methods
50 * - use of pimpl (or shared-pimpl)
51 *
52 * Naming
53 *
54 * - all classes and types prefix with C2
55 * - classes for internal use prefix with _C2
56 * - enum values in global namespace prefix with C2_ all caps
57 * - enum values inside classes have no C2_ prefix as class already has it
58 * - supporting two kinds of enum naming: all-caps and kCamelCase
59 * \todo revisit kCamelCase for param-type
60 *
61 * Aspects
62 *
63 * Aspects define certain common behavior across a group of objects.
64 * - classes whose name matches _C2.*Aspect
65 * - only protected constructors
66 * - no desctructor and copiable
67 * - all methods are inline or static (this is opposite of the interface paradigm where all methods
68 *   are virtual, which would not work due to the at most one vtable rule.)
69 * - only private variables (this prevents subclasses interfering with the aspects.)
70 */
71
72/// \defgroup types Common Types
73/// @{
74
75/**
76 * C2String: basic string implementation
77 */
78typedef std::string C2String;
79
80/**
81 * C2StringLiteral: basic string literal implementation.
82 * \note these are never owned by any object, and can only refer to C string literals.
83 */
84typedef const char *C2StringLiteral;
85
86/**
87 * c2_status_t: status codes used.
88 */
89enum c2_status_t : int32_t {
90/*
91 * Use POSIX errno constants.
92 */
93    C2_OK        = 0,            ///< operation completed successfully
94
95    // bad input
96    C2_BAD_VALUE = EINVAL,       ///< argument has invalid value (user error)
97    C2_BAD_INDEX = ENXIO,        ///< argument uses invalid index (user error)
98    C2_CANNOT_DO = ENOTSUP,      ///< argument/index is valid but not possible
99
100    // bad sequencing of events
101    C2_DUPLICATE = EEXIST,       ///< object already exists
102    C2_NOT_FOUND = ENOENT,       ///< object not found
103    C2_BAD_STATE = EPERM,        ///< operation is not permitted in the current state
104    C2_BLOCKING  = EWOULDBLOCK,  ///< operation would block but blocking is not permitted
105    C2_CANCELED  = EINTR,        ///< operation interrupted/canceled
106
107    // bad environment
108    C2_NO_MEMORY = ENOMEM,       ///< not enough memory to complete operation
109    C2_REFUSED   = EACCES,       ///< missing permission to complete operation
110
111    C2_TIMED_OUT = ETIMEDOUT,    ///< operation did not complete within timeout
112
113    // bad versioning
114    C2_OMITTED   = ENOSYS,       ///< operation is not implemented/supported (optional only)
115
116    // unknown fatal
117    C2_CORRUPTED = EFAULT,       ///< some unexpected error prevented the operation
118    C2_NO_INIT   = ENODEV,       ///< status has not been initialized
119};
120
121/**
122 * Type that describes the desired blocking behavior for variable blocking calls. Blocking in this
123 * API is used in a somewhat modified meaning such that operations that merely update variables
124 * protected by mutexes are still considered "non-blocking" (always used in quotes).
125 */
126enum c2_blocking_t : int32_t {
127    /**
128     * The operation SHALL be "non-blocking". This means that it shall not perform any file
129     * operations, or call/wait on other processes. It may use a protected region as long as the
130     * mutex is never used to protect code that is otherwise "may block".
131     */
132    C2_DONT_BLOCK = false,
133    /**
134     * The operation MAY be temporarily blocking.
135     */
136    C2_MAY_BLOCK = true,
137};
138
139/// @}
140
141/// \defgroup utils Utilities
142/// @{
143
144#define C2_DO_NOT_COPY(type) \
145    type& operator=(const type &) = delete; \
146    type(const type &) = delete; \
147
148#define C2_DEFAULT_MOVE(type) \
149    type& operator=(type &&) = default; \
150    type(type &&) = default; \
151
152#define C2_ALLOW_OVERFLOW __attribute__((no_sanitize("integer")))
153#define C2_CONST    __attribute__((const))
154#define C2_HIDE     __attribute__((visibility("hidden")))
155#define C2_INLINE   inline C2_HIDE
156#define C2_INTERNAL __attribute__((internal_linkage))
157#define C2_PACK     __attribute__((aligned(4)))
158#define C2_PURE     __attribute__((pure))
159
160#define DEFINE_OTHER_COMPARISON_OPERATORS(type) \
161    inline bool operator!=(const type &other) const { return !(*this == other); } \
162    inline bool operator<=(const type &other) const { return (*this == other) || (*this < other); } \
163    inline bool operator>=(const type &other) const { return !(*this < other); } \
164    inline bool operator>(const type &other) const { return !(*this < other) && !(*this == other); }
165
166#define DEFINE_FIELD_BASED_COMPARISON_OPERATORS(type, field) \
167    inline bool operator<(const type &other) const { return field < other.field; } \
168    inline bool operator==(const type &other) const { return field == other.field; } \
169    DEFINE_OTHER_COMPARISON_OPERATORS(type)
170
171#define DEFINE_FIELD_AND_MASK_BASED_COMPARISON_OPERATORS(type, field, mask) \
172    inline bool operator<(const type &other) const { \
173        return (field & mask) < (other.field & (mask)); \
174    } \
175    inline bool operator==(const type &other) const { \
176        return (field & mask) == (other.field & (mask)); \
177    } \
178    DEFINE_OTHER_COMPARISON_OPERATORS(type)
179
180#define DEFINE_ENUM_OPERATORS(etype) \
181    inline constexpr etype operator|(etype a, etype b) { return (etype)(std::underlying_type<etype>::type(a) | std::underlying_type<etype>::type(b)); } \
182    inline constexpr etype &operator|=(etype &a, etype b) { a = (etype)(std::underlying_type<etype>::type(a) | std::underlying_type<etype>::type(b)); return a; } \
183    inline constexpr etype operator&(etype a, etype b) { return (etype)(std::underlying_type<etype>::type(a) & std::underlying_type<etype>::type(b)); } \
184    inline constexpr etype &operator&=(etype &a, etype b) { a = (etype)(std::underlying_type<etype>::type(a) & std::underlying_type<etype>::type(b)); return a; } \
185    inline constexpr etype operator^(etype a, etype b) { return (etype)(std::underlying_type<etype>::type(a) ^ std::underlying_type<etype>::type(b)); } \
186    inline constexpr etype &operator^=(etype &a, etype b) { a = (etype)(std::underlying_type<etype>::type(a) ^ std::underlying_type<etype>::type(b)); return a; } \
187    inline constexpr etype operator~(etype a) { return (etype)(~std::underlying_type<etype>::type(a)); }
188
189template<typename T, typename B>
190class C2_HIDE c2_cntr_t;
191
192/// \cond INTERNAL
193
194/// \defgroup utils_internal
195/// @{
196
197template<typename T>
198struct C2_HIDE _c2_cntr_compat_helper {
199    template<typename U, typename E=typename std::enable_if<std::is_integral<U>::value>::type>
200    C2_ALLOW_OVERFLOW
201    inline static constexpr T get(const U &value) {
202        return T(value);
203    }
204
205    template<typename U, typename E=typename std::enable_if<(sizeof(U) >= sizeof(T))>::type>
206    C2_ALLOW_OVERFLOW
207    inline static constexpr T get(const c2_cntr_t<U, void> &value) {
208        return T(value.mValue);
209    }
210};
211
212/// @}
213
214/// \endcond
215
216/**
217 * Integral counter type.
218 *
219 * This is basically an unsigned integral type that is NEVER checked for overflow/underflow - and
220 * comparison operators are redefined.
221 *
222 * \note Comparison of counter types is not fully transitive, e.g.
223 * it could be that a > b > c but a !> c.
224 * std::less<>, greater<>, less_equal<> and greater_equal<> specializations yield total ordering,
225 * but may not match semantic ordering of the values.
226 *
227 * Technically: counter types represent integer values: A * 2^N + value, where A can be arbitrary.
228 * This makes addition, subtraction, multiplication (as well as bitwise operations) well defined.
229 * However, division is in general not well defined, as the result may depend on A. This is also
230 * true for logical operators and boolean conversion.
231 *
232 * Even though well defined, bitwise operators are not implemented for counter types as they are not
233 * meaningful.
234 */
235template<typename T, typename B=typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value>::type>
236class C2_HIDE c2_cntr_t {
237    using compat = _c2_cntr_compat_helper<T>;
238
239    T mValue;
240    constexpr static T HALF_RANGE = T(~0) ^ (T(~0) >> 1);
241
242    template<typename U>
243    friend struct _c2_cntr_compat_helper;
244public:
245
246    /**
247     * Default constructor. Initialized counter to 0.
248     */
249    inline constexpr c2_cntr_t() : mValue(T(0)) {}
250
251    /**
252     * Construct from a compatible type.
253     */
254    template<typename U>
255    inline constexpr c2_cntr_t(const U &value) : mValue(compat::get(value)) {}
256
257    /**
258     * Peek as underlying signed type.
259     */
260    C2_ALLOW_OVERFLOW
261    inline constexpr typename std::make_signed<T>::type peek() const {
262        return static_cast<typename std::make_signed<T>::type>(mValue);
263    }
264
265    /**
266     * Peek as underlying unsigned type.
267     */
268    inline constexpr T peeku() const {
269        return mValue;
270    }
271
272    /**
273     * Peek as long long - e.g. for printing.
274     */
275    C2_ALLOW_OVERFLOW
276    inline constexpr long long peekll() const {
277        return (long long)mValue;
278    }
279
280    /**
281     * Peek as unsigned long long - e.g. for printing.
282     */
283    C2_ALLOW_OVERFLOW
284    inline constexpr unsigned long long peekull() const {
285        return (unsigned long long)mValue;
286    }
287
288    /**
289     * Convert to a smaller counter type. This is always safe.
290     */
291    template<typename U, typename E=typename std::enable_if<(sizeof(U) < sizeof(T))>::type>
292    inline operator c2_cntr_t<U>() {
293        return c2_cntr_t<U>(mValue);
294    }
295
296    /**
297     * Arithmetic operators
298     */
299
300#define DEFINE_C2_CNTR_BINARY_OP(attrib, op, op_assign) \
301    template<typename U> \
302    attrib inline c2_cntr_t<T>& operator op_assign(const U &value) { \
303        mValue op_assign compat::get(value); \
304        return *this; \
305    } \
306    \
307    template<typename U, typename E=decltype(compat::get(U(0)))> \
308    attrib inline constexpr c2_cntr_t<T> operator op(const U &value) const { \
309        return c2_cntr_t<T>(mValue op compat::get(value)); \
310    } \
311    \
312    template<typename U, typename E=typename std::enable_if<(sizeof(U) < sizeof(T))>::type> \
313    attrib inline constexpr c2_cntr_t<U> operator op(const c2_cntr_t<U> &value) const { \
314        return c2_cntr_t<U>(U(mValue) op value.peeku()); \
315    }
316
317#define DEFINE_C2_CNTR_UNARY_OP(attrib, op) \
318    attrib inline constexpr c2_cntr_t<T> operator op() const { \
319        return c2_cntr_t<T>(op mValue); \
320    }
321
322#define DEFINE_C2_CNTR_CREMENT_OP(attrib, op) \
323    attrib inline c2_cntr_t<T> &operator op() { \
324        op mValue; \
325        return *this; \
326    } \
327    attrib inline c2_cntr_t<T> operator op(int) { \
328        return c2_cntr_t<T, void>(mValue op); \
329    }
330
331    DEFINE_C2_CNTR_BINARY_OP(C2_ALLOW_OVERFLOW, +, +=)
332    DEFINE_C2_CNTR_BINARY_OP(C2_ALLOW_OVERFLOW, -, -=)
333    DEFINE_C2_CNTR_BINARY_OP(C2_ALLOW_OVERFLOW, *, *=)
334
335    DEFINE_C2_CNTR_UNARY_OP(C2_ALLOW_OVERFLOW, -)
336    DEFINE_C2_CNTR_UNARY_OP(C2_ALLOW_OVERFLOW, +)
337
338    DEFINE_C2_CNTR_CREMENT_OP(C2_ALLOW_OVERFLOW, ++)
339    DEFINE_C2_CNTR_CREMENT_OP(C2_ALLOW_OVERFLOW, --)
340
341    template<typename U, typename E=typename std::enable_if<std::is_unsigned<U>::value>::type>
342    C2_ALLOW_OVERFLOW
343    inline constexpr c2_cntr_t<T> operator<<(const U &value) const {
344        return c2_cntr_t<T>(mValue << value);
345    }
346
347    template<typename U, typename E=typename std::enable_if<std::is_unsigned<U>::value>::type>
348    C2_ALLOW_OVERFLOW
349    inline c2_cntr_t<T> &operator<<=(const U &value) {
350        mValue <<= value;
351        return *this;
352    }
353
354    /**
355     * Comparison operators
356     */
357    C2_ALLOW_OVERFLOW
358    inline constexpr bool operator<=(const c2_cntr_t<T> &other) const {
359        return T(other.mValue - mValue) < HALF_RANGE;
360    }
361
362    C2_ALLOW_OVERFLOW
363    inline constexpr bool operator>=(const c2_cntr_t<T> &other) const {
364        return T(mValue - other.mValue) < HALF_RANGE;
365    }
366
367    inline constexpr bool operator==(const c2_cntr_t<T> &other) const {
368        return mValue == other.mValue;
369    }
370
371    inline constexpr bool operator!=(const c2_cntr_t<T> &other) const {
372        return !(*this == other);
373    }
374
375    inline constexpr bool operator<(const c2_cntr_t<T> &other) const {
376        return *this <= other && *this != other;
377    }
378
379    inline constexpr bool operator>(const c2_cntr_t<T> &other) const {
380        return *this >= other && *this != other;
381    }
382};
383
384template<typename U, typename T, typename E=typename std::enable_if<std::is_integral<U>::value>::type>
385inline constexpr c2_cntr_t<T> operator+(const U &a, const c2_cntr_t<T> &b) {
386    return b + a;
387}
388
389template<typename U, typename T, typename E=typename std::enable_if<std::is_integral<U>::value>::type>
390inline constexpr c2_cntr_t<T> operator-(const U &a, const c2_cntr_t<T> &b) {
391    return c2_cntr_t<T>(a) - b;
392}
393
394template<typename U, typename T, typename E=typename std::enable_if<std::is_integral<U>::value>::type>
395inline constexpr c2_cntr_t<T> operator*(const U &a, const c2_cntr_t<T> &b) {
396    return b * a;
397}
398
399typedef c2_cntr_t<uint32_t> c2_cntr32_t; /** 32-bit counter type */
400typedef c2_cntr_t<uint64_t> c2_cntr64_t; /** 64-bit counter type */
401
402/// \cond INTERNAL
403
404/// \defgroup utils_internal
405/// @{
406
407template<typename... T> struct c2_types;
408
409/** specialization for a single type */
410template<typename T>
411struct c2_types<T> {
412    typedef typename std::decay<T>::type wide_type;
413    typedef wide_type narrow_type;
414    typedef wide_type min_type; // type for min(T...)
415};
416
417/** specialization for two types */
418template<typename T, typename U>
419struct c2_types<T, U> {
420    static_assert(std::is_floating_point<T>::value == std::is_floating_point<U>::value,
421                  "mixing floating point and non-floating point types is disallowed");
422    static_assert(std::is_signed<T>::value == std::is_signed<U>::value,
423                  "mixing signed and unsigned types is disallowed");
424
425    typedef typename std::decay<
426            decltype(true ? std::declval<T>() : std::declval<U>())>::type wide_type;
427    typedef typename std::decay<
428            typename std::conditional<sizeof(T) < sizeof(U), T, U>::type>::type narrow_type;
429    typedef typename std::conditional<
430            std::is_signed<T>::value, wide_type, narrow_type>::type min_type;
431};
432
433/// @}
434
435/// \endcond
436
437/**
438 * Type support utility class. Only supports similar classes, such as:
439 * - all floating point
440 * - all unsigned/all signed
441 * - all pointer
442 */
443template<typename T, typename U, typename... V>
444struct c2_types<T, U, V...> {
445    /** Common type that accommodates all template parameter types. */
446    typedef typename c2_types<typename c2_types<T, U>::wide_type, V...>::wide_type wide_type;
447    /** Narrowest type of the template parameter types. */
448    typedef typename c2_types<typename c2_types<T, U>::narrow_type, V...>::narrow_type narrow_type;
449    /** Type that accommodates the minimum value for any input for the template parameter types. */
450    typedef typename c2_types<typename c2_types<T, U>::min_type, V...>::min_type min_type;
451};
452
453/**
454 *  \ingroup utils_internal
455 * specialization for two values */
456template<typename T, typename U>
457inline constexpr typename c2_types<T, U>::wide_type c2_max(const T a, const U b) {
458    typedef typename c2_types<T, U>::wide_type wide_type;
459    return ({ wide_type a_(a), b_(b); a_ > b_ ? a_ : b_; });
460}
461
462/**
463 * Finds the maximum value of a list of "similarly typed" values.
464 *
465 * This is an extension to std::max where the types do not have to be identical, and the smallest
466 * resulting type is used that accommodates the argument types.
467 *
468 * \note Value types must be similar, e.g. all floating point, all pointers, all signed, or all
469 * unsigned.
470 *
471 * @return the largest of the input arguments.
472 */
473template<typename T, typename U, typename... V>
474constexpr typename c2_types<T, U, V...>::wide_type c2_max(const T a, const U b, const V ... c) {
475    typedef typename c2_types<T, U, V...>::wide_type wide_type;
476    return ({ wide_type a_(a), b_(c2_max(b, c...)); a_ > b_ ? a_ : b_; });
477}
478
479/**
480 *  \ingroup utils_internal
481 * specialization for two values */
482template<typename T, typename U>
483inline constexpr typename c2_types<T, U>::min_type c2_min(const T a, const U b) {
484    typedef typename c2_types<T, U>::wide_type wide_type;
485    return ({
486        wide_type a_(a), b_(b);
487        static_cast<typename c2_types<T, U>::min_type>(a_ < b_ ? a_ : b_);
488    });
489}
490
491/**
492 * Finds the minimum value of a list of "similarly typed" values.
493 *
494 * This is an extension to std::min where the types do not have to be identical, and the smallest
495 * resulting type is used that accommodates the argument types.
496 *
497 * \note Value types must be similar, e.g. all floating point, all pointers, all signed, or all
498 * unsigned.
499 *
500 * @return the smallest of the input arguments.
501 */
502template<typename T, typename U, typename... V>
503constexpr typename c2_types<T, U, V...>::min_type c2_min(const T a, const U b, const V ... c) {
504    typedef typename c2_types<U, V...>::min_type rest_type;
505    typedef typename c2_types<T, rest_type>::wide_type wide_type;
506    return ({
507        wide_type a_(a), b_(c2_min(b, c...));
508        static_cast<typename c2_types<T, rest_type>::min_type>(a_ < b_ ? a_ : b_);
509    });
510}
511
512/**
513 *  \ingroup utils_internal
514 */
515template<typename T, typename U, typename V>
516inline constexpr typename c2_types<T, V>::wide_type c2_clamp(const T a, const U b, const V c) {
517    typedef typename c2_types<T, U, V>::wide_type wide_type;
518    return ({
519        wide_type a_(a), b_(b), c_(c);
520        static_cast<typename c2_types<T, V>::wide_type>(b_ < a_ ? a_ : b_ > c_ ? c_ : b_);
521    });
522}
523
524/// @}
525
526#include <functional>
527template<typename T>
528struct std::less<::c2_cntr_t<T>> {
529    constexpr bool operator()(const ::c2_cntr_t<T> &lh, const ::c2_cntr_t<T> &rh) const {
530        return lh.peeku() < rh.peeku();
531    }
532};
533template<typename T>
534struct std::less_equal<::c2_cntr_t<T>> {
535    constexpr bool operator()(const ::c2_cntr_t<T> &lh, const ::c2_cntr_t<T> &rh) const {
536        return lh.peeku() <= rh.peeku();
537    }
538};
539template<typename T>
540struct std::greater<::c2_cntr_t<T>> {
541    constexpr bool operator()(const ::c2_cntr_t<T> &lh, const ::c2_cntr_t<T> &rh) const {
542        return lh.peeku() > rh.peeku();
543    }
544};
545template<typename T>
546struct std::greater_equal<::c2_cntr_t<T>> {
547    constexpr bool operator()(const ::c2_cntr_t<T> &lh, const ::c2_cntr_t<T> &rh) const {
548        return lh.peeku() >= rh.peeku();
549    }
550};
551
552#endif  // C2_H_
553