1/*
2 *  Licensed to the Apache Software Foundation (ASF) under one or more
3 *  contributor license agreements.  See the NOTICE file distributed with
4 *  this work for additional information regarding copyright ownership.
5 *  The ASF licenses this file to You under the Apache License, Version 2.0
6 *  (the "License"); you may not use this file except in compliance with
7 *  the License.  You may obtain a copy of the License at
8 *
9 *     http://www.apache.org/licenses/LICENSE-2.0
10 *
11 *  Unless required by applicable law or agreed to in writing, software
12 *  distributed under the License is distributed on an "AS IS" BASIS,
13 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 *  See the License for the specific language governing permissions and
15 *  limitations under the License.
16 */
17
18package org.apache.harmony.tests.java.lang;
19
20public class MathTest extends junit.framework.TestCase {
21
22    double HYP = Math.sqrt(2.0);
23
24    double OPP = 1.0;
25
26    double ADJ = 1.0;
27
28    /* Required to make previous preprocessor flags work - do not remove */
29    int unused = 0;
30
31    /**
32     * java.lang.Math#abs(double)
33     */
34    public void test_absD() {
35        // Test for method double java.lang.Math.abs(double)
36
37        assertTrue("Incorrect double abs value",
38                (Math.abs(-1908.8976) == 1908.8976));
39        assertTrue("Incorrect double abs value",
40                (Math.abs(1908.8976) == 1908.8976));
41    }
42
43    /**
44     * java.lang.Math#abs(float)
45     */
46    public void test_absF() {
47        // Test for method float java.lang.Math.abs(float)
48        assertTrue("Incorrect float abs value",
49                (Math.abs(-1908.8976f) == 1908.8976f));
50        assertTrue("Incorrect float abs value",
51                (Math.abs(1908.8976f) == 1908.8976f));
52    }
53
54    /**
55     * java.lang.Math#abs(int)
56     */
57    public void test_absI() {
58        // Test for method int java.lang.Math.abs(int)
59        assertTrue("Incorrect int abs value", (Math.abs(-1908897) == 1908897));
60        assertTrue("Incorrect int abs value", (Math.abs(1908897) == 1908897));
61    }
62
63    /**
64     * java.lang.Math#abs(long)
65     */
66    public void test_absJ() {
67        // Test for method long java.lang.Math.abs(long)
68        assertTrue("Incorrect long abs value",
69                (Math.abs(-19088976000089L) == 19088976000089L));
70        assertTrue("Incorrect long abs value",
71                (Math.abs(19088976000089L) == 19088976000089L));
72    }
73
74    /**
75     * java.lang.Math#acos(double)
76     */
77    public void test_acosD() {
78        // Test for method double java.lang.Math.acos(double)
79        double r = Math.cos(Math.acos(ADJ / HYP));
80        long lr = Double.doubleToLongBits(r);
81        long t = Double.doubleToLongBits(ADJ / HYP);
82        assertTrue("Returned incorrect arc cosine", lr == t || (lr + 1) == t
83                || (lr - 1) == t);
84    }
85
86    /**
87     * java.lang.Math#asin(double)
88     */
89    public void test_asinD() {
90        // Test for method double java.lang.Math.asin(double)
91        double r = Math.sin(Math.asin(OPP / HYP));
92        long lr = Double.doubleToLongBits(r);
93        long t = Double.doubleToLongBits(OPP / HYP);
94        assertTrue("Returned incorrect arc sine", lr == t || (lr + 1) == t
95                || (lr - 1) == t);
96    }
97
98    /**
99     * java.lang.Math#atan(double)
100     */
101    public void test_atanD() {
102        // Test for method double java.lang.Math.atan(double)
103        double answer = Math.tan(Math.atan(1.0));
104        assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
105                && answer >= 9.9999999999999983E-1);
106    }
107
108    /**
109     * java.lang.Math#atan2(double, double)
110     */
111    public void test_atan2DD() {
112        // Test for method double java.lang.Math.atan2(double, double)
113        double answer = Math.atan(Math.tan(1.0));
114        assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
115                && answer >= 9.9999999999999983E-1);
116    }
117
118    /**
119     * java.lang.Math#cbrt(double)
120     */
121    public void test_cbrt_D() {
122        //Test for special situations
123        assertTrue(Double.isNaN(Math.cbrt(Double.NaN)));
124        assertEquals(Double.POSITIVE_INFINITY, Math.cbrt(Double.POSITIVE_INFINITY), 0D);
125        assertEquals(Double.NEGATIVE_INFINITY, Math.cbrt(Double.NEGATIVE_INFINITY), 0D);
126        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.cbrt(0.0)));
127        assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.cbrt(+0.0)));
128        assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.cbrt(-0.0)));
129
130        assertEquals(3.0, Math.cbrt(27.0), 0D);
131        assertEquals(23.111993172558684, Math.cbrt(12345.6), Math.ulp(23.111993172558684));
132        assertEquals(5.643803094122362E102, Math.cbrt(Double.MAX_VALUE), 0D);
133        assertEquals(0.01, Math.cbrt(0.000001), 0D);
134
135        assertEquals(-3.0, Math.cbrt(-27.0), 0D);
136        assertEquals(-23.111993172558684, Math.cbrt(-12345.6), Math.ulp(-23.111993172558684));
137        assertEquals(1.7031839360032603E-108, Math.cbrt(Double.MIN_VALUE), 0D);
138        assertEquals(-0.01, Math.cbrt(-0.000001), 0D);
139    }
140
141    /**
142     * java.lang.Math#ceil(double)
143     */
144    public void test_ceilD() {
145        // Test for method double java.lang.Math.ceil(double)
146        assertEquals("Incorrect ceiling for double",
147                79, Math.ceil(78.89), 0);
148        assertEquals("Incorrect ceiling for double",
149                -78, Math.ceil(-78.89), 0);
150    }
151
152    /**
153     * cases for test_copySign_DD in MathTest/StrictMathTest
154     */
155    static final double[] COPYSIGN_DD_CASES = new double[] {
156            Double.POSITIVE_INFINITY, Double.MAX_VALUE, 3.4E302, 2.3,
157            Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
158            0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
159            -Double.MIN_NORMAL, -4.5, -3.4E102, -Double.MAX_VALUE,
160            Double.NEGATIVE_INFINITY };
161
162    /**
163     * {@link java.lang.Math#copySign(double, double)}
164     * @since 1.6
165     */
166    @SuppressWarnings("boxing")
167    public void test_copySign_DD() {
168        for (int i = 0; i < COPYSIGN_DD_CASES.length; i++) {
169            final double magnitude = COPYSIGN_DD_CASES[i];
170            final long absMagnitudeBits = Double.doubleToLongBits(Math
171                    .abs(magnitude));
172            final long negMagnitudeBits = Double.doubleToLongBits(-Math
173                    .abs(magnitude));
174
175            // cases for NaN
176            assertEquals("If the sign is NaN, the result should be positive.",
177                    absMagnitudeBits, Double.doubleToLongBits(Math.copySign(
178                    magnitude, Double.NaN)));
179            assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
180                    Double.NaN, magnitude)));
181
182            for (int j = 0; j < COPYSIGN_DD_CASES.length; j++) {
183                final double sign = COPYSIGN_DD_CASES[j];
184                final long resultBits = Double.doubleToLongBits(Math.copySign(
185                        magnitude, sign));
186
187                if (sign > 0 || Double.valueOf(+0.0).equals(sign)
188                        || Double.valueOf(0.0).equals(sign)) {
189                    assertEquals(
190                            "If the sign is positive, the result should be positive.",
191                            absMagnitudeBits, resultBits);
192                }
193                if (sign < 0 || Double.valueOf(-0.0).equals(sign)) {
194                    assertEquals(
195                            "If the sign is negative, the result should be negative.",
196                            negMagnitudeBits, resultBits);
197                }
198            }
199        }
200
201        assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
202                Double.NaN, Double.NaN)));
203
204        try {
205            Math.copySign((Double) null, 2.3);
206            fail("Should throw NullPointerException");
207        } catch (NullPointerException e) {
208            // Expected
209        }
210        try {
211            Math.copySign(2.3, (Double) null);
212            fail("Should throw NullPointerException");
213        } catch (NullPointerException e) {
214            // Expected
215        }
216        try {
217            Math.copySign((Double) null, (Double) null);
218            fail("Should throw NullPointerException");
219        } catch (NullPointerException e) {
220            // Expected
221        }
222    }
223
224    /**
225     * cases for test_copySign_FF in MathTest/StrictMathTest
226     */
227    static final float[] COPYSIGN_FF_CASES = new float[] {
228            Float.POSITIVE_INFINITY, Float.MAX_VALUE, 3.4E12f, 2.3f,
229            Float.MIN_NORMAL, Float.MIN_NORMAL / 2, Float.MIN_VALUE, +0.0f,
230            0.0f, -0.0f, -Float.MIN_VALUE, -Float.MIN_NORMAL / 2,
231            -Float.MIN_NORMAL, -4.5f, -5.6442E21f, -Float.MAX_VALUE,
232            Float.NEGATIVE_INFINITY };
233
234    /**
235     * {@link java.lang.Math#copySign(float, float)}
236     * @since 1.6
237     */
238    @SuppressWarnings("boxing")
239    public void test_copySign_FF() {
240        for (int i = 0; i < COPYSIGN_FF_CASES.length; i++) {
241            final float magnitude = COPYSIGN_FF_CASES[i];
242            final int absMagnitudeBits = Float.floatToIntBits(Math
243                    .abs(magnitude));
244            final int negMagnitudeBits = Float.floatToIntBits(-Math
245                    .abs(magnitude));
246
247            // cases for NaN
248            assertEquals("If the sign is NaN, the result should be positive.",
249                    absMagnitudeBits, Float.floatToIntBits(Math.copySign(
250                    magnitude, Float.NaN)));
251            assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
252                    Float.NaN, magnitude)));
253
254            for (int j = 0; j < COPYSIGN_FF_CASES.length; j++) {
255                final float sign = COPYSIGN_FF_CASES[j];
256                final int resultBits = Float.floatToIntBits(Math.copySign(
257                        magnitude, sign));
258                if (sign > 0 || Float.valueOf(+0.0f).equals(sign)
259                        || Float.valueOf(0.0f).equals(sign)) {
260                    assertEquals(
261                            "If the sign is positive, the result should be positive.",
262                            absMagnitudeBits, resultBits);
263                }
264                if (sign < 0 || Float.valueOf(-0.0f).equals(sign)) {
265                    assertEquals(
266                            "If the sign is negative, the result should be negative.",
267                            negMagnitudeBits, resultBits);
268                }
269            }
270        }
271
272        assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
273                Float.NaN, Float.NaN)));
274
275        try {
276            Math.copySign((Float) null, 2.3f);
277            fail("Should throw NullPointerException");
278        } catch (NullPointerException e) {
279            // Expected
280        }
281        try {
282            Math.copySign(2.3f, (Float) null);
283            fail("Should throw NullPointerException");
284        } catch (NullPointerException e) {
285            // Expected
286        }
287        try {
288            Math.copySign((Float) null, (Float) null);
289            fail("Should throw NullPointerException");
290        } catch (NullPointerException e) {
291            // Expected
292        }
293    }
294
295    /**
296     * java.lang.Math#cos(double)
297     */
298    public void test_cosD() {
299        // Test for method double java.lang.Math.cos(double)
300        assertEquals("Incorrect answer", 1.0, Math.cos(0), 0D);
301        assertEquals("Incorrect answer", 0.5403023058681398, Math.cos(1), 0D);
302    }
303
304    /**
305     * java.lang.Math#cosh(double)
306     */
307    public void test_cosh_D() {
308        // Test for special situations
309        assertTrue(Double.isNaN(Math.cosh(Double.NaN)));
310        assertEquals("Should return POSITIVE_INFINITY",
311                Double.POSITIVE_INFINITY, Math.cosh(Double.POSITIVE_INFINITY), 0D);
312        assertEquals("Should return POSITIVE_INFINITY",
313                Double.POSITIVE_INFINITY, Math.cosh(Double.NEGATIVE_INFINITY), 0D);
314        assertEquals("Should return 1.0", 1.0, Math.cosh(+0.0), 0D);
315        assertEquals("Should return 1.0", 1.0, Math.cosh(-0.0), 0D);
316
317        assertEquals("Should return POSITIVE_INFINITY",
318                Double.POSITIVE_INFINITY, Math.cosh(1234.56), 0D);
319        assertEquals("Should return POSITIVE_INFINITY",
320                Double.POSITIVE_INFINITY, Math.cosh(-1234.56), 0D);
321        assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
322                .cosh(0.000001), 0D);
323        assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
324                .cosh(-0.000001), 0D);
325        assertEquals("Should return 5.212214351945598", 5.212214351945598, Math
326                .cosh(2.33482), 0D);
327
328        assertEquals("Should return POSITIVE_INFINITY",
329                Double.POSITIVE_INFINITY, Math.cosh(Double.MAX_VALUE), 0D);
330        assertEquals("Should return 1.0", 1.0, Math.cosh(Double.MIN_VALUE), 0D);
331    }
332
333    /**
334     * java.lang.Math#exp(double)
335     */
336    public void test_expD() {
337        // Test for method double java.lang.Math.exp(double)
338        assertTrue("Incorrect answer returned for simple power", Math.abs(Math
339                .exp(4D)
340                - Math.E * Math.E * Math.E * Math.E) < 0.1D);
341        assertTrue("Incorrect answer returned for larger power", Math.log(Math
342                .abs(Math.exp(5.5D)) - 5.5D) < 10.0D);
343    }
344
345    /**
346     * java.lang.Math#expm1(double)
347     */
348    public void test_expm1_D() {
349        // Test for special cases
350        assertTrue("Should return NaN", Double.isNaN(Math.expm1(Double.NaN)));
351        assertEquals("Should return POSITIVE_INFINITY",
352                Double.POSITIVE_INFINITY, Math.expm1(Double.POSITIVE_INFINITY), 0D);
353        assertEquals("Should return -1.0", -1.0, Math
354                .expm1(Double.NEGATIVE_INFINITY), 0D);
355        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
356                .expm1(0.0)));
357        assertEquals(Double.doubleToLongBits(+0.0), Double
358                .doubleToLongBits(Math.expm1(+0.0)));
359        assertEquals(Double.doubleToLongBits(-0.0), Double
360                .doubleToLongBits(Math.expm1(-0.0)));
361
362        assertEquals("Should return -9.999950000166666E-6",
363                -9.999950000166666E-6, Math.expm1(-0.00001), 0D);
364        assertEquals("Should return 1.0145103074469635E60",
365                1.0145103074469635E60, Math.expm1(138.16951162), 0D);
366        assertEquals("Should return POSITIVE_INFINITY",
367                Double.POSITIVE_INFINITY, Math
368                .expm1(123456789123456789123456789.4521584223), 0D);
369        assertEquals("Should return POSITIVE_INFINITY",
370                Double.POSITIVE_INFINITY, Math.expm1(Double.MAX_VALUE), 0D);
371        assertEquals("Should return MIN_VALUE", Double.MIN_VALUE, Math
372                .expm1(Double.MIN_VALUE), 0D);
373    }
374
375    /**
376     * java.lang.Math#floor(double)
377     */
378    public void test_floorD() {
379        assertEquals("Incorrect floor for int", 42, Math.floor(42), 0);
380        assertEquals("Incorrect floor for -int", -2, Math.floor(-2), 0);
381        assertEquals("Incorrect floor for zero", 0d, Math.floor(0d), 0);
382
383        assertEquals("Incorrect floor for +double", 78, Math.floor(78.89), 0);
384        assertEquals("Incorrect floor for -double", -79, Math.floor(-78.89), 0);
385        assertEquals("floor large +double", 3.7314645675925406E19, Math.floor(3.7314645675925406E19), 0);
386        assertEquals("floor large -double", -8.173521839218E12, Math.floor(-8.173521839218E12), 0);
387        assertEquals("floor small double", 0.0d, Math.floor(1.11895241315E-102), 0);
388
389        // Compare toString representations here since -0.0 = +0.0, and
390        // NaN != NaN and we need to distinguish
391        assertEquals("Floor failed for NaN",
392                Double.toString(Double.NaN), Double.toString(Math.floor(Double.NaN)));
393        assertEquals("Floor failed for +0.0",
394                Double.toString(+0.0d), Double.toString(Math.floor(+0.0d)));
395        assertEquals("Floor failed for -0.0",
396                Double.toString(-0.0d), Double.toString(Math.floor(-0.0d)));
397        assertEquals("Floor failed for +infinity",
398                Double.toString(Double.POSITIVE_INFINITY), Double.toString(Math.floor(Double.POSITIVE_INFINITY)));
399        assertEquals("Floor failed for -infinity",
400                Double.toString(Double.NEGATIVE_INFINITY), Double.toString(Math.floor(Double.NEGATIVE_INFINITY)));
401    }
402
403    /**
404     * cases for test_getExponent_D in MathTest/StrictMathTest
405     */
406    static final double GETEXPONENT_D_CASES[] = new double[] {
407            Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY,
408            Double.MAX_VALUE, -Double.MAX_VALUE, 2.342E231, -2.342E231, 2800.0,
409            -2800.0, 5.323, -5.323, 1.323, -1.323, 0.623, -0.623, 0.323,
410            -0.323, Double.MIN_NORMAL * 24, -Double.MIN_NORMAL * 24,
411            Double.MIN_NORMAL, -Double.MIN_NORMAL, Double.MIN_NORMAL / 2,
412            -Double.MIN_NORMAL / 2, Double.MIN_VALUE, -Double.MIN_VALUE, +0.0,
413            0.0, -0.0, Double.NaN };
414
415    /**
416     * result for test_getExponent_D in MathTest/StrictMathTest
417     */
418    static final int GETEXPONENT_D_RESULTS[] = new int[] {
419            Double.MAX_EXPONENT + 1, Double.MAX_EXPONENT + 1,
420            Double.MAX_EXPONENT, Double.MAX_EXPONENT, 768, 768, 11, 11, 2, 2,
421            0, 0, -1, -1, -2, -2, -1018, -1018, Double.MIN_EXPONENT,
422            Double.MIN_EXPONENT, Double.MIN_EXPONENT - 1,
423            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
424            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
425            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
426            Double.MAX_EXPONENT + 1 };
427
428    /**
429     * {@link java.lang.Math#getExponent(double)}
430     * @since 1.6
431     */
432    @SuppressWarnings("boxing")
433    public void test_getExponent_D() {
434        for (int i = 0; i < GETEXPONENT_D_CASES.length; i++) {
435            final double number = GETEXPONENT_D_CASES[i];
436            final int result = GETEXPONENT_D_RESULTS[i];
437            assertEquals("Wrong result of getExponent(double).", result, Math
438                    .getExponent(number));
439        }
440
441        try {
442            Math.getExponent((Double) null);
443            fail("Should throw NullPointerException");
444        } catch (NullPointerException e) {
445            // Expected
446        }
447    }
448
449    /**
450     * cases for test_getExponent_F in MathTest/StrictMathTest
451     */
452    static final float GETEXPONENT_F_CASES[] = new float[] {
453            Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.MAX_VALUE,
454            -Float.MAX_VALUE, 3.4256E23f, -3.4256E23f, 2800.0f, -2800.0f,
455            5.323f, -5.323f, 1.323f, -1.323f, 0.623f, -0.623f, 0.323f, -0.323f,
456            Float.MIN_NORMAL * 24, -Float.MIN_NORMAL * 24, Float.MIN_NORMAL,
457            -Float.MIN_NORMAL, Float.MIN_NORMAL / 2, -Float.MIN_NORMAL / 2,
458            Float.MIN_VALUE, -Float.MIN_VALUE, +0.0f, 0.0f, -0.0f, Float.NaN, 1, Float.MIN_NORMAL * 1.5f };
459
460    /**
461     * result for test_getExponent_F in MathTest/StrictMathTest
462     */
463    static final int GETEXPONENT_F_RESULTS[] = new int[] {
464            Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT,
465            Float.MAX_EXPONENT, 78, 78, 11, 11, 2, 2, 0, 0, -1, -1, -2, -2,
466            -122, -122, Float.MIN_EXPONENT, Float.MIN_EXPONENT,
467            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
468            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
469            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
470            Float.MIN_EXPONENT - 1, Float.MAX_EXPONENT + 1, 0, Float.MIN_EXPONENT };
471
472    /**
473     * {@link java.lang.Math#getExponent(float)}
474     * @since 1.6
475     */
476    @SuppressWarnings("boxing")
477    public void test_getExponent_F() {
478        for (int i = 0; i < GETEXPONENT_F_CASES.length; i++) {
479            final float number = GETEXPONENT_F_CASES[i];
480            final int result = GETEXPONENT_F_RESULTS[i];
481            assertEquals("Wrong result of getExponent(float).", result, Math
482                    .getExponent(number));
483        }
484        try {
485            Math.getExponent((Float) null);
486            fail("Should throw NullPointerException");
487        } catch (NullPointerException e) {
488            // Expected
489        }
490    }
491
492    /**
493     * java.lang.Math#hypot(double, double)
494     */
495    public void test_hypot_DD() {
496        // Test for special cases
497        assertEquals("Should return POSITIVE_INFINITY",
498                Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
499                1.0), 0D);
500        assertEquals("Should return POSITIVE_INFINITY",
501                Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
502                123.324), 0D);
503        assertEquals("Should return POSITIVE_INFINITY",
504                Double.POSITIVE_INFINITY, Math.hypot(-758.2587,
505                Double.POSITIVE_INFINITY), 0D);
506        assertEquals("Should return POSITIVE_INFINITY",
507                Double.POSITIVE_INFINITY, Math.hypot(5687.21,
508                Double.NEGATIVE_INFINITY), 0D);
509        assertEquals("Should return POSITIVE_INFINITY",
510                Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
511                Double.NEGATIVE_INFINITY), 0D);
512        assertEquals("Should return POSITIVE_INFINITY",
513                Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
514                Double.POSITIVE_INFINITY), 0D);
515        assertTrue("Should be NaN", Double.isNaN(Math.hypot(Double.NaN,
516                2342301.89843)));
517        assertTrue("Should be NaN", Double.isNaN(Math.hypot(-345.2680,
518                Double.NaN)));
519
520        assertEquals("Should return 2396424.905416697", 2396424.905416697, Math
521                .hypot(12322.12, -2396393.2258), 0D);
522        assertEquals("Should return 138.16958070558556", 138.16958070558556,
523                Math.hypot(-138.16951162, 0.13817035864), 0D);
524        assertEquals("Should return 1.7976931348623157E308",
525                1.7976931348623157E308, Math.hypot(Double.MAX_VALUE, 211370.35), 0D);
526        assertEquals("Should return 5413.7185", 5413.7185, Math.hypot(
527                -5413.7185, Double.MIN_VALUE), 0D);
528    }
529
530    /**
531     * java.lang.Math#IEEEremainder(double, double)
532     */
533    public void test_IEEEremainderDD() {
534        // Test for method double java.lang.Math.IEEEremainder(double, double)
535        assertEquals("Incorrect remainder returned",
536                0.0, Math.IEEEremainder(1.0, 1.0), 0D);
537        assertTrue("Incorrect remainder returned", Math.IEEEremainder(1.32,
538                89.765) >= 1.4705063220631647E-2
539                || Math.IEEEremainder(1.32, 89.765) >= 1.4705063220631649E-2);
540    }
541
542    /**
543     * java.lang.Math#log(double)
544     */
545    public void test_logD() {
546        // Test for method double java.lang.Math.log(double)
547        for (double d = 10; d >= -10; d -= 0.5) {
548            double answer = Math.log(Math.exp(d));
549            assertTrue("Answer does not equal expected answer for d = " + d
550                    + " answer = " + answer, Math.abs(answer - d) <= Math
551                    .abs(d * 0.00000001));
552        }
553    }
554
555    /**
556     * java.lang.Math#log10(double)
557     */
558    @SuppressWarnings("boxing")
559    public void test_log10_D() {
560        // Test for special cases
561        assertTrue(Double.isNaN(Math.log10(Double.NaN)));
562        assertTrue(Double.isNaN(Math.log10(-2541.05745687234187532)));
563        assertTrue(Double.isNaN(Math.log10(-0.1)));
564        assertEquals(Double.POSITIVE_INFINITY, Math.log10(Double.POSITIVE_INFINITY));
565        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(0.0));
566        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(+0.0));
567        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(-0.0));
568
569        assertEquals(3.0, Math.log10(1000.0));
570        assertEquals(14.0, Math.log10(Math.pow(10, 14)));
571        assertEquals(3.7389561269540406, Math.log10(5482.2158));
572        assertEquals(14.661551142893833, Math.log10(458723662312872.125782332587));
573        assertEquals(-0.9083828622192334, Math.log10(0.12348583358871));
574        assertEquals(308.25471555991675, Math.log10(Double.MAX_VALUE));
575        assertEquals(-323.3062153431158, Math.log10(Double.MIN_VALUE));
576    }
577
578    /**
579     * java.lang.Math#log1p(double)
580     */
581    public void test_log1p_D() {
582        // Test for special cases
583        assertTrue("Should return NaN", Double.isNaN(Math.log1p(Double.NaN)));
584        assertTrue("Should return NaN", Double.isNaN(Math.log1p(-32.0482175)));
585        assertEquals("Should return POSITIVE_INFINITY",
586                Double.POSITIVE_INFINITY, Math.log1p(Double.POSITIVE_INFINITY), 0D);
587        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
588                .log1p(0.0)));
589        assertEquals(Double.doubleToLongBits(+0.0), Double
590                .doubleToLongBits(Math.log1p(+0.0)));
591        assertEquals(Double.doubleToLongBits(-0.0), Double
592                .doubleToLongBits(Math.log1p(-0.0)));
593
594        assertEquals("Should return -0.2941782295312541", -0.2941782295312541,
595                Math.log1p(-0.254856327), 0D);
596        assertEquals("Should return 7.368050685564151", 7.368050685564151, Math
597                .log1p(1583.542), 0D);
598        assertEquals("Should return 0.4633708685409921", 0.4633708685409921,
599                Math.log1p(0.5894227), 0D);
600        assertEquals("Should return 709.782712893384", 709.782712893384, Math
601                .log1p(Double.MAX_VALUE), 0D);
602        assertEquals("Should return Double.MIN_VALUE", Double.MIN_VALUE, Math
603                .log1p(Double.MIN_VALUE), 0D);
604    }
605
606    public void test_maxDD_Math() {
607        test_maxDD(true /* use Math */);
608    }
609
610    public void test_maxDD_Double() {
611        test_maxDD(false /* use Math */);
612    }
613
614    /**
615     * java.lang.Math#max(double, double)
616     */
617    private static void test_maxDD(boolean useMath) {
618        // Test for method double java.lang.Math.max(double, double)
619        assertEquals("Incorrect double max value", 1908897.6000089,
620                max(-1908897.6000089, 1908897.6000089, useMath), 0D);
621        assertEquals("Incorrect double max value",
622                1908897.6000089, max(2.0, 1908897.6000089, useMath), 0D);
623        assertEquals("Incorrect double max value", -2.0, max(-2.0, -1908897.6000089, useMath), 0D);
624
625        // Compare toString representations here since -0.0 = +0.0, and
626        // NaN != NaN and we need to distinguish
627        assertEquals("Max failed for NaN",
628                Double.toString(Double.NaN), Double.toString(max(Double.NaN, 42.0d, useMath)));
629        assertEquals("Max failed for NaN",
630                Double.toString(Double.NaN), Double.toString(max(42.0d, Double.NaN, useMath)));
631        assertEquals("Max failed for 0.0",
632                Double.toString(+0.0d), Double.toString(max(+0.0d, -0.0d, useMath)));
633        assertEquals("Max failed for 0.0",
634                Double.toString(+0.0d), Double.toString(max(-0.0d, +0.0d, useMath)));
635        assertEquals("Max failed for -0.0d",
636                Double.toString(-0.0d), Double.toString(max(-0.0d, -0.0d, useMath)));
637        assertEquals("Max failed for 0.0",
638                Double.toString(+0.0d), Double.toString(max(+0.0d, +0.0d, useMath)));
639    }
640
641    /**
642     * java.lang.Math#max(float, float)
643     */
644    public void test_maxFF() {
645        // Test for method float java.lang.Math.max(float, float)
646        assertTrue("Incorrect float max value", Math.max(-1908897.600f,
647                1908897.600f) == 1908897.600f);
648        assertTrue("Incorrect float max value",
649                Math.max(2.0f, 1908897.600f) == 1908897.600f);
650        assertTrue("Incorrect float max value",
651                Math.max(-2.0f, -1908897.600f) == -2.0f);
652
653        // Compare toString representations here since -0.0 = +0.0, and
654        // NaN != NaN and we need to distinguish
655        assertEquals("Max failed for NaN",
656                Float.toString(Float.NaN), Float.toString(Math.max(Float.NaN, 42.0f)));
657        assertEquals("Max failed for NaN",
658                Float.toString(Float.NaN), Float.toString(Math.max(42.0f, Float.NaN)));
659        assertEquals("Max failed for 0.0",
660                Float.toString(+0.0f), Float.toString(Math.max(+0.0f, -0.0f)));
661        assertEquals("Max failed for 0.0",
662                Float.toString(+0.0f), Float.toString(Math.max(-0.0f, +0.0f)));
663        assertEquals("Max failed for -0.0f",
664                Float.toString(-0.0f), Float.toString(Math.max(-0.0f, -0.0f)));
665        assertEquals("Max failed for 0.0",
666                Float.toString(+0.0f), Float.toString(Math.max(+0.0f, +0.0f)));
667    }
668
669    /**
670     * java.lang.Math#max(int, int)
671     */
672    public void test_maxII() {
673        // Test for method int java.lang.Math.max(int, int)
674        assertEquals("Incorrect int max value",
675                19088976, Math.max(-19088976, 19088976));
676        assertEquals("Incorrect int max value",
677                19088976, Math.max(20, 19088976));
678        assertEquals("Incorrect int max value", -20, Math.max(-20, -19088976));
679    }
680
681    /**
682     * java.lang.Math#max(long, long)
683     */
684    public void test_maxJJ() {
685        // Test for method long java.lang.Math.max(long, long)
686        assertEquals("Incorrect long max value", 19088976000089L, Math.max(-19088976000089L,
687                19088976000089L));
688        assertEquals("Incorrect long max value",
689                19088976000089L, Math.max(20, 19088976000089L));
690        assertEquals("Incorrect long max value",
691                -20, Math.max(-20, -19088976000089L));
692    }
693
694    public void test_minDD_Math() {
695        test_minDD(true /* useMath */);
696    }
697
698    public void test_minDD_Double() {
699        test_minDD(false /* useMath */);
700    }
701
702    /**
703     * java.lang.Math#min(double, double)
704     */
705    private static void test_minDD(boolean useMath) {
706        // Test for method double java.lang.Math.min(double, double)
707        assertEquals("Incorrect double min value", -1908897.6000089,
708                min(-1908897.6000089, 1908897.6000089, useMath), 0D);
709        assertEquals("Incorrect double min value",
710                2.0, min(2.0, 1908897.6000089, useMath), 0D);
711        assertEquals("Incorrect double min value", -1908897.6000089,
712                min(-2.0, -1908897.6000089, useMath), 0D);
713        assertEquals("Incorrect double min value", 1.0d, Math.min(1.0d, 1.0d));
714
715        // Compare toString representations here since -0.0 = +0.0, and
716        // NaN != NaN and we need to distinguish
717        assertEquals("Min failed for NaN",
718                Double.toString(Double.NaN), Double.toString(min(Double.NaN, 42.0d, useMath)));
719        assertEquals("Min failed for NaN",
720                Double.toString(Double.NaN), Double.toString(min(42.0d, Double.NaN, useMath)));
721        assertEquals("Min failed for -0.0",
722                Double.toString(-0.0d), Double.toString(min(+0.0d, -0.0d, useMath)));
723        assertEquals("Min failed for -0.0",
724                Double.toString(-0.0d), Double.toString(min(-0.0d, +0.0d, useMath)));
725        assertEquals("Min failed for -0.0d",
726                Double.toString(-0.0d), Double.toString(min(-0.0d, -0.0d, useMath)));
727        assertEquals("Min failed for 0.0",
728                Double.toString(+0.0d), Double.toString(min(+0.0d, +0.0d, useMath)));
729    }
730
731    private static double min(double a, double b, boolean useMath) {
732        if (useMath) {
733            return Math.min(a, b);
734        } else {
735            return Double.min(a, b);
736        }
737    }
738
739    private static double max(double a, double b, boolean useMath) {
740        if (useMath) {
741            return Math.max(a, b);
742        } else {
743            return Double.max(a, b);
744        }
745    }
746
747    /**
748     * java.lang.Math#min(float, float)
749     */
750    public void test_minFF() {
751        // Test for method float java.lang.Math.min(float, float)
752        assertTrue("Incorrect float min value", Math.min(-1908897.600f,
753                1908897.600f) == -1908897.600f);
754        assertTrue("Incorrect float min value",
755                Math.min(2.0f, 1908897.600f) == 2.0f);
756        assertTrue("Incorrect float min value",
757                Math.min(-2.0f, -1908897.600f) == -1908897.600f);
758        assertEquals("Incorrect float min value", 1.0f, Math.min(1.0f, 1.0f));
759
760        // Compare toString representations here since -0.0 = +0.0, and
761        // NaN != NaN and we need to distinguish
762        assertEquals("Min failed for NaN",
763                Float.toString(Float.NaN), Float.toString(Math.min(Float.NaN, 42.0f)));
764        assertEquals("Min failed for NaN",
765                Float.toString(Float.NaN), Float.toString(Math.min(42.0f, Float.NaN)));
766        assertEquals("Min failed for -0.0",
767                Float.toString(-0.0f), Float.toString(Math.min(+0.0f, -0.0f)));
768        assertEquals("Min failed for -0.0",
769                Float.toString(-0.0f), Float.toString(Math.min(-0.0f, +0.0f)));
770        assertEquals("Min failed for -0.0f",
771                Float.toString(-0.0f), Float.toString(Math.min(-0.0f, -0.0f)));
772        assertEquals("Min failed for 0.0",
773                Float.toString(+0.0f), Float.toString(Math.min(+0.0f, +0.0f)));
774    }
775
776    /**
777     * java.lang.Math#min(int, int)
778     */
779    public void test_minII() {
780        // Test for method int java.lang.Math.min(int, int)
781        assertEquals("Incorrect int min value",
782                -19088976, Math.min(-19088976, 19088976));
783        assertEquals("Incorrect int min value", 20, Math.min(20, 19088976));
784        assertEquals("Incorrect int min value",
785                -19088976, Math.min(-20, -19088976));
786
787    }
788
789    /**
790     * java.lang.Math#min(long, long)
791     */
792    public void test_minJJ() {
793        // Test for method long java.lang.Math.min(long, long)
794        assertEquals("Incorrect long min value", -19088976000089L, Math.min(-19088976000089L,
795                19088976000089L));
796        assertEquals("Incorrect long min value",
797                20, Math.min(20, 19088976000089L));
798        assertEquals("Incorrect long min value",
799                -19088976000089L, Math.min(-20, -19088976000089L));
800    }
801
802    /**
803     * start number cases for test_nextAfter_DD in MathTest/StrictMathTest
804     * NEXTAFTER_DD_START_CASES[i][0] is the start number
805     * NEXTAFTER_DD_START_CASES[i][1] is the nextUp of start number
806     * NEXTAFTER_DD_START_CASES[i][2] is the nextDown of start number
807     */
808    static final double NEXTAFTER_DD_START_CASES[][] = new double[][] {
809            { 3.4, 3.4000000000000004, 3.3999999999999995 },
810            { -3.4, -3.3999999999999995, -3.4000000000000004 },
811            { 3.4233E109, 3.4233000000000005E109, 3.4232999999999996E109 },
812            { -3.4233E109, -3.4232999999999996E109, -3.4233000000000005E109 },
813            { +0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
814            { 0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
815            { -0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
816            { Double.MIN_VALUE, 1.0E-323, +0.0 },
817            { -Double.MIN_VALUE, -0.0, -1.0E-323 },
818            { Double.MIN_NORMAL, 2.225073858507202E-308, 2.225073858507201E-308 },
819            { -Double.MIN_NORMAL, -2.225073858507201E-308,
820                    -2.225073858507202E-308 },
821            { Double.MAX_VALUE, Double.POSITIVE_INFINITY,
822                    1.7976931348623155E308 },
823            { -Double.MAX_VALUE, -1.7976931348623155E308,
824                    Double.NEGATIVE_INFINITY },
825            { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
826                    Double.MAX_VALUE },
827            { Double.NEGATIVE_INFINITY, -Double.MAX_VALUE,
828                    Double.NEGATIVE_INFINITY } };
829
830    /**
831     * direction number cases for test_nextAfter_DD/test_nextAfter_FD in
832     * MathTest/StrictMathTest
833     */
834    static final double NEXTAFTER_DD_FD_DIRECTION_CASES[] = new double[] {
835            Double.POSITIVE_INFINITY, Double.MAX_VALUE, 8.8, 3.4, 1.4,
836            Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
837            0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
838            -Double.MIN_NORMAL, -1.4, -3.4, -8.8, -Double.MAX_VALUE,
839            Double.NEGATIVE_INFINITY };
840
841    /**
842     * {@link java.lang.Math#nextAfter(double, double)}
843     * @since 1.6
844     */
845    @SuppressWarnings("boxing")
846    public void test_nextAfter_DD() {
847        // test for most cases without exception
848        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
849            final double start = NEXTAFTER_DD_START_CASES[i][0];
850            final long nextUpBits = Double
851                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
852            final long nextDownBits = Double
853                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
854
855            for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
856                final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
857                final long resultBits = Double.doubleToLongBits(Math.nextAfter(
858                        start, direction));
859                final long directionBits = Double.doubleToLongBits(direction);
860                if (direction > start) {
861                    assertEquals("Result should be next up-number.",
862                            nextUpBits, resultBits);
863                } else if (direction < start) {
864                    assertEquals("Result should be next down-number.",
865                            nextDownBits, resultBits);
866                } else {
867                    assertEquals("Result should be direction.", directionBits,
868                            resultBits);
869                }
870            }
871        }
872
873        // test for cases with NaN
874        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
875            assertTrue("The result should be NaN.", Double.isNaN(Math
876                    .nextAfter(NEXTAFTER_DD_START_CASES[i][0], Double.NaN)));
877        }
878        for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
879            assertTrue("The result should be NaN.", Double.isNaN(Math
880                    .nextAfter(Double.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
881        }
882        assertTrue("The result should be NaN.", Double.isNaN(Math.nextAfter(
883                Double.NaN, Double.NaN)));
884
885        // test for exception
886        try {
887            Math.nextAfter((Double) null, 2.3);
888            fail("Should throw NullPointerException");
889        } catch (NullPointerException e) {
890            // Expected
891        }
892        try {
893            Math.nextAfter(2.3, (Double) null);
894            fail("Should throw NullPointerException");
895        } catch (NullPointerException e) {
896            // Expected
897        }
898        try {
899            Math.nextAfter((Double) null, (Double) null);
900            fail("Should throw NullPointerException");
901        } catch (NullPointerException e) {
902            // Expected
903        }
904    }
905
906    /**
907     * start number cases for test_nextAfter_FD in MathTest/StrictMathTest
908     * NEXTAFTER_FD_START_CASES[i][0] is the start number
909     * NEXTAFTER_FD_START_CASES[i][1] is the nextUp of start number
910     * NEXTAFTER_FD_START_CASES[i][2] is the nextDown of start number
911     */
912    static final float NEXTAFTER_FD_START_CASES[][] = new float[][] {
913            { 3.4f, 3.4000003f, 3.3999999f },
914            { -3.4f, -3.3999999f, -3.4000003f },
915            { 3.4233E19f, 3.4233002E19f, 3.4232998E19f },
916            { -3.4233E19f, -3.4232998E19f, -3.4233002E19f },
917            { +0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
918            { 0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
919            { -0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
920            { Float.MIN_VALUE, 2.8E-45f, +0.0f },
921            { -Float.MIN_VALUE, -0.0f, -2.8E-45f },
922            { Float.MIN_NORMAL, 1.1754945E-38f, 1.1754942E-38f },
923            { -Float.MIN_NORMAL, -1.1754942E-38f, -1.1754945E-38f },
924            { Float.MAX_VALUE, Float.POSITIVE_INFINITY, 3.4028233E38f },
925            { -Float.MAX_VALUE, -3.4028233E38f, Float.NEGATIVE_INFINITY },
926            { Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.MAX_VALUE },
927            { Float.NEGATIVE_INFINITY, -Float.MAX_VALUE,
928                    Float.NEGATIVE_INFINITY } };
929
930    /**
931     * {@link java.lang.Math#nextAfter(float, double)}
932     * @since 1.6
933     */
934    @SuppressWarnings("boxing")
935    public void test_nextAfter_FD() {
936        // test for most cases without exception
937        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
938            final float start = NEXTAFTER_FD_START_CASES[i][0];
939            final int nextUpBits = Float
940                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
941            final int nextDownBits = Float
942                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
943
944            for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
945                final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
946                final int resultBits = Float.floatToIntBits(Math.nextAfter(
947                        start, direction));
948                if (direction > start) {
949                    assertEquals("Result should be next up-number.",
950                            nextUpBits, resultBits);
951                } else if (direction < start) {
952                    assertEquals("Result should be next down-number.",
953                            nextDownBits, resultBits);
954                } else {
955                    final int equivalentBits = Float.floatToIntBits(new Float(
956                            direction));
957                    assertEquals(
958                            "Result should be a number equivalent to direction.",
959                            equivalentBits, resultBits);
960                }
961            }
962        }
963
964        // test for cases with NaN
965        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
966            assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
967                    NEXTAFTER_FD_START_CASES[i][0], Float.NaN)));
968        }
969        for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
970            assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
971                    Float.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
972        }
973        assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
974                Float.NaN, Float.NaN)));
975
976        // test for exception
977        try {
978            Math.nextAfter((Float) null, 2.3);
979            fail("Should throw NullPointerException");
980        } catch (NullPointerException e) {
981            // Expected
982        }
983        try {
984            Math.nextAfter(2.3, (Float) null);
985            fail("Should throw NullPointerException");
986        } catch (NullPointerException e) {
987            // Expected
988        }
989        try {
990            Math.nextAfter((Float) null, (Float) null);
991            fail("Should throw NullPointerException");
992        } catch (NullPointerException e) {
993            // Expected
994        }
995    }
996
997    /**
998     * {@link java.lang.Math#nextUp(double)}
999     * @since 1.6
1000     */
1001    @SuppressWarnings("boxing")
1002    public void test_nextUp_D() {
1003        // This method is semantically equivalent to nextAfter(d,
1004        // Double.POSITIVE_INFINITY),
1005        // so we use the data of test_nextAfter_DD
1006        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
1007            final double start = NEXTAFTER_DD_START_CASES[i][0];
1008            final long nextUpBits = Double
1009                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
1010            final long resultBits = Double.doubleToLongBits(Math.nextUp(start));
1011            assertEquals("Result should be next up-number.", nextUpBits,
1012                    resultBits);
1013        }
1014
1015        // test for cases with NaN
1016        assertTrue("The result should be NaN.", Double.isNaN(Math
1017                .nextUp(Double.NaN)));
1018
1019        // test for exception
1020        try {
1021            Math.nextUp((Double) null);
1022            fail("Should throw NullPointerException");
1023        } catch (NullPointerException e) {
1024            // Expected
1025        }
1026    }
1027
1028    /**
1029     * {@link java.lang.Math#nextUp(float)}
1030     * @since 1.6
1031     */
1032    @SuppressWarnings("boxing")
1033    public void test_nextUp_F() {
1034        // This method is semantically equivalent to nextAfter(f,
1035        // Float.POSITIVE_INFINITY),
1036        // so we use the data of test_nextAfter_FD
1037        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
1038            final float start = NEXTAFTER_FD_START_CASES[i][0];
1039            final int nextUpBits = Float
1040                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
1041            final int resultBits = Float.floatToIntBits(Math.nextUp(start));
1042            assertEquals("Result should be next up-number.", nextUpBits,
1043                    resultBits);
1044        }
1045
1046        // test for cases with NaN
1047        assertTrue("The result should be NaN.", Float.isNaN(Math
1048                .nextUp(Float.NaN)));
1049
1050        // test for exception
1051        try {
1052            Math.nextUp((Float) null);
1053            fail("Should throw NullPointerException");
1054        } catch (NullPointerException e) {
1055            // Expected
1056        }
1057    }
1058
1059    /**
1060     * {@link java.lang.Math#nextDown(double)}
1061     * @since 1.8
1062     */
1063    @SuppressWarnings("boxing")
1064    public void test_nextDown_D() {
1065        // This method is semantically equivalent to nextAfter(d,
1066        // Double.NEGATIVE_INFINITY),
1067        // so we use the data of test_nextAfter_DD
1068        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
1069            final double start = NEXTAFTER_DD_START_CASES[i][0];
1070            final long nextDownBits = Double
1071                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
1072            final long resultBits = Double.doubleToLongBits(Math.nextDown(start));
1073            assertEquals("Result should be next down-number.", nextDownBits,
1074                    resultBits);
1075        }
1076
1077        // test for cases with NaN
1078        assertTrue("The result should be NaN.", Double.isNaN(Math
1079                .nextDown(Double.NaN)));
1080
1081        // test for exception
1082        try {
1083            Math.nextDown((Double) null);
1084            fail("Should throw NullPointerException");
1085        } catch (NullPointerException e) {
1086            // Expected
1087        }
1088    }
1089
1090    /**
1091     * {@link java.lang.Math#nextDown(float)}
1092     * @since 1.8
1093     */
1094    @SuppressWarnings("boxing")
1095    public void test_nextDown_F() {
1096        // This method is semantically equivalent to nextAfter(f,
1097        // Float.NEGATIVE_INFINITY),
1098        // so we use the data of test_nextAfter_FD
1099        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
1100            final float start = NEXTAFTER_FD_START_CASES[i][0];
1101            final int nextDownBits = Float
1102                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
1103            final int resultBits = Float.floatToIntBits(Math.nextDown(start));
1104            assertEquals("Result should be next down-number.", nextDownBits,
1105                    resultBits);
1106        }
1107
1108        // test for cases with NaN
1109        assertTrue("The result should be NaN.", Float.isNaN(Math
1110                .nextDown(Float.NaN)));
1111
1112        // test for exception
1113        try {
1114            Math.nextDown((Float) null);
1115            fail("Should throw NullPointerException");
1116        } catch (NullPointerException e) {
1117            // Expected
1118        }
1119    }
1120
1121    /**
1122     * java.lang.Math#pow(double, double)
1123     */
1124    public void test_powDD() {
1125        // Test for method double java.lang.Math.pow(double, double)
1126        double NZERO = longTodouble(doubleTolong(0.0) ^ 0x8000000000000000L);
1127        double p1 = 1.0;
1128        double p2 = 2.0;
1129        double p3 = 3.0;
1130        double p4 = 4.0;
1131        double p5 = 5.0;
1132        double p6 = 6.0;
1133        double p7 = 7.0;
1134        double p8 = 8.0;
1135        double p9 = 9.0;
1136        double p10 = 10.0;
1137        double p11 = 11.0;
1138        double p12 = 12.0;
1139        double p13 = 13.0;
1140        double p14 = 14.0;
1141        double p15 = 15.0;
1142        double p16 = 16.0;
1143        double[] values = { p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
1144                p13, p14, p15, p16 };
1145
1146        for (int x = 0; x < values.length; x++) {
1147            double dval = values[x];
1148            double negateDval = negateDouble(dval);
1149
1150            // If the second argument is positive or negative zero, then the
1151            // result is 1.0.
1152            assertEquals("Result should be Math.pow(" + dval
1153                    + ",-0.0)=+1.0", 1.0, Math.pow(dval, NZERO));
1154            assertEquals("Result should be Math.pow(" + negateDval
1155                    + ",-0.0)=+1.0", 1.0, Math.pow(negateDval, NZERO));
1156            assertEquals("Result should be Math.pow(" + dval
1157                    + ",+0.0)=+1.0", 1.0, Math.pow(dval, +0.0));
1158            assertEquals("Result should be Math.pow(" + negateDval
1159                    + ",+0.0)=+1.0", 1.0, Math.pow(negateDval, +0.0));
1160
1161            // If the second argument is 1.0, then the result is the same as the
1162            // first argument.
1163            assertEquals("Result should be Math.pow(" + dval + "," + 1.0 + ")="
1164                    + dval, dval, Math.pow(dval, 1.0));
1165            assertEquals("Result should be Math.pow(" + negateDval + "," + 1.0
1166                    + ")=" + negateDval, negateDval, Math.pow(negateDval, 1.0));
1167
1168            // If the second argument is NaN, then the result is NaN.
1169            assertEquals("Result should be Math.pow(" + dval + "," + Double.NaN
1170                    + ")=" + Double.NaN, Double.NaN, Math.pow(dval, Double.NaN));
1171            assertEquals("Result should be Math.pow(" + negateDval + ","
1172                    + Double.NaN + ")=" + Double.NaN, Double.NaN, Math.pow(negateDval,
1173                    Double.NaN));
1174
1175            if (dval > 1) {
1176                // If the first argument is NaN and the second argument is
1177                // nonzero,
1178                // then the result is NaN.
1179                assertEquals("Result should be Math.pow(" + Double.NaN + ","
1180                        + dval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
1181                assertEquals("Result should be Math.pow(" + Double.NaN + ","
1182                        + negateDval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN,
1183                        negateDval));
1184
1185                /*
1186                 * If the first argument is positive zero and the second
1187                 * argument is greater than zero, or the first argument is
1188                 * positive infinity and the second argument is less than zero,
1189                 * then the result is positive zero.
1190                 */
1191                assertEquals("Result should be Math.pow(" + 0.0 + "," + dval
1192                        + ")=" + 0.0, +0.0, Math.pow(0.0, dval));
1193                assertEquals("Result should be Math.pow("
1194                        + Double.POSITIVE_INFINITY + "," + negateDval + ")="
1195                        + 0.0, +0.0, Math.pow(Double.POSITIVE_INFINITY, negateDval));
1196
1197                /*
1198                 * If the first argument is positive zero and the second
1199                 * argument is less than zero, or the first argument is positive
1200                 * infinity and the second argument is greater than zero, then
1201                 * the result is positive infinity.
1202                 */
1203                assertEquals("Result should be Math.pow(" + 0.0 + ","
1204                        + negateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
1205                        Math.pow(0.0, negateDval));
1206                assertEquals("Result should be Math.pow("
1207                        + Double.POSITIVE_INFINITY + "," + dval + ")="
1208                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1209                        Double.POSITIVE_INFINITY, dval));
1210
1211                // Not a finite odd integer
1212                if (dval % 2 == 0) {
1213                    /*
1214                     * If the first argument is negative zero and the second
1215                     * argument is greater than zero but not a finite odd
1216                     * integer, or the first argument is negative infinity and
1217                     * the second argument is less than zero but not a finite
1218                     * odd integer, then the result is positive zero.
1219                     */
1220                    assertEquals("Result should be Math.pow(" + NZERO + ","
1221                            + dval + ")=" + 0.0, +0.0, Math.pow(NZERO, dval));
1222                    assertEquals("Result should be Math.pow("
1223                            + Double.NEGATIVE_INFINITY + "," + negateDval
1224                            + ")=" + 0.0, +0.0, Math.pow(Double.NEGATIVE_INFINITY,
1225                            negateDval));
1226
1227                    /*
1228                     * If the first argument is negative zero and the second
1229                     * argument is less than zero but not a finite odd integer,
1230                     * or the first argument is negative infinity and the second
1231                     * argument is greater than zero but not a finite odd
1232                     * integer, then the result is positive infinity.
1233                     */
1234                    assertEquals("Result should be Math.pow(" + NZERO + ","
1235                            + negateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
1236                            Math.pow(NZERO, negateDval));
1237                    assertEquals("Result should be Math.pow("
1238                            + Double.NEGATIVE_INFINITY + "," + dval + ")="
1239                            + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1240                            Double.NEGATIVE_INFINITY, dval));
1241                }
1242
1243                // finite odd integer
1244                if (dval % 2 != 0) {
1245                    /*
1246                     * If the first argument is negative zero and the second
1247                     * argument is a positive finite odd integer, or the first
1248                     * argument is negative infinity and the second argument is
1249                     * a negative finite odd integer, then the result is
1250                     * negative zero.
1251                     */
1252                    assertEquals("Result should be Math.pow(" + NZERO + ","
1253                            + dval + ")=" + NZERO, NZERO, Math.pow(NZERO, dval));
1254                    assertEquals("Result should be Math.pow("
1255                            + Double.NEGATIVE_INFINITY + "," + negateDval
1256                            + ")=" + NZERO, NZERO, Math.pow(Double.NEGATIVE_INFINITY,
1257                            negateDval));
1258                    /*
1259                     * If the first argument is negative zero and the second
1260                     * argument is a negative finite odd integer, or the first
1261                     * argument is negative infinity and the second argument is
1262                     * a positive finite odd integer then the result is negative
1263                     * infinity.
1264                     */
1265                    assertEquals("Result should be Math.pow(" + NZERO + ","
1266                            + negateDval + ")=" + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY,
1267                            Math.pow(NZERO, negateDval));
1268                    assertEquals("Result should be Math.pow("
1269                            + Double.NEGATIVE_INFINITY + "," + dval + ")="
1270                            + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Math.pow(
1271                            Double.NEGATIVE_INFINITY, dval));
1272                }
1273
1274                /**
1275                 * 1. If the first argument is finite and less than zero if the
1276                 * second argument is a finite even integer, the result is equal
1277                 * to the result of raising the absolute value of the first
1278                 * argument to the power of the second argument
1279                 *
1280                 * 2. if the second argument is a finite odd integer, the result is equal to the
1281                 * negative of the result of raising the absolute value of the
1282                 * first argument to the power of the second argument
1283                 *
1284                 * 3. if the second argument is finite and not an integer, then the result
1285                 * is NaN.
1286                 */
1287                for (int j = 1; j < values.length; j++) {
1288                    double jval = values[j];
1289                    if (jval % 2.0 == 0.0) {
1290                        assertEquals("" + negateDval + " " + jval, Math.pow(
1291                                dval, jval), Math.pow(negateDval, jval));
1292                    } else {
1293                        assertEquals("" + negateDval + " " + jval, -1.0
1294                                * Math.pow(dval, jval), Math.pow(negateDval,
1295                                jval));
1296                    }
1297                    assertEquals(Double.NaN, Math
1298                            .pow(negateDval, jval / 0.5467));
1299                    assertEquals(Double.NaN, Math.pow(negateDval, -1.0 * jval
1300                            / 0.5467));
1301                }
1302            }
1303
1304            // If the absolute value of the first argument equals 1 and the
1305            // second argument is infinite, then the result is NaN.
1306            if (dval == 1) {
1307                assertEquals("Result should be Math.pow(" + dval + ","
1308                        + Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1309                        .pow(dval, Double.POSITIVE_INFINITY));
1310                assertEquals("Result should be Math.pow(" + dval + ","
1311                        + Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1312                        .pow(dval, Double.NEGATIVE_INFINITY));
1313
1314                assertEquals("Result should be Math.pow(" + negateDval + ","
1315                        + Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1316                        .pow(negateDval, Double.POSITIVE_INFINITY));
1317                assertEquals("Result should be Math.pow(" + negateDval + ","
1318                        + Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1319                        .pow(negateDval, Double.NEGATIVE_INFINITY));
1320            }
1321
1322            if (dval > 1) {
1323                /*
1324                 * If the absolute value of the first argument is greater than 1
1325                 * and the second argument is positive infinity, or the absolute
1326                 * value of the first argument is less than 1 and the second
1327                 * argument is negative infinity, then the result is positive
1328                 * infinity.
1329                 */
1330                assertEquals("Result should be Math.pow(" + dval + ","
1331                        + Double.POSITIVE_INFINITY + ")="
1332                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(dval,
1333                        Double.POSITIVE_INFINITY));
1334
1335                assertEquals("Result should be Math.pow(" + negateDval + ","
1336                        + Double.NEGATIVE_INFINITY + ")="
1337                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(-0.13456,
1338                        Double.NEGATIVE_INFINITY));
1339
1340                /*
1341                 * If the absolute value of the first argument is greater than 1
1342                 * and the second argument is negative infinity, or the absolute
1343                 * value of the first argument is less than 1 and the second
1344                 * argument is positive infinity, then the result is positive
1345                 * zero.
1346                 */
1347                assertEquals("Result should be Math.pow(" + dval + ","
1348                        + Double.NEGATIVE_INFINITY + ")= +0.0", +0.0, Math.pow(dval,
1349                        Double.NEGATIVE_INFINITY));
1350                assertEquals("Result should be Math.pow(" + negateDval + ","
1351                        + Double.POSITIVE_INFINITY + ")= +0.0", +0.0, Math.pow(
1352                        -0.13456, Double.POSITIVE_INFINITY));
1353            }
1354
1355            assertEquals("Result should be Math.pow(" + 0.0 + "," + dval + ")="
1356                    + 0.0, 0.0, Math.pow(0.0, dval));
1357            assertEquals("Result should be Math.pow(" + Double.NaN + "," + dval
1358                    + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
1359        }
1360        assertTrue("pow returned incorrect value",
1361                (long) Math.pow(2, 8) == 256l);
1362        assertTrue("pow returned incorrect value",
1363                Math.pow(2, -8) == 0.00390625d);
1364        assertEquals("Incorrect root returned1",
1365                2, Math.sqrt(Math.pow(Math.sqrt(2), 4)), 0);
1366
1367        assertEquals(Double.NEGATIVE_INFINITY, Math.pow(-10.0, 3.093403029238847E15));
1368        assertEquals(Double.POSITIVE_INFINITY, Math.pow(10.0, 3.093403029238847E15));
1369    }
1370
1371    private double longTodouble(long longvalue) {
1372        return Double.longBitsToDouble(longvalue);
1373    }
1374
1375    private long doubleTolong(double doublevalue) {
1376        return Double.doubleToLongBits(doublevalue);
1377    }
1378
1379    private double negateDouble(double doublevalue) {
1380        return doublevalue * -1.0;
1381    }
1382
1383    /**
1384     * java.lang.Math#rint(double)
1385     */
1386    public void test_rintD() {
1387        // Test for method double java.lang.Math.rint(double)
1388        assertEquals("Failed to round properly - up to odd",
1389                3.0, Math.rint(2.9), 0D);
1390        assertTrue("Failed to round properly - NaN", Double.isNaN(Math
1391                .rint(Double.NaN)));
1392        assertEquals("Failed to round properly down  to even",
1393                2.0, Math.rint(2.1), 0D);
1394        assertTrue("Failed to round properly " + 2.5 + " to even", Math
1395                .rint(2.5) == 2.0);
1396        assertTrue("Failed to round properly " + (+0.0d),
1397                Math.rint(+0.0d) == +0.0d);
1398        assertTrue("Failed to round properly " + (-0.0d),
1399                Math.rint(-0.0d) == -0.0d);
1400    }
1401
1402    /**
1403     * java.lang.Math#round(double)
1404     */
1405    public void test_roundD() {
1406        // Test for method long java.lang.Math.round(double)
1407        assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89d));
1408    }
1409
1410    /**
1411     * java.lang.Math#round(float)
1412     */
1413    public void test_roundF() {
1414        // Test for method int java.lang.Math.round(float)
1415        assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89f));
1416    }
1417
1418    /**
1419     * {@link java.lang.Math#scalb(double, int)}
1420     * @since 1.6
1421     */
1422    @SuppressWarnings("boxing")
1423    public void test_scalb_DI() {
1424        // result is normal
1425        assertEquals(4.1422946304E7, Math.scalb(1.2345, 25));
1426        assertEquals(3.679096698760986E-8, Math.scalb(1.2345, -25));
1427        assertEquals(1.2345, Math.scalb(1.2345, 0));
1428        assertEquals(7868514.304, Math.scalb(0.2345, 25));
1429
1430        double normal = Math.scalb(0.2345, -25);
1431        assertEquals(6.98864459991455E-9, normal);
1432        // precision kept
1433        assertEquals(0.2345, Math.scalb(normal, 25));
1434
1435        assertEquals(0.2345, Math.scalb(0.2345, 0));
1436        assertEquals(-4.1422946304E7, Math.scalb(-1.2345, 25));
1437        assertEquals(-6.98864459991455E-9, Math.scalb(-0.2345, -25));
1438        assertEquals(2.0, Math.scalb(Double.MIN_NORMAL / 2, 1024));
1439        assertEquals(64.0, Math.scalb(Double.MIN_VALUE, 1080));
1440        assertEquals(234, Math.getExponent(Math.scalb(1.0, 234)));
1441        assertEquals(3.9999999999999996, Math.scalb(Double.MAX_VALUE,
1442                Double.MIN_EXPONENT));
1443
1444        // result is near infinity
1445        double halfMax = Math.scalb(1.0, Double.MAX_EXPONENT);
1446        assertEquals(8.98846567431158E307, halfMax);
1447        assertEquals(Double.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1448        assertEquals(Double.POSITIVE_INFINITY, halfMax + halfMax);
1449        assertEquals(1.7976931348623155E308, Math.scalb(1.0 - Math.ulp(1.0),
1450                Double.MAX_EXPONENT + 1));
1451        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(1.0 - Math.ulp(1.0),
1452                Double.MAX_EXPONENT + 2));
1453
1454        halfMax = Math.scalb(-1.0, Double.MAX_EXPONENT);
1455        assertEquals(-8.98846567431158E307, halfMax);
1456        assertEquals(-Double.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1457        assertEquals(Double.NEGATIVE_INFINITY, halfMax + halfMax);
1458
1459        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(0.345, 1234));
1460        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(44.345E102, 934));
1461        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(-44.345E102, 934));
1462
1463        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1464                Double.MIN_NORMAL / 2, 4000));
1465        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MIN_VALUE,
1466                8000));
1467        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MAX_VALUE, 1));
1468        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1469                Double.POSITIVE_INFINITY, 0));
1470        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1471                Double.POSITIVE_INFINITY, -1));
1472        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1473                Double.NEGATIVE_INFINITY, -1));
1474        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1475                Double.NEGATIVE_INFINITY, Double.MIN_EXPONENT));
1476
1477        // result is subnormal/zero
1478        long posZeroBits = Double.doubleToLongBits(+0.0);
1479        long negZeroBits = Double.doubleToLongBits(-0.0);
1480        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0,
1481                Integer.MAX_VALUE)));
1482        assertEquals(posZeroBits, Double.doubleToLongBits(Math
1483                .scalb(+0.0, -123)));
1484        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0, 0)));
1485        assertEquals(negZeroBits, Double
1486                .doubleToLongBits(Math.scalb(-0.0, 123)));
1487        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-0.0,
1488                Integer.MIN_VALUE)));
1489
1490        assertEquals(Double.MIN_VALUE, Math.scalb(1.0, -1074));
1491        assertEquals(posZeroBits, Double.doubleToLongBits(Math
1492                .scalb(1.0, -1075)));
1493        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-1.0,
1494                -1075)));
1495
1496        // precision lost
1497        assertEquals(Math.scalb(21.405, -1078), Math.scalb(21.405, -1079));
1498        assertEquals(Double.MIN_VALUE, Math.scalb(21.405, -1079));
1499        assertEquals(-Double.MIN_VALUE, Math.scalb(-21.405, -1079));
1500        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(21.405,
1501                -1080)));
1502        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-21.405,
1503                -1080)));
1504        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1505                Double.MIN_VALUE, -1)));
1506        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1507                -Double.MIN_VALUE, -1)));
1508        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL, -52));
1509        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1510                Double.MIN_NORMAL, -53)));
1511        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1512                -Double.MIN_NORMAL, -53)));
1513        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MAX_VALUE, -2098));
1514        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1515                Double.MAX_VALUE, -2099)));
1516        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1517                -Double.MAX_VALUE, -2099)));
1518        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL / 3, -51));
1519        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1520                Double.MIN_NORMAL / 3, -52)));
1521        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1522                -Double.MIN_NORMAL / 3, -52)));
1523        double subnormal = Math.scalb(Double.MIN_NORMAL / 3, -25);
1524        assertEquals(2.2104123E-316, subnormal);
1525        // precision lost
1526        assertFalse(Double.MIN_NORMAL / 3 == Math.scalb(subnormal, 25));
1527
1528        // NaN
1529        assertTrue(Double.isNaN(Math.scalb(Double.NaN, 1)));
1530        assertTrue(Double.isNaN(Math.scalb(Double.NaN, 0)));
1531        assertTrue(Double.isNaN(Math.scalb(Double.NaN, -120)));
1532
1533        assertEquals(1283457024, Double.doubleToLongBits(Math.scalb(
1534                Double.MIN_VALUE * 153, 23)));
1535        assertEquals(-9223372035571318784L, Double.doubleToLongBits(Math.scalb(
1536                -Double.MIN_VALUE * 153, 23)));
1537        assertEquals(36908406321184768L, Double.doubleToLongBits(Math.scalb(
1538                Double.MIN_VALUE * 153, 52)));
1539        assertEquals(-9186463630533591040L, Double.doubleToLongBits(Math.scalb(
1540                -Double.MIN_VALUE * 153, 52)));
1541
1542        // test for exception
1543        try {
1544            Math.scalb((Double) null, (Integer) null);
1545            fail("Should throw NullPointerException");
1546        } catch (NullPointerException e) {
1547            // Expected
1548        }
1549        try {
1550            Math.scalb(1.0, (Integer) null);
1551            fail("Should throw NullPointerException");
1552        } catch (NullPointerException e) {
1553            // Expected
1554        }
1555        try {
1556            Math.scalb((Double) null, 1);
1557            fail("Should throw NullPointerException");
1558        } catch (NullPointerException e) {
1559            // Expected
1560        }
1561
1562        long b1em1022 = 0x0010000000000000L; // bit representation of
1563        // Double.MIN_NORMAL
1564        long b1em1023 = 0x0008000000000000L; // bit representation of half of
1565        // Double.MIN_NORMAL
1566        // assert exact identity
1567        assertEquals(b1em1023, Double.doubleToLongBits(Math.scalb(Double
1568                .longBitsToDouble(b1em1022), -1)));
1569    }
1570
1571    /**
1572     * {@link java.lang.Math#scalb(float, int)}
1573     * @since 1.6
1574     */
1575    @SuppressWarnings("boxing")
1576    public void test_scalb_FI() {
1577        // result is normal
1578        assertEquals(4.1422946304E7f, Math.scalb(1.2345f, 25));
1579        assertEquals(3.679096698760986E-8f, Math.scalb(1.2345f, -25));
1580        assertEquals(1.2345f, Math.scalb(1.2345f, 0));
1581        assertEquals(7868514.304f, Math.scalb(0.2345f, 25));
1582
1583        float normal = Math.scalb(0.2345f, -25);
1584        assertEquals(6.98864459991455E-9f, normal);
1585        // precision kept
1586        assertEquals(0.2345f, Math.scalb(normal, 25));
1587
1588        assertEquals(0.2345f, Math.scalb(0.2345f, 0));
1589        assertEquals(-4.1422946304E7f, Math.scalb(-1.2345f, 25));
1590        assertEquals(-6.98864459991455E-9f, Math.scalb(-0.2345f, -25));
1591        assertEquals(2.0f, Math.scalb(Float.MIN_NORMAL / 2, 128));
1592        assertEquals(64.0f, Math.scalb(Float.MIN_VALUE, 155));
1593        assertEquals(34, Math.getExponent(Math.scalb(1.0f, 34)));
1594        assertEquals(3.9999998f, Math
1595                .scalb(Float.MAX_VALUE, Float.MIN_EXPONENT));
1596
1597        // result is near infinity
1598        float halfMax = Math.scalb(1.0f, Float.MAX_EXPONENT);
1599        assertEquals(1.7014118E38f, halfMax);
1600        assertEquals(Float.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1601        assertEquals(Float.POSITIVE_INFINITY, halfMax + halfMax);
1602        assertEquals(3.4028233E38f, Math.scalb(1.0f - Math.ulp(1.0f),
1603                Float.MAX_EXPONENT + 1));
1604        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(1.0f - Math.ulp(1.0f),
1605                Float.MAX_EXPONENT + 2));
1606
1607        halfMax = Math.scalb(-1.0f, Float.MAX_EXPONENT);
1608        assertEquals(-1.7014118E38f, halfMax);
1609        assertEquals(-Float.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1610        assertEquals(Float.NEGATIVE_INFINITY, halfMax + halfMax);
1611
1612        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(0.345f, 1234));
1613        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(44.345E10f, 934));
1614        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(-44.345E10f, 934));
1615
1616        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_NORMAL / 2,
1617                400));
1618        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_VALUE, 800));
1619        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MAX_VALUE, 1));
1620        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1621                Float.POSITIVE_INFINITY, 0));
1622        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1623                Float.POSITIVE_INFINITY, -1));
1624        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1625                Float.NEGATIVE_INFINITY, -1));
1626        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1627                Float.NEGATIVE_INFINITY, Float.MIN_EXPONENT));
1628
1629        // result is subnormal/zero
1630        int posZeroBits = Float.floatToIntBits(+0.0f);
1631        int negZeroBits = Float.floatToIntBits(-0.0f);
1632        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f,
1633                Integer.MAX_VALUE)));
1634        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, -123)));
1635        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, 0)));
1636        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f, 123)));
1637        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f,
1638                Integer.MIN_VALUE)));
1639
1640        assertEquals(Float.MIN_VALUE, Math.scalb(1.0f, -149));
1641        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(1.0f, -150)));
1642        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-1.0f, -150)));
1643
1644        // precision lost
1645        assertEquals(Math.scalb(21.405f, -154), Math.scalb(21.405f, -153));
1646        assertEquals(Float.MIN_VALUE, Math.scalb(21.405f, -154));
1647        assertEquals(-Float.MIN_VALUE, Math.scalb(-21.405f, -154));
1648        assertEquals(posZeroBits, Float.floatToIntBits(Math
1649                .scalb(21.405f, -155)));
1650        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-21.405f,
1651                -155)));
1652        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1653                Float.MIN_VALUE, -1)));
1654        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1655                -Float.MIN_VALUE, -1)));
1656        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL, -23));
1657        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1658                Float.MIN_NORMAL, -24)));
1659        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1660                -Float.MIN_NORMAL, -24)));
1661        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MAX_VALUE, -277));
1662        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1663                Float.MAX_VALUE, -278)));
1664        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1665                -Float.MAX_VALUE, -278)));
1666        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL / 3, -22));
1667        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1668                Float.MIN_NORMAL / 3, -23)));
1669        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1670                -Float.MIN_NORMAL / 3, -23)));
1671        float subnormal = Math.scalb(Float.MIN_NORMAL / 3, -11);
1672        assertEquals(1.913E-42f, subnormal);
1673        // precision lost
1674        assertFalse(Float.MIN_NORMAL / 3 == Math.scalb(subnormal, 11));
1675
1676        assertEquals(68747264, Float.floatToIntBits(Math.scalb(
1677                Float.MIN_VALUE * 153, 23)));
1678        assertEquals(-2078736384, Float.floatToIntBits(Math.scalb(
1679                -Float.MIN_VALUE * 153, 23)));
1680
1681        assertEquals(4896, Float.floatToIntBits(Math.scalb(
1682                Float.MIN_VALUE * 153, 5)));
1683        assertEquals(-2147478752, Float.floatToIntBits(Math.scalb(
1684                -Float.MIN_VALUE * 153, 5)));
1685
1686        // NaN
1687        assertTrue(Float.isNaN(Math.scalb(Float.NaN, 1)));
1688        assertTrue(Float.isNaN(Math.scalb(Float.NaN, 0)));
1689        assertTrue(Float.isNaN(Math.scalb(Float.NaN, -120)));
1690
1691        // test for exception
1692        try {
1693            Math.scalb((Float) null, (Integer) null);
1694            fail("Should throw NullPointerException");
1695        } catch (NullPointerException e) {
1696            // Expected
1697        }
1698        try {
1699            Math.scalb(1.0f, (Integer) null);
1700            fail("Should throw NullPointerException");
1701        } catch (NullPointerException e) {
1702            // Expected
1703        }
1704        try {
1705            Math.scalb((Float) null, 1);
1706            fail("Should throw NullPointerException");
1707        } catch (NullPointerException e) {
1708            // Expected
1709        }
1710
1711        int b1em126 = 0x00800000; // bit representation of Float.MIN_NORMAL
1712        int b1em127 = 0x00400000; // bit representation of half
1713        // Float.MIN_NORMAL
1714        // assert exact identity
1715        assertEquals(b1em127, Float.floatToIntBits(Math.scalb(Float
1716                .intBitsToFloat(b1em126), -1)));
1717    }
1718
1719    /**
1720     * java.lang.Math#signum(double)
1721     */
1722    public void test_signum_D() {
1723        assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1724        assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1725        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1726                .signum(0.0)));
1727        assertEquals(Double.doubleToLongBits(+0.0), Double
1728                .doubleToLongBits(Math.signum(+0.0)));
1729        assertEquals(Double.doubleToLongBits(-0.0), Double
1730                .doubleToLongBits(Math.signum(-0.0)));
1731
1732        assertEquals(1.0, Math.signum(253681.2187962), 0D);
1733        assertEquals(-1.0, Math.signum(-125874693.56), 0D);
1734        assertEquals(1.0, Math.signum(1.2587E-308), 0D);
1735        assertEquals(-1.0, Math.signum(-1.2587E-308), 0D);
1736
1737        assertEquals(1.0, Math.signum(Double.MAX_VALUE), 0D);
1738        assertEquals(1.0, Math.signum(Double.MIN_VALUE), 0D);
1739        assertEquals(-1.0, Math.signum(-Double.MAX_VALUE), 0D);
1740        assertEquals(-1.0, Math.signum(-Double.MIN_VALUE), 0D);
1741        assertEquals(1.0, Math.signum(Double.POSITIVE_INFINITY), 0D);
1742        assertEquals(-1.0, Math.signum(Double.NEGATIVE_INFINITY), 0D);
1743    }
1744
1745    /**
1746     * java.lang.Math#signum(float)
1747     */
1748    public void test_signum_F() {
1749        assertTrue(Float.isNaN(Math.signum(Float.NaN)));
1750        assertEquals(Float.floatToIntBits(0.0f), Float
1751                .floatToIntBits(Math.signum(0.0f)));
1752        assertEquals(Float.floatToIntBits(+0.0f), Float
1753                .floatToIntBits(Math.signum(+0.0f)));
1754        assertEquals(Float.floatToIntBits(-0.0f), Float
1755                .floatToIntBits(Math.signum(-0.0f)));
1756
1757        assertEquals(1.0f, Math.signum(253681.2187962f), 0f);
1758        assertEquals(-1.0f, Math.signum(-125874693.56f), 0f);
1759        assertEquals(1.0f, Math.signum(1.2587E-11f), 0f);
1760        assertEquals(-1.0f, Math.signum(-1.2587E-11f), 0f);
1761
1762        assertEquals(1.0f, Math.signum(Float.MAX_VALUE), 0f);
1763        assertEquals(1.0f, Math.signum(Float.MIN_VALUE), 0f);
1764        assertEquals(-1.0f, Math.signum(-Float.MAX_VALUE), 0f);
1765        assertEquals(-1.0f, Math.signum(-Float.MIN_VALUE), 0f);
1766        assertEquals(1.0f, Math.signum(Float.POSITIVE_INFINITY), 0f);
1767        assertEquals(-1.0f, Math.signum(Float.NEGATIVE_INFINITY), 0f);
1768    }
1769
1770    /**
1771     * java.lang.Math#sin(double)
1772     */
1773    public void test_sinD() {
1774        // Test for method double java.lang.Math.sin(double)
1775        assertEquals("Incorrect answer", 0.0, Math.sin(0), 0D);
1776        assertEquals("Incorrect answer", 0.8414709848078965, Math.sin(1), 0D);
1777    }
1778
1779    /**
1780     * java.lang.Math#sinh(double)
1781     */
1782    public void test_sinh_D() {
1783        // Test for special situations
1784        assertTrue(Double.isNaN(Math.sinh(Double.NaN)));
1785        assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.POSITIVE_INFINITY), 0D);
1786        assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(Double.NEGATIVE_INFINITY), 0D);
1787        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.sinh(0.0)));
1788        assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.sinh(+0.0)));
1789        assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.sinh(-0.0)));
1790
1791        assertEquals(Double.POSITIVE_INFINITY, Math.sinh(1234.56), 0D);
1792        assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(-1234.56), 0D);
1793        assertEquals(1.0000000000001666E-6, Math.sinh(0.000001), 0D);
1794        assertEquals(-1.0000000000001666E-6, Math.sinh(-0.000001), 0D);
1795        assertEquals(5.115386441963859, Math.sinh(2.33482), Math.ulp(5.115386441963859));
1796        assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.MAX_VALUE), 0D);
1797        assertEquals(4.9E-324, Math.sinh(Double.MIN_VALUE), 0D);
1798    }
1799
1800    /**
1801     * java.lang.Math#sqrt(double)
1802     */
1803    public void test_sqrtD() {
1804        // Test for method double java.lang.Math.sqrt(double)
1805        assertEquals("Incorrect root returned2", 7, Math.sqrt(49), 0);
1806    }
1807
1808    /**
1809     * java.lang.Math#tan(double)
1810     */
1811    public void test_tanD() {
1812        // Test for method double java.lang.Math.tan(double)
1813        assertEquals("Incorrect answer", 0.0, Math.tan(0), 0D);
1814        assertEquals("Incorrect answer", 1.5574077246549023, Math.tan(1), 0D);
1815
1816    }
1817
1818    /**
1819     * java.lang.Math#tanh(double)
1820     */
1821    public void test_tanh_D() {
1822        // Test for special situations
1823        assertTrue("Should return NaN", Double.isNaN(Math.tanh(Double.NaN)));
1824        assertEquals("Should return +1.0", +1.0, Math
1825                .tanh(Double.POSITIVE_INFINITY), 0D);
1826        assertEquals("Should return -1.0", -1.0, Math
1827                .tanh(Double.NEGATIVE_INFINITY), 0D);
1828        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1829                .tanh(0.0)));
1830        assertEquals(Double.doubleToLongBits(+0.0), Double
1831                .doubleToLongBits(Math.tanh(+0.0)));
1832        assertEquals(Double.doubleToLongBits(-0.0), Double
1833                .doubleToLongBits(Math.tanh(-0.0)));
1834
1835        assertEquals("Should return 1.0", 1.0, Math.tanh(1234.56), 0D);
1836        assertEquals("Should return -1.0", -1.0, Math.tanh(-1234.56), 0D);
1837        assertEquals("Should return 9.999999999996666E-7",
1838                9.999999999996666E-7, Math.tanh(0.000001), 0D);
1839        assertEquals("Should return 0.981422884124941", 0.981422884124941, Math
1840                .tanh(2.33482), 0D);
1841        assertEquals("Should return 1.0", 1.0, Math.tanh(Double.MAX_VALUE), 0D);
1842        assertEquals("Should return 4.9E-324", 4.9E-324, Math
1843                .tanh(Double.MIN_VALUE), 0D);
1844    }
1845
1846    /**
1847     * java.lang.Math#random()
1848     */
1849    public void test_random() {
1850        // There isn't a place for these tests so just stick them here
1851        assertEquals("Wrong value E",
1852                4613303445314885481L, Double.doubleToLongBits(Math.E));
1853        assertEquals("Wrong value PI",
1854                4614256656552045848L, Double.doubleToLongBits(Math.PI));
1855
1856        for (int i = 500; i >= 0; i--) {
1857            double d = Math.random();
1858            assertTrue("Generated number is out of range: " + d, d >= 0.0
1859                    && d < 1.0);
1860        }
1861    }
1862
1863    /**
1864     * java.lang.Math#toRadians(double)
1865     */
1866    public void test_toRadiansD() {
1867        for (double d = 500; d >= 0; d -= 1.0) {
1868            double converted = Math.toDegrees(Math.toRadians(d));
1869            assertTrue("Converted number not equal to original. d = " + d,
1870                    converted >= d * 0.99999999 && converted <= d * 1.00000001);
1871        }
1872    }
1873
1874    /**
1875     * java.lang.Math#toDegrees(double)
1876     */
1877    public void test_toDegreesD() {
1878        for (double d = 500; d >= 0; d -= 1.0) {
1879            double converted = Math.toRadians(Math.toDegrees(d));
1880            assertTrue("Converted number not equal to original. d = " + d,
1881                    converted >= d * 0.99999999 && converted <= d * 1.00000001);
1882        }
1883    }
1884
1885    /**
1886     * java.lang.Math#ulp(double)
1887     */
1888    @SuppressWarnings("boxing")
1889    public void test_ulp_D() {
1890        // Test for special cases
1891        assertTrue("Should return NaN", Double.isNaN(Math.ulp(Double.NaN)));
1892        assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1893                .ulp(Double.POSITIVE_INFINITY), 0D);
1894        assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1895                .ulp(Double.NEGATIVE_INFINITY), 0D);
1896        assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1897                .ulp(0.0), 0D);
1898        assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1899                .ulp(+0.0), 0D);
1900        assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1901                .ulp(-0.0), 0D);
1902        assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1903                .ulp(Double.MAX_VALUE), 0D);
1904        assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1905                .ulp(-Double.MAX_VALUE), 0D);
1906
1907        assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1908                .ulp(Double.MIN_VALUE), 0D);
1909        assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1910                .ulp(-Double.MIN_VALUE), 0D);
1911
1912        assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1913                .ulp(1.0), 0D);
1914        assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1915                .ulp(-1.0), 0D);
1916        assertEquals("Returned incorrect value", 2.2737367544323206E-13, Math
1917                .ulp(1153.0), 0D);
1918    }
1919
1920    /**
1921     * java.lang.Math#ulp(float)
1922     */
1923    @SuppressWarnings("boxing")
1924    public void test_ulp_f() {
1925        // Test for special cases
1926        assertTrue("Should return NaN", Float.isNaN(Math.ulp(Float.NaN)));
1927        assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1928                .ulp(Float.POSITIVE_INFINITY), 0f);
1929        assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1930                .ulp(Float.NEGATIVE_INFINITY), 0f);
1931        assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1932                .ulp(0.0f), 0f);
1933        assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1934                .ulp(+0.0f), 0f);
1935        assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1936                .ulp(-0.0f), 0f);
1937        assertEquals("Returned incorrect value", 2.028241E31f, Math
1938                .ulp(Float.MAX_VALUE), 0f);
1939        assertEquals("Returned incorrect value", 2.028241E31f, Math
1940                .ulp(-Float.MAX_VALUE), 0f);
1941
1942        assertEquals("Returned incorrect value", 1.4E-45f, Math
1943                .ulp(Float.MIN_VALUE), 0f);
1944        assertEquals("Returned incorrect value", 1.4E-45f, Math
1945                .ulp(-Float.MIN_VALUE), 0f);
1946
1947        assertEquals("Returned incorrect value", 1.1920929E-7f, Math.ulp(1.0f),
1948                0f);
1949        assertEquals("Returned incorrect value", 1.1920929E-7f,
1950                Math.ulp(-1.0f), 0f);
1951        assertEquals("Returned incorrect value", 1.2207031E-4f, Math
1952                .ulp(1153.0f), 0f);
1953        assertEquals("Returned incorrect value", 5.6E-45f, Math
1954                .ulp(9.403954E-38f), 0f);
1955    }
1956
1957    /**
1958     * {@link java.lang.Math#shiftIntBits(int, int)}
1959     * @since 1.6
1960     */
1961    public void test_shiftIntBits_II() {
1962        class Tuple {
1963            public int result;
1964
1965            public int value;
1966
1967            public int factor;
1968
1969            public Tuple(int result, int value, int factor) {
1970                this.result = result;
1971                this.value = value;
1972                this.factor = factor;
1973            }
1974        }
1975        final Tuple[] TUPLES = new Tuple[] {
1976                // sub-normal to sub-normal
1977                new Tuple(0x00000000, 0x00000001, -1),
1978                // round to even
1979                new Tuple(0x00000002, 0x00000003, -1),
1980                // round to even
1981                new Tuple(0x00000001, 0x00000005, -3),
1982                // round to infinity
1983                new Tuple(0x00000002, 0x0000000d, -3),
1984                // round to infinity
1985
1986                // normal to sub-normal
1987                new Tuple(0x00000002, 0x01a00000, -24),
1988                // round to even
1989                new Tuple(0x00000004, 0x01e00000, -24),
1990                // round to even
1991                new Tuple(0x00000003, 0x01c80000, -24),
1992                // round to infinity
1993                new Tuple(0x00000004, 0x01e80000, -24),
1994                // round to infinity
1995        };
1996        for (int i = 0; i < TUPLES.length; ++i) {
1997            Tuple tuple = TUPLES[i];
1998            assertEquals(tuple.result, Float.floatToIntBits(Math.scalb(Float
1999                    .intBitsToFloat(tuple.value), tuple.factor)));
2000            assertEquals(tuple.result, Float.floatToIntBits(-Math.scalb(-Float
2001                    .intBitsToFloat(tuple.value), tuple.factor)));
2002        }
2003    }
2004
2005    /**
2006     * {@link java.lang.Math#shiftLongBits(long, long)}
2007     * <p/>
2008     * Round result to nearest value on precision lost.
2009     * @since 1.6
2010     */
2011    public void test_shiftLongBits_LL() {
2012        class Tuple {
2013            public long result;
2014
2015            public long value;
2016
2017            public int factor;
2018
2019            public Tuple(long result, long value, int factor) {
2020                this.result = result;
2021                this.value = value;
2022                this.factor = factor;
2023            }
2024        }
2025        final Tuple[] TUPLES = new Tuple[] {
2026                // sub-normal to sub-normal
2027                new Tuple(0x00000000L, 0x00000001L, -1),
2028                //round to even
2029                new Tuple(0x00000002L, 0x00000003L, -1),
2030                //round to even
2031                new Tuple(0x00000001L, 0x00000005L, -3),
2032                //round to infinity
2033                new Tuple(0x00000002L, 0x0000000dL, -3),
2034                //round to infinity
2035
2036                // normal to sub-normal
2037                new Tuple(0x0000000000000002L, 0x0034000000000000L, -53), // round to even
2038                new Tuple(0x0000000000000004L, 0x003c000000000000L, -53), // round to even
2039                new Tuple(0x0000000000000003L, 0x0035000000000000L, -53), // round to infinity
2040                new Tuple(0x0000000000000004L, 0x003d000000000000L, -53), // round to infinity
2041        };
2042        for (int i = 0; i < TUPLES.length; ++i) {
2043            Tuple tuple = TUPLES[i];
2044            assertEquals(tuple.result, Double.doubleToLongBits(Math.scalb(
2045                    Double.longBitsToDouble(tuple.value), tuple.factor)));
2046            assertEquals(tuple.result, Double.doubleToLongBits(-Math.scalb(
2047                    -Double.longBitsToDouble(tuple.value), tuple.factor)));
2048        }
2049    }
2050}
2051