1/*
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import sun.misc.FloatingDecimal;
29import sun.misc.FpUtils;
30import sun.misc.DoubleConsts;
31
32/**
33 * The {@code Double} class wraps a value of the primitive type
34 * {@code double} in an object. An object of type
35 * {@code Double} contains a single field whose type is
36 * {@code double}.
37 *
38 * <p>In addition, this class provides several methods for converting a
39 * {@code double} to a {@code String} and a
40 * {@code String} to a {@code double}, as well as other
41 * constants and methods useful when dealing with a
42 * {@code double}.
43 *
44 * @author  Lee Boynton
45 * @author  Arthur van Hoff
46 * @author  Joseph D. Darcy
47 * @since JDK1.0
48 */
49public final class Double extends Number implements Comparable<Double> {
50    /**
51     * A constant holding the positive infinity of type
52     * {@code double}. It is equal to the value returned by
53     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
54     */
55    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
56
57    /**
58     * A constant holding the negative infinity of type
59     * {@code double}. It is equal to the value returned by
60     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
61     */
62    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
63
64    /**
65     * A constant holding a Not-a-Number (NaN) value of type
66     * {@code double}. It is equivalent to the value returned by
67     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
68     */
69    public static final double NaN = 0.0d / 0.0;
70
71    /**
72     * A constant holding the largest positive finite value of type
73     * {@code double},
74     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
75     * the hexadecimal floating-point literal
76     * {@code 0x1.fffffffffffffP+1023} and also equal to
77     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
78     */
79    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
80
81    /**
82     * A constant holding the smallest positive normal value of type
83     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
84     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
85     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
86     *
87     * @since 1.6
88     */
89    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
90
91    /**
92     * A constant holding the smallest positive nonzero value of type
93     * {@code double}, 2<sup>-1074</sup>. It is equal to the
94     * hexadecimal floating-point literal
95     * {@code 0x0.0000000000001P-1022} and also equal to
96     * {@code Double.longBitsToDouble(0x1L)}.
97     */
98    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
99
100    /**
101     * Maximum exponent a finite {@code double} variable may have.
102     * It is equal to the value returned by
103     * {@code Math.getExponent(Double.MAX_VALUE)}.
104     *
105     * @since 1.6
106     */
107    public static final int MAX_EXPONENT = 1023;
108
109    /**
110     * Minimum exponent a normalized {@code double} variable may
111     * have.  It is equal to the value returned by
112     * {@code Math.getExponent(Double.MIN_NORMAL)}.
113     *
114     * @since 1.6
115     */
116    public static final int MIN_EXPONENT = -1022;
117
118    /**
119     * The number of bits used to represent a {@code double} value.
120     *
121     * @since 1.5
122     */
123    public static final int SIZE = 64;
124
125    /**
126     * The number of bytes used to represent a {@code double} value.
127     *
128     * @since 1.8
129     */
130    public static final int BYTES = SIZE / Byte.SIZE;
131
132    /**
133     * The {@code Class} instance representing the primitive type
134     * {@code double}.
135     *
136     * @since JDK1.1
137     */
138    @SuppressWarnings("unchecked")
139    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
140
141    /**
142     * Returns a string representation of the {@code double}
143     * argument. All characters mentioned below are ASCII characters.
144     * <ul>
145     * <li>If the argument is NaN, the result is the string
146     *     "{@code NaN}".
147     * <li>Otherwise, the result is a string that represents the sign and
148     * magnitude (absolute value) of the argument. If the sign is negative,
149     * the first character of the result is '{@code -}'
150     * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
151     * appears in the result. As for the magnitude <i>m</i>:
152     * <ul>
153     * <li>If <i>m</i> is infinity, it is represented by the characters
154     * {@code "Infinity"}; thus, positive infinity produces the result
155     * {@code "Infinity"} and negative infinity produces the result
156     * {@code "-Infinity"}.
157     *
158     * <li>If <i>m</i> is zero, it is represented by the characters
159     * {@code "0.0"}; thus, negative zero produces the result
160     * {@code "-0.0"} and positive zero produces the result
161     * {@code "0.0"}.
162     *
163     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
164     * than 10<sup>7</sup>, then it is represented as the integer part of
165     * <i>m</i>, in decimal form with no leading zeroes, followed by
166     * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
167     * more decimal digits representing the fractional part of <i>m</i>.
168     *
169     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
170     * equal to 10<sup>7</sup>, then it is represented in so-called
171     * "computerized scientific notation." Let <i>n</i> be the unique
172     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
173     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
174     * mathematically exact quotient of <i>m</i> and
175     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
176     * magnitude is then represented as the integer part of <i>a</i>,
177     * as a single decimal digit, followed by '{@code .}'
178     * ({@code '\u005Cu002E'}), followed by decimal digits
179     * representing the fractional part of <i>a</i>, followed by the
180     * letter '{@code E}' ({@code '\u005Cu0045'}), followed
181     * by a representation of <i>n</i> as a decimal integer, as
182     * produced by the method {@link Integer#toString(int)}.
183     * </ul>
184     * </ul>
185     * How many digits must be printed for the fractional part of
186     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
187     * the fractional part, and beyond that as many, but only as many, more
188     * digits as are needed to uniquely distinguish the argument value from
189     * adjacent values of type {@code double}. That is, suppose that
190     * <i>x</i> is the exact mathematical value represented by the decimal
191     * representation produced by this method for a finite nonzero argument
192     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
193     * to <i>x</i>; or if two {@code double} values are equally close
194     * to <i>x</i>, then <i>d</i> must be one of them and the least
195     * significant bit of the significand of <i>d</i> must be {@code 0}.
196     *
197     * <p>To create localized string representations of a floating-point
198     * value, use subclasses of {@link java.text.NumberFormat}.
199     *
200     * @param   d   the {@code double} to be converted.
201     * @return a string representation of the argument.
202     */
203    public static String toString(double d) {
204        return FloatingDecimal.toJavaFormatString(d);
205    }
206
207    /**
208     * Returns a hexadecimal string representation of the
209     * {@code double} argument. All characters mentioned below
210     * are ASCII characters.
211     *
212     * <ul>
213     * <li>If the argument is NaN, the result is the string
214     *     "{@code NaN}".
215     * <li>Otherwise, the result is a string that represents the sign
216     * and magnitude of the argument. If the sign is negative, the
217     * first character of the result is '{@code -}'
218     * ({@code '\u005Cu002D'}); if the sign is positive, no sign
219     * character appears in the result. As for the magnitude <i>m</i>:
220     *
221     * <ul>
222     * <li>If <i>m</i> is infinity, it is represented by the string
223     * {@code "Infinity"}; thus, positive infinity produces the
224     * result {@code "Infinity"} and negative infinity produces
225     * the result {@code "-Infinity"}.
226     *
227     * <li>If <i>m</i> is zero, it is represented by the string
228     * {@code "0x0.0p0"}; thus, negative zero produces the result
229     * {@code "-0x0.0p0"} and positive zero produces the result
230     * {@code "0x0.0p0"}.
231     *
232     * <li>If <i>m</i> is a {@code double} value with a
233     * normalized representation, substrings are used to represent the
234     * significand and exponent fields.  The significand is
235     * represented by the characters {@code "0x1."}
236     * followed by a lowercase hexadecimal representation of the rest
237     * of the significand as a fraction.  Trailing zeros in the
238     * hexadecimal representation are removed unless all the digits
239     * are zero, in which case a single zero is used. Next, the
240     * exponent is represented by {@code "p"} followed
241     * by a decimal string of the unbiased exponent as if produced by
242     * a call to {@link Integer#toString(int) Integer.toString} on the
243     * exponent value.
244     *
245     * <li>If <i>m</i> is a {@code double} value with a subnormal
246     * representation, the significand is represented by the
247     * characters {@code "0x0."} followed by a
248     * hexadecimal representation of the rest of the significand as a
249     * fraction.  Trailing zeros in the hexadecimal representation are
250     * removed. Next, the exponent is represented by
251     * {@code "p-1022"}.  Note that there must be at
252     * least one nonzero digit in a subnormal significand.
253     *
254     * </ul>
255     *
256     * </ul>
257     *
258     * <table border>
259     * <caption>Examples</caption>
260     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
261     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
262     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
263     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
264     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
265     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
266     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
267     * <tr><td>{@code Double.MAX_VALUE}</td>
268     *     <td>{@code 0x1.fffffffffffffp1023}</td>
269     * <tr><td>{@code Minimum Normal Value}</td>
270     *     <td>{@code 0x1.0p-1022}</td>
271     * <tr><td>{@code Maximum Subnormal Value}</td>
272     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
273     * <tr><td>{@code Double.MIN_VALUE}</td>
274     *     <td>{@code 0x0.0000000000001p-1022}</td>
275     * </table>
276     * @param   d   the {@code double} to be converted.
277     * @return a hex string representation of the argument.
278     * @since 1.5
279     * @author Joseph D. Darcy
280     */
281    public static String toHexString(double d) {
282        /*
283         * Modeled after the "a" conversion specifier in C99, section
284         * 7.19.6.1; however, the output of this method is more
285         * tightly specified.
286         */
287        if (!isFinite(d) )
288            // For infinity and NaN, use the decimal output.
289            return Double.toString(d);
290        else {
291            // Initialized to maximum size of output.
292            StringBuilder answer = new StringBuilder(24);
293
294            if (Math.copySign(1.0, d) == -1.0)    // value is negative,
295                answer.append("-");                  // so append sign info
296
297            answer.append("0x");
298
299            d = Math.abs(d);
300
301            if(d == 0.0) {
302                answer.append("0.0p0");
303            } else {
304                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
305
306                // Isolate significand bits and OR in a high-order bit
307                // so that the string representation has a known
308                // length.
309                long signifBits = (Double.doubleToLongBits(d)
310                                   & DoubleConsts.SIGNIF_BIT_MASK) |
311                    0x1000000000000000L;
312
313                // Subnormal values have a 0 implicit bit; normal
314                // values have a 1 implicit bit.
315                answer.append(subnormal ? "0." : "1.");
316
317                // Isolate the low-order 13 digits of the hex
318                // representation.  If all the digits are zero,
319                // replace with a single 0; otherwise, remove all
320                // trailing zeros.
321                String signif = Long.toHexString(signifBits).substring(3,16);
322                answer.append(signif.equals("0000000000000") ? // 13 zeros
323                              "0":
324                              signif.replaceFirst("0{1,12}$", ""));
325
326                answer.append('p');
327                // If the value is subnormal, use the E_min exponent
328                // value for double; otherwise, extract and report d's
329                // exponent (the representation of a subnormal uses
330                // E_min -1).
331                answer.append(subnormal ?
332                              DoubleConsts.MIN_EXPONENT:
333                              Math.getExponent(d));
334            }
335            return answer.toString();
336        }
337    }
338
339    /**
340     * Returns a {@code Double} object holding the
341     * {@code double} value represented by the argument string
342     * {@code s}.
343     *
344     * <p>If {@code s} is {@code null}, then a
345     * {@code NullPointerException} is thrown.
346     *
347     * <p>Leading and trailing whitespace characters in {@code s}
348     * are ignored.  Whitespace is removed as if by the {@link
349     * String#trim} method; that is, both ASCII space and control
350     * characters are removed. The rest of {@code s} should
351     * constitute a <i>FloatValue</i> as described by the lexical
352     * syntax rules:
353     *
354     * <blockquote>
355     * <dl>
356     * <dt><i>FloatValue:</i>
357     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
358     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
359     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
360     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
361     * <dd><i>SignedInteger</i>
362     * </dl>
363     *
364     * <dl>
365     * <dt><i>HexFloatingPointLiteral</i>:
366     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
367     * </dl>
368     *
369     * <dl>
370     * <dt><i>HexSignificand:</i>
371     * <dd><i>HexNumeral</i>
372     * <dd><i>HexNumeral</i> {@code .}
373     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
374     *     </i>{@code .}<i> HexDigits</i>
375     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
376     *     </i>{@code .} <i>HexDigits</i>
377     * </dl>
378     *
379     * <dl>
380     * <dt><i>BinaryExponent:</i>
381     * <dd><i>BinaryExponentIndicator SignedInteger</i>
382     * </dl>
383     *
384     * <dl>
385     * <dt><i>BinaryExponentIndicator:</i>
386     * <dd>{@code p}
387     * <dd>{@code P}
388     * </dl>
389     *
390     * </blockquote>
391     *
392     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
393     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
394     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
395     * sections of
396     * <cite>The Java&trade; Language Specification</cite>,
397     * except that underscores are not accepted between digits.
398     * If {@code s} does not have the form of
399     * a <i>FloatValue</i>, then a {@code NumberFormatException}
400     * is thrown. Otherwise, {@code s} is regarded as
401     * representing an exact decimal value in the usual
402     * "computerized scientific notation" or as an exact
403     * hexadecimal value; this exact numerical value is then
404     * conceptually converted to an "infinitely precise"
405     * binary value that is then rounded to type {@code double}
406     * by the usual round-to-nearest rule of IEEE 754 floating-point
407     * arithmetic, which includes preserving the sign of a zero
408     * value.
409     *
410     * Note that the round-to-nearest rule also implies overflow and
411     * underflow behaviour; if the exact value of {@code s} is large
412     * enough in magnitude (greater than or equal to ({@link
413     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
414     * rounding to {@code double} will result in an infinity and if the
415     * exact value of {@code s} is small enough in magnitude (less
416     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
417     * result in a zero.
418     *
419     * Finally, after rounding a {@code Double} object representing
420     * this {@code double} value is returned.
421     *
422     * <p> To interpret localized string representations of a
423     * floating-point value, use subclasses of {@link
424     * java.text.NumberFormat}.
425     *
426     * <p>Note that trailing format specifiers, specifiers that
427     * determine the type of a floating-point literal
428     * ({@code 1.0f} is a {@code float} value;
429     * {@code 1.0d} is a {@code double} value), do
430     * <em>not</em> influence the results of this method.  In other
431     * words, the numerical value of the input string is converted
432     * directly to the target floating-point type.  The two-step
433     * sequence of conversions, string to {@code float} followed
434     * by {@code float} to {@code double}, is <em>not</em>
435     * equivalent to converting a string directly to
436     * {@code double}. For example, the {@code float}
437     * literal {@code 0.1f} is equal to the {@code double}
438     * value {@code 0.10000000149011612}; the {@code float}
439     * literal {@code 0.1f} represents a different numerical
440     * value than the {@code double} literal
441     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
442     * represented in a binary floating-point number.)
443     *
444     * <p>To avoid calling this method on an invalid string and having
445     * a {@code NumberFormatException} be thrown, the regular
446     * expression below can be used to screen the input string:
447     *
448     * <pre>{@code
449     *  final String Digits     = "(\\p{Digit}+)";
450     *  final String HexDigits  = "(\\p{XDigit}+)";
451     *  // an exponent is 'e' or 'E' followed by an optionally
452     *  // signed decimal integer.
453     *  final String Exp        = "[eE][+-]?"+Digits;
454     *  final String fpRegex    =
455     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
456     *       "[+-]?(" + // Optional sign character
457     *       "NaN|" +           // "NaN" string
458     *       "Infinity|" +      // "Infinity" string
459     *
460     *       // A decimal floating-point string representing a finite positive
461     *       // number without a leading sign has at most five basic pieces:
462     *       // Digits . Digits ExponentPart FloatTypeSuffix
463     *       //
464     *       // Since this method allows integer-only strings as input
465     *       // in addition to strings of floating-point literals, the
466     *       // two sub-patterns below are simplifications of the grammar
467     *       // productions from section 3.10.2 of
468     *       // The Java Language Specification.
469     *
470     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
471     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
472     *
473     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
474     *       "(\\.("+Digits+")("+Exp+")?)|"+
475     *
476     *       // Hexadecimal strings
477     *       "((" +
478     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
479     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
480     *
481     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
482     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
483     *
484     *        ")[pP][+-]?" + Digits + "))" +
485     *       "[fFdD]?))" +
486     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
487     *
488     *  if (Pattern.matches(fpRegex, myString))
489     *      Double.valueOf(myString); // Will not throw NumberFormatException
490     *  else {
491     *      // Perform suitable alternative action
492     *  }
493     * }</pre>
494     *
495     * @param      s   the string to be parsed.
496     * @return     a {@code Double} object holding the value
497     *             represented by the {@code String} argument.
498     * @throws     NumberFormatException  if the string does not contain a
499     *             parsable number.
500     */
501    public static Double valueOf(String s) throws NumberFormatException {
502        return new Double(parseDouble(s));
503    }
504
505    /**
506     * Returns a {@code Double} instance representing the specified
507     * {@code double} value.
508     * If a new {@code Double} instance is not required, this method
509     * should generally be used in preference to the constructor
510     * {@link #Double(double)}, as this method is likely to yield
511     * significantly better space and time performance by caching
512     * frequently requested values.
513     *
514     * @param  d a double value.
515     * @return a {@code Double} instance representing {@code d}.
516     * @since  1.5
517     */
518    public static Double valueOf(double d) {
519        return new Double(d);
520    }
521
522    /**
523     * Returns a new {@code double} initialized to the value
524     * represented by the specified {@code String}, as performed
525     * by the {@code valueOf} method of class
526     * {@code Double}.
527     *
528     * @param  s   the string to be parsed.
529     * @return the {@code double} value represented by the string
530     *         argument.
531     * @throws NullPointerException  if the string is null
532     * @throws NumberFormatException if the string does not contain
533     *         a parsable {@code double}.
534     * @see    java.lang.Double#valueOf(String)
535     * @since 1.2
536     */
537    public static double parseDouble(String s) throws NumberFormatException {
538        return FloatingDecimal.parseDouble(s);
539    }
540
541    /**
542     * Returns {@code true} if the specified number is a
543     * Not-a-Number (NaN) value, {@code false} otherwise.
544     *
545     * @param   v   the value to be tested.
546     * @return  {@code true} if the value of the argument is NaN;
547     *          {@code false} otherwise.
548     */
549    public static boolean isNaN(double v) {
550        return (v != v);
551    }
552
553    /**
554     * Returns {@code true} if the specified number is infinitely
555     * large in magnitude, {@code false} otherwise.
556     *
557     * @param   v   the value to be tested.
558     * @return  {@code true} if the value of the argument is positive
559     *          infinity or negative infinity; {@code false} otherwise.
560     */
561    public static boolean isInfinite(double v) {
562        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
563    }
564
565    /**
566     * Returns {@code true} if the argument is a finite floating-point
567     * value; returns {@code false} otherwise (for NaN and infinity
568     * arguments).
569     *
570     * @param d the {@code double} value to be tested
571     * @return {@code true} if the argument is a finite
572     * floating-point value, {@code false} otherwise.
573     * @since 1.8
574     */
575    public static boolean isFinite(double d) {
576        return Math.abs(d) <= DoubleConsts.MAX_VALUE;
577    }
578
579    /**
580     * The value of the Double.
581     *
582     * @serial
583     */
584    private final double value;
585
586    /**
587     * Constructs a newly allocated {@code Double} object that
588     * represents the primitive {@code double} argument.
589     *
590     * @param   value   the value to be represented by the {@code Double}.
591     */
592    public Double(double value) {
593        this.value = value;
594    }
595
596    /**
597     * Constructs a newly allocated {@code Double} object that
598     * represents the floating-point value of type {@code double}
599     * represented by the string. The string is converted to a
600     * {@code double} value as if by the {@code valueOf} method.
601     *
602     * @param  s  a string to be converted to a {@code Double}.
603     * @throws    NumberFormatException  if the string does not contain a
604     *            parsable number.
605     * @see       java.lang.Double#valueOf(java.lang.String)
606     */
607    public Double(String s) throws NumberFormatException {
608        value = parseDouble(s);
609    }
610
611    /**
612     * Returns {@code true} if this {@code Double} value is
613     * a Not-a-Number (NaN), {@code false} otherwise.
614     *
615     * @return  {@code true} if the value represented by this object is
616     *          NaN; {@code false} otherwise.
617     */
618    public boolean isNaN() {
619        return isNaN(value);
620    }
621
622    /**
623     * Returns {@code true} if this {@code Double} value is
624     * infinitely large in magnitude, {@code false} otherwise.
625     *
626     * @return  {@code true} if the value represented by this object is
627     *          positive infinity or negative infinity;
628     *          {@code false} otherwise.
629     */
630    public boolean isInfinite() {
631        return isInfinite(value);
632    }
633
634    /**
635     * Returns a string representation of this {@code Double} object.
636     * The primitive {@code double} value represented by this
637     * object is converted to a string exactly as if by the method
638     * {@code toString} of one argument.
639     *
640     * @return  a {@code String} representation of this object.
641     * @see java.lang.Double#toString(double)
642     */
643    public String toString() {
644        return toString(value);
645    }
646
647    /**
648     * Returns the value of this {@code Double} as a {@code byte}
649     * after a narrowing primitive conversion.
650     *
651     * @return  the {@code double} value represented by this object
652     *          converted to type {@code byte}
653     * @jls 5.1.3 Narrowing Primitive Conversions
654     * @since JDK1.1
655     */
656    public byte byteValue() {
657        return (byte)value;
658    }
659
660    /**
661     * Returns the value of this {@code Double} as a {@code short}
662     * after a narrowing primitive conversion.
663     *
664     * @return  the {@code double} value represented by this object
665     *          converted to type {@code short}
666     * @jls 5.1.3 Narrowing Primitive Conversions
667     * @since JDK1.1
668     */
669    public short shortValue() {
670        return (short)value;
671    }
672
673    /**
674     * Returns the value of this {@code Double} as an {@code int}
675     * after a narrowing primitive conversion.
676     * @jls 5.1.3 Narrowing Primitive Conversions
677     *
678     * @return  the {@code double} value represented by this object
679     *          converted to type {@code int}
680     */
681    public int intValue() {
682        return (int)value;
683    }
684
685    /**
686     * Returns the value of this {@code Double} as a {@code long}
687     * after a narrowing primitive conversion.
688     *
689     * @return  the {@code double} value represented by this object
690     *          converted to type {@code long}
691     * @jls 5.1.3 Narrowing Primitive Conversions
692     */
693    public long longValue() {
694        return (long)value;
695    }
696
697    /**
698     * Returns the value of this {@code Double} as a {@code float}
699     * after a narrowing primitive conversion.
700     *
701     * @return  the {@code double} value represented by this object
702     *          converted to type {@code float}
703     * @jls 5.1.3 Narrowing Primitive Conversions
704     * @since JDK1.0
705     */
706    public float floatValue() {
707        return (float)value;
708    }
709
710    /**
711     * Returns the {@code double} value of this {@code Double} object.
712     *
713     * @return the {@code double} value represented by this object
714     */
715    public double doubleValue() {
716        return value;
717    }
718
719    /**
720     * Returns a hash code for this {@code Double} object. The
721     * result is the exclusive OR of the two halves of the
722     * {@code long} integer bit representation, exactly as
723     * produced by the method {@link #doubleToLongBits(double)}, of
724     * the primitive {@code double} value represented by this
725     * {@code Double} object. That is, the hash code is the value
726     * of the expression:
727     *
728     * <blockquote>
729     *  {@code (int)(v^(v>>>32))}
730     * </blockquote>
731     *
732     * where {@code v} is defined by:
733     *
734     * <blockquote>
735     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
736     * </blockquote>
737     *
738     * @return  a {@code hash code} value for this object.
739     */
740    @Override
741    public int hashCode() {
742        return Double.hashCode(value);
743    }
744
745    /**
746     * Returns a hash code for a {@code double} value; compatible with
747     * {@code Double.hashCode()}.
748     *
749     * @param value the value to hash
750     * @return a hash code value for a {@code double} value.
751     * @since 1.8
752     */
753    public static int hashCode(double value) {
754        long bits = doubleToLongBits(value);
755        return (int)(bits ^ (bits >>> 32));
756    }
757
758    /**
759     * Compares this object against the specified object.  The result
760     * is {@code true} if and only if the argument is not
761     * {@code null} and is a {@code Double} object that
762     * represents a {@code double} that has the same value as the
763     * {@code double} represented by this object. For this
764     * purpose, two {@code double} values are considered to be
765     * the same if and only if the method {@link
766     * #doubleToLongBits(double)} returns the identical
767     * {@code long} value when applied to each.
768     *
769     * <p>Note that in most cases, for two instances of class
770     * {@code Double}, {@code d1} and {@code d2}, the
771     * value of {@code d1.equals(d2)} is {@code true} if and
772     * only if
773     *
774     * <blockquote>
775     *  {@code d1.doubleValue() == d2.doubleValue()}
776     * </blockquote>
777     *
778     * <p>also has the value {@code true}. However, there are two
779     * exceptions:
780     * <ul>
781     * <li>If {@code d1} and {@code d2} both represent
782     *     {@code Double.NaN}, then the {@code equals} method
783     *     returns {@code true}, even though
784     *     {@code Double.NaN==Double.NaN} has the value
785     *     {@code false}.
786     * <li>If {@code d1} represents {@code +0.0} while
787     *     {@code d2} represents {@code -0.0}, or vice versa,
788     *     the {@code equal} test has the value {@code false},
789     *     even though {@code +0.0==-0.0} has the value {@code true}.
790     * </ul>
791     * This definition allows hash tables to operate properly.
792     * @param   obj   the object to compare with.
793     * @return  {@code true} if the objects are the same;
794     *          {@code false} otherwise.
795     * @see java.lang.Double#doubleToLongBits(double)
796     */
797    public boolean equals(Object obj) {
798        return (obj instanceof Double)
799               && (doubleToLongBits(((Double)obj).value) ==
800                      doubleToLongBits(value));
801    }
802
803    /**
804     * Returns a representation of the specified floating-point value
805     * according to the IEEE 754 floating-point "double
806     * format" bit layout.
807     *
808     * <p>Bit 63 (the bit that is selected by the mask
809     * {@code 0x8000000000000000L}) represents the sign of the
810     * floating-point number. Bits
811     * 62-52 (the bits that are selected by the mask
812     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
813     * (the bits that are selected by the mask
814     * {@code 0x000fffffffffffffL}) represent the significand
815     * (sometimes called the mantissa) of the floating-point number.
816     *
817     * <p>If the argument is positive infinity, the result is
818     * {@code 0x7ff0000000000000L}.
819     *
820     * <p>If the argument is negative infinity, the result is
821     * {@code 0xfff0000000000000L}.
822     *
823     * <p>If the argument is NaN, the result is
824     * {@code 0x7ff8000000000000L}.
825     *
826     * <p>In all cases, the result is a {@code long} integer that, when
827     * given to the {@link #longBitsToDouble(long)} method, will produce a
828     * floating-point value the same as the argument to
829     * {@code doubleToLongBits} (except all NaN values are
830     * collapsed to a single "canonical" NaN value).
831     *
832     * @param   value   a {@code double} precision floating-point number.
833     * @return the bits that represent the floating-point number.
834     */
835    public static long doubleToLongBits(double value) {
836        long result = doubleToRawLongBits(value);
837        // Check for NaN based on values of bit fields, maximum
838        // exponent and nonzero significand.
839        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
840              DoubleConsts.EXP_BIT_MASK) &&
841             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
842            result = 0x7ff8000000000000L;
843        return result;
844    }
845
846    /**
847     * Returns a representation of the specified floating-point value
848     * according to the IEEE 754 floating-point "double
849     * format" bit layout, preserving Not-a-Number (NaN) values.
850     *
851     * <p>Bit 63 (the bit that is selected by the mask
852     * {@code 0x8000000000000000L}) represents the sign of the
853     * floating-point number. Bits
854     * 62-52 (the bits that are selected by the mask
855     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
856     * (the bits that are selected by the mask
857     * {@code 0x000fffffffffffffL}) represent the significand
858     * (sometimes called the mantissa) of the floating-point number.
859     *
860     * <p>If the argument is positive infinity, the result is
861     * {@code 0x7ff0000000000000L}.
862     *
863     * <p>If the argument is negative infinity, the result is
864     * {@code 0xfff0000000000000L}.
865     *
866     * <p>If the argument is NaN, the result is the {@code long}
867     * integer representing the actual NaN value.  Unlike the
868     * {@code doubleToLongBits} method,
869     * {@code doubleToRawLongBits} does not collapse all the bit
870     * patterns encoding a NaN to a single "canonical" NaN
871     * value.
872     *
873     * <p>In all cases, the result is a {@code long} integer that,
874     * when given to the {@link #longBitsToDouble(long)} method, will
875     * produce a floating-point value the same as the argument to
876     * {@code doubleToRawLongBits}.
877     *
878     * @param   value   a {@code double} precision floating-point number.
879     * @return the bits that represent the floating-point number.
880     * @since 1.3
881     */
882    public static native long doubleToRawLongBits(double value);
883
884    /**
885     * Returns the {@code double} value corresponding to a given
886     * bit representation.
887     * The argument is considered to be a representation of a
888     * floating-point value according to the IEEE 754 floating-point
889     * "double format" bit layout.
890     *
891     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
892     * is positive infinity.
893     *
894     * <p>If the argument is {@code 0xfff0000000000000L}, the result
895     * is negative infinity.
896     *
897     * <p>If the argument is any value in the range
898     * {@code 0x7ff0000000000001L} through
899     * {@code 0x7fffffffffffffffL} or in the range
900     * {@code 0xfff0000000000001L} through
901     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
902     * 754 floating-point operation provided by Java can distinguish
903     * between two NaN values of the same type with different bit
904     * patterns.  Distinct values of NaN are only distinguishable by
905     * use of the {@code Double.doubleToRawLongBits} method.
906     *
907     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
908     * values that can be computed from the argument:
909     *
910     * <blockquote><pre>{@code
911     * int s = ((bits >> 63) == 0) ? 1 : -1;
912     * int e = (int)((bits >> 52) & 0x7ffL);
913     * long m = (e == 0) ?
914     *                 (bits & 0xfffffffffffffL) << 1 :
915     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
916     * }</pre></blockquote>
917     *
918     * Then the floating-point result equals the value of the mathematical
919     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
920     *
921     * <p>Note that this method may not be able to return a
922     * {@code double} NaN with exactly same bit pattern as the
923     * {@code long} argument.  IEEE 754 distinguishes between two
924     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
925     * differences between the two kinds of NaN are generally not
926     * visible in Java.  Arithmetic operations on signaling NaNs turn
927     * them into quiet NaNs with a different, but often similar, bit
928     * pattern.  However, on some processors merely copying a
929     * signaling NaN also performs that conversion.  In particular,
930     * copying a signaling NaN to return it to the calling method
931     * may perform this conversion.  So {@code longBitsToDouble}
932     * may not be able to return a {@code double} with a
933     * signaling NaN bit pattern.  Consequently, for some
934     * {@code long} values,
935     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
936     * <i>not</i> equal {@code start}.  Moreover, which
937     * particular bit patterns represent signaling NaNs is platform
938     * dependent; although all NaN bit patterns, quiet or signaling,
939     * must be in the NaN range identified above.
940     *
941     * @param   bits   any {@code long} integer.
942     * @return  the {@code double} floating-point value with the same
943     *          bit pattern.
944     */
945    public static native double longBitsToDouble(long bits);
946
947    /**
948     * Compares two {@code Double} objects numerically.  There
949     * are two ways in which comparisons performed by this method
950     * differ from those performed by the Java language numerical
951     * comparison operators ({@code <, <=, ==, >=, >})
952     * when applied to primitive {@code double} values:
953     * <ul><li>
954     *          {@code Double.NaN} is considered by this method
955     *          to be equal to itself and greater than all other
956     *          {@code double} values (including
957     *          {@code Double.POSITIVE_INFINITY}).
958     * <li>
959     *          {@code 0.0d} is considered by this method to be greater
960     *          than {@code -0.0d}.
961     * </ul>
962     * This ensures that the <i>natural ordering</i> of
963     * {@code Double} objects imposed by this method is <i>consistent
964     * with equals</i>.
965     *
966     * @param   anotherDouble   the {@code Double} to be compared.
967     * @return  the value {@code 0} if {@code anotherDouble} is
968     *          numerically equal to this {@code Double}; a value
969     *          less than {@code 0} if this {@code Double}
970     *          is numerically less than {@code anotherDouble};
971     *          and a value greater than {@code 0} if this
972     *          {@code Double} is numerically greater than
973     *          {@code anotherDouble}.
974     *
975     * @since   1.2
976     */
977    public int compareTo(Double anotherDouble) {
978        return Double.compare(value, anotherDouble.value);
979    }
980
981    /**
982     * Compares the two specified {@code double} values. The sign
983     * of the integer value returned is the same as that of the
984     * integer that would be returned by the call:
985     * <pre>
986     *    new Double(d1).compareTo(new Double(d2))
987     * </pre>
988     *
989     * @param   d1        the first {@code double} to compare
990     * @param   d2        the second {@code double} to compare
991     * @return  the value {@code 0} if {@code d1} is
992     *          numerically equal to {@code d2}; a value less than
993     *          {@code 0} if {@code d1} is numerically less than
994     *          {@code d2}; and a value greater than {@code 0}
995     *          if {@code d1} is numerically greater than
996     *          {@code d2}.
997     * @since 1.4
998     */
999    public static int compare(double d1, double d2) {
1000        if (d1 < d2)
1001            return -1;           // Neither val is NaN, thisVal is smaller
1002        if (d1 > d2)
1003            return 1;            // Neither val is NaN, thisVal is larger
1004
1005        // Cannot use doubleToRawLongBits because of possibility of NaNs.
1006        long thisBits    = Double.doubleToLongBits(d1);
1007        long anotherBits = Double.doubleToLongBits(d2);
1008
1009        return (thisBits == anotherBits ?  0 : // Values are equal
1010                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1011                 1));                          // (0.0, -0.0) or (NaN, !NaN)
1012    }
1013
1014    /**
1015     * Adds two {@code double} values together as per the + operator.
1016     *
1017     * @param a the first operand
1018     * @param b the second operand
1019     * @return the sum of {@code a} and {@code b}
1020     * @jls 4.2.4 Floating-Point Operations
1021     * @see java.util.function.BinaryOperator
1022     * @since 1.8
1023     */
1024    public static double sum(double a, double b) {
1025        return a + b;
1026    }
1027
1028    /**
1029     * Returns the greater of two {@code double} values
1030     * as if by calling {@link Math#max(double, double) Math.max}.
1031     *
1032     * @param a the first operand
1033     * @param b the second operand
1034     * @return the greater of {@code a} and {@code b}
1035     * @see java.util.function.BinaryOperator
1036     * @since 1.8
1037     */
1038    public static double max(double a, double b) {
1039        return Math.max(a, b);
1040    }
1041
1042    /**
1043     * Returns the smaller of two {@code double} values
1044     * as if by calling {@link Math#min(double, double) Math.min}.
1045     *
1046     * @param a the first operand
1047     * @param b the second operand
1048     * @return the smaller of {@code a} and {@code b}.
1049     * @see java.util.function.BinaryOperator
1050     * @since 1.8
1051     */
1052    public static double min(double a, double b) {
1053        return Math.min(a, b);
1054    }
1055
1056    /** use serialVersionUID from JDK 1.0.2 for interoperability */
1057    private static final long serialVersionUID = -9172774392245257468L;
1058}
1059