1/*
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import sun.misc.FloatingDecimal;
29import sun.misc.FloatConsts;
30import sun.misc.DoubleConsts;
31
32/**
33 * The {@code Float} class wraps a value of primitive type
34 * {@code float} in an object. An object of type
35 * {@code Float} contains a single field whose type is
36 * {@code float}.
37 *
38 * <p>In addition, this class provides several methods for converting a
39 * {@code float} to a {@code String} and a
40 * {@code String} to a {@code float}, as well as other
41 * constants and methods useful when dealing with a
42 * {@code float}.
43 *
44 * @author  Lee Boynton
45 * @author  Arthur van Hoff
46 * @author  Joseph D. Darcy
47 * @since JDK1.0
48 */
49public final class Float extends Number implements Comparable<Float> {
50    /**
51     * A constant holding the positive infinity of type
52     * {@code float}. It is equal to the value returned by
53     * {@code Float.intBitsToFloat(0x7f800000)}.
54     */
55    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
56
57    /**
58     * A constant holding the negative infinity of type
59     * {@code float}. It is equal to the value returned by
60     * {@code Float.intBitsToFloat(0xff800000)}.
61     */
62    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
63
64    /**
65     * A constant holding a Not-a-Number (NaN) value of type
66     * {@code float}.  It is equivalent to the value returned by
67     * {@code Float.intBitsToFloat(0x7fc00000)}.
68     */
69    public static final float NaN = 0.0f / 0.0f;
70
71    /**
72     * A constant holding the largest positive finite value of type
73     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
74     * It is equal to the hexadecimal floating-point literal
75     * {@code 0x1.fffffeP+127f} and also equal to
76     * {@code Float.intBitsToFloat(0x7f7fffff)}.
77     */
78    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
79
80    /**
81     * A constant holding the smallest positive normal value of type
82     * {@code float}, 2<sup>-126</sup>.  It is equal to the
83     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
84     * equal to {@code Float.intBitsToFloat(0x00800000)}.
85     *
86     * @since 1.6
87     */
88    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
89
90    /**
91     * A constant holding the smallest positive nonzero value of type
92     * {@code float}, 2<sup>-149</sup>. It is equal to the
93     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
94     * and also equal to {@code Float.intBitsToFloat(0x1)}.
95     */
96    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
97
98    /**
99     * Maximum exponent a finite {@code float} variable may have.  It
100     * is equal to the value returned by {@code
101     * Math.getExponent(Float.MAX_VALUE)}.
102     *
103     * @since 1.6
104     */
105    public static final int MAX_EXPONENT = 127;
106
107    /**
108     * Minimum exponent a normalized {@code float} variable may have.
109     * It is equal to the value returned by {@code
110     * Math.getExponent(Float.MIN_NORMAL)}.
111     *
112     * @since 1.6
113     */
114    public static final int MIN_EXPONENT = -126;
115
116    /**
117     * The number of bits used to represent a {@code float} value.
118     *
119     * @since 1.5
120     */
121    public static final int SIZE = 32;
122
123    /**
124     * The number of bytes used to represent a {@code float} value.
125     *
126     * @since 1.8
127     */
128    public static final int BYTES = SIZE / Byte.SIZE;
129
130    /**
131     * The {@code Class} instance representing the primitive type
132     * {@code float}.
133     *
134     * @since JDK1.1
135     */
136    @SuppressWarnings("unchecked")
137    public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
138
139    /**
140     * Returns a string representation of the {@code float}
141     * argument. All characters mentioned below are ASCII characters.
142     * <ul>
143     * <li>If the argument is NaN, the result is the string
144     * "{@code NaN}".
145     * <li>Otherwise, the result is a string that represents the sign and
146     *     magnitude (absolute value) of the argument. If the sign is
147     *     negative, the first character of the result is
148     *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
149     *     positive, no sign character appears in the result. As for
150     *     the magnitude <i>m</i>:
151     * <ul>
152     * <li>If <i>m</i> is infinity, it is represented by the characters
153     *     {@code "Infinity"}; thus, positive infinity produces
154     *     the result {@code "Infinity"} and negative infinity
155     *     produces the result {@code "-Infinity"}.
156     * <li>If <i>m</i> is zero, it is represented by the characters
157     *     {@code "0.0"}; thus, negative zero produces the result
158     *     {@code "-0.0"} and positive zero produces the result
159     *     {@code "0.0"}.
160     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
161     *      less than 10<sup>7</sup>, then it is represented as the
162     *      integer part of <i>m</i>, in decimal form with no leading
163     *      zeroes, followed by '{@code .}'
164     *      ({@code '\u005Cu002E'}), followed by one or more
165     *      decimal digits representing the fractional part of
166     *      <i>m</i>.
167     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
168     *      equal to 10<sup>7</sup>, then it is represented in
169     *      so-called "computerized scientific notation." Let <i>n</i>
170     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
171     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
172     *      be the mathematically exact quotient of <i>m</i> and
173     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
174     *      The magnitude is then represented as the integer part of
175     *      <i>a</i>, as a single decimal digit, followed by
176     *      '{@code .}' ({@code '\u005Cu002E'}), followed by
177     *      decimal digits representing the fractional part of
178     *      <i>a</i>, followed by the letter '{@code E}'
179     *      ({@code '\u005Cu0045'}), followed by a representation
180     *      of <i>n</i> as a decimal integer, as produced by the
181     *      method {@link java.lang.Integer#toString(int)}.
182     *
183     * </ul>
184     * </ul>
185     * How many digits must be printed for the fractional part of
186     * <i>m</i> or <i>a</i>? There must be at least one digit
187     * to represent the fractional part, and beyond that as many, but
188     * only as many, more digits as are needed to uniquely distinguish
189     * the argument value from adjacent values of type
190     * {@code float}. That is, suppose that <i>x</i> is the
191     * exact mathematical value represented by the decimal
192     * representation produced by this method for a finite nonzero
193     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
194     * value nearest to <i>x</i>; or, if two {@code float} values are
195     * equally close to <i>x</i>, then <i>f</i> must be one of
196     * them and the least significant bit of the significand of
197     * <i>f</i> must be {@code 0}.
198     *
199     * <p>To create localized string representations of a floating-point
200     * value, use subclasses of {@link java.text.NumberFormat}.
201     *
202     * @param   f   the float to be converted.
203     * @return a string representation of the argument.
204     */
205    public static String toString(float f) {
206        return FloatingDecimal.toJavaFormatString(f);
207    }
208
209    /**
210     * Returns a hexadecimal string representation of the
211     * {@code float} argument. All characters mentioned below are
212     * ASCII characters.
213     *
214     * <ul>
215     * <li>If the argument is NaN, the result is the string
216     *     "{@code NaN}".
217     * <li>Otherwise, the result is a string that represents the sign and
218     * magnitude (absolute value) of the argument. If the sign is negative,
219     * the first character of the result is '{@code -}'
220     * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
221     * appears in the result. As for the magnitude <i>m</i>:
222     *
223     * <ul>
224     * <li>If <i>m</i> is infinity, it is represented by the string
225     * {@code "Infinity"}; thus, positive infinity produces the
226     * result {@code "Infinity"} and negative infinity produces
227     * the result {@code "-Infinity"}.
228     *
229     * <li>If <i>m</i> is zero, it is represented by the string
230     * {@code "0x0.0p0"}; thus, negative zero produces the result
231     * {@code "-0x0.0p0"} and positive zero produces the result
232     * {@code "0x0.0p0"}.
233     *
234     * <li>If <i>m</i> is a {@code float} value with a
235     * normalized representation, substrings are used to represent the
236     * significand and exponent fields.  The significand is
237     * represented by the characters {@code "0x1."}
238     * followed by a lowercase hexadecimal representation of the rest
239     * of the significand as a fraction.  Trailing zeros in the
240     * hexadecimal representation are removed unless all the digits
241     * are zero, in which case a single zero is used. Next, the
242     * exponent is represented by {@code "p"} followed
243     * by a decimal string of the unbiased exponent as if produced by
244     * a call to {@link Integer#toString(int) Integer.toString} on the
245     * exponent value.
246     *
247     * <li>If <i>m</i> is a {@code float} value with a subnormal
248     * representation, the significand is represented by the
249     * characters {@code "0x0."} followed by a
250     * hexadecimal representation of the rest of the significand as a
251     * fraction.  Trailing zeros in the hexadecimal representation are
252     * removed. Next, the exponent is represented by
253     * {@code "p-126"}.  Note that there must be at
254     * least one nonzero digit in a subnormal significand.
255     *
256     * </ul>
257     *
258     * </ul>
259     *
260     * <table border>
261     * <caption>Examples</caption>
262     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
263     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
264     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
265     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
266     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
267     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
268     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
269     * <tr><td>{@code Float.MAX_VALUE}</td>
270     *     <td>{@code 0x1.fffffep127}</td>
271     * <tr><td>{@code Minimum Normal Value}</td>
272     *     <td>{@code 0x1.0p-126}</td>
273     * <tr><td>{@code Maximum Subnormal Value}</td>
274     *     <td>{@code 0x0.fffffep-126}</td>
275     * <tr><td>{@code Float.MIN_VALUE}</td>
276     *     <td>{@code 0x0.000002p-126}</td>
277     * </table>
278     * @param   f   the {@code float} to be converted.
279     * @return a hex string representation of the argument.
280     * @since 1.5
281     * @author Joseph D. Darcy
282     */
283    public static String toHexString(float f) {
284        if (Math.abs(f) < FloatConsts.MIN_NORMAL
285            &&  f != 0.0f ) {// float subnormal
286            // Adjust exponent to create subnormal double, then
287            // replace subnormal double exponent with subnormal float
288            // exponent
289            String s = Double.toHexString(Math.scalb((double)f,
290                                                     /* -1022+126 */
291                                                     DoubleConsts.MIN_EXPONENT-
292                                                     FloatConsts.MIN_EXPONENT));
293            return s.replaceFirst("p-1022$", "p-126");
294        }
295        else // double string will be the same as float string
296            return Double.toHexString(f);
297    }
298
299    /**
300     * Returns a {@code Float} object holding the
301     * {@code float} value represented by the argument string
302     * {@code s}.
303     *
304     * <p>If {@code s} is {@code null}, then a
305     * {@code NullPointerException} is thrown.
306     *
307     * <p>Leading and trailing whitespace characters in {@code s}
308     * are ignored.  Whitespace is removed as if by the {@link
309     * String#trim} method; that is, both ASCII space and control
310     * characters are removed. The rest of {@code s} should
311     * constitute a <i>FloatValue</i> as described by the lexical
312     * syntax rules:
313     *
314     * <blockquote>
315     * <dl>
316     * <dt><i>FloatValue:</i>
317     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
318     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
319     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
320     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
321     * <dd><i>SignedInteger</i>
322     * </dl>
323     *
324     * <dl>
325     * <dt><i>HexFloatingPointLiteral</i>:
326     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
327     * </dl>
328     *
329     * <dl>
330     * <dt><i>HexSignificand:</i>
331     * <dd><i>HexNumeral</i>
332     * <dd><i>HexNumeral</i> {@code .}
333     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
334     *     </i>{@code .}<i> HexDigits</i>
335     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
336     *     </i>{@code .} <i>HexDigits</i>
337     * </dl>
338     *
339     * <dl>
340     * <dt><i>BinaryExponent:</i>
341     * <dd><i>BinaryExponentIndicator SignedInteger</i>
342     * </dl>
343     *
344     * <dl>
345     * <dt><i>BinaryExponentIndicator:</i>
346     * <dd>{@code p}
347     * <dd>{@code P}
348     * </dl>
349     *
350     * </blockquote>
351     *
352     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
353     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
354     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
355     * sections of
356     * <cite>The Java&trade; Language Specification</cite>,
357     * except that underscores are not accepted between digits.
358     * If {@code s} does not have the form of
359     * a <i>FloatValue</i>, then a {@code NumberFormatException}
360     * is thrown. Otherwise, {@code s} is regarded as
361     * representing an exact decimal value in the usual
362     * "computerized scientific notation" or as an exact
363     * hexadecimal value; this exact numerical value is then
364     * conceptually converted to an "infinitely precise"
365     * binary value that is then rounded to type {@code float}
366     * by the usual round-to-nearest rule of IEEE 754 floating-point
367     * arithmetic, which includes preserving the sign of a zero
368     * value.
369     *
370     * Note that the round-to-nearest rule also implies overflow and
371     * underflow behaviour; if the exact value of {@code s} is large
372     * enough in magnitude (greater than or equal to ({@link
373     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
374     * rounding to {@code float} will result in an infinity and if the
375     * exact value of {@code s} is small enough in magnitude (less
376     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
377     * result in a zero.
378     *
379     * Finally, after rounding a {@code Float} object representing
380     * this {@code float} value is returned.
381     *
382     * <p>To interpret localized string representations of a
383     * floating-point value, use subclasses of {@link
384     * java.text.NumberFormat}.
385     *
386     * <p>Note that trailing format specifiers, specifiers that
387     * determine the type of a floating-point literal
388     * ({@code 1.0f} is a {@code float} value;
389     * {@code 1.0d} is a {@code double} value), do
390     * <em>not</em> influence the results of this method.  In other
391     * words, the numerical value of the input string is converted
392     * directly to the target floating-point type.  In general, the
393     * two-step sequence of conversions, string to {@code double}
394     * followed by {@code double} to {@code float}, is
395     * <em>not</em> equivalent to converting a string directly to
396     * {@code float}.  For example, if first converted to an
397     * intermediate {@code double} and then to
398     * {@code float}, the string<br>
399     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
400     * results in the {@code float} value
401     * {@code 1.0000002f}; if the string is converted directly to
402     * {@code float}, <code>1.000000<b>1</b>f</code> results.
403     *
404     * <p>To avoid calling this method on an invalid string and having
405     * a {@code NumberFormatException} be thrown, the documentation
406     * for {@link Double#valueOf Double.valueOf} lists a regular
407     * expression which can be used to screen the input.
408     *
409     * @param   s   the string to be parsed.
410     * @return  a {@code Float} object holding the value
411     *          represented by the {@code String} argument.
412     * @throws  NumberFormatException  if the string does not contain a
413     *          parsable number.
414     */
415    public static Float valueOf(String s) throws NumberFormatException {
416        return new Float(parseFloat(s));
417    }
418
419    /**
420     * Returns a {@code Float} instance representing the specified
421     * {@code float} value.
422     * If a new {@code Float} instance is not required, this method
423     * should generally be used in preference to the constructor
424     * {@link #Float(float)}, as this method is likely to yield
425     * significantly better space and time performance by caching
426     * frequently requested values.
427     *
428     * @param  f a float value.
429     * @return a {@code Float} instance representing {@code f}.
430     * @since  1.5
431     */
432    public static Float valueOf(float f) {
433        return new Float(f);
434    }
435
436    /**
437     * Returns a new {@code float} initialized to the value
438     * represented by the specified {@code String}, as performed
439     * by the {@code valueOf} method of class {@code Float}.
440     *
441     * @param  s the string to be parsed.
442     * @return the {@code float} value represented by the string
443     *         argument.
444     * @throws NullPointerException  if the string is null
445     * @throws NumberFormatException if the string does not contain a
446     *               parsable {@code float}.
447     * @see    java.lang.Float#valueOf(String)
448     * @since 1.2
449     */
450    public static float parseFloat(String s) throws NumberFormatException {
451        return FloatingDecimal.parseFloat(s);
452    }
453
454    /**
455     * Returns {@code true} if the specified number is a
456     * Not-a-Number (NaN) value, {@code false} otherwise.
457     *
458     * @param   v   the value to be tested.
459     * @return  {@code true} if the argument is NaN;
460     *          {@code false} otherwise.
461     */
462    public static boolean isNaN(float v) {
463        return (v != v);
464    }
465
466    /**
467     * Returns {@code true} if the specified number is infinitely
468     * large in magnitude, {@code false} otherwise.
469     *
470     * @param   v   the value to be tested.
471     * @return  {@code true} if the argument is positive infinity or
472     *          negative infinity; {@code false} otherwise.
473     */
474    public static boolean isInfinite(float v) {
475        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
476    }
477
478
479    /**
480     * Returns {@code true} if the argument is a finite floating-point
481     * value; returns {@code false} otherwise (for NaN and infinity
482     * arguments).
483     *
484     * @param f the {@code float} value to be tested
485     * @return {@code true} if the argument is a finite
486     * floating-point value, {@code false} otherwise.
487     * @since 1.8
488     */
489     public static boolean isFinite(float f) {
490        return Math.abs(f) <= FloatConsts.MAX_VALUE;
491    }
492
493    /**
494     * The value of the Float.
495     *
496     * @serial
497     */
498    private final float value;
499
500    /**
501     * Constructs a newly allocated {@code Float} object that
502     * represents the primitive {@code float} argument.
503     *
504     * @param   value   the value to be represented by the {@code Float}.
505     */
506    public Float(float value) {
507        this.value = value;
508    }
509
510    /**
511     * Constructs a newly allocated {@code Float} object that
512     * represents the argument converted to type {@code float}.
513     *
514     * @param   value   the value to be represented by the {@code Float}.
515     */
516    public Float(double value) {
517        this.value = (float)value;
518    }
519
520    /**
521     * Constructs a newly allocated {@code Float} object that
522     * represents the floating-point value of type {@code float}
523     * represented by the string. The string is converted to a
524     * {@code float} value as if by the {@code valueOf} method.
525     *
526     * @param      s   a string to be converted to a {@code Float}.
527     * @throws  NumberFormatException  if the string does not contain a
528     *               parsable number.
529     * @see        java.lang.Float#valueOf(java.lang.String)
530     */
531    public Float(String s) throws NumberFormatException {
532        value = parseFloat(s);
533    }
534
535    /**
536     * Returns {@code true} if this {@code Float} value is a
537     * Not-a-Number (NaN), {@code false} otherwise.
538     *
539     * @return  {@code true} if the value represented by this object is
540     *          NaN; {@code false} otherwise.
541     */
542    public boolean isNaN() {
543        return isNaN(value);
544    }
545
546    /**
547     * Returns {@code true} if this {@code Float} value is
548     * infinitely large in magnitude, {@code false} otherwise.
549     *
550     * @return  {@code true} if the value represented by this object is
551     *          positive infinity or negative infinity;
552     *          {@code false} otherwise.
553     */
554    public boolean isInfinite() {
555        return isInfinite(value);
556    }
557
558    /**
559     * Returns a string representation of this {@code Float} object.
560     * The primitive {@code float} value represented by this object
561     * is converted to a {@code String} exactly as if by the method
562     * {@code toString} of one argument.
563     *
564     * @return  a {@code String} representation of this object.
565     * @see java.lang.Float#toString(float)
566     */
567    public String toString() {
568        return Float.toString(value);
569    }
570
571    /**
572     * Returns the value of this {@code Float} as a {@code byte} after
573     * a narrowing primitive conversion.
574     *
575     * @return  the {@code float} value represented by this object
576     *          converted to type {@code byte}
577     * @jls 5.1.3 Narrowing Primitive Conversions
578     */
579    public byte byteValue() {
580        return (byte)value;
581    }
582
583    /**
584     * Returns the value of this {@code Float} as a {@code short}
585     * after a narrowing primitive conversion.
586     *
587     * @return  the {@code float} value represented by this object
588     *          converted to type {@code short}
589     * @jls 5.1.3 Narrowing Primitive Conversions
590     * @since JDK1.1
591     */
592    public short shortValue() {
593        return (short)value;
594    }
595
596    /**
597     * Returns the value of this {@code Float} as an {@code int} after
598     * a narrowing primitive conversion.
599     *
600     * @return  the {@code float} value represented by this object
601     *          converted to type {@code int}
602     * @jls 5.1.3 Narrowing Primitive Conversions
603     */
604    public int intValue() {
605        return (int)value;
606    }
607
608    /**
609     * Returns value of this {@code Float} as a {@code long} after a
610     * narrowing primitive conversion.
611     *
612     * @return  the {@code float} value represented by this object
613     *          converted to type {@code long}
614     * @jls 5.1.3 Narrowing Primitive Conversions
615     */
616    public long longValue() {
617        return (long)value;
618    }
619
620    /**
621     * Returns the {@code float} value of this {@code Float} object.
622     *
623     * @return the {@code float} value represented by this object
624     */
625    public float floatValue() {
626        return value;
627    }
628
629    /**
630     * Returns the value of this {@code Float} as a {@code double}
631     * after a widening primitive conversion.
632     *
633     * @return the {@code float} value represented by this
634     *         object converted to type {@code double}
635     * @jls 5.1.2 Widening Primitive Conversions
636     */
637    public double doubleValue() {
638        return (double)value;
639    }
640
641    /**
642     * Returns a hash code for this {@code Float} object. The
643     * result is the integer bit representation, exactly as produced
644     * by the method {@link #floatToIntBits(float)}, of the primitive
645     * {@code float} value represented by this {@code Float}
646     * object.
647     *
648     * @return a hash code value for this object.
649     */
650    @Override
651    public int hashCode() {
652        return Float.hashCode(value);
653    }
654
655    /**
656     * Returns a hash code for a {@code float} value; compatible with
657     * {@code Float.hashCode()}.
658     *
659     * @param value the value to hash
660     * @return a hash code value for a {@code float} value.
661     * @since 1.8
662     */
663    public static int hashCode(float value) {
664        return floatToIntBits(value);
665    }
666
667    /**
668
669     * Compares this object against the specified object.  The result
670     * is {@code true} if and only if the argument is not
671     * {@code null} and is a {@code Float} object that
672     * represents a {@code float} with the same value as the
673     * {@code float} represented by this object. For this
674     * purpose, two {@code float} values are considered to be the
675     * same if and only if the method {@link #floatToIntBits(float)}
676     * returns the identical {@code int} value when applied to
677     * each.
678     *
679     * <p>Note that in most cases, for two instances of class
680     * {@code Float}, {@code f1} and {@code f2}, the value
681     * of {@code f1.equals(f2)} is {@code true} if and only if
682     *
683     * <blockquote><pre>
684     *   f1.floatValue() == f2.floatValue()
685     * </pre></blockquote>
686     *
687     * <p>also has the value {@code true}. However, there are two exceptions:
688     * <ul>
689     * <li>If {@code f1} and {@code f2} both represent
690     *     {@code Float.NaN}, then the {@code equals} method returns
691     *     {@code true}, even though {@code Float.NaN==Float.NaN}
692     *     has the value {@code false}.
693     * <li>If {@code f1} represents {@code +0.0f} while
694     *     {@code f2} represents {@code -0.0f}, or vice
695     *     versa, the {@code equal} test has the value
696     *     {@code false}, even though {@code 0.0f==-0.0f}
697     *     has the value {@code true}.
698     * </ul>
699     *
700     * This definition allows hash tables to operate properly.
701     *
702     * @param obj the object to be compared
703     * @return  {@code true} if the objects are the same;
704     *          {@code false} otherwise.
705     * @see java.lang.Float#floatToIntBits(float)
706     */
707    public boolean equals(Object obj) {
708        return (obj instanceof Float)
709               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
710    }
711
712    /**
713     * Returns a representation of the specified floating-point value
714     * according to the IEEE 754 floating-point "single format" bit
715     * layout.
716     *
717     * <p>Bit 31 (the bit that is selected by the mask
718     * {@code 0x80000000}) represents the sign of the floating-point
719     * number.
720     * Bits 30-23 (the bits that are selected by the mask
721     * {@code 0x7f800000}) represent the exponent.
722     * Bits 22-0 (the bits that are selected by the mask
723     * {@code 0x007fffff}) represent the significand (sometimes called
724     * the mantissa) of the floating-point number.
725     *
726     * <p>If the argument is positive infinity, the result is
727     * {@code 0x7f800000}.
728     *
729     * <p>If the argument is negative infinity, the result is
730     * {@code 0xff800000}.
731     *
732     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
733     *
734     * <p>In all cases, the result is an integer that, when given to the
735     * {@link #intBitsToFloat(int)} method, will produce a floating-point
736     * value the same as the argument to {@code floatToIntBits}
737     * (except all NaN values are collapsed to a single
738     * "canonical" NaN value).
739     *
740     * @param   value   a floating-point number.
741     * @return the bits that represent the floating-point number.
742     */
743    public static int floatToIntBits(float value) {
744        int result = floatToRawIntBits(value);
745        // Check for NaN based on values of bit fields, maximum
746        // exponent and nonzero significand.
747        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
748              FloatConsts.EXP_BIT_MASK) &&
749             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
750            result = 0x7fc00000;
751        return result;
752    }
753
754    /**
755     * Returns a representation of the specified floating-point value
756     * according to the IEEE 754 floating-point "single format" bit
757     * layout, preserving Not-a-Number (NaN) values.
758     *
759     * <p>Bit 31 (the bit that is selected by the mask
760     * {@code 0x80000000}) represents the sign of the floating-point
761     * number.
762     * Bits 30-23 (the bits that are selected by the mask
763     * {@code 0x7f800000}) represent the exponent.
764     * Bits 22-0 (the bits that are selected by the mask
765     * {@code 0x007fffff}) represent the significand (sometimes called
766     * the mantissa) of the floating-point number.
767     *
768     * <p>If the argument is positive infinity, the result is
769     * {@code 0x7f800000}.
770     *
771     * <p>If the argument is negative infinity, the result is
772     * {@code 0xff800000}.
773     *
774     * <p>If the argument is NaN, the result is the integer representing
775     * the actual NaN value.  Unlike the {@code floatToIntBits}
776     * method, {@code floatToRawIntBits} does not collapse all the
777     * bit patterns encoding a NaN to a single "canonical"
778     * NaN value.
779     *
780     * <p>In all cases, the result is an integer that, when given to the
781     * {@link #intBitsToFloat(int)} method, will produce a
782     * floating-point value the same as the argument to
783     * {@code floatToRawIntBits}.
784     *
785     * @param   value   a floating-point number.
786     * @return the bits that represent the floating-point number.
787     * @since 1.3
788     */
789    public static native int floatToRawIntBits(float value);
790
791    /**
792     * Returns the {@code float} value corresponding to a given
793     * bit representation.
794     * The argument is considered to be a representation of a
795     * floating-point value according to the IEEE 754 floating-point
796     * "single format" bit layout.
797     *
798     * <p>If the argument is {@code 0x7f800000}, the result is positive
799     * infinity.
800     *
801     * <p>If the argument is {@code 0xff800000}, the result is negative
802     * infinity.
803     *
804     * <p>If the argument is any value in the range
805     * {@code 0x7f800001} through {@code 0x7fffffff} or in
806     * the range {@code 0xff800001} through
807     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
808     * floating-point operation provided by Java can distinguish
809     * between two NaN values of the same type with different bit
810     * patterns.  Distinct values of NaN are only distinguishable by
811     * use of the {@code Float.floatToRawIntBits} method.
812     *
813     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
814     * values that can be computed from the argument:
815     *
816     * <blockquote><pre>{@code
817     * int s = ((bits >> 31) == 0) ? 1 : -1;
818     * int e = ((bits >> 23) & 0xff);
819     * int m = (e == 0) ?
820     *                 (bits & 0x7fffff) << 1 :
821     *                 (bits & 0x7fffff) | 0x800000;
822     * }</pre></blockquote>
823     *
824     * Then the floating-point result equals the value of the mathematical
825     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
826     *
827     * <p>Note that this method may not be able to return a
828     * {@code float} NaN with exactly same bit pattern as the
829     * {@code int} argument.  IEEE 754 distinguishes between two
830     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
831     * differences between the two kinds of NaN are generally not
832     * visible in Java.  Arithmetic operations on signaling NaNs turn
833     * them into quiet NaNs with a different, but often similar, bit
834     * pattern.  However, on some processors merely copying a
835     * signaling NaN also performs that conversion.  In particular,
836     * copying a signaling NaN to return it to the calling method may
837     * perform this conversion.  So {@code intBitsToFloat} may
838     * not be able to return a {@code float} with a signaling NaN
839     * bit pattern.  Consequently, for some {@code int} values,
840     * {@code floatToRawIntBits(intBitsToFloat(start))} may
841     * <i>not</i> equal {@code start}.  Moreover, which
842     * particular bit patterns represent signaling NaNs is platform
843     * dependent; although all NaN bit patterns, quiet or signaling,
844     * must be in the NaN range identified above.
845     *
846     * @param   bits   an integer.
847     * @return  the {@code float} floating-point value with the same bit
848     *          pattern.
849     */
850    public static native float intBitsToFloat(int bits);
851
852    /**
853     * Compares two {@code Float} objects numerically.  There are
854     * two ways in which comparisons performed by this method differ
855     * from those performed by the Java language numerical comparison
856     * operators ({@code <, <=, ==, >=, >}) when
857     * applied to primitive {@code float} values:
858     *
859     * <ul><li>
860     *          {@code Float.NaN} is considered by this method to
861     *          be equal to itself and greater than all other
862     *          {@code float} values
863     *          (including {@code Float.POSITIVE_INFINITY}).
864     * <li>
865     *          {@code 0.0f} is considered by this method to be greater
866     *          than {@code -0.0f}.
867     * </ul>
868     *
869     * This ensures that the <i>natural ordering</i> of {@code Float}
870     * objects imposed by this method is <i>consistent with equals</i>.
871     *
872     * @param   anotherFloat   the {@code Float} to be compared.
873     * @return  the value {@code 0} if {@code anotherFloat} is
874     *          numerically equal to this {@code Float}; a value
875     *          less than {@code 0} if this {@code Float}
876     *          is numerically less than {@code anotherFloat};
877     *          and a value greater than {@code 0} if this
878     *          {@code Float} is numerically greater than
879     *          {@code anotherFloat}.
880     *
881     * @since   1.2
882     * @see Comparable#compareTo(Object)
883     */
884    public int compareTo(Float anotherFloat) {
885        return Float.compare(value, anotherFloat.value);
886    }
887
888    /**
889     * Compares the two specified {@code float} values. The sign
890     * of the integer value returned is the same as that of the
891     * integer that would be returned by the call:
892     * <pre>
893     *    new Float(f1).compareTo(new Float(f2))
894     * </pre>
895     *
896     * @param   f1        the first {@code float} to compare.
897     * @param   f2        the second {@code float} to compare.
898     * @return  the value {@code 0} if {@code f1} is
899     *          numerically equal to {@code f2}; a value less than
900     *          {@code 0} if {@code f1} is numerically less than
901     *          {@code f2}; and a value greater than {@code 0}
902     *          if {@code f1} is numerically greater than
903     *          {@code f2}.
904     * @since 1.4
905     */
906    public static int compare(float f1, float f2) {
907        if (f1 < f2)
908            return -1;           // Neither val is NaN, thisVal is smaller
909        if (f1 > f2)
910            return 1;            // Neither val is NaN, thisVal is larger
911
912        // Cannot use floatToRawIntBits because of possibility of NaNs.
913        int thisBits    = Float.floatToIntBits(f1);
914        int anotherBits = Float.floatToIntBits(f2);
915
916        return (thisBits == anotherBits ?  0 : // Values are equal
917                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
918                 1));                          // (0.0, -0.0) or (NaN, !NaN)
919    }
920
921    /**
922     * Adds two {@code float} values together as per the + operator.
923     *
924     * @param a the first operand
925     * @param b the second operand
926     * @return the sum of {@code a} and {@code b}
927     * @jls 4.2.4 Floating-Point Operations
928     * @see java.util.function.BinaryOperator
929     * @since 1.8
930     */
931    public static float sum(float a, float b) {
932        return a + b;
933    }
934
935    /**
936     * Returns the greater of two {@code float} values
937     * as if by calling {@link Math#max(float, float) Math.max}.
938     *
939     * @param a the first operand
940     * @param b the second operand
941     * @return the greater of {@code a} and {@code b}
942     * @see java.util.function.BinaryOperator
943     * @since 1.8
944     */
945    public static float max(float a, float b) {
946        return Math.max(a, b);
947    }
948
949    /**
950     * Returns the smaller of two {@code float} values
951     * as if by calling {@link Math#min(float, float) Math.min}.
952     *
953     * @param a the first operand
954     * @param b the second operand
955     * @return the smaller of {@code a} and {@code b}
956     * @see java.util.function.BinaryOperator
957     * @since 1.8
958     */
959    public static float min(float a, float b) {
960        return Math.min(a, b);
961    }
962
963    /** use serialVersionUID from JDK 1.0.2 for interoperability */
964    private static final long serialVersionUID = -2671257302660747028L;
965}
966