Float.java revision 694e617f54a7bfbdad24913ce96f5d56f1a1960a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.lang;
28
29import sun.misc.FloatingDecimal;
30import sun.misc.FloatConsts;
31import sun.misc.DoubleConsts;
32
33/**
34 * The {@code Float} class wraps a value of primitive type
35 * {@code float} in an object. An object of type
36 * {@code Float} contains a single field whose type is
37 * {@code float}.
38 *
39 * <p>In addition, this class provides several methods for converting a
40 * {@code float} to a {@code String} and a
41 * {@code String} to a {@code float}, as well as other
42 * constants and methods useful when dealing with a
43 * {@code float}.
44 *
45 * @author  Lee Boynton
46 * @author  Arthur van Hoff
47 * @author  Joseph D. Darcy
48 * @since JDK1.0
49 */
50public final class Float extends Number implements Comparable<Float> {
51    /**
52     * A constant holding the positive infinity of type
53     * {@code float}. It is equal to the value returned by
54     * {@code Float.intBitsToFloat(0x7f800000)}.
55     */
56    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
57
58    /**
59     * A constant holding the negative infinity of type
60     * {@code float}. It is equal to the value returned by
61     * {@code Float.intBitsToFloat(0xff800000)}.
62     */
63    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
64
65    /**
66     * A constant holding a Not-a-Number (NaN) value of type
67     * {@code float}.  It is equivalent to the value returned by
68     * {@code Float.intBitsToFloat(0x7fc00000)}.
69     */
70    public static final float NaN = 0.0f / 0.0f;
71
72    /**
73     * A constant holding the largest positive finite value of type
74     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
75     * It is equal to the hexadecimal floating-point literal
76     * {@code 0x1.fffffeP+127f} and also equal to
77     * {@code Float.intBitsToFloat(0x7f7fffff)}.
78     */
79    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
80
81    /**
82     * A constant holding the smallest positive normal value of type
83     * {@code float}, 2<sup>-126</sup>.  It is equal to the
84     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
85     * equal to {@code Float.intBitsToFloat(0x00800000)}.
86     *
87     * @since 1.6
88     */
89    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
90
91    /**
92     * A constant holding the smallest positive nonzero value of type
93     * {@code float}, 2<sup>-149</sup>. It is equal to the
94     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
95     * and also equal to {@code Float.intBitsToFloat(0x1)}.
96     */
97    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
98
99    /**
100     * Maximum exponent a finite {@code float} variable may have.  It
101     * is equal to the value returned by {@code
102     * Math.getExponent(Float.MAX_VALUE)}.
103     *
104     * @since 1.6
105     */
106    public static final int MAX_EXPONENT = 127;
107
108    /**
109     * Minimum exponent a normalized {@code float} variable may have.
110     * It is equal to the value returned by {@code
111     * Math.getExponent(Float.MIN_NORMAL)}.
112     *
113     * @since 1.6
114     */
115    public static final int MIN_EXPONENT = -126;
116
117    /**
118     * The number of bits used to represent a {@code float} value.
119     *
120     * @since 1.5
121     */
122    public static final int SIZE = 32;
123
124    /**
125     * The number of bytes used to represent a {@code float} value.
126     *
127     * @since 1.8
128     */
129    public static final int BYTES = SIZE / Byte.SIZE;
130
131    /**
132     * The {@code Class} instance representing the primitive type
133     * {@code float}.
134     *
135     * @since JDK1.1
136     */
137    @SuppressWarnings("unchecked")
138    public static final Class<Float> TYPE = (Class<Float>) float[].class.getComponentType();
139
140    /**
141     * Returns a string representation of the {@code float}
142     * argument. All characters mentioned below are ASCII characters.
143     * <ul>
144     * <li>If the argument is NaN, the result is the string
145     * "{@code NaN}".
146     * <li>Otherwise, the result is a string that represents the sign and
147     *     magnitude (absolute value) of the argument. If the sign is
148     *     negative, the first character of the result is
149     *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
150     *     positive, no sign character appears in the result. As for
151     *     the magnitude <i>m</i>:
152     * <ul>
153     * <li>If <i>m</i> is infinity, it is represented by the characters
154     *     {@code "Infinity"}; thus, positive infinity produces
155     *     the result {@code "Infinity"} and negative infinity
156     *     produces the result {@code "-Infinity"}.
157     * <li>If <i>m</i> is zero, it is represented by the characters
158     *     {@code "0.0"}; thus, negative zero produces the result
159     *     {@code "-0.0"} and positive zero produces the result
160     *     {@code "0.0"}.
161     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
162     *      less than 10<sup>7</sup>, then it is represented as the
163     *      integer part of <i>m</i>, in decimal form with no leading
164     *      zeroes, followed by '{@code .}'
165     *      ({@code '\u005Cu002E'}), followed by one or more
166     *      decimal digits representing the fractional part of
167     *      <i>m</i>.
168     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
169     *      equal to 10<sup>7</sup>, then it is represented in
170     *      so-called "computerized scientific notation." Let <i>n</i>
171     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
172     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
173     *      be the mathematically exact quotient of <i>m</i> and
174     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
175     *      The magnitude is then represented as the integer part of
176     *      <i>a</i>, as a single decimal digit, followed by
177     *      '{@code .}' ({@code '\u005Cu002E'}), followed by
178     *      decimal digits representing the fractional part of
179     *      <i>a</i>, followed by the letter '{@code E}'
180     *      ({@code '\u005Cu0045'}), followed by a representation
181     *      of <i>n</i> as a decimal integer, as produced by the
182     *      method {@link java.lang.Integer#toString(int)}.
183     *
184     * </ul>
185     * </ul>
186     * How many digits must be printed for the fractional part of
187     * <i>m</i> or <i>a</i>? There must be at least one digit
188     * to represent the fractional part, and beyond that as many, but
189     * only as many, more digits as are needed to uniquely distinguish
190     * the argument value from adjacent values of type
191     * {@code float}. That is, suppose that <i>x</i> is the
192     * exact mathematical value represented by the decimal
193     * representation produced by this method for a finite nonzero
194     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
195     * value nearest to <i>x</i>; or, if two {@code float} values are
196     * equally close to <i>x</i>, then <i>f</i> must be one of
197     * them and the least significant bit of the significand of
198     * <i>f</i> must be {@code 0}.
199     *
200     * <p>To create localized string representations of a floating-point
201     * value, use subclasses of {@link java.text.NumberFormat}.
202     *
203     * @param   f   the float to be converted.
204     * @return a string representation of the argument.
205     */
206    public static String toString(float f) {
207        return FloatingDecimal.toJavaFormatString(f);
208    }
209
210    /**
211     * Returns a hexadecimal string representation of the
212     * {@code float} argument. All characters mentioned below are
213     * ASCII characters.
214     *
215     * <ul>
216     * <li>If the argument is NaN, the result is the string
217     *     "{@code NaN}".
218     * <li>Otherwise, the result is a string that represents the sign and
219     * magnitude (absolute value) of the argument. If the sign is negative,
220     * the first character of the result is '{@code -}'
221     * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
222     * appears in the result. As for the magnitude <i>m</i>:
223     *
224     * <ul>
225     * <li>If <i>m</i> is infinity, it is represented by the string
226     * {@code "Infinity"}; thus, positive infinity produces the
227     * result {@code "Infinity"} and negative infinity produces
228     * the result {@code "-Infinity"}.
229     *
230     * <li>If <i>m</i> is zero, it is represented by the string
231     * {@code "0x0.0p0"}; thus, negative zero produces the result
232     * {@code "-0x0.0p0"} and positive zero produces the result
233     * {@code "0x0.0p0"}.
234     *
235     * <li>If <i>m</i> is a {@code float} value with a
236     * normalized representation, substrings are used to represent the
237     * significand and exponent fields.  The significand is
238     * represented by the characters {@code "0x1."}
239     * followed by a lowercase hexadecimal representation of the rest
240     * of the significand as a fraction.  Trailing zeros in the
241     * hexadecimal representation are removed unless all the digits
242     * are zero, in which case a single zero is used. Next, the
243     * exponent is represented by {@code "p"} followed
244     * by a decimal string of the unbiased exponent as if produced by
245     * a call to {@link Integer#toString(int) Integer.toString} on the
246     * exponent value.
247     *
248     * <li>If <i>m</i> is a {@code float} value with a subnormal
249     * representation, the significand is represented by the
250     * characters {@code "0x0."} followed by a
251     * hexadecimal representation of the rest of the significand as a
252     * fraction.  Trailing zeros in the hexadecimal representation are
253     * removed. Next, the exponent is represented by
254     * {@code "p-126"}.  Note that there must be at
255     * least one nonzero digit in a subnormal significand.
256     *
257     * </ul>
258     *
259     * </ul>
260     *
261     * <table border>
262     * <caption>Examples</caption>
263     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
264     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
265     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
266     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
267     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
268     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
269     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
270     * <tr><td>{@code Float.MAX_VALUE}</td>
271     *     <td>{@code 0x1.fffffep127}</td>
272     * <tr><td>{@code Minimum Normal Value}</td>
273     *     <td>{@code 0x1.0p-126}</td>
274     * <tr><td>{@code Maximum Subnormal Value}</td>
275     *     <td>{@code 0x0.fffffep-126}</td>
276     * <tr><td>{@code Float.MIN_VALUE}</td>
277     *     <td>{@code 0x0.000002p-126}</td>
278     * </table>
279     * @param   f   the {@code float} to be converted.
280     * @return a hex string representation of the argument.
281     * @since 1.5
282     * @author Joseph D. Darcy
283     */
284    public static String toHexString(float f) {
285        if (Math.abs(f) < FloatConsts.MIN_NORMAL
286            &&  f != 0.0f ) {// float subnormal
287            // Adjust exponent to create subnormal double, then
288            // replace subnormal double exponent with subnormal float
289            // exponent
290            String s = Double.toHexString(Math.scalb((double)f,
291                                                     /* -1022+126 */
292                                                     DoubleConsts.MIN_EXPONENT-
293                                                     FloatConsts.MIN_EXPONENT));
294            return s.replaceFirst("p-1022$", "p-126");
295        }
296        else // double string will be the same as float string
297            return Double.toHexString(f);
298    }
299
300    /**
301     * Returns a {@code Float} object holding the
302     * {@code float} value represented by the argument string
303     * {@code s}.
304     *
305     * <p>If {@code s} is {@code null}, then a
306     * {@code NullPointerException} is thrown.
307     *
308     * <p>Leading and trailing whitespace characters in {@code s}
309     * are ignored.  Whitespace is removed as if by the {@link
310     * String#trim} method; that is, both ASCII space and control
311     * characters are removed. The rest of {@code s} should
312     * constitute a <i>FloatValue</i> as described by the lexical
313     * syntax rules:
314     *
315     * <blockquote>
316     * <dl>
317     * <dt><i>FloatValue:</i>
318     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
319     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
320     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
321     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
322     * <dd><i>SignedInteger</i>
323     * </dl>
324     *
325     * <dl>
326     * <dt><i>HexFloatingPointLiteral</i>:
327     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
328     * </dl>
329     *
330     * <dl>
331     * <dt><i>HexSignificand:</i>
332     * <dd><i>HexNumeral</i>
333     * <dd><i>HexNumeral</i> {@code .}
334     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
335     *     </i>{@code .}<i> HexDigits</i>
336     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
337     *     </i>{@code .} <i>HexDigits</i>
338     * </dl>
339     *
340     * <dl>
341     * <dt><i>BinaryExponent:</i>
342     * <dd><i>BinaryExponentIndicator SignedInteger</i>
343     * </dl>
344     *
345     * <dl>
346     * <dt><i>BinaryExponentIndicator:</i>
347     * <dd>{@code p}
348     * <dd>{@code P}
349     * </dl>
350     *
351     * </blockquote>
352     *
353     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
354     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
355     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
356     * sections of
357     * <cite>The Java&trade; Language Specification</cite>,
358     * except that underscores are not accepted between digits.
359     * If {@code s} does not have the form of
360     * a <i>FloatValue</i>, then a {@code NumberFormatException}
361     * is thrown. Otherwise, {@code s} is regarded as
362     * representing an exact decimal value in the usual
363     * "computerized scientific notation" or as an exact
364     * hexadecimal value; this exact numerical value is then
365     * conceptually converted to an "infinitely precise"
366     * binary value that is then rounded to type {@code float}
367     * by the usual round-to-nearest rule of IEEE 754 floating-point
368     * arithmetic, which includes preserving the sign of a zero
369     * value.
370     *
371     * Note that the round-to-nearest rule also implies overflow and
372     * underflow behaviour; if the exact value of {@code s} is large
373     * enough in magnitude (greater than or equal to ({@link
374     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
375     * rounding to {@code float} will result in an infinity and if the
376     * exact value of {@code s} is small enough in magnitude (less
377     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
378     * result in a zero.
379     *
380     * Finally, after rounding a {@code Float} object representing
381     * this {@code float} value is returned.
382     *
383     * <p>To interpret localized string representations of a
384     * floating-point value, use subclasses of {@link
385     * java.text.NumberFormat}.
386     *
387     * <p>Note that trailing format specifiers, specifiers that
388     * determine the type of a floating-point literal
389     * ({@code 1.0f} is a {@code float} value;
390     * {@code 1.0d} is a {@code double} value), do
391     * <em>not</em> influence the results of this method.  In other
392     * words, the numerical value of the input string is converted
393     * directly to the target floating-point type.  In general, the
394     * two-step sequence of conversions, string to {@code double}
395     * followed by {@code double} to {@code float}, is
396     * <em>not</em> equivalent to converting a string directly to
397     * {@code float}.  For example, if first converted to an
398     * intermediate {@code double} and then to
399     * {@code float}, the string<br>
400     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
401     * results in the {@code float} value
402     * {@code 1.0000002f}; if the string is converted directly to
403     * {@code float}, <code>1.000000<b>1</b>f</code> results.
404     *
405     * <p>To avoid calling this method on an invalid string and having
406     * a {@code NumberFormatException} be thrown, the documentation
407     * for {@link Double#valueOf Double.valueOf} lists a regular
408     * expression which can be used to screen the input.
409     *
410     * @param   s   the string to be parsed.
411     * @return  a {@code Float} object holding the value
412     *          represented by the {@code String} argument.
413     * @throws  NumberFormatException  if the string does not contain a
414     *          parsable number.
415     */
416    public static Float valueOf(String s) throws NumberFormatException {
417        return new Float(parseFloat(s));
418    }
419
420    /**
421     * Returns a {@code Float} instance representing the specified
422     * {@code float} value.
423     * If a new {@code Float} instance is not required, this method
424     * should generally be used in preference to the constructor
425     * {@link #Float(float)}, as this method is likely to yield
426     * significantly better space and time performance by caching
427     * frequently requested values.
428     *
429     * @param  f a float value.
430     * @return a {@code Float} instance representing {@code f}.
431     * @since  1.5
432     */
433    public static Float valueOf(float f) {
434        return new Float(f);
435    }
436
437    /**
438     * Returns a new {@code float} initialized to the value
439     * represented by the specified {@code String}, as performed
440     * by the {@code valueOf} method of class {@code Float}.
441     *
442     * @param  s the string to be parsed.
443     * @return the {@code float} value represented by the string
444     *         argument.
445     * @throws NullPointerException  if the string is null
446     * @throws NumberFormatException if the string does not contain a
447     *               parsable {@code float}.
448     * @see    java.lang.Float#valueOf(String)
449     * @since 1.2
450     */
451    public static float parseFloat(String s) throws NumberFormatException {
452        return FloatingDecimal.parseFloat(s);
453    }
454
455    /**
456     * Returns {@code true} if the specified number is a
457     * Not-a-Number (NaN) value, {@code false} otherwise.
458     *
459     * @param   v   the value to be tested.
460     * @return  {@code true} if the argument is NaN;
461     *          {@code false} otherwise.
462     */
463    public static boolean isNaN(float v) {
464        return (v != v);
465    }
466
467    /**
468     * Returns {@code true} if the specified number is infinitely
469     * large in magnitude, {@code false} otherwise.
470     *
471     * @param   v   the value to be tested.
472     * @return  {@code true} if the argument is positive infinity or
473     *          negative infinity; {@code false} otherwise.
474     */
475    public static boolean isInfinite(float v) {
476        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
477    }
478
479
480    /**
481     * Returns {@code true} if the argument is a finite floating-point
482     * value; returns {@code false} otherwise (for NaN and infinity
483     * arguments).
484     *
485     * @param f the {@code float} value to be tested
486     * @return {@code true} if the argument is a finite
487     * floating-point value, {@code false} otherwise.
488     * @since 1.8
489     */
490     public static boolean isFinite(float f) {
491        return Math.abs(f) <= FloatConsts.MAX_VALUE;
492    }
493
494    /**
495     * The value of the Float.
496     *
497     * @serial
498     */
499    private final float value;
500
501    /**
502     * Constructs a newly allocated {@code Float} object that
503     * represents the primitive {@code float} argument.
504     *
505     * @param   value   the value to be represented by the {@code Float}.
506     */
507    public Float(float value) {
508        this.value = value;
509    }
510
511    /**
512     * Constructs a newly allocated {@code Float} object that
513     * represents the argument converted to type {@code float}.
514     *
515     * @param   value   the value to be represented by the {@code Float}.
516     */
517    public Float(double value) {
518        this.value = (float)value;
519    }
520
521    /**
522     * Constructs a newly allocated {@code Float} object that
523     * represents the floating-point value of type {@code float}
524     * represented by the string. The string is converted to a
525     * {@code float} value as if by the {@code valueOf} method.
526     *
527     * @param      s   a string to be converted to a {@code Float}.
528     * @throws  NumberFormatException  if the string does not contain a
529     *               parsable number.
530     * @see        java.lang.Float#valueOf(java.lang.String)
531     */
532    public Float(String s) throws NumberFormatException {
533        value = parseFloat(s);
534    }
535
536    /**
537     * Returns {@code true} if this {@code Float} value is a
538     * Not-a-Number (NaN), {@code false} otherwise.
539     *
540     * @return  {@code true} if the value represented by this object is
541     *          NaN; {@code false} otherwise.
542     */
543    public boolean isNaN() {
544        return isNaN(value);
545    }
546
547    /**
548     * Returns {@code true} if this {@code Float} value is
549     * infinitely large in magnitude, {@code false} otherwise.
550     *
551     * @return  {@code true} if the value represented by this object is
552     *          positive infinity or negative infinity;
553     *          {@code false} otherwise.
554     */
555    public boolean isInfinite() {
556        return isInfinite(value);
557    }
558
559    /**
560     * Returns a string representation of this {@code Float} object.
561     * The primitive {@code float} value represented by this object
562     * is converted to a {@code String} exactly as if by the method
563     * {@code toString} of one argument.
564     *
565     * @return  a {@code String} representation of this object.
566     * @see java.lang.Float#toString(float)
567     */
568    public String toString() {
569        return Float.toString(value);
570    }
571
572    /**
573     * Returns the value of this {@code Float} as a {@code byte} after
574     * a narrowing primitive conversion.
575     *
576     * @return  the {@code float} value represented by this object
577     *          converted to type {@code byte}
578     * @jls 5.1.3 Narrowing Primitive Conversions
579     */
580    public byte byteValue() {
581        return (byte)value;
582    }
583
584    /**
585     * Returns the value of this {@code Float} as a {@code short}
586     * after a narrowing primitive conversion.
587     *
588     * @return  the {@code float} value represented by this object
589     *          converted to type {@code short}
590     * @jls 5.1.3 Narrowing Primitive Conversions
591     * @since JDK1.1
592     */
593    public short shortValue() {
594        return (short)value;
595    }
596
597    /**
598     * Returns the value of this {@code Float} as an {@code int} after
599     * a narrowing primitive conversion.
600     *
601     * @return  the {@code float} value represented by this object
602     *          converted to type {@code int}
603     * @jls 5.1.3 Narrowing Primitive Conversions
604     */
605    public int intValue() {
606        return (int)value;
607    }
608
609    /**
610     * Returns value of this {@code Float} as a {@code long} after a
611     * narrowing primitive conversion.
612     *
613     * @return  the {@code float} value represented by this object
614     *          converted to type {@code long}
615     * @jls 5.1.3 Narrowing Primitive Conversions
616     */
617    public long longValue() {
618        return (long)value;
619    }
620
621    /**
622     * Returns the {@code float} value of this {@code Float} object.
623     *
624     * @return the {@code float} value represented by this object
625     */
626    public float floatValue() {
627        return value;
628    }
629
630    /**
631     * Returns the value of this {@code Float} as a {@code double}
632     * after a widening primitive conversion.
633     *
634     * @return the {@code float} value represented by this
635     *         object converted to type {@code double}
636     * @jls 5.1.2 Widening Primitive Conversions
637     */
638    public double doubleValue() {
639        return (double)value;
640    }
641
642    /**
643     * Returns a hash code for this {@code Float} object. The
644     * result is the integer bit representation, exactly as produced
645     * by the method {@link #floatToIntBits(float)}, of the primitive
646     * {@code float} value represented by this {@code Float}
647     * object.
648     *
649     * @return a hash code value for this object.
650     */
651    @Override
652    public int hashCode() {
653        return Float.hashCode(value);
654    }
655
656    /**
657     * Returns a hash code for a {@code float} value; compatible with
658     * {@code Float.hashCode()}.
659     *
660     * @param value the value to hash
661     * @return a hash code value for a {@code float} value.
662     * @since 1.8
663     */
664    public static int hashCode(float value) {
665        return floatToIntBits(value);
666    }
667
668    /**
669
670     * Compares this object against the specified object.  The result
671     * is {@code true} if and only if the argument is not
672     * {@code null} and is a {@code Float} object that
673     * represents a {@code float} with the same value as the
674     * {@code float} represented by this object. For this
675     * purpose, two {@code float} values are considered to be the
676     * same if and only if the method {@link #floatToIntBits(float)}
677     * returns the identical {@code int} value when applied to
678     * each.
679     *
680     * <p>Note that in most cases, for two instances of class
681     * {@code Float}, {@code f1} and {@code f2}, the value
682     * of {@code f1.equals(f2)} is {@code true} if and only if
683     *
684     * <blockquote><pre>
685     *   f1.floatValue() == f2.floatValue()
686     * </pre></blockquote>
687     *
688     * <p>also has the value {@code true}. However, there are two exceptions:
689     * <ul>
690     * <li>If {@code f1} and {@code f2} both represent
691     *     {@code Float.NaN}, then the {@code equals} method returns
692     *     {@code true}, even though {@code Float.NaN==Float.NaN}
693     *     has the value {@code false}.
694     * <li>If {@code f1} represents {@code +0.0f} while
695     *     {@code f2} represents {@code -0.0f}, or vice
696     *     versa, the {@code equal} test has the value
697     *     {@code false}, even though {@code 0.0f==-0.0f}
698     *     has the value {@code true}.
699     * </ul>
700     *
701     * This definition allows hash tables to operate properly.
702     *
703     * @param obj the object to be compared
704     * @return  {@code true} if the objects are the same;
705     *          {@code false} otherwise.
706     * @see java.lang.Float#floatToIntBits(float)
707     */
708    public boolean equals(Object obj) {
709        return (obj instanceof Float)
710               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
711    }
712
713    /**
714     * Returns a representation of the specified floating-point value
715     * according to the IEEE 754 floating-point "single format" bit
716     * layout.
717     *
718     * <p>Bit 31 (the bit that is selected by the mask
719     * {@code 0x80000000}) represents the sign of the floating-point
720     * number.
721     * Bits 30-23 (the bits that are selected by the mask
722     * {@code 0x7f800000}) represent the exponent.
723     * Bits 22-0 (the bits that are selected by the mask
724     * {@code 0x007fffff}) represent the significand (sometimes called
725     * the mantissa) of the floating-point number.
726     *
727     * <p>If the argument is positive infinity, the result is
728     * {@code 0x7f800000}.
729     *
730     * <p>If the argument is negative infinity, the result is
731     * {@code 0xff800000}.
732     *
733     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
734     *
735     * <p>In all cases, the result is an integer that, when given to the
736     * {@link #intBitsToFloat(int)} method, will produce a floating-point
737     * value the same as the argument to {@code floatToIntBits}
738     * (except all NaN values are collapsed to a single
739     * "canonical" NaN value).
740     *
741     * @param   value   a floating-point number.
742     * @return the bits that represent the floating-point number.
743     */
744    public static int floatToIntBits(float value) {
745        int result = floatToRawIntBits(value);
746        // Check for NaN based on values of bit fields, maximum
747        // exponent and nonzero significand.
748        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
749              FloatConsts.EXP_BIT_MASK) &&
750             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
751            result = 0x7fc00000;
752        return result;
753    }
754
755    /**
756     * Returns a representation of the specified floating-point value
757     * according to the IEEE 754 floating-point "single format" bit
758     * layout, preserving Not-a-Number (NaN) values.
759     *
760     * <p>Bit 31 (the bit that is selected by the mask
761     * {@code 0x80000000}) represents the sign of the floating-point
762     * number.
763     * Bits 30-23 (the bits that are selected by the mask
764     * {@code 0x7f800000}) represent the exponent.
765     * Bits 22-0 (the bits that are selected by the mask
766     * {@code 0x007fffff}) represent the significand (sometimes called
767     * the mantissa) of the floating-point number.
768     *
769     * <p>If the argument is positive infinity, the result is
770     * {@code 0x7f800000}.
771     *
772     * <p>If the argument is negative infinity, the result is
773     * {@code 0xff800000}.
774     *
775     * <p>If the argument is NaN, the result is the integer representing
776     * the actual NaN value.  Unlike the {@code floatToIntBits}
777     * method, {@code floatToRawIntBits} does not collapse all the
778     * bit patterns encoding a NaN to a single "canonical"
779     * NaN value.
780     *
781     * <p>In all cases, the result is an integer that, when given to the
782     * {@link #intBitsToFloat(int)} method, will produce a
783     * floating-point value the same as the argument to
784     * {@code floatToRawIntBits}.
785     *
786     * @param   value   a floating-point number.
787     * @return the bits that represent the floating-point number.
788     * @since 1.3
789     */
790    public static native int floatToRawIntBits(float value);
791
792    /**
793     * Returns the {@code float} value corresponding to a given
794     * bit representation.
795     * The argument is considered to be a representation of a
796     * floating-point value according to the IEEE 754 floating-point
797     * "single format" bit layout.
798     *
799     * <p>If the argument is {@code 0x7f800000}, the result is positive
800     * infinity.
801     *
802     * <p>If the argument is {@code 0xff800000}, the result is negative
803     * infinity.
804     *
805     * <p>If the argument is any value in the range
806     * {@code 0x7f800001} through {@code 0x7fffffff} or in
807     * the range {@code 0xff800001} through
808     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
809     * floating-point operation provided by Java can distinguish
810     * between two NaN values of the same type with different bit
811     * patterns.  Distinct values of NaN are only distinguishable by
812     * use of the {@code Float.floatToRawIntBits} method.
813     *
814     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
815     * values that can be computed from the argument:
816     *
817     * <blockquote><pre>{@code
818     * int s = ((bits >> 31) == 0) ? 1 : -1;
819     * int e = ((bits >> 23) & 0xff);
820     * int m = (e == 0) ?
821     *                 (bits & 0x7fffff) << 1 :
822     *                 (bits & 0x7fffff) | 0x800000;
823     * }</pre></blockquote>
824     *
825     * Then the floating-point result equals the value of the mathematical
826     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
827     *
828     * <p>Note that this method may not be able to return a
829     * {@code float} NaN with exactly same bit pattern as the
830     * {@code int} argument.  IEEE 754 distinguishes between two
831     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
832     * differences between the two kinds of NaN are generally not
833     * visible in Java.  Arithmetic operations on signaling NaNs turn
834     * them into quiet NaNs with a different, but often similar, bit
835     * pattern.  However, on some processors merely copying a
836     * signaling NaN also performs that conversion.  In particular,
837     * copying a signaling NaN to return it to the calling method may
838     * perform this conversion.  So {@code intBitsToFloat} may
839     * not be able to return a {@code float} with a signaling NaN
840     * bit pattern.  Consequently, for some {@code int} values,
841     * {@code floatToRawIntBits(intBitsToFloat(start))} may
842     * <i>not</i> equal {@code start}.  Moreover, which
843     * particular bit patterns represent signaling NaNs is platform
844     * dependent; although all NaN bit patterns, quiet or signaling,
845     * must be in the NaN range identified above.
846     *
847     * @param   bits   an integer.
848     * @return  the {@code float} floating-point value with the same bit
849     *          pattern.
850     */
851    public static native float intBitsToFloat(int bits);
852
853    /**
854     * Compares two {@code Float} objects numerically.  There are
855     * two ways in which comparisons performed by this method differ
856     * from those performed by the Java language numerical comparison
857     * operators ({@code <, <=, ==, >=, >}) when
858     * applied to primitive {@code float} values:
859     *
860     * <ul><li>
861     *          {@code Float.NaN} is considered by this method to
862     *          be equal to itself and greater than all other
863     *          {@code float} values
864     *          (including {@code Float.POSITIVE_INFINITY}).
865     * <li>
866     *          {@code 0.0f} is considered by this method to be greater
867     *          than {@code -0.0f}.
868     * </ul>
869     *
870     * This ensures that the <i>natural ordering</i> of {@code Float}
871     * objects imposed by this method is <i>consistent with equals</i>.
872     *
873     * @param   anotherFloat   the {@code Float} to be compared.
874     * @return  the value {@code 0} if {@code anotherFloat} is
875     *          numerically equal to this {@code Float}; a value
876     *          less than {@code 0} if this {@code Float}
877     *          is numerically less than {@code anotherFloat};
878     *          and a value greater than {@code 0} if this
879     *          {@code Float} is numerically greater than
880     *          {@code anotherFloat}.
881     *
882     * @since   1.2
883     * @see Comparable#compareTo(Object)
884     */
885    public int compareTo(Float anotherFloat) {
886        return Float.compare(value, anotherFloat.value);
887    }
888
889    /**
890     * Compares the two specified {@code float} values. The sign
891     * of the integer value returned is the same as that of the
892     * integer that would be returned by the call:
893     * <pre>
894     *    new Float(f1).compareTo(new Float(f2))
895     * </pre>
896     *
897     * @param   f1        the first {@code float} to compare.
898     * @param   f2        the second {@code float} to compare.
899     * @return  the value {@code 0} if {@code f1} is
900     *          numerically equal to {@code f2}; a value less than
901     *          {@code 0} if {@code f1} is numerically less than
902     *          {@code f2}; and a value greater than {@code 0}
903     *          if {@code f1} is numerically greater than
904     *          {@code f2}.
905     * @since 1.4
906     */
907    public static int compare(float f1, float f2) {
908        if (f1 < f2)
909            return -1;           // Neither val is NaN, thisVal is smaller
910        if (f1 > f2)
911            return 1;            // Neither val is NaN, thisVal is larger
912
913        // Cannot use floatToRawIntBits because of possibility of NaNs.
914        int thisBits    = Float.floatToIntBits(f1);
915        int anotherBits = Float.floatToIntBits(f2);
916
917        return (thisBits == anotherBits ?  0 : // Values are equal
918                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
919                 1));                          // (0.0, -0.0) or (NaN, !NaN)
920    }
921
922    /**
923     * Adds two {@code float} values together as per the + operator.
924     *
925     * @param a the first operand
926     * @param b the second operand
927     * @return the sum of {@code a} and {@code b}
928     * @jls 4.2.4 Floating-Point Operations
929     * @see java.util.function.BinaryOperator
930     * @since 1.8
931     */
932    public static float sum(float a, float b) {
933        return a + b;
934    }
935
936    /**
937     * Returns the greater of two {@code float} values
938     * as if by calling {@link Math#max(float, float) Math.max}.
939     *
940     * @param a the first operand
941     * @param b the second operand
942     * @return the greater of {@code a} and {@code b}
943     * @see java.util.function.BinaryOperator
944     * @since 1.8
945     */
946    public static float max(float a, float b) {
947        return Math.max(a, b);
948    }
949
950    /**
951     * Returns the smaller of two {@code float} values
952     * as if by calling {@link Math#min(float, float) Math.min}.
953     *
954     * @param a the first operand
955     * @param b the second operand
956     * @return the smaller of {@code a} and {@code b}
957     * @see java.util.function.BinaryOperator
958     * @since 1.8
959     */
960    public static float min(float a, float b) {
961        return Math.min(a, b);
962    }
963
964    /** use serialVersionUID from JDK 1.0.2 for interoperability */
965    private static final long serialVersionUID = -2671257302660747028L;
966}
967