Float.java revision 9524178a7300a939242b78017f3dfa8014d4ca6d
1/*
2 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import sun.misc.FpUtils;
29import sun.misc.FloatConsts;
30import sun.misc.DoubleConsts;
31
32/**
33 * The {@code Float} class wraps a value of primitive type
34 * {@code float} in an object. An object of type
35 * {@code Float} contains a single field whose type is
36 * {@code float}.
37 *
38 * <p>In addition, this class provides several methods for converting a
39 * {@code float} to a {@code String} and a
40 * {@code String} to a {@code float}, as well as other
41 * constants and methods useful when dealing with a
42 * {@code float}.
43 *
44 * @author  Lee Boynton
45 * @author  Arthur van Hoff
46 * @author  Joseph D. Darcy
47 * @since JDK1.0
48 */
49public final class Float extends Number implements Comparable<Float> {
50    /**
51     * A constant holding the positive infinity of type
52     * {@code float}. It is equal to the value returned by
53     * {@code Float.intBitsToFloat(0x7f800000)}.
54     */
55    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
56
57    /**
58     * A constant holding the negative infinity of type
59     * {@code float}. It is equal to the value returned by
60     * {@code Float.intBitsToFloat(0xff800000)}.
61     */
62    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
63
64    /**
65     * A constant holding a Not-a-Number (NaN) value of type
66     * {@code float}.  It is equivalent to the value returned by
67     * {@code Float.intBitsToFloat(0x7fc00000)}.
68     */
69    public static final float NaN = 0.0f / 0.0f;
70
71    /**
72     * A constant holding the largest positive finite value of type
73     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
74     * It is equal to the hexadecimal floating-point literal
75     * {@code 0x1.fffffeP+127f} and also equal to
76     * {@code Float.intBitsToFloat(0x7f7fffff)}.
77     */
78    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
79
80    /**
81     * A constant holding the smallest positive normal value of type
82     * {@code float}, 2<sup>-126</sup>.  It is equal to the
83     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
84     * equal to {@code Float.intBitsToFloat(0x00800000)}.
85     *
86     * @since 1.6
87     */
88    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
89
90    /**
91     * A constant holding the smallest positive nonzero value of type
92     * {@code float}, 2<sup>-149</sup>. It is equal to the
93     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
94     * and also equal to {@code Float.intBitsToFloat(0x1)}.
95     */
96    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
97
98    /**
99     * Maximum exponent a finite {@code float} variable may have.  It
100     * is equal to the value returned by {@code
101     * Math.getExponent(Float.MAX_VALUE)}.
102     *
103     * @since 1.6
104     */
105    public static final int MAX_EXPONENT = 127;
106
107    /**
108     * Minimum exponent a normalized {@code float} variable may have.
109     * It is equal to the value returned by {@code
110     * Math.getExponent(Float.MIN_NORMAL)}.
111     *
112     * @since 1.6
113     */
114    public static final int MIN_EXPONENT = -126;
115
116    /**
117     * The number of bits used to represent a {@code float} value.
118     *
119     * @since 1.5
120     */
121    public static final int SIZE = 32;
122
123    /**
124     * The {@code Class} instance representing the primitive type
125     * {@code float}.
126     *
127     * @since JDK1.1
128     */
129    public static final Class<Float> TYPE = (Class<Float>) float[].class.getComponentType();
130
131    /**
132     * Returns a string representation of the {@code float}
133     * argument. All characters mentioned below are ASCII characters.
134     * <ul>
135     * <li>If the argument is NaN, the result is the string
136     * "{@code NaN}".
137     * <li>Otherwise, the result is a string that represents the sign and
138     *     magnitude (absolute value) of the argument. If the sign is
139     *     negative, the first character of the result is
140     *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
141     *     positive, no sign character appears in the result. As for
142     *     the magnitude <i>m</i>:
143     * <ul>
144     * <li>If <i>m</i> is infinity, it is represented by the characters
145     *     {@code "Infinity"}; thus, positive infinity produces
146     *     the result {@code "Infinity"} and negative infinity
147     *     produces the result {@code "-Infinity"}.
148     * <li>If <i>m</i> is zero, it is represented by the characters
149     *     {@code "0.0"}; thus, negative zero produces the result
150     *     {@code "-0.0"} and positive zero produces the result
151     *     {@code "0.0"}.
152     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
153     *      less than 10<sup>7</sup>, then it is represented as the
154     *      integer part of <i>m</i>, in decimal form with no leading
155     *      zeroes, followed by '{@code .}'
156     *      (<code>'&#92;u002E'</code>), followed by one or more
157     *      decimal digits representing the fractional part of
158     *      <i>m</i>.
159     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
160     *      equal to 10<sup>7</sup>, then it is represented in
161     *      so-called "computerized scientific notation." Let <i>n</i>
162     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
163     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
164     *      be the mathematically exact quotient of <i>m</i> and
165     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
166     *      The magnitude is then represented as the integer part of
167     *      <i>a</i>, as a single decimal digit, followed by
168     *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
169     *      decimal digits representing the fractional part of
170     *      <i>a</i>, followed by the letter '{@code E}'
171     *      (<code>'&#92;u0045'</code>), followed by a representation
172     *      of <i>n</i> as a decimal integer, as produced by the
173     *      method {@link java.lang.Integer#toString(int)}.
174     *
175     * </ul>
176     * </ul>
177     * How many digits must be printed for the fractional part of
178     * <i>m</i> or <i>a</i>? There must be at least one digit
179     * to represent the fractional part, and beyond that as many, but
180     * only as many, more digits as are needed to uniquely distinguish
181     * the argument value from adjacent values of type
182     * {@code float}. That is, suppose that <i>x</i> is the
183     * exact mathematical value represented by the decimal
184     * representation produced by this method for a finite nonzero
185     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
186     * value nearest to <i>x</i>; or, if two {@code float} values are
187     * equally close to <i>x</i>, then <i>f</i> must be one of
188     * them and the least significant bit of the significand of
189     * <i>f</i> must be {@code 0}.
190     *
191     * <p>To create localized string representations of a floating-point
192     * value, use subclasses of {@link java.text.NumberFormat}.
193     *
194     * @param   f   the float to be converted.
195     * @return a string representation of the argument.
196     */
197    public static String toString(float f) {
198        return FloatingDecimal.getThreadLocalInstance().loadFloat(f).toJavaFormatString();
199    }
200
201    /**
202     * Returns a hexadecimal string representation of the
203     * {@code float} argument. All characters mentioned below are
204     * ASCII characters.
205     *
206     * <ul>
207     * <li>If the argument is NaN, the result is the string
208     *     "{@code NaN}".
209     * <li>Otherwise, the result is a string that represents the sign and
210     * magnitude (absolute value) of the argument. If the sign is negative,
211     * the first character of the result is '{@code -}'
212     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
213     * appears in the result. As for the magnitude <i>m</i>:
214     *
215     * <ul>
216     * <li>If <i>m</i> is infinity, it is represented by the string
217     * {@code "Infinity"}; thus, positive infinity produces the
218     * result {@code "Infinity"} and negative infinity produces
219     * the result {@code "-Infinity"}.
220     *
221     * <li>If <i>m</i> is zero, it is represented by the string
222     * {@code "0x0.0p0"}; thus, negative zero produces the result
223     * {@code "-0x0.0p0"} and positive zero produces the result
224     * {@code "0x0.0p0"}.
225     *
226     * <li>If <i>m</i> is a {@code float} value with a
227     * normalized representation, substrings are used to represent the
228     * significand and exponent fields.  The significand is
229     * represented by the characters {@code "0x1."}
230     * followed by a lowercase hexadecimal representation of the rest
231     * of the significand as a fraction.  Trailing zeros in the
232     * hexadecimal representation are removed unless all the digits
233     * are zero, in which case a single zero is used. Next, the
234     * exponent is represented by {@code "p"} followed
235     * by a decimal string of the unbiased exponent as if produced by
236     * a call to {@link Integer#toString(int) Integer.toString} on the
237     * exponent value.
238     *
239     * <li>If <i>m</i> is a {@code float} value with a subnormal
240     * representation, the significand is represented by the
241     * characters {@code "0x0."} followed by a
242     * hexadecimal representation of the rest of the significand as a
243     * fraction.  Trailing zeros in the hexadecimal representation are
244     * removed. Next, the exponent is represented by
245     * {@code "p-126"}.  Note that there must be at
246     * least one nonzero digit in a subnormal significand.
247     *
248     * </ul>
249     *
250     * </ul>
251     *
252     * <table border>
253     * <caption><h3>Examples</h3></caption>
254     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
255     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
256     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
257     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
258     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
259     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
260     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
261     * <tr><td>{@code Float.MAX_VALUE}</td>
262     *     <td>{@code 0x1.fffffep127}</td>
263     * <tr><td>{@code Minimum Normal Value}</td>
264     *     <td>{@code 0x1.0p-126}</td>
265     * <tr><td>{@code Maximum Subnormal Value}</td>
266     *     <td>{@code 0x0.fffffep-126}</td>
267     * <tr><td>{@code Float.MIN_VALUE}</td>
268     *     <td>{@code 0x0.000002p-126}</td>
269     * </table>
270     * @param   f   the {@code float} to be converted.
271     * @return a hex string representation of the argument.
272     * @since 1.5
273     * @author Joseph D. Darcy
274     */
275    public static String toHexString(float f) {
276        if (Math.abs(f) < FloatConsts.MIN_NORMAL
277            &&  f != 0.0f ) {// float subnormal
278            // Adjust exponent to create subnormal double, then
279            // replace subnormal double exponent with subnormal float
280            // exponent
281            String s = Double.toHexString(FpUtils.scalb((double)f,
282                                                        /* -1022+126 */
283                                                        DoubleConsts.MIN_EXPONENT-
284                                                        FloatConsts.MIN_EXPONENT));
285            return s.replaceFirst("p-1022$", "p-126");
286        }
287        else // double string will be the same as float string
288            return Double.toHexString(f);
289    }
290
291    /**
292     * Returns a {@code Float} object holding the
293     * {@code float} value represented by the argument string
294     * {@code s}.
295     *
296     * <p>If {@code s} is {@code null}, then a
297     * {@code NullPointerException} is thrown.
298     *
299     * <p>Leading and trailing whitespace characters in {@code s}
300     * are ignored.  Whitespace is removed as if by the {@link
301     * String#trim} method; that is, both ASCII space and control
302     * characters are removed. The rest of {@code s} should
303     * constitute a <i>FloatValue</i> as described by the lexical
304     * syntax rules:
305     *
306     * <blockquote>
307     * <dl>
308     * <dt><i>FloatValue:</i>
309     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
310     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
311     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
312     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
313     * <dd><i>SignedInteger</i>
314     * </dl>
315     *
316     * <p>
317     *
318     * <dl>
319     * <dt><i>HexFloatingPointLiteral</i>:
320     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
321     * </dl>
322     *
323     * <p>
324     *
325     * <dl>
326     * <dt><i>HexSignificand:</i>
327     * <dd><i>HexNumeral</i>
328     * <dd><i>HexNumeral</i> {@code .}
329     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
330     *     </i>{@code .}<i> HexDigits</i>
331     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
332     *     </i>{@code .} <i>HexDigits</i>
333     * </dl>
334     *
335     * <p>
336     *
337     * <dl>
338     * <dt><i>BinaryExponent:</i>
339     * <dd><i>BinaryExponentIndicator SignedInteger</i>
340     * </dl>
341     *
342     * <p>
343     *
344     * <dl>
345     * <dt><i>BinaryExponentIndicator:</i>
346     * <dd>{@code p}
347     * <dd>{@code P}
348     * </dl>
349     *
350     * </blockquote>
351     *
352     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
353     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
354     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
355     * sections of
356     * <cite>The Java&trade; Language Specification</cite>,
357     * except that underscores are not accepted between digits.
358     * If {@code s} does not have the form of
359     * a <i>FloatValue</i>, then a {@code NumberFormatException}
360     * is thrown. Otherwise, {@code s} is regarded as
361     * representing an exact decimal value in the usual
362     * "computerized scientific notation" or as an exact
363     * hexadecimal value; this exact numerical value is then
364     * conceptually converted to an "infinitely precise"
365     * binary value that is then rounded to type {@code float}
366     * by the usual round-to-nearest rule of IEEE 754 floating-point
367     * arithmetic, which includes preserving the sign of a zero
368     * value.
369     *
370     * Note that the round-to-nearest rule also implies overflow and
371     * underflow behaviour; if the exact value of {@code s} is large
372     * enough in magnitude (greater than or equal to ({@link
373     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
374     * rounding to {@code float} will result in an infinity and if the
375     * exact value of {@code s} is small enough in magnitude (less
376     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
377     * result in a zero.
378     *
379     * Finally, after rounding a {@code Float} object representing
380     * this {@code float} value is returned.
381     *
382     * <p>To interpret localized string representations of a
383     * floating-point value, use subclasses of {@link
384     * java.text.NumberFormat}.
385     *
386     * <p>Note that trailing format specifiers, specifiers that
387     * determine the type of a floating-point literal
388     * ({@code 1.0f} is a {@code float} value;
389     * {@code 1.0d} is a {@code double} value), do
390     * <em>not</em> influence the results of this method.  In other
391     * words, the numerical value of the input string is converted
392     * directly to the target floating-point type.  In general, the
393     * two-step sequence of conversions, string to {@code double}
394     * followed by {@code double} to {@code float}, is
395     * <em>not</em> equivalent to converting a string directly to
396     * {@code float}.  For example, if first converted to an
397     * intermediate {@code double} and then to
398     * {@code float}, the string<br>
399     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
400     * results in the {@code float} value
401     * {@code 1.0000002f}; if the string is converted directly to
402     * {@code float}, <code>1.000000<b>1</b>f</code> results.
403     *
404     * <p>To avoid calling this method on an invalid string and having
405     * a {@code NumberFormatException} be thrown, the documentation
406     * for {@link Double#valueOf Double.valueOf} lists a regular
407     * expression which can be used to screen the input.
408     *
409     * @param   s   the string to be parsed.
410     * @return  a {@code Float} object holding the value
411     *          represented by the {@code String} argument.
412     * @throws  NumberFormatException  if the string does not contain a
413     *          parsable number.
414     */
415    public static Float valueOf(String s) throws NumberFormatException {
416        return new Float(FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).floatValue());
417    }
418
419    /**
420     * Returns a {@code Float} instance representing the specified
421     * {@code float} value.
422     * If a new {@code Float} instance is not required, this method
423     * should generally be used in preference to the constructor
424     * {@link #Float(float)}, as this method is likely to yield
425     * significantly better space and time performance by caching
426     * frequently requested values.
427     *
428     * @param  f a float value.
429     * @return a {@code Float} instance representing {@code f}.
430     * @since  1.5
431     */
432    public static Float valueOf(float f) {
433        return new Float(f);
434    }
435
436    /**
437     * Returns a new {@code float} initialized to the value
438     * represented by the specified {@code String}, as performed
439     * by the {@code valueOf} method of class {@code Float}.
440     *
441     * @param  s the string to be parsed.
442     * @return the {@code float} value represented by the string
443     *         argument.
444     * @throws NullPointerException  if the string is null
445     * @throws NumberFormatException if the string does not contain a
446     *               parsable {@code float}.
447     * @see    java.lang.Float#valueOf(String)
448     * @since 1.2
449     */
450    public static float parseFloat(String s) throws NumberFormatException {
451        return FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).floatValue();
452    }
453
454    /**
455     * Returns {@code true} if the specified number is a
456     * Not-a-Number (NaN) value, {@code false} otherwise.
457     *
458     * @param   v   the value to be tested.
459     * @return  {@code true} if the argument is NaN;
460     *          {@code false} otherwise.
461     */
462    static public boolean isNaN(float v) {
463        return (v != v);
464    }
465
466    /**
467     * Returns {@code true} if the specified number is infinitely
468     * large in magnitude, {@code false} otherwise.
469     *
470     * @param   v   the value to be tested.
471     * @return  {@code true} if the argument is positive infinity or
472     *          negative infinity; {@code false} otherwise.
473     */
474    static public boolean isInfinite(float v) {
475        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
476    }
477
478    /**
479     * The value of the Float.
480     *
481     * @serial
482     */
483    private final float value;
484
485    /**
486     * Constructs a newly allocated {@code Float} object that
487     * represents the primitive {@code float} argument.
488     *
489     * @param   value   the value to be represented by the {@code Float}.
490     */
491    public Float(float value) {
492        this.value = value;
493    }
494
495    /**
496     * Constructs a newly allocated {@code Float} object that
497     * represents the argument converted to type {@code float}.
498     *
499     * @param   value   the value to be represented by the {@code Float}.
500     */
501    public Float(double value) {
502        this.value = (float)value;
503    }
504
505    /**
506     * Constructs a newly allocated {@code Float} object that
507     * represents the floating-point value of type {@code float}
508     * represented by the string. The string is converted to a
509     * {@code float} value as if by the {@code valueOf} method.
510     *
511     * @param      s   a string to be converted to a {@code Float}.
512     * @throws  NumberFormatException  if the string does not contain a
513     *               parsable number.
514     * @see        java.lang.Float#valueOf(java.lang.String)
515     */
516    public Float(String s) throws NumberFormatException {
517        // REMIND: this is inefficient
518        this(valueOf(s).floatValue());
519    }
520
521    /**
522     * Returns {@code true} if this {@code Float} value is a
523     * Not-a-Number (NaN), {@code false} otherwise.
524     *
525     * @return  {@code true} if the value represented by this object is
526     *          NaN; {@code false} otherwise.
527     */
528    public boolean isNaN() {
529        return isNaN(value);
530    }
531
532    /**
533     * Returns {@code true} if this {@code Float} value is
534     * infinitely large in magnitude, {@code false} otherwise.
535     *
536     * @return  {@code true} if the value represented by this object is
537     *          positive infinity or negative infinity;
538     *          {@code false} otherwise.
539     */
540    public boolean isInfinite() {
541        return isInfinite(value);
542    }
543
544    /**
545     * Returns a string representation of this {@code Float} object.
546     * The primitive {@code float} value represented by this object
547     * is converted to a {@code String} exactly as if by the method
548     * {@code toString} of one argument.
549     *
550     * @return  a {@code String} representation of this object.
551     * @see java.lang.Float#toString(float)
552     */
553    public String toString() {
554        return Float.toString(value);
555    }
556
557    /**
558     * Returns the value of this {@code Float} as a {@code byte} (by
559     * casting to a {@code byte}).
560     *
561     * @return  the {@code float} value represented by this object
562     *          converted to type {@code byte}
563     */
564    public byte byteValue() {
565        return (byte)value;
566    }
567
568    /**
569     * Returns the value of this {@code Float} as a {@code short} (by
570     * casting to a {@code short}).
571     *
572     * @return  the {@code float} value represented by this object
573     *          converted to type {@code short}
574     * @since JDK1.1
575     */
576    public short shortValue() {
577        return (short)value;
578    }
579
580    /**
581     * Returns the value of this {@code Float} as an {@code int} (by
582     * casting to type {@code int}).
583     *
584     * @return  the {@code float} value represented by this object
585     *          converted to type {@code int}
586     */
587    public int intValue() {
588        return (int)value;
589    }
590
591    /**
592     * Returns value of this {@code Float} as a {@code long} (by
593     * casting to type {@code long}).
594     *
595     * @return  the {@code float} value represented by this object
596     *          converted to type {@code long}
597     */
598    public long longValue() {
599        return (long)value;
600    }
601
602    /**
603     * Returns the {@code float} value of this {@code Float} object.
604     *
605     * @return the {@code float} value represented by this object
606     */
607    public float floatValue() {
608        return value;
609    }
610
611    /**
612     * Returns the {@code double} value of this {@code Float} object.
613     *
614     * @return the {@code float} value represented by this
615     *         object is converted to type {@code double} and the
616     *         result of the conversion is returned.
617     */
618    public double doubleValue() {
619        return (double)value;
620    }
621
622    /**
623     * Returns a hash code for this {@code Float} object. The
624     * result is the integer bit representation, exactly as produced
625     * by the method {@link #floatToIntBits(float)}, of the primitive
626     * {@code float} value represented by this {@code Float}
627     * object.
628     *
629     * @return a hash code value for this object.
630     */
631    public int hashCode() {
632        return floatToIntBits(value);
633    }
634
635    /**
636
637     * Compares this object against the specified object.  The result
638     * is {@code true} if and only if the argument is not
639     * {@code null} and is a {@code Float} object that
640     * represents a {@code float} with the same value as the
641     * {@code float} represented by this object. For this
642     * purpose, two {@code float} values are considered to be the
643     * same if and only if the method {@link #floatToIntBits(float)}
644     * returns the identical {@code int} value when applied to
645     * each.
646     *
647     * <p>Note that in most cases, for two instances of class
648     * {@code Float}, {@code f1} and {@code f2}, the value
649     * of {@code f1.equals(f2)} is {@code true} if and only if
650     *
651     * <blockquote><pre>
652     *   f1.floatValue() == f2.floatValue()
653     * </pre></blockquote>
654     *
655     * <p>also has the value {@code true}. However, there are two exceptions:
656     * <ul>
657     * <li>If {@code f1} and {@code f2} both represent
658     *     {@code Float.NaN}, then the {@code equals} method returns
659     *     {@code true}, even though {@code Float.NaN==Float.NaN}
660     *     has the value {@code false}.
661     * <li>If {@code f1} represents {@code +0.0f} while
662     *     {@code f2} represents {@code -0.0f}, or vice
663     *     versa, the {@code equal} test has the value
664     *     {@code false}, even though {@code 0.0f==-0.0f}
665     *     has the value {@code true}.
666     * </ul>
667     *
668     * This definition allows hash tables to operate properly.
669     *
670     * @param obj the object to be compared
671     * @return  {@code true} if the objects are the same;
672     *          {@code false} otherwise.
673     * @see java.lang.Float#floatToIntBits(float)
674     */
675    public boolean equals(Object obj) {
676        return (obj instanceof Float)
677               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
678    }
679
680    /**
681     * Returns a representation of the specified floating-point value
682     * according to the IEEE 754 floating-point "single format" bit
683     * layout.
684     *
685     * <p>Bit 31 (the bit that is selected by the mask
686     * {@code 0x80000000}) represents the sign of the floating-point
687     * number.
688     * Bits 30-23 (the bits that are selected by the mask
689     * {@code 0x7f800000}) represent the exponent.
690     * Bits 22-0 (the bits that are selected by the mask
691     * {@code 0x007fffff}) represent the significand (sometimes called
692     * the mantissa) of the floating-point number.
693     *
694     * <p>If the argument is positive infinity, the result is
695     * {@code 0x7f800000}.
696     *
697     * <p>If the argument is negative infinity, the result is
698     * {@code 0xff800000}.
699     *
700     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
701     *
702     * <p>In all cases, the result is an integer that, when given to the
703     * {@link #intBitsToFloat(int)} method, will produce a floating-point
704     * value the same as the argument to {@code floatToIntBits}
705     * (except all NaN values are collapsed to a single
706     * "canonical" NaN value).
707     *
708     * @param   value   a floating-point number.
709     * @return the bits that represent the floating-point number.
710     */
711    public static int floatToIntBits(float value) {
712        int result = floatToRawIntBits(value);
713        // Check for NaN based on values of bit fields, maximum
714        // exponent and nonzero significand.
715        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
716              FloatConsts.EXP_BIT_MASK) &&
717             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
718            result = 0x7fc00000;
719        return result;
720    }
721
722    /**
723     * Returns a representation of the specified floating-point value
724     * according to the IEEE 754 floating-point "single format" bit
725     * layout, preserving Not-a-Number (NaN) values.
726     *
727     * <p>Bit 31 (the bit that is selected by the mask
728     * {@code 0x80000000}) represents the sign of the floating-point
729     * number.
730     * Bits 30-23 (the bits that are selected by the mask
731     * {@code 0x7f800000}) represent the exponent.
732     * Bits 22-0 (the bits that are selected by the mask
733     * {@code 0x007fffff}) represent the significand (sometimes called
734     * the mantissa) of the floating-point number.
735     *
736     * <p>If the argument is positive infinity, the result is
737     * {@code 0x7f800000}.
738     *
739     * <p>If the argument is negative infinity, the result is
740     * {@code 0xff800000}.
741     *
742     * <p>If the argument is NaN, the result is the integer representing
743     * the actual NaN value.  Unlike the {@code floatToIntBits}
744     * method, {@code floatToRawIntBits} does not collapse all the
745     * bit patterns encoding a NaN to a single "canonical"
746     * NaN value.
747     *
748     * <p>In all cases, the result is an integer that, when given to the
749     * {@link #intBitsToFloat(int)} method, will produce a
750     * floating-point value the same as the argument to
751     * {@code floatToRawIntBits}.
752     *
753     * @param   value   a floating-point number.
754     * @return the bits that represent the floating-point number.
755     * @since 1.3
756     */
757    public static native int floatToRawIntBits(float value);
758
759    /**
760     * Returns the {@code float} value corresponding to a given
761     * bit representation.
762     * The argument is considered to be a representation of a
763     * floating-point value according to the IEEE 754 floating-point
764     * "single format" bit layout.
765     *
766     * <p>If the argument is {@code 0x7f800000}, the result is positive
767     * infinity.
768     *
769     * <p>If the argument is {@code 0xff800000}, the result is negative
770     * infinity.
771     *
772     * <p>If the argument is any value in the range
773     * {@code 0x7f800001} through {@code 0x7fffffff} or in
774     * the range {@code 0xff800001} through
775     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
776     * floating-point operation provided by Java can distinguish
777     * between two NaN values of the same type with different bit
778     * patterns.  Distinct values of NaN are only distinguishable by
779     * use of the {@code Float.floatToRawIntBits} method.
780     *
781     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
782     * values that can be computed from the argument:
783     *
784     * <blockquote><pre>
785     * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
786     * int e = ((bits &gt;&gt; 23) & 0xff);
787     * int m = (e == 0) ?
788     *                 (bits & 0x7fffff) &lt;&lt; 1 :
789     *                 (bits & 0x7fffff) | 0x800000;
790     * </pre></blockquote>
791     *
792     * Then the floating-point result equals the value of the mathematical
793     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
794     *
795     * <p>Note that this method may not be able to return a
796     * {@code float} NaN with exactly same bit pattern as the
797     * {@code int} argument.  IEEE 754 distinguishes between two
798     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
799     * differences between the two kinds of NaN are generally not
800     * visible in Java.  Arithmetic operations on signaling NaNs turn
801     * them into quiet NaNs with a different, but often similar, bit
802     * pattern.  However, on some processors merely copying a
803     * signaling NaN also performs that conversion.  In particular,
804     * copying a signaling NaN to return it to the calling method may
805     * perform this conversion.  So {@code intBitsToFloat} may
806     * not be able to return a {@code float} with a signaling NaN
807     * bit pattern.  Consequently, for some {@code int} values,
808     * {@code floatToRawIntBits(intBitsToFloat(start))} may
809     * <i>not</i> equal {@code start}.  Moreover, which
810     * particular bit patterns represent signaling NaNs is platform
811     * dependent; although all NaN bit patterns, quiet or signaling,
812     * must be in the NaN range identified above.
813     *
814     * @param   bits   an integer.
815     * @return  the {@code float} floating-point value with the same bit
816     *          pattern.
817     */
818    public static native float intBitsToFloat(int bits);
819
820    /**
821     * Compares two {@code Float} objects numerically.  There are
822     * two ways in which comparisons performed by this method differ
823     * from those performed by the Java language numerical comparison
824     * operators ({@code <, <=, ==, >=, >}) when
825     * applied to primitive {@code float} values:
826     *
827     * <ul><li>
828     *          {@code Float.NaN} is considered by this method to
829     *          be equal to itself and greater than all other
830     *          {@code float} values
831     *          (including {@code Float.POSITIVE_INFINITY}).
832     * <li>
833     *          {@code 0.0f} is considered by this method to be greater
834     *          than {@code -0.0f}.
835     * </ul>
836     *
837     * This ensures that the <i>natural ordering</i> of {@code Float}
838     * objects imposed by this method is <i>consistent with equals</i>.
839     *
840     * @param   anotherFloat   the {@code Float} to be compared.
841     * @return  the value {@code 0} if {@code anotherFloat} is
842     *          numerically equal to this {@code Float}; a value
843     *          less than {@code 0} if this {@code Float}
844     *          is numerically less than {@code anotherFloat};
845     *          and a value greater than {@code 0} if this
846     *          {@code Float} is numerically greater than
847     *          {@code anotherFloat}.
848     *
849     * @since   1.2
850     * @see Comparable#compareTo(Object)
851     */
852    public int compareTo(Float anotherFloat) {
853        return Float.compare(value, anotherFloat.value);
854    }
855
856    /**
857     * Compares the two specified {@code float} values. The sign
858     * of the integer value returned is the same as that of the
859     * integer that would be returned by the call:
860     * <pre>
861     *    new Float(f1).compareTo(new Float(f2))
862     * </pre>
863     *
864     * @param   f1        the first {@code float} to compare.
865     * @param   f2        the second {@code float} to compare.
866     * @return  the value {@code 0} if {@code f1} is
867     *          numerically equal to {@code f2}; a value less than
868     *          {@code 0} if {@code f1} is numerically less than
869     *          {@code f2}; and a value greater than {@code 0}
870     *          if {@code f1} is numerically greater than
871     *          {@code f2}.
872     * @since 1.4
873     */
874    public static int compare(float f1, float f2) {
875        if (f1 < f2)
876            return -1;           // Neither val is NaN, thisVal is smaller
877        if (f1 > f2)
878            return 1;            // Neither val is NaN, thisVal is larger
879
880        // Cannot use floatToRawIntBits because of possibility of NaNs.
881        int thisBits    = Float.floatToIntBits(f1);
882        int anotherBits = Float.floatToIntBits(f2);
883
884        return (thisBits == anotherBits ?  0 : // Values are equal
885                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
886                 1));                          // (0.0, -0.0) or (NaN, !NaN)
887    }
888
889    /** use serialVersionUID from JDK 1.0.2 for interoperability */
890    private static final long serialVersionUID = -2671257302660747028L;
891}
892