1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27import java.util.Random;
28import sun.misc.DoubleConsts;
29
30/**
31 * The class {@code StrictMath} contains methods for performing basic
32 * numeric operations such as the elementary exponential, logarithm,
33 * square root, and trigonometric functions.
34 *
35 * <p>To help ensure portability of Java programs, the definitions of
36 * some of the numeric functions in this package require that they
37 * produce the same results as certain published algorithms. These
38 * algorithms are available from the well-known network library
39 * {@code netlib} as the package "Freely Distributable Math
40 * Library," <a
41 * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
42 * algorithms, which are written in the C programming language, are
43 * then to be understood as executed with all floating-point
44 * operations following the rules of Java floating-point arithmetic.
45 *
46 * <p>The Java math library is defined with respect to
47 * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
48 * more than one definition for a function (such as
49 * {@code acos}), use the "IEEE 754 core function" version
50 * (residing in a file whose name begins with the letter
51 * {@code e}).  The methods which require {@code fdlibm}
52 * semantics are {@code sin}, {@code cos}, {@code tan},
53 * {@code asin}, {@code acos}, {@code atan},
54 * {@code exp}, {@code log}, {@code log10},
55 * {@code cbrt}, {@code atan2}, {@code pow},
56 * {@code sinh}, {@code cosh}, {@code tanh},
57 * {@code hypot}, {@code expm1}, and {@code log1p}.
58 *
59 * <p>
60 * The platform uses signed two's complement integer arithmetic with
61 * int and long primitive types.  The developer should choose
62 * the primitive type to ensure that arithmetic operations consistently
63 * produce correct results, which in some cases means the operations
64 * will not overflow the range of values of the computation.
65 * The best practice is to choose the primitive type and algorithm to avoid
66 * overflow. In cases where the size is {@code int} or {@code long} and
67 * overflow errors need to be detected, the methods {@code addExact},
68 * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
69 * throw an {@code ArithmeticException} when the results overflow.
70 * For other arithmetic operations such as divide, absolute value,
71 * increment, decrement, and negation overflow occurs only with
72 * a specific minimum or maximum value and should be checked against
73 * the minimum or maximum as appropriate.
74 *
75 * @author  unascribed
76 * @author  Joseph D. Darcy
77 * @since   1.3
78 */
79
80public final class StrictMath {
81
82    /**
83     * Don't let anyone instantiate this class.
84     */
85    private StrictMath() {}
86
87    /**
88     * The {@code double} value that is closer than any other to
89     * <i>e</i>, the base of the natural logarithms.
90     */
91    public static final double E = 2.7182818284590452354;
92
93    /**
94     * The {@code double} value that is closer than any other to
95     * <i>pi</i>, the ratio of the circumference of a circle to its
96     * diameter.
97     */
98    public static final double PI = 3.14159265358979323846;
99
100    /**
101     * Returns the trigonometric sine of an angle. Special cases:
102     * <ul><li>If the argument is NaN or an infinity, then the
103     * result is NaN.
104     * <li>If the argument is zero, then the result is a zero with the
105     * same sign as the argument.</ul>
106     *
107     * @param   a   an angle, in radians.
108     * @return  the sine of the argument.
109     */
110    public static native double sin(double a);
111
112    /**
113     * Returns the trigonometric cosine of an angle. Special cases:
114     * <ul><li>If the argument is NaN or an infinity, then the
115     * result is NaN.</ul>
116     *
117     * @param   a   an angle, in radians.
118     * @return  the cosine of the argument.
119     */
120    public static native double cos(double a);
121
122    /**
123     * Returns the trigonometric tangent of an angle. Special cases:
124     * <ul><li>If the argument is NaN or an infinity, then the result
125     * is NaN.
126     * <li>If the argument is zero, then the result is a zero with the
127     * same sign as the argument.</ul>
128     *
129     * @param   a   an angle, in radians.
130     * @return  the tangent of the argument.
131     */
132    public static native double tan(double a);
133
134    /**
135     * Returns the arc sine of a value; the returned angle is in the
136     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
137     * <ul><li>If the argument is NaN or its absolute value is greater
138     * than 1, then the result is NaN.
139     * <li>If the argument is zero, then the result is a zero with the
140     * same sign as the argument.</ul>
141     *
142     * @param   a   the value whose arc sine is to be returned.
143     * @return  the arc sine of the argument.
144     */
145    public static native double asin(double a);
146
147    /**
148     * Returns the arc cosine of a value; the returned angle is in the
149     * range 0.0 through <i>pi</i>.  Special case:
150     * <ul><li>If the argument is NaN or its absolute value is greater
151     * than 1, then the result is NaN.</ul>
152     *
153     * @param   a   the value whose arc cosine is to be returned.
154     * @return  the arc cosine of the argument.
155     */
156    public static native double acos(double a);
157
158    /**
159     * Returns the arc tangent of a value; the returned angle is in the
160     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
161     * <ul><li>If the argument is NaN, then the result is NaN.
162     * <li>If the argument is zero, then the result is a zero with the
163     * same sign as the argument.</ul>
164     *
165     * @param   a   the value whose arc tangent is to be returned.
166     * @return  the arc tangent of the argument.
167     */
168    public static native double atan(double a);
169
170    /**
171     * Converts an angle measured in degrees to an approximately
172     * equivalent angle measured in radians.  The conversion from
173     * degrees to radians is generally inexact.
174     *
175     * @param   angdeg   an angle, in degrees
176     * @return  the measurement of the angle {@code angdeg}
177     *          in radians.
178     */
179    public static strictfp double toRadians(double angdeg) {
180        // Do not delegate to Math.toRadians(angdeg) because
181        // this method has the strictfp modifier.
182        return angdeg / 180.0 * PI;
183    }
184
185    /**
186     * Converts an angle measured in radians to an approximately
187     * equivalent angle measured in degrees.  The conversion from
188     * radians to degrees is generally inexact; users should
189     * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
190     * equal {@code 0.0}.
191     *
192     * @param   angrad   an angle, in radians
193     * @return  the measurement of the angle {@code angrad}
194     *          in degrees.
195     */
196    public static strictfp double toDegrees(double angrad) {
197        // Do not delegate to Math.toDegrees(angrad) because
198        // this method has the strictfp modifier.
199        return angrad * 180.0 / PI;
200    }
201
202    /**
203     * Returns Euler's number <i>e</i> raised to the power of a
204     * {@code double} value. Special cases:
205     * <ul><li>If the argument is NaN, the result is NaN.
206     * <li>If the argument is positive infinity, then the result is
207     * positive infinity.
208     * <li>If the argument is negative infinity, then the result is
209     * positive zero.</ul>
210     *
211     * @param   a   the exponent to raise <i>e</i> to.
212     * @return  the value <i>e</i><sup>{@code a}</sup>,
213     *          where <i>e</i> is the base of the natural logarithms.
214     */
215    public static native double exp(double a);
216
217    /**
218     * Returns the natural logarithm (base <i>e</i>) of a {@code double}
219     * value. Special cases:
220     * <ul><li>If the argument is NaN or less than zero, then the result
221     * is NaN.
222     * <li>If the argument is positive infinity, then the result is
223     * positive infinity.
224     * <li>If the argument is positive zero or negative zero, then the
225     * result is negative infinity.</ul>
226     *
227     * @param   a   a value
228     * @return  the value ln&nbsp;{@code a}, the natural logarithm of
229     *          {@code a}.
230     */
231    public static native double log(double a);
232
233
234    /**
235     * Returns the base 10 logarithm of a {@code double} value.
236     * Special cases:
237     *
238     * <ul><li>If the argument is NaN or less than zero, then the result
239     * is NaN.
240     * <li>If the argument is positive infinity, then the result is
241     * positive infinity.
242     * <li>If the argument is positive zero or negative zero, then the
243     * result is negative infinity.
244     * <li> If the argument is equal to 10<sup><i>n</i></sup> for
245     * integer <i>n</i>, then the result is <i>n</i>.
246     * </ul>
247     *
248     * @param   a   a value
249     * @return  the base 10 logarithm of  {@code a}.
250     * @since 1.5
251     */
252    public static native double log10(double a);
253
254    /**
255     * Returns the correctly rounded positive square root of a
256     * {@code double} value.
257     * Special cases:
258     * <ul><li>If the argument is NaN or less than zero, then the result
259     * is NaN.
260     * <li>If the argument is positive infinity, then the result is positive
261     * infinity.
262     * <li>If the argument is positive zero or negative zero, then the
263     * result is the same as the argument.</ul>
264     * Otherwise, the result is the {@code double} value closest to
265     * the true mathematical square root of the argument value.
266     *
267     * @param   a   a value.
268     * @return  the positive square root of {@code a}.
269     */
270    public static native double sqrt(double a);
271
272    /**
273     * Returns the cube root of a {@code double} value.  For
274     * positive finite {@code x}, {@code cbrt(-x) ==
275     * -cbrt(x)}; that is, the cube root of a negative value is
276     * the negative of the cube root of that value's magnitude.
277     * Special cases:
278     *
279     * <ul>
280     *
281     * <li>If the argument is NaN, then the result is NaN.
282     *
283     * <li>If the argument is infinite, then the result is an infinity
284     * with the same sign as the argument.
285     *
286     * <li>If the argument is zero, then the result is a zero with the
287     * same sign as the argument.
288     *
289     * </ul>
290     *
291     * @param   a   a value.
292     * @return  the cube root of {@code a}.
293     * @since 1.5
294     */
295    public static native double cbrt(double a);
296
297    /**
298     * Computes the remainder operation on two arguments as prescribed
299     * by the IEEE 754 standard.
300     * The remainder value is mathematically equal to
301     * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
302     * where <i>n</i> is the mathematical integer closest to the exact
303     * mathematical value of the quotient {@code f1/f2}, and if two
304     * mathematical integers are equally close to {@code f1/f2},
305     * then <i>n</i> is the integer that is even. If the remainder is
306     * zero, its sign is the same as the sign of the first argument.
307     * Special cases:
308     * <ul><li>If either argument is NaN, or the first argument is infinite,
309     * or the second argument is positive zero or negative zero, then the
310     * result is NaN.
311     * <li>If the first argument is finite and the second argument is
312     * infinite, then the result is the same as the first argument.</ul>
313     *
314     * @param   f1   the dividend.
315     * @param   f2   the divisor.
316     * @return  the remainder when {@code f1} is divided by
317     *          {@code f2}.
318     */
319    public static native double IEEEremainder(double f1, double f2);
320
321    /**
322     * Returns the smallest (closest to negative infinity)
323     * {@code double} value that is greater than or equal to the
324     * argument and is equal to a mathematical integer. Special cases:
325     * <ul><li>If the argument value is already equal to a
326     * mathematical integer, then the result is the same as the
327     * argument.  <li>If the argument is NaN or an infinity or
328     * positive zero or negative zero, then the result is the same as
329     * the argument.  <li>If the argument value is less than zero but
330     * greater than -1.0, then the result is negative zero.</ul> Note
331     * that the value of {@code StrictMath.ceil(x)} is exactly the
332     * value of {@code -StrictMath.floor(-x)}.
333     *
334     * @param   a   a value.
335     * @return  the smallest (closest to negative infinity)
336     *          floating-point value that is greater than or equal to
337     *          the argument and is equal to a mathematical integer.
338     */
339    public static double ceil(double a) {
340        return floorOrCeil(a, -0.0, 1.0, 1.0);
341    }
342
343    /**
344     * Returns the largest (closest to positive infinity)
345     * {@code double} value that is less than or equal to the
346     * argument and is equal to a mathematical integer. Special cases:
347     * <ul><li>If the argument value is already equal to a
348     * mathematical integer, then the result is the same as the
349     * argument.  <li>If the argument is NaN or an infinity or
350     * positive zero or negative zero, then the result is the same as
351     * the argument.</ul>
352     *
353     * @param   a   a value.
354     * @return  the largest (closest to positive infinity)
355     *          floating-point value that less than or equal to the argument
356     *          and is equal to a mathematical integer.
357     */
358    public static double floor(double a) {
359        return floorOrCeil(a, -1.0, 0.0, -1.0);
360    }
361
362    /**
363     * Internal method to share logic between floor and ceil.
364     *
365     * @param a the value to be floored or ceiled
366     * @param negativeBoundary result for values in (-1, 0)
367     * @param positiveBoundary result for values in (0, 1)
368     * @param increment value to add when the argument is non-integral
369     */
370    private static double floorOrCeil(double a,
371                                      double negativeBoundary,
372                                      double positiveBoundary,
373                                      double sign) {
374        int exponent = Math.getExponent(a);
375
376        if (exponent < 0) {
377            /*
378             * Absolute value of argument is less than 1.
379             * floorOrceil(-0.0) => -0.0
380             * floorOrceil(+0.0) => +0.0
381             */
382            return ((a == 0.0) ? a :
383                    ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
384        } else if (exponent >= 52) {
385            /*
386             * Infinity, NaN, or a value so large it must be integral.
387             */
388            return a;
389        }
390        // Else the argument is either an integral value already XOR it
391        // has to be rounded to one.
392        assert exponent >= 0 && exponent <= 51;
393
394        long doppel = Double.doubleToRawLongBits(a);
395        long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
396
397        if ( (mask & doppel) == 0L )
398            return a; // integral value
399        else {
400            double result = Double.longBitsToDouble(doppel & (~mask));
401            if (sign*a > 0.0)
402                result = result + sign;
403            return result;
404        }
405    }
406
407    /**
408     * Returns the {@code double} value that is closest in value
409     * to the argument and is equal to a mathematical integer. If two
410     * {@code double} values that are mathematical integers are
411     * equally close to the value of the argument, the result is the
412     * integer value that is even. Special cases:
413     * <ul><li>If the argument value is already equal to a mathematical
414     * integer, then the result is the same as the argument.
415     * <li>If the argument is NaN or an infinity or positive zero or negative
416     * zero, then the result is the same as the argument.</ul>
417     *
418     * @param   a   a value.
419     * @return  the closest floating-point value to {@code a} that is
420     *          equal to a mathematical integer.
421     * @author Joseph D. Darcy
422     */
423    public static double rint(double a) {
424        /*
425         * If the absolute value of a is not less than 2^52, it
426         * is either a finite integer (the double format does not have
427         * enough significand bits for a number that large to have any
428         * fractional portion), an infinity, or a NaN.  In any of
429         * these cases, rint of the argument is the argument.
430         *
431         * Otherwise, the sum (twoToThe52 + a ) will properly round
432         * away any fractional portion of a since ulp(twoToThe52) ==
433         * 1.0; subtracting out twoToThe52 from this sum will then be
434         * exact and leave the rounded integer portion of a.
435         *
436         * This method does *not* need to be declared strictfp to get
437         * fully reproducible results.  Whether or not a method is
438         * declared strictfp can only make a difference in the
439         * returned result if some operation would overflow or
440         * underflow with strictfp semantics.  The operation
441         * (twoToThe52 + a ) cannot overflow since large values of a
442         * are screened out; the add cannot underflow since twoToThe52
443         * is too large.  The subtraction ((twoToThe52 + a ) -
444         * twoToThe52) will be exact as discussed above and thus
445         * cannot overflow or meaningfully underflow.  Finally, the
446         * last multiply in the return statement is by plus or minus
447         * 1.0, which is exact too.
448         */
449        double twoToThe52 = (double)(1L << 52); // 2^52
450        double sign = Math.copySign(1.0, a); // preserve sign info
451        a = Math.abs(a);
452
453        if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
454            a = ((twoToThe52 + a ) - twoToThe52);
455        }
456
457        return sign * a; // restore original sign
458    }
459
460    /**
461     * Returns the angle <i>theta</i> from the conversion of rectangular
462     * coordinates ({@code x},&nbsp;{@code y}) to polar
463     * coordinates (r,&nbsp;<i>theta</i>).
464     * This method computes the phase <i>theta</i> by computing an arc tangent
465     * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
466     * cases:
467     * <ul><li>If either argument is NaN, then the result is NaN.
468     * <li>If the first argument is positive zero and the second argument
469     * is positive, or the first argument is positive and finite and the
470     * second argument is positive infinity, then the result is positive
471     * zero.
472     * <li>If the first argument is negative zero and the second argument
473     * is positive, or the first argument is negative and finite and the
474     * second argument is positive infinity, then the result is negative zero.
475     * <li>If the first argument is positive zero and the second argument
476     * is negative, or the first argument is positive and finite and the
477     * second argument is negative infinity, then the result is the
478     * {@code double} value closest to <i>pi</i>.
479     * <li>If the first argument is negative zero and the second argument
480     * is negative, or the first argument is negative and finite and the
481     * second argument is negative infinity, then the result is the
482     * {@code double} value closest to -<i>pi</i>.
483     * <li>If the first argument is positive and the second argument is
484     * positive zero or negative zero, or the first argument is positive
485     * infinity and the second argument is finite, then the result is the
486     * {@code double} value closest to <i>pi</i>/2.
487     * <li>If the first argument is negative and the second argument is
488     * positive zero or negative zero, or the first argument is negative
489     * infinity and the second argument is finite, then the result is the
490     * {@code double} value closest to -<i>pi</i>/2.
491     * <li>If both arguments are positive infinity, then the result is the
492     * {@code double} value closest to <i>pi</i>/4.
493     * <li>If the first argument is positive infinity and the second argument
494     * is negative infinity, then the result is the {@code double}
495     * value closest to 3*<i>pi</i>/4.
496     * <li>If the first argument is negative infinity and the second argument
497     * is positive infinity, then the result is the {@code double} value
498     * closest to -<i>pi</i>/4.
499     * <li>If both arguments are negative infinity, then the result is the
500     * {@code double} value closest to -3*<i>pi</i>/4.</ul>
501     *
502     * @param   y   the ordinate coordinate
503     * @param   x   the abscissa coordinate
504     * @return  the <i>theta</i> component of the point
505     *          (<i>r</i>,&nbsp;<i>theta</i>)
506     *          in polar coordinates that corresponds to the point
507     *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
508     */
509    public static native double atan2(double y, double x);
510
511
512    /**
513     * Returns the value of the first argument raised to the power of the
514     * second argument. Special cases:
515     *
516     * <ul><li>If the second argument is positive or negative zero, then the
517     * result is 1.0.
518     * <li>If the second argument is 1.0, then the result is the same as the
519     * first argument.
520     * <li>If the second argument is NaN, then the result is NaN.
521     * <li>If the first argument is NaN and the second argument is nonzero,
522     * then the result is NaN.
523     *
524     * <li>If
525     * <ul>
526     * <li>the absolute value of the first argument is greater than 1
527     * and the second argument is positive infinity, or
528     * <li>the absolute value of the first argument is less than 1 and
529     * the second argument is negative infinity,
530     * </ul>
531     * then the result is positive infinity.
532     *
533     * <li>If
534     * <ul>
535     * <li>the absolute value of the first argument is greater than 1 and
536     * the second argument is negative infinity, or
537     * <li>the absolute value of the
538     * first argument is less than 1 and the second argument is positive
539     * infinity,
540     * </ul>
541     * then the result is positive zero.
542     *
543     * <li>If the absolute value of the first argument equals 1 and the
544     * second argument is infinite, then the result is NaN.
545     *
546     * <li>If
547     * <ul>
548     * <li>the first argument is positive zero and the second argument
549     * is greater than zero, or
550     * <li>the first argument is positive infinity and the second
551     * argument is less than zero,
552     * </ul>
553     * then the result is positive zero.
554     *
555     * <li>If
556     * <ul>
557     * <li>the first argument is positive zero and the second argument
558     * is less than zero, or
559     * <li>the first argument is positive infinity and the second
560     * argument is greater than zero,
561     * </ul>
562     * then the result is positive infinity.
563     *
564     * <li>If
565     * <ul>
566     * <li>the first argument is negative zero and the second argument
567     * is greater than zero but not a finite odd integer, or
568     * <li>the first argument is negative infinity and the second
569     * argument is less than zero but not a finite odd integer,
570     * </ul>
571     * then the result is positive zero.
572     *
573     * <li>If
574     * <ul>
575     * <li>the first argument is negative zero and the second argument
576     * is a positive finite odd integer, or
577     * <li>the first argument is negative infinity and the second
578     * argument is a negative finite odd integer,
579     * </ul>
580     * then the result is negative zero.
581     *
582     * <li>If
583     * <ul>
584     * <li>the first argument is negative zero and the second argument
585     * is less than zero but not a finite odd integer, or
586     * <li>the first argument is negative infinity and the second
587     * argument is greater than zero but not a finite odd integer,
588     * </ul>
589     * then the result is positive infinity.
590     *
591     * <li>If
592     * <ul>
593     * <li>the first argument is negative zero and the second argument
594     * is a negative finite odd integer, or
595     * <li>the first argument is negative infinity and the second
596     * argument is a positive finite odd integer,
597     * </ul>
598     * then the result is negative infinity.
599     *
600     * <li>If the first argument is finite and less than zero
601     * <ul>
602     * <li> if the second argument is a finite even integer, the
603     * result is equal to the result of raising the absolute value of
604     * the first argument to the power of the second argument
605     *
606     * <li>if the second argument is a finite odd integer, the result
607     * is equal to the negative of the result of raising the absolute
608     * value of the first argument to the power of the second
609     * argument
610     *
611     * <li>if the second argument is finite and not an integer, then
612     * the result is NaN.
613     * </ul>
614     *
615     * <li>If both arguments are integers, then the result is exactly equal
616     * to the mathematical result of raising the first argument to the power
617     * of the second argument if that result can in fact be represented
618     * exactly as a {@code double} value.</ul>
619     *
620     * <p>(In the foregoing descriptions, a floating-point value is
621     * considered to be an integer if and only if it is finite and a
622     * fixed point of the method {@link #ceil ceil} or,
623     * equivalently, a fixed point of the method {@link #floor
624     * floor}. A value is a fixed point of a one-argument
625     * method if and only if the result of applying the method to the
626     * value is equal to the value.)
627     *
628     * @param   a   base.
629     * @param   b   the exponent.
630     * @return  the value {@code a}<sup>{@code b}</sup>.
631     */
632    public static native double pow(double a, double b);
633
634    /**
635     * Returns the closest {@code int} to the argument, with ties
636     * rounding to positive infinity.
637     *
638     * <p>Special cases:
639     * <ul><li>If the argument is NaN, the result is 0.
640     * <li>If the argument is negative infinity or any value less than or
641     * equal to the value of {@code Integer.MIN_VALUE}, the result is
642     * equal to the value of {@code Integer.MIN_VALUE}.
643     * <li>If the argument is positive infinity or any value greater than or
644     * equal to the value of {@code Integer.MAX_VALUE}, the result is
645     * equal to the value of {@code Integer.MAX_VALUE}.</ul>
646     *
647     * @param   a   a floating-point value to be rounded to an integer.
648     * @return  the value of the argument rounded to the nearest
649     *          {@code int} value.
650     * @see     java.lang.Integer#MAX_VALUE
651     * @see     java.lang.Integer#MIN_VALUE
652     */
653    public static int round(float a) {
654        return Math.round(a);
655    }
656
657    /**
658     * Returns the closest {@code long} to the argument, with ties
659     * rounding to positive infinity.
660     *
661     * <p>Special cases:
662     * <ul><li>If the argument is NaN, the result is 0.
663     * <li>If the argument is negative infinity or any value less than or
664     * equal to the value of {@code Long.MIN_VALUE}, the result is
665     * equal to the value of {@code Long.MIN_VALUE}.
666     * <li>If the argument is positive infinity or any value greater than or
667     * equal to the value of {@code Long.MAX_VALUE}, the result is
668     * equal to the value of {@code Long.MAX_VALUE}.</ul>
669     *
670     * @param   a  a floating-point value to be rounded to a
671     *          {@code long}.
672     * @return  the value of the argument rounded to the nearest
673     *          {@code long} value.
674     * @see     java.lang.Long#MAX_VALUE
675     * @see     java.lang.Long#MIN_VALUE
676     */
677    public static long round(double a) {
678        return Math.round(a);
679    }
680
681    private static final class RandomNumberGeneratorHolder {
682        static final Random randomNumberGenerator = new Random();
683    }
684
685    /**
686     * Returns a {@code double} value with a positive sign, greater
687     * than or equal to {@code 0.0} and less than {@code 1.0}.
688     * Returned values are chosen pseudorandomly with (approximately)
689     * uniform distribution from that range.
690     *
691     * <p>When this method is first called, it creates a single new
692     * pseudorandom-number generator, exactly as if by the expression
693     *
694     * <blockquote>{@code new java.util.Random()}</blockquote>
695     *
696     * This new pseudorandom-number generator is used thereafter for
697     * all calls to this method and is used nowhere else.
698     *
699     * <p>This method is properly synchronized to allow correct use by
700     * more than one thread. However, if many threads need to generate
701     * pseudorandom numbers at a great rate, it may reduce contention
702     * for each thread to have its own pseudorandom-number generator.
703     *
704     * @return  a pseudorandom {@code double} greater than or equal
705     * to {@code 0.0} and less than {@code 1.0}.
706     * @see Random#nextDouble()
707     */
708    public static double random() {
709        return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
710    }
711
712    /**
713     * Returns the sum of its arguments,
714     * throwing an exception if the result overflows an {@code int}.
715     *
716     * @param x the first value
717     * @param y the second value
718     * @return the result
719     * @throws ArithmeticException if the result overflows an int
720     * @see Math#addExact(int,int)
721     * @since 1.8
722     */
723    public static int addExact(int x, int y) {
724        return Math.addExact(x, y);
725    }
726
727    /**
728     * Returns the sum of its arguments,
729     * throwing an exception if the result overflows a {@code long}.
730     *
731     * @param x the first value
732     * @param y the second value
733     * @return the result
734     * @throws ArithmeticException if the result overflows a long
735     * @see Math#addExact(long,long)
736     * @since 1.8
737     */
738    public static long addExact(long x, long y) {
739        return Math.addExact(x, y);
740    }
741
742    /**
743     * Returns the difference of the arguments,
744     * throwing an exception if the result overflows an {@code int}.
745     *
746     * @param x the first value
747     * @param y the second value to subtract from the first
748     * @return the result
749     * @throws ArithmeticException if the result overflows an int
750     * @see Math#subtractExact(int,int)
751     * @since 1.8
752     */
753    public static int subtractExact(int x, int y) {
754        return Math.subtractExact(x, y);
755    }
756
757    /**
758     * Returns the difference of the arguments,
759     * throwing an exception if the result overflows a {@code long}.
760     *
761     * @param x the first value
762     * @param y the second value to subtract from the first
763     * @return the result
764     * @throws ArithmeticException if the result overflows a long
765     * @see Math#subtractExact(long,long)
766     * @since 1.8
767     */
768    public static long subtractExact(long x, long y) {
769        return Math.subtractExact(x, y);
770    }
771
772    /**
773     * Returns the product of the arguments,
774     * throwing an exception if the result overflows an {@code int}.
775     *
776     * @param x the first value
777     * @param y the second value
778     * @return the result
779     * @throws ArithmeticException if the result overflows an int
780     * @see Math#multiplyExact(int,int)
781     * @since 1.8
782     */
783    public static int multiplyExact(int x, int y) {
784        return Math.multiplyExact(x, y);
785    }
786
787    /**
788     * Returns the product of the arguments,
789     * throwing an exception if the result overflows a {@code long}.
790     *
791     * @param x the first value
792     * @param y the second value
793     * @return the result
794     * @throws ArithmeticException if the result overflows a long
795     * @see Math#multiplyExact(long,long)
796     * @since 1.8
797     */
798    public static long multiplyExact(long x, long y) {
799        return Math.multiplyExact(x, y);
800    }
801
802    /**
803     * Returns the value of the {@code long} argument;
804     * throwing an exception if the value overflows an {@code int}.
805     *
806     * @param value the long value
807     * @return the argument as an int
808     * @throws ArithmeticException if the {@code argument} overflows an int
809     * @see Math#toIntExact(long)
810     * @since 1.8
811     */
812    public static int toIntExact(long value) {
813        return Math.toIntExact(value);
814    }
815
816    /**
817     * Returns the largest (closest to positive infinity)
818     * {@code int} value that is less than or equal to the algebraic quotient.
819     * There is one special case, if the dividend is the
820     * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
821     * then integer overflow occurs and
822     * the result is equal to the {@code Integer.MIN_VALUE}.
823     * <p>
824     * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
825     * a comparison to the integer division {@code /} operator.
826     *
827     * @param x the dividend
828     * @param y the divisor
829     * @return the largest (closest to positive infinity)
830     * {@code int} value that is less than or equal to the algebraic quotient.
831     * @throws ArithmeticException if the divisor {@code y} is zero
832     * @see Math#floorDiv(int, int)
833     * @see Math#floor(double)
834     * @since 1.8
835     */
836    public static int floorDiv(int x, int y) {
837        return Math.floorDiv(x, y);
838    }
839
840    /**
841     * Returns the largest (closest to positive infinity)
842     * {@code long} value that is less than or equal to the algebraic quotient.
843     * There is one special case, if the dividend is the
844     * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
845     * then integer overflow occurs and
846     * the result is equal to the {@code Long.MIN_VALUE}.
847     * <p>
848     * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
849     * a comparison to the integer division {@code /} operator.
850     *
851     * @param x the dividend
852     * @param y the divisor
853     * @return the largest (closest to positive infinity)
854     * {@code long} value that is less than or equal to the algebraic quotient.
855     * @throws ArithmeticException if the divisor {@code y} is zero
856     * @see Math#floorDiv(long, long)
857     * @see Math#floor(double)
858     * @since 1.8
859     */
860    public static long floorDiv(long x, long y) {
861        return Math.floorDiv(x, y);
862    }
863
864    /**
865     * Returns the floor modulus of the {@code int} arguments.
866     * <p>
867     * The floor modulus is {@code x - (floorDiv(x, y) * y)},
868     * has the same sign as the divisor {@code y}, and
869     * is in the range of {@code -abs(y) < r < +abs(y)}.
870     * <p>
871     * The relationship between {@code floorDiv} and {@code floorMod} is such that:
872     * <ul>
873     *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
874     * </ul>
875     * <p>
876     * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
877     * a comparison to the {@code %} operator.
878     *
879     * @param x the dividend
880     * @param y the divisor
881     * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
882     * @throws ArithmeticException if the divisor {@code y} is zero
883     * @see Math#floorMod(int, int)
884     * @see StrictMath#floorDiv(int, int)
885     * @since 1.8
886     */
887    public static int floorMod(int x, int y) {
888        return Math.floorMod(x , y);
889    }
890    /**
891     * Returns the floor modulus of the {@code long} arguments.
892     * <p>
893     * The floor modulus is {@code x - (floorDiv(x, y) * y)},
894     * has the same sign as the divisor {@code y}, and
895     * is in the range of {@code -abs(y) < r < +abs(y)}.
896     * <p>
897     * The relationship between {@code floorDiv} and {@code floorMod} is such that:
898     * <ul>
899     *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
900     * </ul>
901     * <p>
902     * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
903     * a comparison to the {@code %} operator.
904     *
905     * @param x the dividend
906     * @param y the divisor
907     * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
908     * @throws ArithmeticException if the divisor {@code y} is zero
909     * @see Math#floorMod(long, long)
910     * @see StrictMath#floorDiv(long, long)
911     * @since 1.8
912     */
913    public static long floorMod(long x, long y) {
914        return Math.floorMod(x, y);
915    }
916
917    /**
918     * Returns the absolute value of an {@code int} value.
919     * If the argument is not negative, the argument is returned.
920     * If the argument is negative, the negation of the argument is returned.
921     *
922     * <p>Note that if the argument is equal to the value of
923     * {@link Integer#MIN_VALUE}, the most negative representable
924     * {@code int} value, the result is that same value, which is
925     * negative.
926     *
927     * @param   a   the  argument whose absolute value is to be determined.
928     * @return  the absolute value of the argument.
929     */
930    public static int abs(int a) {
931        return Math.abs(a);
932    }
933
934    /**
935     * Returns the absolute value of a {@code long} value.
936     * If the argument is not negative, the argument is returned.
937     * If the argument is negative, the negation of the argument is returned.
938     *
939     * <p>Note that if the argument is equal to the value of
940     * {@link Long#MIN_VALUE}, the most negative representable
941     * {@code long} value, the result is that same value, which
942     * is negative.
943     *
944     * @param   a   the  argument whose absolute value is to be determined.
945     * @return  the absolute value of the argument.
946     */
947    public static long abs(long a) {
948        return Math.abs(a);
949    }
950
951    /**
952     * Returns the absolute value of a {@code float} value.
953     * If the argument is not negative, the argument is returned.
954     * If the argument is negative, the negation of the argument is returned.
955     * Special cases:
956     * <ul><li>If the argument is positive zero or negative zero, the
957     * result is positive zero.
958     * <li>If the argument is infinite, the result is positive infinity.
959     * <li>If the argument is NaN, the result is NaN.</ul>
960     * In other words, the result is the same as the value of the expression:
961     * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
962     *
963     * @param   a   the argument whose absolute value is to be determined
964     * @return  the absolute value of the argument.
965     */
966    public static float abs(float a) {
967        return Math.abs(a);
968    }
969
970    /**
971     * Returns the absolute value of a {@code double} value.
972     * If the argument is not negative, the argument is returned.
973     * If the argument is negative, the negation of the argument is returned.
974     * Special cases:
975     * <ul><li>If the argument is positive zero or negative zero, the result
976     * is positive zero.
977     * <li>If the argument is infinite, the result is positive infinity.
978     * <li>If the argument is NaN, the result is NaN.</ul>
979     * In other words, the result is the same as the value of the expression:
980     * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
981     *
982     * @param   a   the argument whose absolute value is to be determined
983     * @return  the absolute value of the argument.
984     */
985    public static double abs(double a) {
986        return Math.abs(a);
987    }
988
989    /**
990     * Returns the greater of two {@code int} values. That is, the
991     * result is the argument closer to the value of
992     * {@link Integer#MAX_VALUE}. If the arguments have the same value,
993     * the result is that same value.
994     *
995     * @param   a   an argument.
996     * @param   b   another argument.
997     * @return  the larger of {@code a} and {@code b}.
998     */
999    public static int max(int a, int b) {
1000        return Math.max(a, b);
1001    }
1002
1003    /**
1004     * Returns the greater of two {@code long} values. That is, the
1005     * result is the argument closer to the value of
1006     * {@link Long#MAX_VALUE}. If the arguments have the same value,
1007     * the result is that same value.
1008     *
1009     * @param   a   an argument.
1010     * @param   b   another argument.
1011     * @return  the larger of {@code a} and {@code b}.
1012        */
1013    public static long max(long a, long b) {
1014        return Math.max(a, b);
1015    }
1016
1017    /**
1018     * Returns the greater of two {@code float} values.  That is,
1019     * the result is the argument closer to positive infinity. If the
1020     * arguments have the same value, the result is that same
1021     * value. If either value is NaN, then the result is NaN.  Unlike
1022     * the numerical comparison operators, this method considers
1023     * negative zero to be strictly smaller than positive zero. If one
1024     * argument is positive zero and the other negative zero, the
1025     * result is positive zero.
1026     *
1027     * @param   a   an argument.
1028     * @param   b   another argument.
1029     * @return  the larger of {@code a} and {@code b}.
1030     */
1031    public static float max(float a, float b) {
1032        return Math.max(a, b);
1033    }
1034
1035    /**
1036     * Returns the greater of two {@code double} values.  That
1037     * is, the result is the argument closer to positive infinity. If
1038     * the arguments have the same value, the result is that same
1039     * value. If either value is NaN, then the result is NaN.  Unlike
1040     * the numerical comparison operators, this method considers
1041     * negative zero to be strictly smaller than positive zero. If one
1042     * argument is positive zero and the other negative zero, the
1043     * result is positive zero.
1044     *
1045     * @param   a   an argument.
1046     * @param   b   another argument.
1047     * @return  the larger of {@code a} and {@code b}.
1048     */
1049    public static double max(double a, double b) {
1050        return Math.max(a, b);
1051    }
1052
1053    /**
1054     * Returns the smaller of two {@code int} values. That is,
1055     * the result the argument closer to the value of
1056     * {@link Integer#MIN_VALUE}.  If the arguments have the same
1057     * value, the result is that same value.
1058     *
1059     * @param   a   an argument.
1060     * @param   b   another argument.
1061     * @return  the smaller of {@code a} and {@code b}.
1062     */
1063    public static int min(int a, int b) {
1064        return Math.min(a, b);
1065    }
1066
1067    /**
1068     * Returns the smaller of two {@code long} values. That is,
1069     * the result is the argument closer to the value of
1070     * {@link Long#MIN_VALUE}. If the arguments have the same
1071     * value, the result is that same value.
1072     *
1073     * @param   a   an argument.
1074     * @param   b   another argument.
1075     * @return  the smaller of {@code a} and {@code b}.
1076     */
1077    public static long min(long a, long b) {
1078        return Math.min(a, b);
1079    }
1080
1081    /**
1082     * Returns the smaller of two {@code float} values.  That is,
1083     * the result is the value closer to negative infinity. If the
1084     * arguments have the same value, the result is that same
1085     * value. If either value is NaN, then the result is NaN.  Unlike
1086     * the numerical comparison operators, this method considers
1087     * negative zero to be strictly smaller than positive zero.  If
1088     * one argument is positive zero and the other is negative zero,
1089     * the result is negative zero.
1090     *
1091     * @param   a   an argument.
1092     * @param   b   another argument.
1093     * @return  the smaller of {@code a} and {@code b.}
1094     */
1095    public static float min(float a, float b) {
1096        return Math.min(a, b);
1097    }
1098
1099    /**
1100     * Returns the smaller of two {@code double} values.  That
1101     * is, the result is the value closer to negative infinity. If the
1102     * arguments have the same value, the result is that same
1103     * value. If either value is NaN, then the result is NaN.  Unlike
1104     * the numerical comparison operators, this method considers
1105     * negative zero to be strictly smaller than positive zero. If one
1106     * argument is positive zero and the other is negative zero, the
1107     * result is negative zero.
1108     *
1109     * @param   a   an argument.
1110     * @param   b   another argument.
1111     * @return  the smaller of {@code a} and {@code b}.
1112     */
1113    public static double min(double a, double b) {
1114        return Math.min(a, b);
1115    }
1116
1117    /**
1118     * Returns the size of an ulp of the argument.  An ulp, unit in
1119     * the last place, of a {@code double} value is the positive
1120     * distance between this floating-point value and the {@code
1121     * double} value next larger in magnitude.  Note that for non-NaN
1122     * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1123     *
1124     * <p>Special Cases:
1125     * <ul>
1126     * <li> If the argument is NaN, then the result is NaN.
1127     * <li> If the argument is positive or negative infinity, then the
1128     * result is positive infinity.
1129     * <li> If the argument is positive or negative zero, then the result is
1130     * {@code Double.MIN_VALUE}.
1131     * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1132     * the result is equal to 2<sup>971</sup>.
1133     * </ul>
1134     *
1135     * @param d the floating-point value whose ulp is to be returned
1136     * @return the size of an ulp of the argument
1137     * @author Joseph D. Darcy
1138     * @since 1.5
1139     */
1140    public static double ulp(double d) {
1141        return Math.ulp(d);
1142    }
1143
1144    /**
1145     * Returns the size of an ulp of the argument.  An ulp, unit in
1146     * the last place, of a {@code float} value is the positive
1147     * distance between this floating-point value and the {@code
1148     * float} value next larger in magnitude.  Note that for non-NaN
1149     * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1150     *
1151     * <p>Special Cases:
1152     * <ul>
1153     * <li> If the argument is NaN, then the result is NaN.
1154     * <li> If the argument is positive or negative infinity, then the
1155     * result is positive infinity.
1156     * <li> If the argument is positive or negative zero, then the result is
1157     * {@code Float.MIN_VALUE}.
1158     * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1159     * the result is equal to 2<sup>104</sup>.
1160     * </ul>
1161     *
1162     * @param f the floating-point value whose ulp is to be returned
1163     * @return the size of an ulp of the argument
1164     * @author Joseph D. Darcy
1165     * @since 1.5
1166     */
1167    public static float ulp(float f) {
1168        return Math.ulp(f);
1169    }
1170
1171    /**
1172     * Returns the signum function of the argument; zero if the argument
1173     * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1174     * argument is less than zero.
1175     *
1176     * <p>Special Cases:
1177     * <ul>
1178     * <li> If the argument is NaN, then the result is NaN.
1179     * <li> If the argument is positive zero or negative zero, then the
1180     *      result is the same as the argument.
1181     * </ul>
1182     *
1183     * @param d the floating-point value whose signum is to be returned
1184     * @return the signum function of the argument
1185     * @author Joseph D. Darcy
1186     * @since 1.5
1187     */
1188    public static double signum(double d) {
1189        return Math.signum(d);
1190    }
1191
1192    /**
1193     * Returns the signum function of the argument; zero if the argument
1194     * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1195     * argument is less than zero.
1196     *
1197     * <p>Special Cases:
1198     * <ul>
1199     * <li> If the argument is NaN, then the result is NaN.
1200     * <li> If the argument is positive zero or negative zero, then the
1201     *      result is the same as the argument.
1202     * </ul>
1203     *
1204     * @param f the floating-point value whose signum is to be returned
1205     * @return the signum function of the argument
1206     * @author Joseph D. Darcy
1207     * @since 1.5
1208     */
1209    public static float signum(float f) {
1210        return Math.signum(f);
1211    }
1212
1213    /**
1214     * Returns the hyperbolic sine of a {@code double} value.
1215     * The hyperbolic sine of <i>x</i> is defined to be
1216     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1217     * where <i>e</i> is {@linkplain Math#E Euler's number}.
1218     *
1219     * <p>Special cases:
1220     * <ul>
1221     *
1222     * <li>If the argument is NaN, then the result is NaN.
1223     *
1224     * <li>If the argument is infinite, then the result is an infinity
1225     * with the same sign as the argument.
1226     *
1227     * <li>If the argument is zero, then the result is a zero with the
1228     * same sign as the argument.
1229     *
1230     * </ul>
1231     *
1232     * @param   x The number whose hyperbolic sine is to be returned.
1233     * @return  The hyperbolic sine of {@code x}.
1234     * @since 1.5
1235     */
1236    public static native double sinh(double x);
1237
1238    /**
1239     * Returns the hyperbolic cosine of a {@code double} value.
1240     * The hyperbolic cosine of <i>x</i> is defined to be
1241     * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1242     * where <i>e</i> is {@linkplain Math#E Euler's number}.
1243     *
1244     * <p>Special cases:
1245     * <ul>
1246     *
1247     * <li>If the argument is NaN, then the result is NaN.
1248     *
1249     * <li>If the argument is infinite, then the result is positive
1250     * infinity.
1251     *
1252     * <li>If the argument is zero, then the result is {@code 1.0}.
1253     *
1254     * </ul>
1255     *
1256     * @param   x The number whose hyperbolic cosine is to be returned.
1257     * @return  The hyperbolic cosine of {@code x}.
1258     * @since 1.5
1259     */
1260    public static native double cosh(double x);
1261
1262    /**
1263     * Returns the hyperbolic tangent of a {@code double} value.
1264     * The hyperbolic tangent of <i>x</i> is defined to be
1265     * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1266     * in other words, {@linkplain Math#sinh
1267     * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1268     * that the absolute value of the exact tanh is always less than
1269     * 1.
1270     *
1271     * <p>Special cases:
1272     * <ul>
1273     *
1274     * <li>If the argument is NaN, then the result is NaN.
1275     *
1276     * <li>If the argument is zero, then the result is a zero with the
1277     * same sign as the argument.
1278     *
1279     * <li>If the argument is positive infinity, then the result is
1280     * {@code +1.0}.
1281     *
1282     * <li>If the argument is negative infinity, then the result is
1283     * {@code -1.0}.
1284     *
1285     * </ul>
1286     *
1287     * @param   x The number whose hyperbolic tangent is to be returned.
1288     * @return  The hyperbolic tangent of {@code x}.
1289     * @since 1.5
1290     */
1291    public static native double tanh(double x);
1292
1293    /**
1294     * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1295     * without intermediate overflow or underflow.
1296     *
1297     * <p>Special cases:
1298     * <ul>
1299     *
1300     * <li> If either argument is infinite, then the result
1301     * is positive infinity.
1302     *
1303     * <li> If either argument is NaN and neither argument is infinite,
1304     * then the result is NaN.
1305     *
1306     * </ul>
1307     *
1308     * @param x a value
1309     * @param y a value
1310     * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1311     * without intermediate overflow or underflow
1312     * @since 1.5
1313     */
1314    public static native double hypot(double x, double y);
1315
1316    /**
1317     * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1318     * <i>x</i> near 0, the exact sum of
1319     * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1320     * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1321     *
1322     * <p>Special cases:
1323     * <ul>
1324     * <li>If the argument is NaN, the result is NaN.
1325     *
1326     * <li>If the argument is positive infinity, then the result is
1327     * positive infinity.
1328     *
1329     * <li>If the argument is negative infinity, then the result is
1330     * -1.0.
1331     *
1332     * <li>If the argument is zero, then the result is a zero with the
1333     * same sign as the argument.
1334     *
1335     * </ul>
1336     *
1337     * @param   x   the exponent to raise <i>e</i> to in the computation of
1338     *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1339     * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1340     * @since 1.5
1341     */
1342    public static native double expm1(double x);
1343
1344    /**
1345     * Returns the natural logarithm of the sum of the argument and 1.
1346     * Note that for small values {@code x}, the result of
1347     * {@code log1p(x)} is much closer to the true result of ln(1
1348     * + {@code x}) than the floating-point evaluation of
1349     * {@code log(1.0+x)}.
1350     *
1351     * <p>Special cases:
1352     * <ul>
1353     *
1354     * <li>If the argument is NaN or less than -1, then the result is
1355     * NaN.
1356     *
1357     * <li>If the argument is positive infinity, then the result is
1358     * positive infinity.
1359     *
1360     * <li>If the argument is negative one, then the result is
1361     * negative infinity.
1362     *
1363     * <li>If the argument is zero, then the result is a zero with the
1364     * same sign as the argument.
1365     *
1366     * </ul>
1367     *
1368     * @param   x   a value
1369     * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1370     * log of {@code x}&nbsp;+&nbsp;1
1371     * @since 1.5
1372     */
1373    public static native double log1p(double x);
1374
1375    /**
1376     * Returns the first floating-point argument with the sign of the
1377     * second floating-point argument.  For this method, a NaN
1378     * {@code sign} argument is always treated as if it were
1379     * positive.
1380     *
1381     * @param magnitude  the parameter providing the magnitude of the result
1382     * @param sign   the parameter providing the sign of the result
1383     * @return a value with the magnitude of {@code magnitude}
1384     * and the sign of {@code sign}.
1385     * @since 1.6
1386     */
1387    public static double copySign(double magnitude, double sign) {
1388        return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1389    }
1390
1391    /**
1392     * Returns the first floating-point argument with the sign of the
1393     * second floating-point argument.  For this method, a NaN
1394     * {@code sign} argument is always treated as if it were
1395     * positive.
1396     *
1397     * @param magnitude  the parameter providing the magnitude of the result
1398     * @param sign   the parameter providing the sign of the result
1399     * @return a value with the magnitude of {@code magnitude}
1400     * and the sign of {@code sign}.
1401     * @since 1.6
1402     */
1403    public static float copySign(float magnitude, float sign) {
1404        return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1405    }
1406    /**
1407     * Returns the unbiased exponent used in the representation of a
1408     * {@code float}.  Special cases:
1409     *
1410     * <ul>
1411     * <li>If the argument is NaN or infinite, then the result is
1412     * {@link Float#MAX_EXPONENT} + 1.
1413     * <li>If the argument is zero or subnormal, then the result is
1414     * {@link Float#MIN_EXPONENT} -1.
1415     * </ul>
1416     * @param f a {@code float} value
1417     * @return the unbiased exponent of the argument
1418     * @since 1.6
1419     */
1420    public static int getExponent(float f) {
1421        return Math.getExponent(f);
1422    }
1423
1424    /**
1425     * Returns the unbiased exponent used in the representation of a
1426     * {@code double}.  Special cases:
1427     *
1428     * <ul>
1429     * <li>If the argument is NaN or infinite, then the result is
1430     * {@link Double#MAX_EXPONENT} + 1.
1431     * <li>If the argument is zero or subnormal, then the result is
1432     * {@link Double#MIN_EXPONENT} -1.
1433     * </ul>
1434     * @param d a {@code double} value
1435     * @return the unbiased exponent of the argument
1436     * @since 1.6
1437     */
1438    public static int getExponent(double d) {
1439        return Math.getExponent(d);
1440    }
1441
1442    /**
1443     * Returns the floating-point number adjacent to the first
1444     * argument in the direction of the second argument.  If both
1445     * arguments compare as equal the second argument is returned.
1446     *
1447     * <p>Special cases:
1448     * <ul>
1449     * <li> If either argument is a NaN, then NaN is returned.
1450     *
1451     * <li> If both arguments are signed zeros, {@code direction}
1452     * is returned unchanged (as implied by the requirement of
1453     * returning the second argument if the arguments compare as
1454     * equal).
1455     *
1456     * <li> If {@code start} is
1457     * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1458     * has a value such that the result should have a smaller
1459     * magnitude, then a zero with the same sign as {@code start}
1460     * is returned.
1461     *
1462     * <li> If {@code start} is infinite and
1463     * {@code direction} has a value such that the result should
1464     * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1465     * same sign as {@code start} is returned.
1466     *
1467     * <li> If {@code start} is equal to &plusmn;
1468     * {@link Double#MAX_VALUE} and {@code direction} has a
1469     * value such that the result should have a larger magnitude, an
1470     * infinity with same sign as {@code start} is returned.
1471     * </ul>
1472     *
1473     * @param start  starting floating-point value
1474     * @param direction value indicating which of
1475     * {@code start}'s neighbors or {@code start} should
1476     * be returned
1477     * @return The floating-point number adjacent to {@code start} in the
1478     * direction of {@code direction}.
1479     * @since 1.6
1480     */
1481    public static double nextAfter(double start, double direction) {
1482        return Math.nextAfter(start, direction);
1483    }
1484
1485    /**
1486     * Returns the floating-point number adjacent to the first
1487     * argument in the direction of the second argument.  If both
1488     * arguments compare as equal a value equivalent to the second argument
1489     * is returned.
1490     *
1491     * <p>Special cases:
1492     * <ul>
1493     * <li> If either argument is a NaN, then NaN is returned.
1494     *
1495     * <li> If both arguments are signed zeros, a value equivalent
1496     * to {@code direction} is returned.
1497     *
1498     * <li> If {@code start} is
1499     * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1500     * has a value such that the result should have a smaller
1501     * magnitude, then a zero with the same sign as {@code start}
1502     * is returned.
1503     *
1504     * <li> If {@code start} is infinite and
1505     * {@code direction} has a value such that the result should
1506     * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1507     * same sign as {@code start} is returned.
1508     *
1509     * <li> If {@code start} is equal to &plusmn;
1510     * {@link Float#MAX_VALUE} and {@code direction} has a
1511     * value such that the result should have a larger magnitude, an
1512     * infinity with same sign as {@code start} is returned.
1513     * </ul>
1514     *
1515     * @param start  starting floating-point value
1516     * @param direction value indicating which of
1517     * {@code start}'s neighbors or {@code start} should
1518     * be returned
1519     * @return The floating-point number adjacent to {@code start} in the
1520     * direction of {@code direction}.
1521     * @since 1.6
1522     */
1523    public static float nextAfter(float start, double direction) {
1524        return Math.nextAfter(start, direction);
1525    }
1526
1527    /**
1528     * Returns the floating-point value adjacent to {@code d} in
1529     * the direction of positive infinity.  This method is
1530     * semantically equivalent to {@code nextAfter(d,
1531     * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1532     * implementation may run faster than its equivalent
1533     * {@code nextAfter} call.
1534     *
1535     * <p>Special Cases:
1536     * <ul>
1537     * <li> If the argument is NaN, the result is NaN.
1538     *
1539     * <li> If the argument is positive infinity, the result is
1540     * positive infinity.
1541     *
1542     * <li> If the argument is zero, the result is
1543     * {@link Double#MIN_VALUE}
1544     *
1545     * </ul>
1546     *
1547     * @param d starting floating-point value
1548     * @return The adjacent floating-point value closer to positive
1549     * infinity.
1550     * @since 1.6
1551     */
1552    public static double nextUp(double d) {
1553        return Math.nextUp(d);
1554    }
1555
1556    /**
1557     * Returns the floating-point value adjacent to {@code f} in
1558     * the direction of positive infinity.  This method is
1559     * semantically equivalent to {@code nextAfter(f,
1560     * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1561     * implementation may run faster than its equivalent
1562     * {@code nextAfter} call.
1563     *
1564     * <p>Special Cases:
1565     * <ul>
1566     * <li> If the argument is NaN, the result is NaN.
1567     *
1568     * <li> If the argument is positive infinity, the result is
1569     * positive infinity.
1570     *
1571     * <li> If the argument is zero, the result is
1572     * {@link Float#MIN_VALUE}
1573     *
1574     * </ul>
1575     *
1576     * @param f starting floating-point value
1577     * @return The adjacent floating-point value closer to positive
1578     * infinity.
1579     * @since 1.6
1580     */
1581    public static float nextUp(float f) {
1582        return Math.nextUp(f);
1583    }
1584
1585    /**
1586     * Returns the floating-point value adjacent to {@code d} in
1587     * the direction of negative infinity.  This method is
1588     * semantically equivalent to {@code nextAfter(d,
1589     * Double.NEGATIVE_INFINITY)}; however, a
1590     * {@code nextDown} implementation may run faster than its
1591     * equivalent {@code nextAfter} call.
1592     *
1593     * <p>Special Cases:
1594     * <ul>
1595     * <li> If the argument is NaN, the result is NaN.
1596     *
1597     * <li> If the argument is negative infinity, the result is
1598     * negative infinity.
1599     *
1600     * <li> If the argument is zero, the result is
1601     * {@code -Double.MIN_VALUE}
1602     *
1603     * </ul>
1604     *
1605     * @param d  starting floating-point value
1606     * @return The adjacent floating-point value closer to negative
1607     * infinity.
1608     * @since 1.8
1609     */
1610    public static double nextDown(double d) {
1611        return Math.nextDown(d);
1612    }
1613
1614    /**
1615     * Returns the floating-point value adjacent to {@code f} in
1616     * the direction of negative infinity.  This method is
1617     * semantically equivalent to {@code nextAfter(f,
1618     * Float.NEGATIVE_INFINITY)}; however, a
1619     * {@code nextDown} implementation may run faster than its
1620     * equivalent {@code nextAfter} call.
1621     *
1622     * <p>Special Cases:
1623     * <ul>
1624     * <li> If the argument is NaN, the result is NaN.
1625     *
1626     * <li> If the argument is negative infinity, the result is
1627     * negative infinity.
1628     *
1629     * <li> If the argument is zero, the result is
1630     * {@code -Float.MIN_VALUE}
1631     *
1632     * </ul>
1633     *
1634     * @param f  starting floating-point value
1635     * @return The adjacent floating-point value closer to negative
1636     * infinity.
1637     * @since 1.8
1638     */
1639    public static float nextDown(float f) {
1640        return Math.nextDown(f);
1641    }
1642
1643    /**
1644     * Returns {@code d} &times;
1645     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1646     * by a single correctly rounded floating-point multiply to a
1647     * member of the double value set.  See the Java
1648     * Language Specification for a discussion of floating-point
1649     * value sets.  If the exponent of the result is between {@link
1650     * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1651     * answer is calculated exactly.  If the exponent of the result
1652     * would be larger than {@code Double.MAX_EXPONENT}, an
1653     * infinity is returned.  Note that if the result is subnormal,
1654     * precision may be lost; that is, when {@code scalb(x, n)}
1655     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1656     * <i>x</i>.  When the result is non-NaN, the result has the same
1657     * sign as {@code d}.
1658     *
1659     * <p>Special cases:
1660     * <ul>
1661     * <li> If the first argument is NaN, NaN is returned.
1662     * <li> If the first argument is infinite, then an infinity of the
1663     * same sign is returned.
1664     * <li> If the first argument is zero, then a zero of the same
1665     * sign is returned.
1666     * </ul>
1667     *
1668     * @param d number to be scaled by a power of two.
1669     * @param scaleFactor power of 2 used to scale {@code d}
1670     * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1671     * @since 1.6
1672     */
1673    public static double scalb(double d, int scaleFactor) {
1674        return Math.scalb(d, scaleFactor);
1675    }
1676
1677    /**
1678     * Returns {@code f} &times;
1679     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1680     * by a single correctly rounded floating-point multiply to a
1681     * member of the float value set.  See the Java
1682     * Language Specification for a discussion of floating-point
1683     * value sets.  If the exponent of the result is between {@link
1684     * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1685     * answer is calculated exactly.  If the exponent of the result
1686     * would be larger than {@code Float.MAX_EXPONENT}, an
1687     * infinity is returned.  Note that if the result is subnormal,
1688     * precision may be lost; that is, when {@code scalb(x, n)}
1689     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1690     * <i>x</i>.  When the result is non-NaN, the result has the same
1691     * sign as {@code f}.
1692     *
1693     * <p>Special cases:
1694     * <ul>
1695     * <li> If the first argument is NaN, NaN is returned.
1696     * <li> If the first argument is infinite, then an infinity of the
1697     * same sign is returned.
1698     * <li> If the first argument is zero, then a zero of the same
1699     * sign is returned.
1700     * </ul>
1701     *
1702     * @param f number to be scaled by a power of two.
1703     * @param scaleFactor power of 2 used to scale {@code f}
1704     * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1705     * @since 1.6
1706     */
1707    public static float scalb(float f, int scaleFactor) {
1708        return Math.scalb(f, scaleFactor);
1709    }
1710}
1711