1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Doug Lea and Martin Buchholz with assistance from members of
32 * JCP JSR-166 Expert Group and released to the public domain, as explained
33 * at http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36package java.util.concurrent;
37
38import java.util.AbstractQueue;
39import java.util.Arrays;
40import java.util.Collection;
41import java.util.Iterator;
42import java.util.NoSuchElementException;
43import java.util.Objects;
44import java.util.Queue;
45import java.util.Spliterator;
46import java.util.Spliterators;
47import java.util.function.Consumer;
48
49// BEGIN android-note
50// removed link to collections framework docs
51// END android-note
52
53/**
54 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
55 * This queue orders elements FIFO (first-in-first-out).
56 * The <em>head</em> of the queue is that element that has been on the
57 * queue the longest time.
58 * The <em>tail</em> of the queue is that element that has been on the
59 * queue the shortest time. New elements
60 * are inserted at the tail of the queue, and the queue retrieval
61 * operations obtain elements at the head of the queue.
62 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
63 * many threads will share access to a common collection.
64 * Like most other concurrent collection implementations, this class
65 * does not permit the use of {@code null} elements.
66 *
67 * <p>This implementation employs an efficient <em>non-blocking</em>
68 * algorithm based on one described in
69 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
70 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
71 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
72 *
73 * <p>Iterators are <i>weakly consistent</i>, returning elements
74 * reflecting the state of the queue at some point at or since the
75 * creation of the iterator.  They do <em>not</em> throw {@link
76 * java.util.ConcurrentModificationException}, and may proceed concurrently
77 * with other operations.  Elements contained in the queue since the creation
78 * of the iterator will be returned exactly once.
79 *
80 * <p>Beware that, unlike in most collections, the {@code size} method
81 * is <em>NOT</em> a constant-time operation. Because of the
82 * asynchronous nature of these queues, determining the current number
83 * of elements requires a traversal of the elements, and so may report
84 * inaccurate results if this collection is modified during traversal.
85 * Additionally, the bulk operations {@code addAll},
86 * {@code removeAll}, {@code retainAll}, {@code containsAll},
87 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
88 * to be performed atomically. For example, an iterator operating
89 * concurrently with an {@code addAll} operation might view only some
90 * of the added elements.
91 *
92 * <p>This class and its iterator implement all of the <em>optional</em>
93 * methods of the {@link Queue} and {@link Iterator} interfaces.
94 *
95 * <p>Memory consistency effects: As with other concurrent
96 * collections, actions in a thread prior to placing an object into a
97 * {@code ConcurrentLinkedQueue}
98 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
99 * actions subsequent to the access or removal of that element from
100 * the {@code ConcurrentLinkedQueue} in another thread.
101 *
102 * @since 1.5
103 * @author Doug Lea
104 * @param <E> the type of elements held in this queue
105 */
106public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
107        implements Queue<E>, java.io.Serializable {
108    private static final long serialVersionUID = 196745693267521676L;
109
110    /*
111     * This is a modification of the Michael & Scott algorithm,
112     * adapted for a garbage-collected environment, with support for
113     * interior node deletion (to support remove(Object)).  For
114     * explanation, read the paper.
115     *
116     * Note that like most non-blocking algorithms in this package,
117     * this implementation relies on the fact that in garbage
118     * collected systems, there is no possibility of ABA problems due
119     * to recycled nodes, so there is no need to use "counted
120     * pointers" or related techniques seen in versions used in
121     * non-GC'ed settings.
122     *
123     * The fundamental invariants are:
124     * - There is exactly one (last) Node with a null next reference,
125     *   which is CASed when enqueueing.  This last Node can be
126     *   reached in O(1) time from tail, but tail is merely an
127     *   optimization - it can always be reached in O(N) time from
128     *   head as well.
129     * - The elements contained in the queue are the non-null items in
130     *   Nodes that are reachable from head.  CASing the item
131     *   reference of a Node to null atomically removes it from the
132     *   queue.  Reachability of all elements from head must remain
133     *   true even in the case of concurrent modifications that cause
134     *   head to advance.  A dequeued Node may remain in use
135     *   indefinitely due to creation of an Iterator or simply a
136     *   poll() that has lost its time slice.
137     *
138     * The above might appear to imply that all Nodes are GC-reachable
139     * from a predecessor dequeued Node.  That would cause two problems:
140     * - allow a rogue Iterator to cause unbounded memory retention
141     * - cause cross-generational linking of old Nodes to new Nodes if
142     *   a Node was tenured while live, which generational GCs have a
143     *   hard time dealing with, causing repeated major collections.
144     * However, only non-deleted Nodes need to be reachable from
145     * dequeued Nodes, and reachability does not necessarily have to
146     * be of the kind understood by the GC.  We use the trick of
147     * linking a Node that has just been dequeued to itself.  Such a
148     * self-link implicitly means to advance to head.
149     *
150     * Both head and tail are permitted to lag.  In fact, failing to
151     * update them every time one could is a significant optimization
152     * (fewer CASes). As with LinkedTransferQueue (see the internal
153     * documentation for that class), we use a slack threshold of two;
154     * that is, we update head/tail when the current pointer appears
155     * to be two or more steps away from the first/last node.
156     *
157     * Since head and tail are updated concurrently and independently,
158     * it is possible for tail to lag behind head (why not)?
159     *
160     * CASing a Node's item reference to null atomically removes the
161     * element from the queue.  Iterators skip over Nodes with null
162     * items.  Prior implementations of this class had a race between
163     * poll() and remove(Object) where the same element would appear
164     * to be successfully removed by two concurrent operations.  The
165     * method remove(Object) also lazily unlinks deleted Nodes, but
166     * this is merely an optimization.
167     *
168     * When constructing a Node (before enqueuing it) we avoid paying
169     * for a volatile write to item by using Unsafe.putObject instead
170     * of a normal write.  This allows the cost of enqueue to be
171     * "one-and-a-half" CASes.
172     *
173     * Both head and tail may or may not point to a Node with a
174     * non-null item.  If the queue is empty, all items must of course
175     * be null.  Upon creation, both head and tail refer to a dummy
176     * Node with null item.  Both head and tail are only updated using
177     * CAS, so they never regress, although again this is merely an
178     * optimization.
179     */
180
181    private static class Node<E> {
182        volatile E item;
183        volatile Node<E> next;
184    }
185
186    /**
187     * Returns a new node holding item.  Uses relaxed write because item
188     * can only be seen after piggy-backing publication via casNext.
189     */
190    static <E> Node<E> newNode(E item) {
191        Node<E> node = new Node<E>();
192        U.putObject(node, ITEM, item);
193        return node;
194    }
195
196    static <E> boolean casItem(Node<E> node, E cmp, E val) {
197        return U.compareAndSwapObject(node, ITEM, cmp, val);
198    }
199
200    static <E> void lazySetNext(Node<E> node, Node<E> val) {
201        U.putOrderedObject(node, NEXT, val);
202    }
203
204    static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
205        return U.compareAndSwapObject(node, NEXT, cmp, val);
206    }
207
208    /**
209     * A node from which the first live (non-deleted) node (if any)
210     * can be reached in O(1) time.
211     * Invariants:
212     * - all live nodes are reachable from head via succ()
213     * - head != null
214     * - (tmp = head).next != tmp || tmp != head
215     * Non-invariants:
216     * - head.item may or may not be null.
217     * - it is permitted for tail to lag behind head, that is, for tail
218     *   to not be reachable from head!
219     */
220    transient volatile Node<E> head;
221
222    /**
223     * A node from which the last node on list (that is, the unique
224     * node with node.next == null) can be reached in O(1) time.
225     * Invariants:
226     * - the last node is always reachable from tail via succ()
227     * - tail != null
228     * Non-invariants:
229     * - tail.item may or may not be null.
230     * - it is permitted for tail to lag behind head, that is, for tail
231     *   to not be reachable from head!
232     * - tail.next may or may not be self-pointing to tail.
233     */
234    private transient volatile Node<E> tail;
235
236    /**
237     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
238     */
239    public ConcurrentLinkedQueue() {
240        head = tail = newNode(null);
241    }
242
243    /**
244     * Creates a {@code ConcurrentLinkedQueue}
245     * initially containing the elements of the given collection,
246     * added in traversal order of the collection's iterator.
247     *
248     * @param c the collection of elements to initially contain
249     * @throws NullPointerException if the specified collection or any
250     *         of its elements are null
251     */
252    public ConcurrentLinkedQueue(Collection<? extends E> c) {
253        Node<E> h = null, t = null;
254        for (E e : c) {
255            Node<E> newNode = newNode(Objects.requireNonNull(e));
256            if (h == null)
257                h = t = newNode;
258            else {
259                lazySetNext(t, newNode);
260                t = newNode;
261            }
262        }
263        if (h == null)
264            h = t = newNode(null);
265        head = h;
266        tail = t;
267    }
268
269    // Have to override just to update the javadoc
270
271    /**
272     * Inserts the specified element at the tail of this queue.
273     * As the queue is unbounded, this method will never throw
274     * {@link IllegalStateException} or return {@code false}.
275     *
276     * @return {@code true} (as specified by {@link Collection#add})
277     * @throws NullPointerException if the specified element is null
278     */
279    public boolean add(E e) {
280        return offer(e);
281    }
282
283    /**
284     * Tries to CAS head to p. If successful, repoint old head to itself
285     * as sentinel for succ(), below.
286     */
287    final void updateHead(Node<E> h, Node<E> p) {
288        // assert h != null && p != null && (h == p || h.item == null);
289        if (h != p && casHead(h, p))
290            lazySetNext(h, h);
291    }
292
293    /**
294     * Returns the successor of p, or the head node if p.next has been
295     * linked to self, which will only be true if traversing with a
296     * stale pointer that is now off the list.
297     */
298    final Node<E> succ(Node<E> p) {
299        Node<E> next = p.next;
300        return (p == next) ? head : next;
301    }
302
303    /**
304     * Inserts the specified element at the tail of this queue.
305     * As the queue is unbounded, this method will never return {@code false}.
306     *
307     * @return {@code true} (as specified by {@link Queue#offer})
308     * @throws NullPointerException if the specified element is null
309     */
310    public boolean offer(E e) {
311        final Node<E> newNode = newNode(Objects.requireNonNull(e));
312
313        for (Node<E> t = tail, p = t;;) {
314            Node<E> q = p.next;
315            if (q == null) {
316                // p is last node
317                if (casNext(p, null, newNode)) {
318                    // Successful CAS is the linearization point
319                    // for e to become an element of this queue,
320                    // and for newNode to become "live".
321                    if (p != t) // hop two nodes at a time
322                        casTail(t, newNode);  // Failure is OK.
323                    return true;
324                }
325                // Lost CAS race to another thread; re-read next
326            }
327            else if (p == q)
328                // We have fallen off list.  If tail is unchanged, it
329                // will also be off-list, in which case we need to
330                // jump to head, from which all live nodes are always
331                // reachable.  Else the new tail is a better bet.
332                p = (t != (t = tail)) ? t : head;
333            else
334                // Check for tail updates after two hops.
335                p = (p != t && t != (t = tail)) ? t : q;
336        }
337    }
338
339    public E poll() {
340        restartFromHead:
341        for (;;) {
342            for (Node<E> h = head, p = h, q;;) {
343                E item = p.item;
344
345                if (item != null && casItem(p, item, null)) {
346                    // Successful CAS is the linearization point
347                    // for item to be removed from this queue.
348                    if (p != h) // hop two nodes at a time
349                        updateHead(h, ((q = p.next) != null) ? q : p);
350                    return item;
351                }
352                else if ((q = p.next) == null) {
353                    updateHead(h, p);
354                    return null;
355                }
356                else if (p == q)
357                    continue restartFromHead;
358                else
359                    p = q;
360            }
361        }
362    }
363
364    public E peek() {
365        restartFromHead:
366        for (;;) {
367            for (Node<E> h = head, p = h, q;;) {
368                E item = p.item;
369                if (item != null || (q = p.next) == null) {
370                    updateHead(h, p);
371                    return item;
372                }
373                else if (p == q)
374                    continue restartFromHead;
375                else
376                    p = q;
377            }
378        }
379    }
380
381    /**
382     * Returns the first live (non-deleted) node on list, or null if none.
383     * This is yet another variant of poll/peek; here returning the
384     * first node, not element.  We could make peek() a wrapper around
385     * first(), but that would cost an extra volatile read of item,
386     * and the need to add a retry loop to deal with the possibility
387     * of losing a race to a concurrent poll().
388     */
389    Node<E> first() {
390        restartFromHead:
391        for (;;) {
392            for (Node<E> h = head, p = h, q;;) {
393                boolean hasItem = (p.item != null);
394                if (hasItem || (q = p.next) == null) {
395                    updateHead(h, p);
396                    return hasItem ? p : null;
397                }
398                else if (p == q)
399                    continue restartFromHead;
400                else
401                    p = q;
402            }
403        }
404    }
405
406    /**
407     * Returns {@code true} if this queue contains no elements.
408     *
409     * @return {@code true} if this queue contains no elements
410     */
411    public boolean isEmpty() {
412        return first() == null;
413    }
414
415    /**
416     * Returns the number of elements in this queue.  If this queue
417     * contains more than {@code Integer.MAX_VALUE} elements, returns
418     * {@code Integer.MAX_VALUE}.
419     *
420     * <p>Beware that, unlike in most collections, this method is
421     * <em>NOT</em> a constant-time operation. Because of the
422     * asynchronous nature of these queues, determining the current
423     * number of elements requires an O(n) traversal.
424     * Additionally, if elements are added or removed during execution
425     * of this method, the returned result may be inaccurate.  Thus,
426     * this method is typically not very useful in concurrent
427     * applications.
428     *
429     * @return the number of elements in this queue
430     */
431    public int size() {
432        restartFromHead: for (;;) {
433            int count = 0;
434            for (Node<E> p = first(); p != null;) {
435                if (p.item != null)
436                    if (++count == Integer.MAX_VALUE)
437                        break;  // @see Collection.size()
438                if (p == (p = p.next))
439                    continue restartFromHead;
440            }
441            return count;
442        }
443    }
444
445    /**
446     * Returns {@code true} if this queue contains the specified element.
447     * More formally, returns {@code true} if and only if this queue contains
448     * at least one element {@code e} such that {@code o.equals(e)}.
449     *
450     * @param o object to be checked for containment in this queue
451     * @return {@code true} if this queue contains the specified element
452     */
453    public boolean contains(Object o) {
454        if (o != null) {
455            for (Node<E> p = first(); p != null; p = succ(p)) {
456                E item = p.item;
457                if (item != null && o.equals(item))
458                    return true;
459            }
460        }
461        return false;
462    }
463
464    /**
465     * Removes a single instance of the specified element from this queue,
466     * if it is present.  More formally, removes an element {@code e} such
467     * that {@code o.equals(e)}, if this queue contains one or more such
468     * elements.
469     * Returns {@code true} if this queue contained the specified element
470     * (or equivalently, if this queue changed as a result of the call).
471     *
472     * @param o element to be removed from this queue, if present
473     * @return {@code true} if this queue changed as a result of the call
474     */
475    public boolean remove(Object o) {
476        if (o != null) {
477            Node<E> next, pred = null;
478            for (Node<E> p = first(); p != null; pred = p, p = next) {
479                boolean removed = false;
480                E item = p.item;
481                if (item != null) {
482                    if (!o.equals(item)) {
483                        next = succ(p);
484                        continue;
485                    }
486                    removed = casItem(p, item, null);
487                }
488
489                next = succ(p);
490                if (pred != null && next != null) // unlink
491                    casNext(pred, p, next);
492                if (removed)
493                    return true;
494            }
495        }
496        return false;
497    }
498
499    /**
500     * Appends all of the elements in the specified collection to the end of
501     * this queue, in the order that they are returned by the specified
502     * collection's iterator.  Attempts to {@code addAll} of a queue to
503     * itself result in {@code IllegalArgumentException}.
504     *
505     * @param c the elements to be inserted into this queue
506     * @return {@code true} if this queue changed as a result of the call
507     * @throws NullPointerException if the specified collection or any
508     *         of its elements are null
509     * @throws IllegalArgumentException if the collection is this queue
510     */
511    public boolean addAll(Collection<? extends E> c) {
512        if (c == this)
513            // As historically specified in AbstractQueue#addAll
514            throw new IllegalArgumentException();
515
516        // Copy c into a private chain of Nodes
517        Node<E> beginningOfTheEnd = null, last = null;
518        for (E e : c) {
519            Node<E> newNode = newNode(Objects.requireNonNull(e));
520            if (beginningOfTheEnd == null)
521                beginningOfTheEnd = last = newNode;
522            else {
523                lazySetNext(last, newNode);
524                last = newNode;
525            }
526        }
527        if (beginningOfTheEnd == null)
528            return false;
529
530        // Atomically append the chain at the tail of this collection
531        for (Node<E> t = tail, p = t;;) {
532            Node<E> q = p.next;
533            if (q == null) {
534                // p is last node
535                if (casNext(p, null, beginningOfTheEnd)) {
536                    // Successful CAS is the linearization point
537                    // for all elements to be added to this queue.
538                    if (!casTail(t, last)) {
539                        // Try a little harder to update tail,
540                        // since we may be adding many elements.
541                        t = tail;
542                        if (last.next == null)
543                            casTail(t, last);
544                    }
545                    return true;
546                }
547                // Lost CAS race to another thread; re-read next
548            }
549            else if (p == q)
550                // We have fallen off list.  If tail is unchanged, it
551                // will also be off-list, in which case we need to
552                // jump to head, from which all live nodes are always
553                // reachable.  Else the new tail is a better bet.
554                p = (t != (t = tail)) ? t : head;
555            else
556                // Check for tail updates after two hops.
557                p = (p != t && t != (t = tail)) ? t : q;
558        }
559    }
560
561    public String toString() {
562        String[] a = null;
563        restartFromHead: for (;;) {
564            int charLength = 0;
565            int size = 0;
566            for (Node<E> p = first(); p != null;) {
567                E item = p.item;
568                if (item != null) {
569                    if (a == null)
570                        a = new String[4];
571                    else if (size == a.length)
572                        a = Arrays.copyOf(a, 2 * size);
573                    String s = item.toString();
574                    a[size++] = s;
575                    charLength += s.length();
576                }
577                if (p == (p = p.next))
578                    continue restartFromHead;
579            }
580
581            if (size == 0)
582                return "[]";
583
584            return Helpers.toString(a, size, charLength);
585        }
586    }
587
588    private Object[] toArrayInternal(Object[] a) {
589        Object[] x = a;
590        restartFromHead: for (;;) {
591            int size = 0;
592            for (Node<E> p = first(); p != null;) {
593                E item = p.item;
594                if (item != null) {
595                    if (x == null)
596                        x = new Object[4];
597                    else if (size == x.length)
598                        x = Arrays.copyOf(x, 2 * (size + 4));
599                    x[size++] = item;
600                }
601                if (p == (p = p.next))
602                    continue restartFromHead;
603            }
604            if (x == null)
605                return new Object[0];
606            else if (a != null && size <= a.length) {
607                if (a != x)
608                    System.arraycopy(x, 0, a, 0, size);
609                if (size < a.length)
610                    a[size] = null;
611                return a;
612            }
613            return (size == x.length) ? x : Arrays.copyOf(x, size);
614        }
615    }
616
617    /**
618     * Returns an array containing all of the elements in this queue, in
619     * proper sequence.
620     *
621     * <p>The returned array will be "safe" in that no references to it are
622     * maintained by this queue.  (In other words, this method must allocate
623     * a new array).  The caller is thus free to modify the returned array.
624     *
625     * <p>This method acts as bridge between array-based and collection-based
626     * APIs.
627     *
628     * @return an array containing all of the elements in this queue
629     */
630    public Object[] toArray() {
631        return toArrayInternal(null);
632    }
633
634    /**
635     * Returns an array containing all of the elements in this queue, in
636     * proper sequence; the runtime type of the returned array is that of
637     * the specified array.  If the queue fits in the specified array, it
638     * is returned therein.  Otherwise, a new array is allocated with the
639     * runtime type of the specified array and the size of this queue.
640     *
641     * <p>If this queue fits in the specified array with room to spare
642     * (i.e., the array has more elements than this queue), the element in
643     * the array immediately following the end of the queue is set to
644     * {@code null}.
645     *
646     * <p>Like the {@link #toArray()} method, this method acts as bridge between
647     * array-based and collection-based APIs.  Further, this method allows
648     * precise control over the runtime type of the output array, and may,
649     * under certain circumstances, be used to save allocation costs.
650     *
651     * <p>Suppose {@code x} is a queue known to contain only strings.
652     * The following code can be used to dump the queue into a newly
653     * allocated array of {@code String}:
654     *
655     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
656     *
657     * Note that {@code toArray(new Object[0])} is identical in function to
658     * {@code toArray()}.
659     *
660     * @param a the array into which the elements of the queue are to
661     *          be stored, if it is big enough; otherwise, a new array of the
662     *          same runtime type is allocated for this purpose
663     * @return an array containing all of the elements in this queue
664     * @throws ArrayStoreException if the runtime type of the specified array
665     *         is not a supertype of the runtime type of every element in
666     *         this queue
667     * @throws NullPointerException if the specified array is null
668     */
669    @SuppressWarnings("unchecked")
670    public <T> T[] toArray(T[] a) {
671        if (a == null) throw new NullPointerException();
672        return (T[]) toArrayInternal(a);
673    }
674
675    /**
676     * Returns an iterator over the elements in this queue in proper sequence.
677     * The elements will be returned in order from first (head) to last (tail).
678     *
679     * <p>The returned iterator is
680     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
681     *
682     * @return an iterator over the elements in this queue in proper sequence
683     */
684    public Iterator<E> iterator() {
685        return new Itr();
686    }
687
688    private class Itr implements Iterator<E> {
689        /**
690         * Next node to return item for.
691         */
692        private Node<E> nextNode;
693
694        /**
695         * nextItem holds on to item fields because once we claim
696         * that an element exists in hasNext(), we must return it in
697         * the following next() call even if it was in the process of
698         * being removed when hasNext() was called.
699         */
700        private E nextItem;
701
702        /**
703         * Node of the last returned item, to support remove.
704         */
705        private Node<E> lastRet;
706
707        Itr() {
708            restartFromHead: for (;;) {
709                Node<E> h, p, q;
710                for (p = h = head;; p = q) {
711                    E item;
712                    if ((item = p.item) != null) {
713                        nextNode = p;
714                        nextItem = item;
715                        break;
716                    }
717                    else if ((q = p.next) == null)
718                        break;
719                    else if (p == q)
720                        continue restartFromHead;
721                }
722                updateHead(h, p);
723                return;
724            }
725        }
726
727        public boolean hasNext() {
728            return nextItem != null;
729        }
730
731        public E next() {
732            final Node<E> pred = nextNode;
733            if (pred == null) throw new NoSuchElementException();
734            // assert nextItem != null;
735            lastRet = pred;
736            E item = null;
737
738            for (Node<E> p = succ(pred), q;; p = q) {
739                if (p == null || (item = p.item) != null) {
740                    nextNode = p;
741                    E x = nextItem;
742                    nextItem = item;
743                    return x;
744                }
745                // unlink deleted nodes
746                if ((q = succ(p)) != null)
747                    casNext(pred, p, q);
748            }
749        }
750
751        public void remove() {
752            Node<E> l = lastRet;
753            if (l == null) throw new IllegalStateException();
754            // rely on a future traversal to relink.
755            l.item = null;
756            lastRet = null;
757        }
758    }
759
760    /**
761     * Saves this queue to a stream (that is, serializes it).
762     *
763     * @param s the stream
764     * @throws java.io.IOException if an I/O error occurs
765     * @serialData All of the elements (each an {@code E}) in
766     * the proper order, followed by a null
767     */
768    private void writeObject(java.io.ObjectOutputStream s)
769        throws java.io.IOException {
770
771        // Write out any hidden stuff
772        s.defaultWriteObject();
773
774        // Write out all elements in the proper order.
775        for (Node<E> p = first(); p != null; p = succ(p)) {
776            Object item = p.item;
777            if (item != null)
778                s.writeObject(item);
779        }
780
781        // Use trailing null as sentinel
782        s.writeObject(null);
783    }
784
785    /**
786     * Reconstitutes this queue from a stream (that is, deserializes it).
787     * @param s the stream
788     * @throws ClassNotFoundException if the class of a serialized object
789     *         could not be found
790     * @throws java.io.IOException if an I/O error occurs
791     */
792    private void readObject(java.io.ObjectInputStream s)
793        throws java.io.IOException, ClassNotFoundException {
794        s.defaultReadObject();
795
796        // Read in elements until trailing null sentinel found
797        Node<E> h = null, t = null;
798        for (Object item; (item = s.readObject()) != null; ) {
799            @SuppressWarnings("unchecked")
800            Node<E> newNode = newNode((E) item);
801            if (h == null)
802                h = t = newNode;
803            else {
804                lazySetNext(t, newNode);
805                t = newNode;
806            }
807        }
808        if (h == null)
809            h = t = newNode(null);
810        head = h;
811        tail = t;
812    }
813
814    /** A customized variant of Spliterators.IteratorSpliterator */
815    static final class CLQSpliterator<E> implements Spliterator<E> {
816        static final int MAX_BATCH = 1 << 25;  // max batch array size;
817        final ConcurrentLinkedQueue<E> queue;
818        Node<E> current;    // current node; null until initialized
819        int batch;          // batch size for splits
820        boolean exhausted;  // true when no more nodes
821        CLQSpliterator(ConcurrentLinkedQueue<E> queue) {
822            this.queue = queue;
823        }
824
825        public Spliterator<E> trySplit() {
826            Node<E> p;
827            final ConcurrentLinkedQueue<E> q = this.queue;
828            int b = batch;
829            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
830            if (!exhausted &&
831                ((p = current) != null || (p = q.first()) != null) &&
832                p.next != null) {
833                Object[] a = new Object[n];
834                int i = 0;
835                do {
836                    if ((a[i] = p.item) != null)
837                        ++i;
838                    if (p == (p = p.next))
839                        p = q.first();
840                } while (p != null && i < n);
841                if ((current = p) == null)
842                    exhausted = true;
843                if (i > 0) {
844                    batch = i;
845                    return Spliterators.spliterator
846                        (a, 0, i, (Spliterator.ORDERED |
847                                   Spliterator.NONNULL |
848                                   Spliterator.CONCURRENT));
849                }
850            }
851            return null;
852        }
853
854        public void forEachRemaining(Consumer<? super E> action) {
855            Node<E> p;
856            if (action == null) throw new NullPointerException();
857            final ConcurrentLinkedQueue<E> q = this.queue;
858            if (!exhausted &&
859                ((p = current) != null || (p = q.first()) != null)) {
860                exhausted = true;
861                do {
862                    E e = p.item;
863                    if (p == (p = p.next))
864                        p = q.first();
865                    if (e != null)
866                        action.accept(e);
867                } while (p != null);
868            }
869        }
870
871        public boolean tryAdvance(Consumer<? super E> action) {
872            Node<E> p;
873            if (action == null) throw new NullPointerException();
874            final ConcurrentLinkedQueue<E> q = this.queue;
875            if (!exhausted &&
876                ((p = current) != null || (p = q.first()) != null)) {
877                E e;
878                do {
879                    e = p.item;
880                    if (p == (p = p.next))
881                        p = q.first();
882                } while (e == null && p != null);
883                if ((current = p) == null)
884                    exhausted = true;
885                if (e != null) {
886                    action.accept(e);
887                    return true;
888                }
889            }
890            return false;
891        }
892
893        public long estimateSize() { return Long.MAX_VALUE; }
894
895        public int characteristics() {
896            return Spliterator.ORDERED | Spliterator.NONNULL |
897                Spliterator.CONCURRENT;
898        }
899    }
900
901    /**
902     * Returns a {@link Spliterator} over the elements in this queue.
903     *
904     * <p>The returned spliterator is
905     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
906     *
907     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
908     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
909     *
910     * @implNote
911     * The {@code Spliterator} implements {@code trySplit} to permit limited
912     * parallelism.
913     *
914     * @return a {@code Spliterator} over the elements in this queue
915     * @since 1.8
916     */
917    @Override
918    public Spliterator<E> spliterator() {
919        return new CLQSpliterator<E>(this);
920    }
921
922    private boolean casTail(Node<E> cmp, Node<E> val) {
923        return U.compareAndSwapObject(this, TAIL, cmp, val);
924    }
925
926    private boolean casHead(Node<E> cmp, Node<E> val) {
927        return U.compareAndSwapObject(this, HEAD, cmp, val);
928    }
929
930    // Unsafe mechanics
931
932    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
933    private static final long HEAD;
934    private static final long TAIL;
935    private static final long ITEM;
936    private static final long NEXT;
937    static {
938        try {
939            HEAD = U.objectFieldOffset
940                (ConcurrentLinkedQueue.class.getDeclaredField("head"));
941            TAIL = U.objectFieldOffset
942                (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
943            ITEM = U.objectFieldOffset
944                (Node.class.getDeclaredField("item"));
945            NEXT = U.objectFieldOffset
946                (Node.class.getDeclaredField("next"));
947        } catch (ReflectiveOperationException e) {
948            throw new Error(e);
949        }
950    }
951}
952