1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Doug Lea with assistance from members of JCP JSR-166
32 * Expert Group and released to the public domain, as explained at
33 * http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36package java.util.concurrent;
37
38import java.util.AbstractQueue;
39import java.util.Collection;
40import java.util.Iterator;
41import java.util.NoSuchElementException;
42import java.util.Spliterator;
43import java.util.Spliterators;
44import java.util.concurrent.locks.Condition;
45import java.util.concurrent.locks.ReentrantLock;
46import java.util.function.Consumer;
47
48// BEGIN android-note
49// removed link to collections framework docs
50// END android-note
51
52/**
53 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
54 * linked nodes.
55 *
56 * <p>The optional capacity bound constructor argument serves as a
57 * way to prevent excessive expansion. The capacity, if unspecified,
58 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
59 * dynamically created upon each insertion unless this would bring the
60 * deque above capacity.
61 *
62 * <p>Most operations run in constant time (ignoring time spent
63 * blocking).  Exceptions include {@link #remove(Object) remove},
64 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
65 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
66 * contains}, {@link #iterator iterator.remove()}, and the bulk
67 * operations, all of which run in linear time.
68 *
69 * <p>This class and its iterator implement all of the
70 * <em>optional</em> methods of the {@link Collection} and {@link
71 * Iterator} interfaces.
72 *
73 * @since 1.6
74 * @author  Doug Lea
75 * @param <E> the type of elements held in this deque
76 */
77public class LinkedBlockingDeque<E>
78    extends AbstractQueue<E>
79    implements BlockingDeque<E>, java.io.Serializable {
80
81    /*
82     * Implemented as a simple doubly-linked list protected by a
83     * single lock and using conditions to manage blocking.
84     *
85     * To implement weakly consistent iterators, it appears we need to
86     * keep all Nodes GC-reachable from a predecessor dequeued Node.
87     * That would cause two problems:
88     * - allow a rogue Iterator to cause unbounded memory retention
89     * - cause cross-generational linking of old Nodes to new Nodes if
90     *   a Node was tenured while live, which generational GCs have a
91     *   hard time dealing with, causing repeated major collections.
92     * However, only non-deleted Nodes need to be reachable from
93     * dequeued Nodes, and reachability does not necessarily have to
94     * be of the kind understood by the GC.  We use the trick of
95     * linking a Node that has just been dequeued to itself.  Such a
96     * self-link implicitly means to jump to "first" (for next links)
97     * or "last" (for prev links).
98     */
99
100    /*
101     * We have "diamond" multiple interface/abstract class inheritance
102     * here, and that introduces ambiguities. Often we want the
103     * BlockingDeque javadoc combined with the AbstractQueue
104     * implementation, so a lot of method specs are duplicated here.
105     */
106
107    private static final long serialVersionUID = -387911632671998426L;
108
109    /** Doubly-linked list node class */
110    static final class Node<E> {
111        /**
112         * The item, or null if this node has been removed.
113         */
114        E item;
115
116        /**
117         * One of:
118         * - the real predecessor Node
119         * - this Node, meaning the predecessor is tail
120         * - null, meaning there is no predecessor
121         */
122        Node<E> prev;
123
124        /**
125         * One of:
126         * - the real successor Node
127         * - this Node, meaning the successor is head
128         * - null, meaning there is no successor
129         */
130        Node<E> next;
131
132        Node(E x) {
133            item = x;
134        }
135    }
136
137    /**
138     * Pointer to first node.
139     * Invariant: (first == null && last == null) ||
140     *            (first.prev == null && first.item != null)
141     */
142    transient Node<E> first;
143
144    /**
145     * Pointer to last node.
146     * Invariant: (first == null && last == null) ||
147     *            (last.next == null && last.item != null)
148     */
149    transient Node<E> last;
150
151    /** Number of items in the deque */
152    private transient int count;
153
154    /** Maximum number of items in the deque */
155    private final int capacity;
156
157    /** Main lock guarding all access */
158    final ReentrantLock lock = new ReentrantLock();
159
160    /** Condition for waiting takes */
161    private final Condition notEmpty = lock.newCondition();
162
163    /** Condition for waiting puts */
164    private final Condition notFull = lock.newCondition();
165
166    /**
167     * Creates a {@code LinkedBlockingDeque} with a capacity of
168     * {@link Integer#MAX_VALUE}.
169     */
170    public LinkedBlockingDeque() {
171        this(Integer.MAX_VALUE);
172    }
173
174    /**
175     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
176     *
177     * @param capacity the capacity of this deque
178     * @throws IllegalArgumentException if {@code capacity} is less than 1
179     */
180    public LinkedBlockingDeque(int capacity) {
181        if (capacity <= 0) throw new IllegalArgumentException();
182        this.capacity = capacity;
183    }
184
185    /**
186     * Creates a {@code LinkedBlockingDeque} with a capacity of
187     * {@link Integer#MAX_VALUE}, initially containing the elements of
188     * the given collection, added in traversal order of the
189     * collection's iterator.
190     *
191     * @param c the collection of elements to initially contain
192     * @throws NullPointerException if the specified collection or any
193     *         of its elements are null
194     */
195    public LinkedBlockingDeque(Collection<? extends E> c) {
196        this(Integer.MAX_VALUE);
197        final ReentrantLock lock = this.lock;
198        lock.lock(); // Never contended, but necessary for visibility
199        try {
200            for (E e : c) {
201                if (e == null)
202                    throw new NullPointerException();
203                if (!linkLast(new Node<E>(e)))
204                    throw new IllegalStateException("Deque full");
205            }
206        } finally {
207            lock.unlock();
208        }
209    }
210
211
212    // Basic linking and unlinking operations, called only while holding lock
213
214    /**
215     * Links node as first element, or returns false if full.
216     */
217    private boolean linkFirst(Node<E> node) {
218        // assert lock.isHeldByCurrentThread();
219        if (count >= capacity)
220            return false;
221        Node<E> f = first;
222        node.next = f;
223        first = node;
224        if (last == null)
225            last = node;
226        else
227            f.prev = node;
228        ++count;
229        notEmpty.signal();
230        return true;
231    }
232
233    /**
234     * Links node as last element, or returns false if full.
235     */
236    private boolean linkLast(Node<E> node) {
237        // assert lock.isHeldByCurrentThread();
238        if (count >= capacity)
239            return false;
240        Node<E> l = last;
241        node.prev = l;
242        last = node;
243        if (first == null)
244            first = node;
245        else
246            l.next = node;
247        ++count;
248        notEmpty.signal();
249        return true;
250    }
251
252    /**
253     * Removes and returns first element, or null if empty.
254     */
255    private E unlinkFirst() {
256        // assert lock.isHeldByCurrentThread();
257        Node<E> f = first;
258        if (f == null)
259            return null;
260        Node<E> n = f.next;
261        E item = f.item;
262        f.item = null;
263        f.next = f; // help GC
264        first = n;
265        if (n == null)
266            last = null;
267        else
268            n.prev = null;
269        --count;
270        notFull.signal();
271        return item;
272    }
273
274    /**
275     * Removes and returns last element, or null if empty.
276     */
277    private E unlinkLast() {
278        // assert lock.isHeldByCurrentThread();
279        Node<E> l = last;
280        if (l == null)
281            return null;
282        Node<E> p = l.prev;
283        E item = l.item;
284        l.item = null;
285        l.prev = l; // help GC
286        last = p;
287        if (p == null)
288            first = null;
289        else
290            p.next = null;
291        --count;
292        notFull.signal();
293        return item;
294    }
295
296    /**
297     * Unlinks x.
298     */
299    void unlink(Node<E> x) {
300        // assert lock.isHeldByCurrentThread();
301        Node<E> p = x.prev;
302        Node<E> n = x.next;
303        if (p == null) {
304            unlinkFirst();
305        } else if (n == null) {
306            unlinkLast();
307        } else {
308            p.next = n;
309            n.prev = p;
310            x.item = null;
311            // Don't mess with x's links.  They may still be in use by
312            // an iterator.
313            --count;
314            notFull.signal();
315        }
316    }
317
318    // BlockingDeque methods
319
320    /**
321     * @throws IllegalStateException if this deque is full
322     * @throws NullPointerException {@inheritDoc}
323     */
324    public void addFirst(E e) {
325        if (!offerFirst(e))
326            throw new IllegalStateException("Deque full");
327    }
328
329    /**
330     * @throws IllegalStateException if this deque is full
331     * @throws NullPointerException  {@inheritDoc}
332     */
333    public void addLast(E e) {
334        if (!offerLast(e))
335            throw new IllegalStateException("Deque full");
336    }
337
338    /**
339     * @throws NullPointerException {@inheritDoc}
340     */
341    public boolean offerFirst(E e) {
342        if (e == null) throw new NullPointerException();
343        Node<E> node = new Node<E>(e);
344        final ReentrantLock lock = this.lock;
345        lock.lock();
346        try {
347            return linkFirst(node);
348        } finally {
349            lock.unlock();
350        }
351    }
352
353    /**
354     * @throws NullPointerException {@inheritDoc}
355     */
356    public boolean offerLast(E e) {
357        if (e == null) throw new NullPointerException();
358        Node<E> node = new Node<E>(e);
359        final ReentrantLock lock = this.lock;
360        lock.lock();
361        try {
362            return linkLast(node);
363        } finally {
364            lock.unlock();
365        }
366    }
367
368    /**
369     * @throws NullPointerException {@inheritDoc}
370     * @throws InterruptedException {@inheritDoc}
371     */
372    public void putFirst(E e) throws InterruptedException {
373        if (e == null) throw new NullPointerException();
374        Node<E> node = new Node<E>(e);
375        final ReentrantLock lock = this.lock;
376        lock.lock();
377        try {
378            while (!linkFirst(node))
379                notFull.await();
380        } finally {
381            lock.unlock();
382        }
383    }
384
385    /**
386     * @throws NullPointerException {@inheritDoc}
387     * @throws InterruptedException {@inheritDoc}
388     */
389    public void putLast(E e) throws InterruptedException {
390        if (e == null) throw new NullPointerException();
391        Node<E> node = new Node<E>(e);
392        final ReentrantLock lock = this.lock;
393        lock.lock();
394        try {
395            while (!linkLast(node))
396                notFull.await();
397        } finally {
398            lock.unlock();
399        }
400    }
401
402    /**
403     * @throws NullPointerException {@inheritDoc}
404     * @throws InterruptedException {@inheritDoc}
405     */
406    public boolean offerFirst(E e, long timeout, TimeUnit unit)
407        throws InterruptedException {
408        if (e == null) throw new NullPointerException();
409        Node<E> node = new Node<E>(e);
410        long nanos = unit.toNanos(timeout);
411        final ReentrantLock lock = this.lock;
412        lock.lockInterruptibly();
413        try {
414            while (!linkFirst(node)) {
415                if (nanos <= 0L)
416                    return false;
417                nanos = notFull.awaitNanos(nanos);
418            }
419            return true;
420        } finally {
421            lock.unlock();
422        }
423    }
424
425    /**
426     * @throws NullPointerException {@inheritDoc}
427     * @throws InterruptedException {@inheritDoc}
428     */
429    public boolean offerLast(E e, long timeout, TimeUnit unit)
430        throws InterruptedException {
431        if (e == null) throw new NullPointerException();
432        Node<E> node = new Node<E>(e);
433        long nanos = unit.toNanos(timeout);
434        final ReentrantLock lock = this.lock;
435        lock.lockInterruptibly();
436        try {
437            while (!linkLast(node)) {
438                if (nanos <= 0L)
439                    return false;
440                nanos = notFull.awaitNanos(nanos);
441            }
442            return true;
443        } finally {
444            lock.unlock();
445        }
446    }
447
448    /**
449     * @throws NoSuchElementException {@inheritDoc}
450     */
451    public E removeFirst() {
452        E x = pollFirst();
453        if (x == null) throw new NoSuchElementException();
454        return x;
455    }
456
457    /**
458     * @throws NoSuchElementException {@inheritDoc}
459     */
460    public E removeLast() {
461        E x = pollLast();
462        if (x == null) throw new NoSuchElementException();
463        return x;
464    }
465
466    public E pollFirst() {
467        final ReentrantLock lock = this.lock;
468        lock.lock();
469        try {
470            return unlinkFirst();
471        } finally {
472            lock.unlock();
473        }
474    }
475
476    public E pollLast() {
477        final ReentrantLock lock = this.lock;
478        lock.lock();
479        try {
480            return unlinkLast();
481        } finally {
482            lock.unlock();
483        }
484    }
485
486    public E takeFirst() throws InterruptedException {
487        final ReentrantLock lock = this.lock;
488        lock.lock();
489        try {
490            E x;
491            while ( (x = unlinkFirst()) == null)
492                notEmpty.await();
493            return x;
494        } finally {
495            lock.unlock();
496        }
497    }
498
499    public E takeLast() throws InterruptedException {
500        final ReentrantLock lock = this.lock;
501        lock.lock();
502        try {
503            E x;
504            while ( (x = unlinkLast()) == null)
505                notEmpty.await();
506            return x;
507        } finally {
508            lock.unlock();
509        }
510    }
511
512    public E pollFirst(long timeout, TimeUnit unit)
513        throws InterruptedException {
514        long nanos = unit.toNanos(timeout);
515        final ReentrantLock lock = this.lock;
516        lock.lockInterruptibly();
517        try {
518            E x;
519            while ( (x = unlinkFirst()) == null) {
520                if (nanos <= 0L)
521                    return null;
522                nanos = notEmpty.awaitNanos(nanos);
523            }
524            return x;
525        } finally {
526            lock.unlock();
527        }
528    }
529
530    public E pollLast(long timeout, TimeUnit unit)
531        throws InterruptedException {
532        long nanos = unit.toNanos(timeout);
533        final ReentrantLock lock = this.lock;
534        lock.lockInterruptibly();
535        try {
536            E x;
537            while ( (x = unlinkLast()) == null) {
538                if (nanos <= 0L)
539                    return null;
540                nanos = notEmpty.awaitNanos(nanos);
541            }
542            return x;
543        } finally {
544            lock.unlock();
545        }
546    }
547
548    /**
549     * @throws NoSuchElementException {@inheritDoc}
550     */
551    public E getFirst() {
552        E x = peekFirst();
553        if (x == null) throw new NoSuchElementException();
554        return x;
555    }
556
557    /**
558     * @throws NoSuchElementException {@inheritDoc}
559     */
560    public E getLast() {
561        E x = peekLast();
562        if (x == null) throw new NoSuchElementException();
563        return x;
564    }
565
566    public E peekFirst() {
567        final ReentrantLock lock = this.lock;
568        lock.lock();
569        try {
570            return (first == null) ? null : first.item;
571        } finally {
572            lock.unlock();
573        }
574    }
575
576    public E peekLast() {
577        final ReentrantLock lock = this.lock;
578        lock.lock();
579        try {
580            return (last == null) ? null : last.item;
581        } finally {
582            lock.unlock();
583        }
584    }
585
586    public boolean removeFirstOccurrence(Object o) {
587        if (o == null) return false;
588        final ReentrantLock lock = this.lock;
589        lock.lock();
590        try {
591            for (Node<E> p = first; p != null; p = p.next) {
592                if (o.equals(p.item)) {
593                    unlink(p);
594                    return true;
595                }
596            }
597            return false;
598        } finally {
599            lock.unlock();
600        }
601    }
602
603    public boolean removeLastOccurrence(Object o) {
604        if (o == null) return false;
605        final ReentrantLock lock = this.lock;
606        lock.lock();
607        try {
608            for (Node<E> p = last; p != null; p = p.prev) {
609                if (o.equals(p.item)) {
610                    unlink(p);
611                    return true;
612                }
613            }
614            return false;
615        } finally {
616            lock.unlock();
617        }
618    }
619
620    // BlockingQueue methods
621
622    /**
623     * Inserts the specified element at the end of this deque unless it would
624     * violate capacity restrictions.  When using a capacity-restricted deque,
625     * it is generally preferable to use method {@link #offer(Object) offer}.
626     *
627     * <p>This method is equivalent to {@link #addLast}.
628     *
629     * @throws IllegalStateException if this deque is full
630     * @throws NullPointerException if the specified element is null
631     */
632    public boolean add(E e) {
633        addLast(e);
634        return true;
635    }
636
637    /**
638     * @throws NullPointerException if the specified element is null
639     */
640    public boolean offer(E e) {
641        return offerLast(e);
642    }
643
644    /**
645     * @throws NullPointerException {@inheritDoc}
646     * @throws InterruptedException {@inheritDoc}
647     */
648    public void put(E e) throws InterruptedException {
649        putLast(e);
650    }
651
652    /**
653     * @throws NullPointerException {@inheritDoc}
654     * @throws InterruptedException {@inheritDoc}
655     */
656    public boolean offer(E e, long timeout, TimeUnit unit)
657        throws InterruptedException {
658        return offerLast(e, timeout, unit);
659    }
660
661    /**
662     * Retrieves and removes the head of the queue represented by this deque.
663     * This method differs from {@link #poll poll} only in that it throws an
664     * exception if this deque is empty.
665     *
666     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
667     *
668     * @return the head of the queue represented by this deque
669     * @throws NoSuchElementException if this deque is empty
670     */
671    public E remove() {
672        return removeFirst();
673    }
674
675    public E poll() {
676        return pollFirst();
677    }
678
679    public E take() throws InterruptedException {
680        return takeFirst();
681    }
682
683    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
684        return pollFirst(timeout, unit);
685    }
686
687    /**
688     * Retrieves, but does not remove, the head of the queue represented by
689     * this deque.  This method differs from {@link #peek peek} only in that
690     * it throws an exception if this deque is empty.
691     *
692     * <p>This method is equivalent to {@link #getFirst() getFirst}.
693     *
694     * @return the head of the queue represented by this deque
695     * @throws NoSuchElementException if this deque is empty
696     */
697    public E element() {
698        return getFirst();
699    }
700
701    public E peek() {
702        return peekFirst();
703    }
704
705    /**
706     * Returns the number of additional elements that this deque can ideally
707     * (in the absence of memory or resource constraints) accept without
708     * blocking. This is always equal to the initial capacity of this deque
709     * less the current {@code size} of this deque.
710     *
711     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
712     * an element will succeed by inspecting {@code remainingCapacity}
713     * because it may be the case that another thread is about to
714     * insert or remove an element.
715     */
716    public int remainingCapacity() {
717        final ReentrantLock lock = this.lock;
718        lock.lock();
719        try {
720            return capacity - count;
721        } finally {
722            lock.unlock();
723        }
724    }
725
726    /**
727     * @throws UnsupportedOperationException {@inheritDoc}
728     * @throws ClassCastException            {@inheritDoc}
729     * @throws NullPointerException          {@inheritDoc}
730     * @throws IllegalArgumentException      {@inheritDoc}
731     */
732    public int drainTo(Collection<? super E> c) {
733        return drainTo(c, Integer.MAX_VALUE);
734    }
735
736    /**
737     * @throws UnsupportedOperationException {@inheritDoc}
738     * @throws ClassCastException            {@inheritDoc}
739     * @throws NullPointerException          {@inheritDoc}
740     * @throws IllegalArgumentException      {@inheritDoc}
741     */
742    public int drainTo(Collection<? super E> c, int maxElements) {
743        if (c == null)
744            throw new NullPointerException();
745        if (c == this)
746            throw new IllegalArgumentException();
747        if (maxElements <= 0)
748            return 0;
749        final ReentrantLock lock = this.lock;
750        lock.lock();
751        try {
752            int n = Math.min(maxElements, count);
753            for (int i = 0; i < n; i++) {
754                c.add(first.item);   // In this order, in case add() throws.
755                unlinkFirst();
756            }
757            return n;
758        } finally {
759            lock.unlock();
760        }
761    }
762
763    // Stack methods
764
765    /**
766     * @throws IllegalStateException if this deque is full
767     * @throws NullPointerException {@inheritDoc}
768     */
769    public void push(E e) {
770        addFirst(e);
771    }
772
773    /**
774     * @throws NoSuchElementException {@inheritDoc}
775     */
776    public E pop() {
777        return removeFirst();
778    }
779
780    // Collection methods
781
782    /**
783     * Removes the first occurrence of the specified element from this deque.
784     * If the deque does not contain the element, it is unchanged.
785     * More formally, removes the first element {@code e} such that
786     * {@code o.equals(e)} (if such an element exists).
787     * Returns {@code true} if this deque contained the specified element
788     * (or equivalently, if this deque changed as a result of the call).
789     *
790     * <p>This method is equivalent to
791     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
792     *
793     * @param o element to be removed from this deque, if present
794     * @return {@code true} if this deque changed as a result of the call
795     */
796    public boolean remove(Object o) {
797        return removeFirstOccurrence(o);
798    }
799
800    /**
801     * Returns the number of elements in this deque.
802     *
803     * @return the number of elements in this deque
804     */
805    public int size() {
806        final ReentrantLock lock = this.lock;
807        lock.lock();
808        try {
809            return count;
810        } finally {
811            lock.unlock();
812        }
813    }
814
815    /**
816     * Returns {@code true} if this deque contains the specified element.
817     * More formally, returns {@code true} if and only if this deque contains
818     * at least one element {@code e} such that {@code o.equals(e)}.
819     *
820     * @param o object to be checked for containment in this deque
821     * @return {@code true} if this deque contains the specified element
822     */
823    public boolean contains(Object o) {
824        if (o == null) return false;
825        final ReentrantLock lock = this.lock;
826        lock.lock();
827        try {
828            for (Node<E> p = first; p != null; p = p.next)
829                if (o.equals(p.item))
830                    return true;
831            return false;
832        } finally {
833            lock.unlock();
834        }
835    }
836
837    /*
838     * TODO: Add support for more efficient bulk operations.
839     *
840     * We don't want to acquire the lock for every iteration, but we
841     * also want other threads a chance to interact with the
842     * collection, especially when count is close to capacity.
843     */
844
845//     /**
846//      * Adds all of the elements in the specified collection to this
847//      * queue.  Attempts to addAll of a queue to itself result in
848//      * {@code IllegalArgumentException}. Further, the behavior of
849//      * this operation is undefined if the specified collection is
850//      * modified while the operation is in progress.
851//      *
852//      * @param c collection containing elements to be added to this queue
853//      * @return {@code true} if this queue changed as a result of the call
854//      * @throws ClassCastException            {@inheritDoc}
855//      * @throws NullPointerException          {@inheritDoc}
856//      * @throws IllegalArgumentException      {@inheritDoc}
857//      * @throws IllegalStateException if this deque is full
858//      * @see #add(Object)
859//      */
860//     public boolean addAll(Collection<? extends E> c) {
861//         if (c == null)
862//             throw new NullPointerException();
863//         if (c == this)
864//             throw new IllegalArgumentException();
865//         final ReentrantLock lock = this.lock;
866//         lock.lock();
867//         try {
868//             boolean modified = false;
869//             for (E e : c)
870//                 if (linkLast(e))
871//                     modified = true;
872//             return modified;
873//         } finally {
874//             lock.unlock();
875//         }
876//     }
877
878    /**
879     * Returns an array containing all of the elements in this deque, in
880     * proper sequence (from first to last element).
881     *
882     * <p>The returned array will be "safe" in that no references to it are
883     * maintained by this deque.  (In other words, this method must allocate
884     * a new array).  The caller is thus free to modify the returned array.
885     *
886     * <p>This method acts as bridge between array-based and collection-based
887     * APIs.
888     *
889     * @return an array containing all of the elements in this deque
890     */
891    @SuppressWarnings("unchecked")
892    public Object[] toArray() {
893        final ReentrantLock lock = this.lock;
894        lock.lock();
895        try {
896            Object[] a = new Object[count];
897            int k = 0;
898            for (Node<E> p = first; p != null; p = p.next)
899                a[k++] = p.item;
900            return a;
901        } finally {
902            lock.unlock();
903        }
904    }
905
906    /**
907     * Returns an array containing all of the elements in this deque, in
908     * proper sequence; the runtime type of the returned array is that of
909     * the specified array.  If the deque fits in the specified array, it
910     * is returned therein.  Otherwise, a new array is allocated with the
911     * runtime type of the specified array and the size of this deque.
912     *
913     * <p>If this deque fits in the specified array with room to spare
914     * (i.e., the array has more elements than this deque), the element in
915     * the array immediately following the end of the deque is set to
916     * {@code null}.
917     *
918     * <p>Like the {@link #toArray()} method, this method acts as bridge between
919     * array-based and collection-based APIs.  Further, this method allows
920     * precise control over the runtime type of the output array, and may,
921     * under certain circumstances, be used to save allocation costs.
922     *
923     * <p>Suppose {@code x} is a deque known to contain only strings.
924     * The following code can be used to dump the deque into a newly
925     * allocated array of {@code String}:
926     *
927     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
928     *
929     * Note that {@code toArray(new Object[0])} is identical in function to
930     * {@code toArray()}.
931     *
932     * @param a the array into which the elements of the deque are to
933     *          be stored, if it is big enough; otherwise, a new array of the
934     *          same runtime type is allocated for this purpose
935     * @return an array containing all of the elements in this deque
936     * @throws ArrayStoreException if the runtime type of the specified array
937     *         is not a supertype of the runtime type of every element in
938     *         this deque
939     * @throws NullPointerException if the specified array is null
940     */
941    @SuppressWarnings("unchecked")
942    public <T> T[] toArray(T[] a) {
943        final ReentrantLock lock = this.lock;
944        lock.lock();
945        try {
946            if (a.length < count)
947                a = (T[])java.lang.reflect.Array.newInstance
948                    (a.getClass().getComponentType(), count);
949
950            int k = 0;
951            for (Node<E> p = first; p != null; p = p.next)
952                a[k++] = (T)p.item;
953            if (a.length > k)
954                a[k] = null;
955            return a;
956        } finally {
957            lock.unlock();
958        }
959    }
960
961    public String toString() {
962        return Helpers.collectionToString(this);
963    }
964
965    /**
966     * Atomically removes all of the elements from this deque.
967     * The deque will be empty after this call returns.
968     */
969    public void clear() {
970        final ReentrantLock lock = this.lock;
971        lock.lock();
972        try {
973            for (Node<E> f = first; f != null; ) {
974                f.item = null;
975                Node<E> n = f.next;
976                f.prev = null;
977                f.next = null;
978                f = n;
979            }
980            first = last = null;
981            count = 0;
982            notFull.signalAll();
983        } finally {
984            lock.unlock();
985        }
986    }
987
988    /**
989     * Returns an iterator over the elements in this deque in proper sequence.
990     * The elements will be returned in order from first (head) to last (tail).
991     *
992     * <p>The returned iterator is
993     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
994     *
995     * @return an iterator over the elements in this deque in proper sequence
996     */
997    public Iterator<E> iterator() {
998        return new Itr();
999    }
1000
1001    /**
1002     * Returns an iterator over the elements in this deque in reverse
1003     * sequential order.  The elements will be returned in order from
1004     * last (tail) to first (head).
1005     *
1006     * <p>The returned iterator is
1007     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1008     *
1009     * @return an iterator over the elements in this deque in reverse order
1010     */
1011    public Iterator<E> descendingIterator() {
1012        return new DescendingItr();
1013    }
1014
1015    /**
1016     * Base class for LinkedBlockingDeque iterators.
1017     */
1018    private abstract class AbstractItr implements Iterator<E> {
1019        /**
1020         * The next node to return in next().
1021         */
1022        Node<E> next;
1023
1024        /**
1025         * nextItem holds on to item fields because once we claim that
1026         * an element exists in hasNext(), we must return item read
1027         * under lock (in advance()) even if it was in the process of
1028         * being removed when hasNext() was called.
1029         */
1030        E nextItem;
1031
1032        /**
1033         * Node returned by most recent call to next. Needed by remove.
1034         * Reset to null if this element is deleted by a call to remove.
1035         */
1036        private Node<E> lastRet;
1037
1038        abstract Node<E> firstNode();
1039        abstract Node<E> nextNode(Node<E> n);
1040
1041        AbstractItr() {
1042            // set to initial position
1043            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1044            lock.lock();
1045            try {
1046                next = firstNode();
1047                nextItem = (next == null) ? null : next.item;
1048            } finally {
1049                lock.unlock();
1050            }
1051        }
1052
1053        /**
1054         * Returns the successor node of the given non-null, but
1055         * possibly previously deleted, node.
1056         */
1057        private Node<E> succ(Node<E> n) {
1058            // Chains of deleted nodes ending in null or self-links
1059            // are possible if multiple interior nodes are removed.
1060            for (;;) {
1061                Node<E> s = nextNode(n);
1062                if (s == null)
1063                    return null;
1064                else if (s.item != null)
1065                    return s;
1066                else if (s == n)
1067                    return firstNode();
1068                else
1069                    n = s;
1070            }
1071        }
1072
1073        /**
1074         * Advances next.
1075         */
1076        void advance() {
1077            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078            lock.lock();
1079            try {
1080                // assert next != null;
1081                next = succ(next);
1082                nextItem = (next == null) ? null : next.item;
1083            } finally {
1084                lock.unlock();
1085            }
1086        }
1087
1088        public boolean hasNext() {
1089            return next != null;
1090        }
1091
1092        public E next() {
1093            if (next == null)
1094                throw new NoSuchElementException();
1095            lastRet = next;
1096            E x = nextItem;
1097            advance();
1098            return x;
1099        }
1100
1101        public void remove() {
1102            Node<E> n = lastRet;
1103            if (n == null)
1104                throw new IllegalStateException();
1105            lastRet = null;
1106            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1107            lock.lock();
1108            try {
1109                if (n.item != null)
1110                    unlink(n);
1111            } finally {
1112                lock.unlock();
1113            }
1114        }
1115    }
1116
1117    /** Forward iterator */
1118    private class Itr extends AbstractItr {
1119        Node<E> firstNode() { return first; }
1120        Node<E> nextNode(Node<E> n) { return n.next; }
1121    }
1122
1123    /** Descending iterator */
1124    private class DescendingItr extends AbstractItr {
1125        Node<E> firstNode() { return last; }
1126        Node<E> nextNode(Node<E> n) { return n.prev; }
1127    }
1128
1129    /** A customized variant of Spliterators.IteratorSpliterator */
1130    static final class LBDSpliterator<E> implements Spliterator<E> {
1131        static final int MAX_BATCH = 1 << 25;  // max batch array size;
1132        final LinkedBlockingDeque<E> queue;
1133        Node<E> current;    // current node; null until initialized
1134        int batch;          // batch size for splits
1135        boolean exhausted;  // true when no more nodes
1136        long est;           // size estimate
1137        LBDSpliterator(LinkedBlockingDeque<E> queue) {
1138            this.queue = queue;
1139            this.est = queue.size();
1140        }
1141
1142        public long estimateSize() { return est; }
1143
1144        public Spliterator<E> trySplit() {
1145            Node<E> h;
1146            final LinkedBlockingDeque<E> q = this.queue;
1147            int b = batch;
1148            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1149            if (!exhausted &&
1150                ((h = current) != null || (h = q.first) != null) &&
1151                h.next != null) {
1152                Object[] a = new Object[n];
1153                final ReentrantLock lock = q.lock;
1154                int i = 0;
1155                Node<E> p = current;
1156                lock.lock();
1157                try {
1158                    if (p != null || (p = q.first) != null) {
1159                        do {
1160                            if ((a[i] = p.item) != null)
1161                                ++i;
1162                        } while ((p = p.next) != null && i < n);
1163                    }
1164                } finally {
1165                    lock.unlock();
1166                }
1167                if ((current = p) == null) {
1168                    est = 0L;
1169                    exhausted = true;
1170                }
1171                else if ((est -= i) < 0L)
1172                    est = 0L;
1173                if (i > 0) {
1174                    batch = i;
1175                    return Spliterators.spliterator
1176                        (a, 0, i, (Spliterator.ORDERED |
1177                                   Spliterator.NONNULL |
1178                                   Spliterator.CONCURRENT));
1179                }
1180            }
1181            return null;
1182        }
1183
1184        public void forEachRemaining(Consumer<? super E> action) {
1185            if (action == null) throw new NullPointerException();
1186            final LinkedBlockingDeque<E> q = this.queue;
1187            final ReentrantLock lock = q.lock;
1188            if (!exhausted) {
1189                exhausted = true;
1190                Node<E> p = current;
1191                do {
1192                    E e = null;
1193                    lock.lock();
1194                    try {
1195                        if (p == null)
1196                            p = q.first;
1197                        while (p != null) {
1198                            e = p.item;
1199                            p = p.next;
1200                            if (e != null)
1201                                break;
1202                        }
1203                    } finally {
1204                        lock.unlock();
1205                    }
1206                    if (e != null)
1207                        action.accept(e);
1208                } while (p != null);
1209            }
1210        }
1211
1212        public boolean tryAdvance(Consumer<? super E> action) {
1213            if (action == null) throw new NullPointerException();
1214            final LinkedBlockingDeque<E> q = this.queue;
1215            final ReentrantLock lock = q.lock;
1216            if (!exhausted) {
1217                E e = null;
1218                lock.lock();
1219                try {
1220                    if (current == null)
1221                        current = q.first;
1222                    while (current != null) {
1223                        e = current.item;
1224                        current = current.next;
1225                        if (e != null)
1226                            break;
1227                    }
1228                } finally {
1229                    lock.unlock();
1230                }
1231                if (current == null)
1232                    exhausted = true;
1233                if (e != null) {
1234                    action.accept(e);
1235                    return true;
1236                }
1237            }
1238            return false;
1239        }
1240
1241        public int characteristics() {
1242            return Spliterator.ORDERED | Spliterator.NONNULL |
1243                Spliterator.CONCURRENT;
1244        }
1245    }
1246
1247    /**
1248     * Returns a {@link Spliterator} over the elements in this deque.
1249     *
1250     * <p>The returned spliterator is
1251     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1252     *
1253     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1254     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1255     *
1256     * @implNote
1257     * The {@code Spliterator} implements {@code trySplit} to permit limited
1258     * parallelism.
1259     *
1260     * @return a {@code Spliterator} over the elements in this deque
1261     * @since 1.8
1262     */
1263    public Spliterator<E> spliterator() {
1264        return new LBDSpliterator<E>(this);
1265    }
1266
1267    /**
1268     * Saves this deque to a stream (that is, serializes it).
1269     *
1270     * @param s the stream
1271     * @throws java.io.IOException if an I/O error occurs
1272     * @serialData The capacity (int), followed by elements (each an
1273     * {@code Object}) in the proper order, followed by a null
1274     */
1275    private void writeObject(java.io.ObjectOutputStream s)
1276        throws java.io.IOException {
1277        final ReentrantLock lock = this.lock;
1278        lock.lock();
1279        try {
1280            // Write out capacity and any hidden stuff
1281            s.defaultWriteObject();
1282            // Write out all elements in the proper order.
1283            for (Node<E> p = first; p != null; p = p.next)
1284                s.writeObject(p.item);
1285            // Use trailing null as sentinel
1286            s.writeObject(null);
1287        } finally {
1288            lock.unlock();
1289        }
1290    }
1291
1292    /**
1293     * Reconstitutes this deque from a stream (that is, deserializes it).
1294     * @param s the stream
1295     * @throws ClassNotFoundException if the class of a serialized object
1296     *         could not be found
1297     * @throws java.io.IOException if an I/O error occurs
1298     */
1299    private void readObject(java.io.ObjectInputStream s)
1300        throws java.io.IOException, ClassNotFoundException {
1301        s.defaultReadObject();
1302        count = 0;
1303        first = null;
1304        last = null;
1305        // Read in all elements and place in queue
1306        for (;;) {
1307            @SuppressWarnings("unchecked")
1308            E item = (E)s.readObject();
1309            if (item == null)
1310                break;
1311            add(item);
1312        }
1313    }
1314
1315}
1316