1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/EpochTracker.h"
19#include "llvm/Support/AlignOf.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Support/type_traits.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstring>
27#include <iterator>
28#include <new>
29#include <type_traits>
30#include <utility>
31
32namespace llvm {
33
34namespace detail {
35
36// We extend a pair to allow users to override the bucket type with their own
37// implementation without requiring two members.
38template <typename KeyT, typename ValueT>
39struct DenseMapPair : public std::pair<KeyT, ValueT> {
40  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
41  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
42  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
43  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
44};
45
46} // end namespace detail
47
48template <
49    typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
50    typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
51class DenseMapIterator;
52
53template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
54          typename BucketT>
55class DenseMapBase : public DebugEpochBase {
56  template <typename T>
57  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
58
59public:
60  using size_type = unsigned;
61  using key_type = KeyT;
62  using mapped_type = ValueT;
63  using value_type = BucketT;
64
65  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
66  using const_iterator =
67      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
68
69  inline iterator begin() {
70    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
71    return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this);
72  }
73  inline iterator end() {
74    return iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
75  }
76  inline const_iterator begin() const {
77    return empty() ? end()
78                   : const_iterator(getBuckets(), getBucketsEnd(), *this);
79  }
80  inline const_iterator end() const {
81    return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
82  }
83
84  LLVM_NODISCARD bool empty() const {
85    return getNumEntries() == 0;
86  }
87  unsigned size() const { return getNumEntries(); }
88
89  /// Grow the densemap so that it can contain at least \p NumEntries items
90  /// before resizing again.
91  void reserve(size_type NumEntries) {
92    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
93    incrementEpoch();
94    if (NumBuckets > getNumBuckets())
95      grow(NumBuckets);
96  }
97
98  void clear() {
99    incrementEpoch();
100    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
101
102    // If the capacity of the array is huge, and the # elements used is small,
103    // shrink the array.
104    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
105      shrink_and_clear();
106      return;
107    }
108
109    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
110    unsigned NumEntries = getNumEntries();
111    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
112      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
113        if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
114          P->getSecond().~ValueT();
115          --NumEntries;
116        }
117        P->getFirst() = EmptyKey;
118      }
119    }
120    assert(NumEntries == 0 && "Node count imbalance!");
121    setNumEntries(0);
122    setNumTombstones(0);
123  }
124
125  /// Return 1 if the specified key is in the map, 0 otherwise.
126  size_type count(const_arg_type_t<KeyT> Val) const {
127    const BucketT *TheBucket;
128    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
129  }
130
131  iterator find(const_arg_type_t<KeyT> Val) {
132    BucketT *TheBucket;
133    if (LookupBucketFor(Val, TheBucket))
134      return iterator(TheBucket, getBucketsEnd(), *this, true);
135    return end();
136  }
137  const_iterator find(const_arg_type_t<KeyT> Val) const {
138    const BucketT *TheBucket;
139    if (LookupBucketFor(Val, TheBucket))
140      return const_iterator(TheBucket, getBucketsEnd(), *this, true);
141    return end();
142  }
143
144  /// Alternate version of find() which allows a different, and possibly
145  /// less expensive, key type.
146  /// The DenseMapInfo is responsible for supplying methods
147  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
148  /// type used.
149  template<class LookupKeyT>
150  iterator find_as(const LookupKeyT &Val) {
151    BucketT *TheBucket;
152    if (LookupBucketFor(Val, TheBucket))
153      return iterator(TheBucket, getBucketsEnd(), *this, true);
154    return end();
155  }
156  template<class LookupKeyT>
157  const_iterator find_as(const LookupKeyT &Val) const {
158    const BucketT *TheBucket;
159    if (LookupBucketFor(Val, TheBucket))
160      return const_iterator(TheBucket, getBucketsEnd(), *this, true);
161    return end();
162  }
163
164  /// lookup - Return the entry for the specified key, or a default
165  /// constructed value if no such entry exists.
166  ValueT lookup(const_arg_type_t<KeyT> Val) const {
167    const BucketT *TheBucket;
168    if (LookupBucketFor(Val, TheBucket))
169      return TheBucket->getSecond();
170    return ValueT();
171  }
172
173  // Inserts key,value pair into the map if the key isn't already in the map.
174  // If the key is already in the map, it returns false and doesn't update the
175  // value.
176  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
177    return try_emplace(KV.first, KV.second);
178  }
179
180  // Inserts key,value pair into the map if the key isn't already in the map.
181  // If the key is already in the map, it returns false and doesn't update the
182  // value.
183  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
184    return try_emplace(std::move(KV.first), std::move(KV.second));
185  }
186
187  // Inserts key,value pair into the map if the key isn't already in the map.
188  // The value is constructed in-place if the key is not in the map, otherwise
189  // it is not moved.
190  template <typename... Ts>
191  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
192    BucketT *TheBucket;
193    if (LookupBucketFor(Key, TheBucket))
194      return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
195                            false); // Already in map.
196
197    // Otherwise, insert the new element.
198    TheBucket =
199        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
200    return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
201                          true);
202  }
203
204  // Inserts key,value pair into the map if the key isn't already in the map.
205  // The value is constructed in-place if the key is not in the map, otherwise
206  // it is not moved.
207  template <typename... Ts>
208  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
209    BucketT *TheBucket;
210    if (LookupBucketFor(Key, TheBucket))
211      return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
212                            false); // Already in map.
213
214    // Otherwise, insert the new element.
215    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
216    return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
217                          true);
218  }
219
220  /// Alternate version of insert() which allows a different, and possibly
221  /// less expensive, key type.
222  /// The DenseMapInfo is responsible for supplying methods
223  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
224  /// type used.
225  template <typename LookupKeyT>
226  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
227                                      const LookupKeyT &Val) {
228    BucketT *TheBucket;
229    if (LookupBucketFor(Val, TheBucket))
230      return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
231                            false); // Already in map.
232
233    // Otherwise, insert the new element.
234    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
235                                           std::move(KV.second), Val);
236    return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
237                          true);
238  }
239
240  /// insert - Range insertion of pairs.
241  template<typename InputIt>
242  void insert(InputIt I, InputIt E) {
243    for (; I != E; ++I)
244      insert(*I);
245  }
246
247  bool erase(const KeyT &Val) {
248    BucketT *TheBucket;
249    if (!LookupBucketFor(Val, TheBucket))
250      return false; // not in map.
251
252    TheBucket->getSecond().~ValueT();
253    TheBucket->getFirst() = getTombstoneKey();
254    decrementNumEntries();
255    incrementNumTombstones();
256    return true;
257  }
258  void erase(iterator I) {
259    BucketT *TheBucket = &*I;
260    TheBucket->getSecond().~ValueT();
261    TheBucket->getFirst() = getTombstoneKey();
262    decrementNumEntries();
263    incrementNumTombstones();
264  }
265
266  value_type& FindAndConstruct(const KeyT &Key) {
267    BucketT *TheBucket;
268    if (LookupBucketFor(Key, TheBucket))
269      return *TheBucket;
270
271    return *InsertIntoBucket(TheBucket, Key);
272  }
273
274  ValueT &operator[](const KeyT &Key) {
275    return FindAndConstruct(Key).second;
276  }
277
278  value_type& FindAndConstruct(KeyT &&Key) {
279    BucketT *TheBucket;
280    if (LookupBucketFor(Key, TheBucket))
281      return *TheBucket;
282
283    return *InsertIntoBucket(TheBucket, std::move(Key));
284  }
285
286  ValueT &operator[](KeyT &&Key) {
287    return FindAndConstruct(std::move(Key)).second;
288  }
289
290  /// isPointerIntoBucketsArray - Return true if the specified pointer points
291  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
292  /// value in the DenseMap).
293  bool isPointerIntoBucketsArray(const void *Ptr) const {
294    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
295  }
296
297  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
298  /// array.  In conjunction with the previous method, this can be used to
299  /// determine whether an insertion caused the DenseMap to reallocate.
300  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
301
302protected:
303  DenseMapBase() = default;
304
305  void destroyAll() {
306    if (getNumBuckets() == 0) // Nothing to do.
307      return;
308
309    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
310    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
311      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
312          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
313        P->getSecond().~ValueT();
314      P->getFirst().~KeyT();
315    }
316  }
317
318  void initEmpty() {
319    setNumEntries(0);
320    setNumTombstones(0);
321
322    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
323           "# initial buckets must be a power of two!");
324    const KeyT EmptyKey = getEmptyKey();
325    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
326      ::new (&B->getFirst()) KeyT(EmptyKey);
327  }
328
329  /// Returns the number of buckets to allocate to ensure that the DenseMap can
330  /// accommodate \p NumEntries without need to grow().
331  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
332    // Ensure that "NumEntries * 4 < NumBuckets * 3"
333    if (NumEntries == 0)
334      return 0;
335    // +1 is required because of the strict equality.
336    // For example if NumEntries is 48, we need to return 401.
337    return NextPowerOf2(NumEntries * 4 / 3 + 1);
338  }
339
340  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
341    initEmpty();
342
343    // Insert all the old elements.
344    const KeyT EmptyKey = getEmptyKey();
345    const KeyT TombstoneKey = getTombstoneKey();
346    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
347      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
348          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
349        // Insert the key/value into the new table.
350        BucketT *DestBucket;
351        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
352        (void)FoundVal; // silence warning.
353        assert(!FoundVal && "Key already in new map?");
354        DestBucket->getFirst() = std::move(B->getFirst());
355        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
356        incrementNumEntries();
357
358        // Free the value.
359        B->getSecond().~ValueT();
360      }
361      B->getFirst().~KeyT();
362    }
363  }
364
365  template <typename OtherBaseT>
366  void copyFrom(
367      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
368    assert(&other != this);
369    assert(getNumBuckets() == other.getNumBuckets());
370
371    setNumEntries(other.getNumEntries());
372    setNumTombstones(other.getNumTombstones());
373
374    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
375      memcpy(getBuckets(), other.getBuckets(),
376             getNumBuckets() * sizeof(BucketT));
377    else
378      for (size_t i = 0; i < getNumBuckets(); ++i) {
379        ::new (&getBuckets()[i].getFirst())
380            KeyT(other.getBuckets()[i].getFirst());
381        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
382            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
383          ::new (&getBuckets()[i].getSecond())
384              ValueT(other.getBuckets()[i].getSecond());
385      }
386  }
387
388  static unsigned getHashValue(const KeyT &Val) {
389    return KeyInfoT::getHashValue(Val);
390  }
391
392  template<typename LookupKeyT>
393  static unsigned getHashValue(const LookupKeyT &Val) {
394    return KeyInfoT::getHashValue(Val);
395  }
396
397  static const KeyT getEmptyKey() {
398    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
399                  "Must pass the derived type to this template!");
400    return KeyInfoT::getEmptyKey();
401  }
402
403  static const KeyT getTombstoneKey() {
404    return KeyInfoT::getTombstoneKey();
405  }
406
407private:
408  unsigned getNumEntries() const {
409    return static_cast<const DerivedT *>(this)->getNumEntries();
410  }
411
412  void setNumEntries(unsigned Num) {
413    static_cast<DerivedT *>(this)->setNumEntries(Num);
414  }
415
416  void incrementNumEntries() {
417    setNumEntries(getNumEntries() + 1);
418  }
419
420  void decrementNumEntries() {
421    setNumEntries(getNumEntries() - 1);
422  }
423
424  unsigned getNumTombstones() const {
425    return static_cast<const DerivedT *>(this)->getNumTombstones();
426  }
427
428  void setNumTombstones(unsigned Num) {
429    static_cast<DerivedT *>(this)->setNumTombstones(Num);
430  }
431
432  void incrementNumTombstones() {
433    setNumTombstones(getNumTombstones() + 1);
434  }
435
436  void decrementNumTombstones() {
437    setNumTombstones(getNumTombstones() - 1);
438  }
439
440  const BucketT *getBuckets() const {
441    return static_cast<const DerivedT *>(this)->getBuckets();
442  }
443
444  BucketT *getBuckets() {
445    return static_cast<DerivedT *>(this)->getBuckets();
446  }
447
448  unsigned getNumBuckets() const {
449    return static_cast<const DerivedT *>(this)->getNumBuckets();
450  }
451
452  BucketT *getBucketsEnd() {
453    return getBuckets() + getNumBuckets();
454  }
455
456  const BucketT *getBucketsEnd() const {
457    return getBuckets() + getNumBuckets();
458  }
459
460  void grow(unsigned AtLeast) {
461    static_cast<DerivedT *>(this)->grow(AtLeast);
462  }
463
464  void shrink_and_clear() {
465    static_cast<DerivedT *>(this)->shrink_and_clear();
466  }
467
468  template <typename KeyArg, typename... ValueArgs>
469  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
470                            ValueArgs &&... Values) {
471    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
472
473    TheBucket->getFirst() = std::forward<KeyArg>(Key);
474    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
475    return TheBucket;
476  }
477
478  template <typename LookupKeyT>
479  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
480                                      ValueT &&Value, LookupKeyT &Lookup) {
481    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
482
483    TheBucket->getFirst() = std::move(Key);
484    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
485    return TheBucket;
486  }
487
488  template <typename LookupKeyT>
489  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
490                                BucketT *TheBucket) {
491    incrementEpoch();
492
493    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
494    // the buckets are empty (meaning that many are filled with tombstones),
495    // grow the table.
496    //
497    // The later case is tricky.  For example, if we had one empty bucket with
498    // tons of tombstones, failing lookups (e.g. for insertion) would have to
499    // probe almost the entire table until it found the empty bucket.  If the
500    // table completely filled with tombstones, no lookup would ever succeed,
501    // causing infinite loops in lookup.
502    unsigned NewNumEntries = getNumEntries() + 1;
503    unsigned NumBuckets = getNumBuckets();
504    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
505      this->grow(NumBuckets * 2);
506      LookupBucketFor(Lookup, TheBucket);
507      NumBuckets = getNumBuckets();
508    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
509                             NumBuckets/8)) {
510      this->grow(NumBuckets);
511      LookupBucketFor(Lookup, TheBucket);
512    }
513    assert(TheBucket);
514
515    // Only update the state after we've grown our bucket space appropriately
516    // so that when growing buckets we have self-consistent entry count.
517    incrementNumEntries();
518
519    // If we are writing over a tombstone, remember this.
520    const KeyT EmptyKey = getEmptyKey();
521    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
522      decrementNumTombstones();
523
524    return TheBucket;
525  }
526
527  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
528  /// FoundBucket.  If the bucket contains the key and a value, this returns
529  /// true, otherwise it returns a bucket with an empty marker or tombstone and
530  /// returns false.
531  template<typename LookupKeyT>
532  bool LookupBucketFor(const LookupKeyT &Val,
533                       const BucketT *&FoundBucket) const {
534    const BucketT *BucketsPtr = getBuckets();
535    const unsigned NumBuckets = getNumBuckets();
536
537    if (NumBuckets == 0) {
538      FoundBucket = nullptr;
539      return false;
540    }
541
542    // FoundTombstone - Keep track of whether we find a tombstone while probing.
543    const BucketT *FoundTombstone = nullptr;
544    const KeyT EmptyKey = getEmptyKey();
545    const KeyT TombstoneKey = getTombstoneKey();
546    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
547           !KeyInfoT::isEqual(Val, TombstoneKey) &&
548           "Empty/Tombstone value shouldn't be inserted into map!");
549
550    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
551    unsigned ProbeAmt = 1;
552    while (true) {
553      const BucketT *ThisBucket = BucketsPtr + BucketNo;
554      // Found Val's bucket?  If so, return it.
555      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
556        FoundBucket = ThisBucket;
557        return true;
558      }
559
560      // If we found an empty bucket, the key doesn't exist in the set.
561      // Insert it and return the default value.
562      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
563        // If we've already seen a tombstone while probing, fill it in instead
564        // of the empty bucket we eventually probed to.
565        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
566        return false;
567      }
568
569      // If this is a tombstone, remember it.  If Val ends up not in the map, we
570      // prefer to return it than something that would require more probing.
571      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
572          !FoundTombstone)
573        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
574
575      // Otherwise, it's a hash collision or a tombstone, continue quadratic
576      // probing.
577      BucketNo += ProbeAmt++;
578      BucketNo &= (NumBuckets-1);
579    }
580  }
581
582  template <typename LookupKeyT>
583  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
584    const BucketT *ConstFoundBucket;
585    bool Result = const_cast<const DenseMapBase *>(this)
586      ->LookupBucketFor(Val, ConstFoundBucket);
587    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
588    return Result;
589  }
590
591public:
592  /// Return the approximate size (in bytes) of the actual map.
593  /// This is just the raw memory used by DenseMap.
594  /// If entries are pointers to objects, the size of the referenced objects
595  /// are not included.
596  size_t getMemorySize() const {
597    return getNumBuckets() * sizeof(BucketT);
598  }
599};
600
601template <typename KeyT, typename ValueT,
602          typename KeyInfoT = DenseMapInfo<KeyT>,
603          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
604class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
605                                     KeyT, ValueT, KeyInfoT, BucketT> {
606  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
607
608  // Lift some types from the dependent base class into this class for
609  // simplicity of referring to them.
610  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
611
612  BucketT *Buckets;
613  unsigned NumEntries;
614  unsigned NumTombstones;
615  unsigned NumBuckets;
616
617public:
618  /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
619  /// this number of elements can be inserted in the map without grow()
620  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
621
622  DenseMap(const DenseMap &other) : BaseT() {
623    init(0);
624    copyFrom(other);
625  }
626
627  DenseMap(DenseMap &&other) : BaseT() {
628    init(0);
629    swap(other);
630  }
631
632  template<typename InputIt>
633  DenseMap(const InputIt &I, const InputIt &E) {
634    init(std::distance(I, E));
635    this->insert(I, E);
636  }
637
638  ~DenseMap() {
639    this->destroyAll();
640    operator delete(Buckets);
641  }
642
643  void swap(DenseMap& RHS) {
644    this->incrementEpoch();
645    RHS.incrementEpoch();
646    std::swap(Buckets, RHS.Buckets);
647    std::swap(NumEntries, RHS.NumEntries);
648    std::swap(NumTombstones, RHS.NumTombstones);
649    std::swap(NumBuckets, RHS.NumBuckets);
650  }
651
652  DenseMap& operator=(const DenseMap& other) {
653    if (&other != this)
654      copyFrom(other);
655    return *this;
656  }
657
658  DenseMap& operator=(DenseMap &&other) {
659    this->destroyAll();
660    operator delete(Buckets);
661    init(0);
662    swap(other);
663    return *this;
664  }
665
666  void copyFrom(const DenseMap& other) {
667    this->destroyAll();
668    operator delete(Buckets);
669    if (allocateBuckets(other.NumBuckets)) {
670      this->BaseT::copyFrom(other);
671    } else {
672      NumEntries = 0;
673      NumTombstones = 0;
674    }
675  }
676
677  void init(unsigned InitNumEntries) {
678    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
679    if (allocateBuckets(InitBuckets)) {
680      this->BaseT::initEmpty();
681    } else {
682      NumEntries = 0;
683      NumTombstones = 0;
684    }
685  }
686
687  void grow(unsigned AtLeast) {
688    unsigned OldNumBuckets = NumBuckets;
689    BucketT *OldBuckets = Buckets;
690
691    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
692    assert(Buckets);
693    if (!OldBuckets) {
694      this->BaseT::initEmpty();
695      return;
696    }
697
698    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
699
700    // Free the old table.
701    operator delete(OldBuckets);
702  }
703
704  void shrink_and_clear() {
705    unsigned OldNumEntries = NumEntries;
706    this->destroyAll();
707
708    // Reduce the number of buckets.
709    unsigned NewNumBuckets = 0;
710    if (OldNumEntries)
711      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
712    if (NewNumBuckets == NumBuckets) {
713      this->BaseT::initEmpty();
714      return;
715    }
716
717    operator delete(Buckets);
718    init(NewNumBuckets);
719  }
720
721private:
722  unsigned getNumEntries() const {
723    return NumEntries;
724  }
725
726  void setNumEntries(unsigned Num) {
727    NumEntries = Num;
728  }
729
730  unsigned getNumTombstones() const {
731    return NumTombstones;
732  }
733
734  void setNumTombstones(unsigned Num) {
735    NumTombstones = Num;
736  }
737
738  BucketT *getBuckets() const {
739    return Buckets;
740  }
741
742  unsigned getNumBuckets() const {
743    return NumBuckets;
744  }
745
746  bool allocateBuckets(unsigned Num) {
747    NumBuckets = Num;
748    if (NumBuckets == 0) {
749      Buckets = nullptr;
750      return false;
751    }
752
753    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
754    return true;
755  }
756};
757
758template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
759          typename KeyInfoT = DenseMapInfo<KeyT>,
760          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
761class SmallDenseMap
762    : public DenseMapBase<
763          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
764          ValueT, KeyInfoT, BucketT> {
765  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
766
767  // Lift some types from the dependent base class into this class for
768  // simplicity of referring to them.
769  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
770
771  static_assert(isPowerOf2_64(InlineBuckets),
772                "InlineBuckets must be a power of 2.");
773
774  unsigned Small : 1;
775  unsigned NumEntries : 31;
776  unsigned NumTombstones;
777
778  struct LargeRep {
779    BucketT *Buckets;
780    unsigned NumBuckets;
781  };
782
783  /// A "union" of an inline bucket array and the struct representing
784  /// a large bucket. This union will be discriminated by the 'Small' bit.
785  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
786
787public:
788  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
789    init(NumInitBuckets);
790  }
791
792  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
793    init(0);
794    copyFrom(other);
795  }
796
797  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
798    init(0);
799    swap(other);
800  }
801
802  template<typename InputIt>
803  SmallDenseMap(const InputIt &I, const InputIt &E) {
804    init(NextPowerOf2(std::distance(I, E)));
805    this->insert(I, E);
806  }
807
808  ~SmallDenseMap() {
809    this->destroyAll();
810    deallocateBuckets();
811  }
812
813  void swap(SmallDenseMap& RHS) {
814    unsigned TmpNumEntries = RHS.NumEntries;
815    RHS.NumEntries = NumEntries;
816    NumEntries = TmpNumEntries;
817    std::swap(NumTombstones, RHS.NumTombstones);
818
819    const KeyT EmptyKey = this->getEmptyKey();
820    const KeyT TombstoneKey = this->getTombstoneKey();
821    if (Small && RHS.Small) {
822      // If we're swapping inline bucket arrays, we have to cope with some of
823      // the tricky bits of DenseMap's storage system: the buckets are not
824      // fully initialized. Thus we swap every key, but we may have
825      // a one-directional move of the value.
826      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
827        BucketT *LHSB = &getInlineBuckets()[i],
828                *RHSB = &RHS.getInlineBuckets()[i];
829        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
830                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
831        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
832                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
833        if (hasLHSValue && hasRHSValue) {
834          // Swap together if we can...
835          std::swap(*LHSB, *RHSB);
836          continue;
837        }
838        // Swap separately and handle any assymetry.
839        std::swap(LHSB->getFirst(), RHSB->getFirst());
840        if (hasLHSValue) {
841          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
842          LHSB->getSecond().~ValueT();
843        } else if (hasRHSValue) {
844          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
845          RHSB->getSecond().~ValueT();
846        }
847      }
848      return;
849    }
850    if (!Small && !RHS.Small) {
851      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
852      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
853      return;
854    }
855
856    SmallDenseMap &SmallSide = Small ? *this : RHS;
857    SmallDenseMap &LargeSide = Small ? RHS : *this;
858
859    // First stash the large side's rep and move the small side across.
860    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
861    LargeSide.getLargeRep()->~LargeRep();
862    LargeSide.Small = true;
863    // This is similar to the standard move-from-old-buckets, but the bucket
864    // count hasn't actually rotated in this case. So we have to carefully
865    // move construct the keys and values into their new locations, but there
866    // is no need to re-hash things.
867    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
868      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
869              *OldB = &SmallSide.getInlineBuckets()[i];
870      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
871      OldB->getFirst().~KeyT();
872      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
873          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
874        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
875        OldB->getSecond().~ValueT();
876      }
877    }
878
879    // The hard part of moving the small buckets across is done, just move
880    // the TmpRep into its new home.
881    SmallSide.Small = false;
882    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
883  }
884
885  SmallDenseMap& operator=(const SmallDenseMap& other) {
886    if (&other != this)
887      copyFrom(other);
888    return *this;
889  }
890
891  SmallDenseMap& operator=(SmallDenseMap &&other) {
892    this->destroyAll();
893    deallocateBuckets();
894    init(0);
895    swap(other);
896    return *this;
897  }
898
899  void copyFrom(const SmallDenseMap& other) {
900    this->destroyAll();
901    deallocateBuckets();
902    Small = true;
903    if (other.getNumBuckets() > InlineBuckets) {
904      Small = false;
905      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
906    }
907    this->BaseT::copyFrom(other);
908  }
909
910  void init(unsigned InitBuckets) {
911    Small = true;
912    if (InitBuckets > InlineBuckets) {
913      Small = false;
914      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
915    }
916    this->BaseT::initEmpty();
917  }
918
919  void grow(unsigned AtLeast) {
920    if (AtLeast >= InlineBuckets)
921      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
922
923    if (Small) {
924      if (AtLeast < InlineBuckets)
925        return; // Nothing to do.
926
927      // First move the inline buckets into a temporary storage.
928      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
929      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
930      BucketT *TmpEnd = TmpBegin;
931
932      // Loop over the buckets, moving non-empty, non-tombstones into the
933      // temporary storage. Have the loop move the TmpEnd forward as it goes.
934      const KeyT EmptyKey = this->getEmptyKey();
935      const KeyT TombstoneKey = this->getTombstoneKey();
936      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
937        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
938            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
939          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
940                 "Too many inline buckets!");
941          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
942          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
943          ++TmpEnd;
944          P->getSecond().~ValueT();
945        }
946        P->getFirst().~KeyT();
947      }
948
949      // Now make this map use the large rep, and move all the entries back
950      // into it.
951      Small = false;
952      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
953      this->moveFromOldBuckets(TmpBegin, TmpEnd);
954      return;
955    }
956
957    LargeRep OldRep = std::move(*getLargeRep());
958    getLargeRep()->~LargeRep();
959    if (AtLeast <= InlineBuckets) {
960      Small = true;
961    } else {
962      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
963    }
964
965    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
966
967    // Free the old table.
968    operator delete(OldRep.Buckets);
969  }
970
971  void shrink_and_clear() {
972    unsigned OldSize = this->size();
973    this->destroyAll();
974
975    // Reduce the number of buckets.
976    unsigned NewNumBuckets = 0;
977    if (OldSize) {
978      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
979      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
980        NewNumBuckets = 64;
981    }
982    if ((Small && NewNumBuckets <= InlineBuckets) ||
983        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
984      this->BaseT::initEmpty();
985      return;
986    }
987
988    deallocateBuckets();
989    init(NewNumBuckets);
990  }
991
992private:
993  unsigned getNumEntries() const {
994    return NumEntries;
995  }
996
997  void setNumEntries(unsigned Num) {
998    // NumEntries is hardcoded to be 31 bits wide.
999    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1000    NumEntries = Num;
1001  }
1002
1003  unsigned getNumTombstones() const {
1004    return NumTombstones;
1005  }
1006
1007  void setNumTombstones(unsigned Num) {
1008    NumTombstones = Num;
1009  }
1010
1011  const BucketT *getInlineBuckets() const {
1012    assert(Small);
1013    // Note that this cast does not violate aliasing rules as we assert that
1014    // the memory's dynamic type is the small, inline bucket buffer, and the
1015    // 'storage.buffer' static type is 'char *'.
1016    return reinterpret_cast<const BucketT *>(storage.buffer);
1017  }
1018
1019  BucketT *getInlineBuckets() {
1020    return const_cast<BucketT *>(
1021      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1022  }
1023
1024  const LargeRep *getLargeRep() const {
1025    assert(!Small);
1026    // Note, same rule about aliasing as with getInlineBuckets.
1027    return reinterpret_cast<const LargeRep *>(storage.buffer);
1028  }
1029
1030  LargeRep *getLargeRep() {
1031    return const_cast<LargeRep *>(
1032      const_cast<const SmallDenseMap *>(this)->getLargeRep());
1033  }
1034
1035  const BucketT *getBuckets() const {
1036    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1037  }
1038
1039  BucketT *getBuckets() {
1040    return const_cast<BucketT *>(
1041      const_cast<const SmallDenseMap *>(this)->getBuckets());
1042  }
1043
1044  unsigned getNumBuckets() const {
1045    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1046  }
1047
1048  void deallocateBuckets() {
1049    if (Small)
1050      return;
1051
1052    operator delete(getLargeRep()->Buckets);
1053    getLargeRep()->~LargeRep();
1054  }
1055
1056  LargeRep allocateBuckets(unsigned Num) {
1057    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1058    LargeRep Rep = {
1059      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
1060    };
1061    return Rep;
1062  }
1063};
1064
1065template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1066          bool IsConst>
1067class DenseMapIterator : DebugEpochBase::HandleBase {
1068  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1069  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1070
1071  using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1072
1073public:
1074  using difference_type = ptrdiff_t;
1075  using value_type =
1076      typename std::conditional<IsConst, const Bucket, Bucket>::type;
1077  using pointer = value_type *;
1078  using reference = value_type &;
1079  using iterator_category = std::forward_iterator_tag;
1080
1081private:
1082  pointer Ptr = nullptr;
1083  pointer End = nullptr;
1084
1085public:
1086  DenseMapIterator() = default;
1087
1088  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1089                   bool NoAdvance = false)
1090      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1091    assert(isHandleInSync() && "invalid construction!");
1092    if (!NoAdvance) AdvancePastEmptyBuckets();
1093  }
1094
1095  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1096  // for const iterator destinations so it doesn't end up as a user defined copy
1097  // constructor.
1098  template <bool IsConstSrc,
1099            typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1100  DenseMapIterator(
1101      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1102      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1103
1104  reference operator*() const {
1105    assert(isHandleInSync() && "invalid iterator access!");
1106    return *Ptr;
1107  }
1108  pointer operator->() const {
1109    assert(isHandleInSync() && "invalid iterator access!");
1110    return Ptr;
1111  }
1112
1113  bool operator==(const ConstIterator &RHS) const {
1114    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1115    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1116    assert(getEpochAddress() == RHS.getEpochAddress() &&
1117           "comparing incomparable iterators!");
1118    return Ptr == RHS.Ptr;
1119  }
1120  bool operator!=(const ConstIterator &RHS) const {
1121    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1122    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1123    assert(getEpochAddress() == RHS.getEpochAddress() &&
1124           "comparing incomparable iterators!");
1125    return Ptr != RHS.Ptr;
1126  }
1127
1128  inline DenseMapIterator& operator++() {  // Preincrement
1129    assert(isHandleInSync() && "invalid iterator access!");
1130    ++Ptr;
1131    AdvancePastEmptyBuckets();
1132    return *this;
1133  }
1134  DenseMapIterator operator++(int) {  // Postincrement
1135    assert(isHandleInSync() && "invalid iterator access!");
1136    DenseMapIterator tmp = *this; ++*this; return tmp;
1137  }
1138
1139private:
1140  void AdvancePastEmptyBuckets() {
1141    const KeyT Empty = KeyInfoT::getEmptyKey();
1142    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1143
1144    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1145                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1146      ++Ptr;
1147  }
1148};
1149
1150template<typename KeyT, typename ValueT, typename KeyInfoT>
1151static inline size_t
1152capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1153  return X.getMemorySize();
1154}
1155
1156} // end namespace llvm
1157
1158#endif // LLVM_ADT_DENSEMAP_H
1159