1//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SelectionDAG class, and transitively defines the
11// SDNode class and subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SELECTIONDAG_H
16#define LLVM_CODEGEN_SELECTIONDAG_H
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringMap.h"
27#include "llvm/ADT/ilist.h"
28#include "llvm/ADT/iterator.h"
29#include "llvm/ADT/iterator_range.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/DAGCombine.h"
32#include "llvm/CodeGen/ISDOpcodes.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineMemOperand.h"
35#include "llvm/CodeGen/MachineValueType.h"
36#include "llvm/CodeGen/SelectionDAGNodes.h"
37#include "llvm/CodeGen/ValueTypes.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/ArrayRecycler.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CodeGen.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/RecyclingAllocator.h"
48#include <algorithm>
49#include <cassert>
50#include <cstdint>
51#include <functional>
52#include <map>
53#include <string>
54#include <tuple>
55#include <utility>
56#include <vector>
57
58namespace llvm {
59
60class BlockAddress;
61class Constant;
62class ConstantFP;
63class ConstantInt;
64class DataLayout;
65struct fltSemantics;
66class GlobalValue;
67struct KnownBits;
68class LLVMContext;
69class MachineBasicBlock;
70class MachineConstantPoolValue;
71class MCSymbol;
72class OptimizationRemarkEmitter;
73class SDDbgValue;
74class SelectionDAG;
75class SelectionDAGTargetInfo;
76class TargetLowering;
77class TargetMachine;
78class TargetSubtargetInfo;
79class Value;
80
81class SDVTListNode : public FoldingSetNode {
82  friend struct FoldingSetTrait<SDVTListNode>;
83
84  /// A reference to an Interned FoldingSetNodeID for this node.
85  /// The Allocator in SelectionDAG holds the data.
86  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
87  /// The size of this list is not expected to be big so it won't introduce
88  /// a memory penalty.
89  FoldingSetNodeIDRef FastID;
90  const EVT *VTs;
91  unsigned int NumVTs;
92  /// The hash value for SDVTList is fixed, so cache it to avoid
93  /// hash calculation.
94  unsigned HashValue;
95
96public:
97  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
98      FastID(ID), VTs(VT), NumVTs(Num) {
99    HashValue = ID.ComputeHash();
100  }
101
102  SDVTList getSDVTList() {
103    SDVTList result = {VTs, NumVTs};
104    return result;
105  }
106};
107
108/// Specialize FoldingSetTrait for SDVTListNode
109/// to avoid computing temp FoldingSetNodeID and hash value.
110template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
111  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
112    ID = X.FastID;
113  }
114
115  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
116                     unsigned IDHash, FoldingSetNodeID &TempID) {
117    if (X.HashValue != IDHash)
118      return false;
119    return ID == X.FastID;
120  }
121
122  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
123    return X.HashValue;
124  }
125};
126
127template <> struct ilist_alloc_traits<SDNode> {
128  static void deleteNode(SDNode *) {
129    llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
130  }
131};
132
133/// Keeps track of dbg_value information through SDISel.  We do
134/// not build SDNodes for these so as not to perturb the generated code;
135/// instead the info is kept off to the side in this structure. Each SDNode may
136/// have one or more associated dbg_value entries. This information is kept in
137/// DbgValMap.
138/// Byval parameters are handled separately because they don't use alloca's,
139/// which busts the normal mechanism.  There is good reason for handling all
140/// parameters separately:  they may not have code generated for them, they
141/// should always go at the beginning of the function regardless of other code
142/// motion, and debug info for them is potentially useful even if the parameter
143/// is unused.  Right now only byval parameters are handled separately.
144class SDDbgInfo {
145  BumpPtrAllocator Alloc;
146  SmallVector<SDDbgValue*, 32> DbgValues;
147  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
148  using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
149  DbgValMapType DbgValMap;
150
151public:
152  SDDbgInfo() = default;
153  SDDbgInfo(const SDDbgInfo &) = delete;
154  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
155
156  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
157    if (isParameter) {
158      ByvalParmDbgValues.push_back(V);
159    } else     DbgValues.push_back(V);
160    if (Node)
161      DbgValMap[Node].push_back(V);
162  }
163
164  /// \brief Invalidate all DbgValues attached to the node and remove
165  /// it from the Node-to-DbgValues map.
166  void erase(const SDNode *Node);
167
168  void clear() {
169    DbgValMap.clear();
170    DbgValues.clear();
171    ByvalParmDbgValues.clear();
172    Alloc.Reset();
173  }
174
175  BumpPtrAllocator &getAlloc() { return Alloc; }
176
177  bool empty() const {
178    return DbgValues.empty() && ByvalParmDbgValues.empty();
179  }
180
181  ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
182    DbgValMapType::iterator I = DbgValMap.find(Node);
183    if (I != DbgValMap.end())
184      return I->second;
185    return ArrayRef<SDDbgValue*>();
186  }
187
188  using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
189
190  DbgIterator DbgBegin() { return DbgValues.begin(); }
191  DbgIterator DbgEnd()   { return DbgValues.end(); }
192  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
193  DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
194};
195
196void checkForCycles(const SelectionDAG *DAG, bool force = false);
197
198/// This is used to represent a portion of an LLVM function in a low-level
199/// Data Dependence DAG representation suitable for instruction selection.
200/// This DAG is constructed as the first step of instruction selection in order
201/// to allow implementation of machine specific optimizations
202/// and code simplifications.
203///
204/// The representation used by the SelectionDAG is a target-independent
205/// representation, which has some similarities to the GCC RTL representation,
206/// but is significantly more simple, powerful, and is a graph form instead of a
207/// linear form.
208///
209class SelectionDAG {
210  const TargetMachine &TM;
211  const SelectionDAGTargetInfo *TSI = nullptr;
212  const TargetLowering *TLI = nullptr;
213  MachineFunction *MF;
214  LLVMContext *Context;
215  CodeGenOpt::Level OptLevel;
216
217  /// The function-level optimization remark emitter.  Used to emit remarks
218  /// whenever manipulating the DAG.
219  OptimizationRemarkEmitter *ORE;
220
221  /// The starting token.
222  SDNode EntryNode;
223
224  /// The root of the entire DAG.
225  SDValue Root;
226
227  /// A linked list of nodes in the current DAG.
228  ilist<SDNode> AllNodes;
229
230  /// The AllocatorType for allocating SDNodes. We use
231  /// pool allocation with recycling.
232  using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
233                                               sizeof(LargestSDNode),
234                                               alignof(MostAlignedSDNode)>;
235
236  /// Pool allocation for nodes.
237  NodeAllocatorType NodeAllocator;
238
239  /// This structure is used to memoize nodes, automatically performing
240  /// CSE with existing nodes when a duplicate is requested.
241  FoldingSet<SDNode> CSEMap;
242
243  /// Pool allocation for machine-opcode SDNode operands.
244  BumpPtrAllocator OperandAllocator;
245  ArrayRecycler<SDUse> OperandRecycler;
246
247  /// Pool allocation for misc. objects that are created once per SelectionDAG.
248  BumpPtrAllocator Allocator;
249
250  /// Tracks dbg_value information through SDISel.
251  SDDbgInfo *DbgInfo;
252
253  uint16_t NextPersistentId = 0;
254
255public:
256  /// Clients of various APIs that cause global effects on
257  /// the DAG can optionally implement this interface.  This allows the clients
258  /// to handle the various sorts of updates that happen.
259  ///
260  /// A DAGUpdateListener automatically registers itself with DAG when it is
261  /// constructed, and removes itself when destroyed in RAII fashion.
262  struct DAGUpdateListener {
263    DAGUpdateListener *const Next;
264    SelectionDAG &DAG;
265
266    explicit DAGUpdateListener(SelectionDAG &D)
267      : Next(D.UpdateListeners), DAG(D) {
268      DAG.UpdateListeners = this;
269    }
270
271    virtual ~DAGUpdateListener() {
272      assert(DAG.UpdateListeners == this &&
273             "DAGUpdateListeners must be destroyed in LIFO order");
274      DAG.UpdateListeners = Next;
275    }
276
277    /// The node N that was deleted and, if E is not null, an
278    /// equivalent node E that replaced it.
279    virtual void NodeDeleted(SDNode *N, SDNode *E);
280
281    /// The node N that was updated.
282    virtual void NodeUpdated(SDNode *N);
283  };
284
285  struct DAGNodeDeletedListener : public DAGUpdateListener {
286    std::function<void(SDNode *, SDNode *)> Callback;
287
288    DAGNodeDeletedListener(SelectionDAG &DAG,
289                           std::function<void(SDNode *, SDNode *)> Callback)
290        : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
291
292    void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
293  };
294
295  /// When true, additional steps are taken to
296  /// ensure that getConstant() and similar functions return DAG nodes that
297  /// have legal types. This is important after type legalization since
298  /// any illegally typed nodes generated after this point will not experience
299  /// type legalization.
300  bool NewNodesMustHaveLegalTypes = false;
301
302private:
303  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
304  friend struct DAGUpdateListener;
305
306  /// Linked list of registered DAGUpdateListener instances.
307  /// This stack is maintained by DAGUpdateListener RAII.
308  DAGUpdateListener *UpdateListeners = nullptr;
309
310  /// Implementation of setSubgraphColor.
311  /// Return whether we had to truncate the search.
312  bool setSubgraphColorHelper(SDNode *N, const char *Color,
313                              DenseSet<SDNode *> &visited,
314                              int level, bool &printed);
315
316  template <typename SDNodeT, typename... ArgTypes>
317  SDNodeT *newSDNode(ArgTypes &&... Args) {
318    return new (NodeAllocator.template Allocate<SDNodeT>())
319        SDNodeT(std::forward<ArgTypes>(Args)...);
320  }
321
322  /// Build a synthetic SDNodeT with the given args and extract its subclass
323  /// data as an integer (e.g. for use in a folding set).
324  ///
325  /// The args to this function are the same as the args to SDNodeT's
326  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
327  /// omitted.
328  template <typename SDNodeT, typename... ArgTypes>
329  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
330                                               ArgTypes &&... Args) {
331    // The compiler can reduce this expression to a constant iff we pass an
332    // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
333    // on the subclass data.
334    return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
335        .getRawSubclassData();
336  }
337
338  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
339    assert(!Node->OperandList && "Node already has operands");
340    SDUse *Ops = OperandRecycler.allocate(
341        ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
342
343    for (unsigned I = 0; I != Vals.size(); ++I) {
344      Ops[I].setUser(Node);
345      Ops[I].setInitial(Vals[I]);
346    }
347    Node->NumOperands = Vals.size();
348    Node->OperandList = Ops;
349    checkForCycles(Node);
350  }
351
352  void removeOperands(SDNode *Node) {
353    if (!Node->OperandList)
354      return;
355    OperandRecycler.deallocate(
356        ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
357        Node->OperandList);
358    Node->NumOperands = 0;
359    Node->OperandList = nullptr;
360  }
361
362public:
363  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
364  SelectionDAG(const SelectionDAG &) = delete;
365  SelectionDAG &operator=(const SelectionDAG &) = delete;
366  ~SelectionDAG();
367
368  /// Prepare this SelectionDAG to process code in the given MachineFunction.
369  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE);
370
371  /// Clear state and free memory necessary to make this
372  /// SelectionDAG ready to process a new block.
373  void clear();
374
375  MachineFunction &getMachineFunction() const { return *MF; }
376  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
377  const TargetMachine &getTarget() const { return TM; }
378  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
379  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
380  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
381  LLVMContext *getContext() const {return Context; }
382  OptimizationRemarkEmitter &getORE() const { return *ORE; }
383
384  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
385  void viewGraph(const std::string &Title);
386  void viewGraph();
387
388#ifndef NDEBUG
389  std::map<const SDNode *, std::string> NodeGraphAttrs;
390#endif
391
392  /// Clear all previously defined node graph attributes.
393  /// Intended to be used from a debugging tool (eg. gdb).
394  void clearGraphAttrs();
395
396  /// Set graph attributes for a node. (eg. "color=red".)
397  void setGraphAttrs(const SDNode *N, const char *Attrs);
398
399  /// Get graph attributes for a node. (eg. "color=red".)
400  /// Used from getNodeAttributes.
401  const std::string getGraphAttrs(const SDNode *N) const;
402
403  /// Convenience for setting node color attribute.
404  void setGraphColor(const SDNode *N, const char *Color);
405
406  /// Convenience for setting subgraph color attribute.
407  void setSubgraphColor(SDNode *N, const char *Color);
408
409  using allnodes_const_iterator = ilist<SDNode>::const_iterator;
410
411  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
412  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
413
414  using allnodes_iterator = ilist<SDNode>::iterator;
415
416  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
417  allnodes_iterator allnodes_end() { return AllNodes.end(); }
418
419  ilist<SDNode>::size_type allnodes_size() const {
420    return AllNodes.size();
421  }
422
423  iterator_range<allnodes_iterator> allnodes() {
424    return make_range(allnodes_begin(), allnodes_end());
425  }
426  iterator_range<allnodes_const_iterator> allnodes() const {
427    return make_range(allnodes_begin(), allnodes_end());
428  }
429
430  /// Return the root tag of the SelectionDAG.
431  const SDValue &getRoot() const { return Root; }
432
433  /// Return the token chain corresponding to the entry of the function.
434  SDValue getEntryNode() const {
435    return SDValue(const_cast<SDNode *>(&EntryNode), 0);
436  }
437
438  /// Set the current root tag of the SelectionDAG.
439  ///
440  const SDValue &setRoot(SDValue N) {
441    assert((!N.getNode() || N.getValueType() == MVT::Other) &&
442           "DAG root value is not a chain!");
443    if (N.getNode())
444      checkForCycles(N.getNode(), this);
445    Root = N;
446    if (N.getNode())
447      checkForCycles(this);
448    return Root;
449  }
450
451  /// This iterates over the nodes in the SelectionDAG, folding
452  /// certain types of nodes together, or eliminating superfluous nodes.  The
453  /// Level argument controls whether Combine is allowed to produce nodes and
454  /// types that are illegal on the target.
455  void Combine(CombineLevel Level, AliasAnalysis *AA,
456               CodeGenOpt::Level OptLevel);
457
458  /// This transforms the SelectionDAG into a SelectionDAG that
459  /// only uses types natively supported by the target.
460  /// Returns "true" if it made any changes.
461  ///
462  /// Note that this is an involved process that may invalidate pointers into
463  /// the graph.
464  bool LegalizeTypes();
465
466  /// This transforms the SelectionDAG into a SelectionDAG that is
467  /// compatible with the target instruction selector, as indicated by the
468  /// TargetLowering object.
469  ///
470  /// Note that this is an involved process that may invalidate pointers into
471  /// the graph.
472  void Legalize();
473
474  /// \brief Transforms a SelectionDAG node and any operands to it into a node
475  /// that is compatible with the target instruction selector, as indicated by
476  /// the TargetLowering object.
477  ///
478  /// \returns true if \c N is a valid, legal node after calling this.
479  ///
480  /// This essentially runs a single recursive walk of the \c Legalize process
481  /// over the given node (and its operands). This can be used to incrementally
482  /// legalize the DAG. All of the nodes which are directly replaced,
483  /// potentially including N, are added to the output parameter \c
484  /// UpdatedNodes so that the delta to the DAG can be understood by the
485  /// caller.
486  ///
487  /// When this returns false, N has been legalized in a way that make the
488  /// pointer passed in no longer valid. It may have even been deleted from the
489  /// DAG, and so it shouldn't be used further. When this returns true, the
490  /// N passed in is a legal node, and can be immediately processed as such.
491  /// This may still have done some work on the DAG, and will still populate
492  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
493  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
494
495  /// This transforms the SelectionDAG into a SelectionDAG
496  /// that only uses vector math operations supported by the target.  This is
497  /// necessary as a separate step from Legalize because unrolling a vector
498  /// operation can introduce illegal types, which requires running
499  /// LegalizeTypes again.
500  ///
501  /// This returns true if it made any changes; in that case, LegalizeTypes
502  /// is called again before Legalize.
503  ///
504  /// Note that this is an involved process that may invalidate pointers into
505  /// the graph.
506  bool LegalizeVectors();
507
508  /// This method deletes all unreachable nodes in the SelectionDAG.
509  void RemoveDeadNodes();
510
511  /// Remove the specified node from the system.  This node must
512  /// have no referrers.
513  void DeleteNode(SDNode *N);
514
515  /// Return an SDVTList that represents the list of values specified.
516  SDVTList getVTList(EVT VT);
517  SDVTList getVTList(EVT VT1, EVT VT2);
518  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
519  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
520  SDVTList getVTList(ArrayRef<EVT> VTs);
521
522  //===--------------------------------------------------------------------===//
523  // Node creation methods.
524
525  /// \brief Create a ConstantSDNode wrapping a constant value.
526  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
527  ///
528  /// If only legal types can be produced, this does the necessary
529  /// transformations (e.g., if the vector element type is illegal).
530  /// @{
531  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
532                      bool isTarget = false, bool isOpaque = false);
533  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
534                      bool isTarget = false, bool isOpaque = false);
535
536  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
537                             bool IsOpaque = false) {
538    return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
539                       VT, IsTarget, IsOpaque);
540  }
541
542  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
543                      bool isTarget = false, bool isOpaque = false);
544  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
545                            bool isTarget = false);
546  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
547                            bool isOpaque = false) {
548    return getConstant(Val, DL, VT, true, isOpaque);
549  }
550  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
551                            bool isOpaque = false) {
552    return getConstant(Val, DL, VT, true, isOpaque);
553  }
554  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
555                            bool isOpaque = false) {
556    return getConstant(Val, DL, VT, true, isOpaque);
557  }
558  /// @}
559
560  /// \brief Create a ConstantFPSDNode wrapping a constant value.
561  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
562  ///
563  /// If only legal types can be produced, this does the necessary
564  /// transformations (e.g., if the vector element type is illegal).
565  /// The forms that take a double should only be used for simple constants
566  /// that can be exactly represented in VT.  No checks are made.
567  /// @{
568  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
569                        bool isTarget = false);
570  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
571                        bool isTarget = false);
572  SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
573                        bool isTarget = false);
574  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
575    return getConstantFP(Val, DL, VT, true);
576  }
577  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
578    return getConstantFP(Val, DL, VT, true);
579  }
580  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
581    return getConstantFP(Val, DL, VT, true);
582  }
583  /// @}
584
585  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
586                           int64_t offset = 0, bool isTargetGA = false,
587                           unsigned char TargetFlags = 0);
588  SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
589                                 int64_t offset = 0,
590                                 unsigned char TargetFlags = 0) {
591    return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
592  }
593  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
594  SDValue getTargetFrameIndex(int FI, EVT VT) {
595    return getFrameIndex(FI, VT, true);
596  }
597  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
598                       unsigned char TargetFlags = 0);
599  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
600    return getJumpTable(JTI, VT, true, TargetFlags);
601  }
602  SDValue getConstantPool(const Constant *C, EVT VT,
603                          unsigned Align = 0, int Offs = 0, bool isT=false,
604                          unsigned char TargetFlags = 0);
605  SDValue getTargetConstantPool(const Constant *C, EVT VT,
606                                unsigned Align = 0, int Offset = 0,
607                                unsigned char TargetFlags = 0) {
608    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
609  }
610  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
611                          unsigned Align = 0, int Offs = 0, bool isT=false,
612                          unsigned char TargetFlags = 0);
613  SDValue getTargetConstantPool(MachineConstantPoolValue *C,
614                                  EVT VT, unsigned Align = 0,
615                                  int Offset = 0, unsigned char TargetFlags=0) {
616    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
617  }
618  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
619                         unsigned char TargetFlags = 0);
620  // When generating a branch to a BB, we don't in general know enough
621  // to provide debug info for the BB at that time, so keep this one around.
622  SDValue getBasicBlock(MachineBasicBlock *MBB);
623  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
624  SDValue getExternalSymbol(const char *Sym, EVT VT);
625  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
626  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
627                                  unsigned char TargetFlags = 0);
628  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
629
630  SDValue getValueType(EVT);
631  SDValue getRegister(unsigned Reg, EVT VT);
632  SDValue getRegisterMask(const uint32_t *RegMask);
633  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
634  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
635                          int64_t Offset = 0, bool isTarget = false,
636                          unsigned char TargetFlags = 0);
637  SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
638                                int64_t Offset = 0,
639                                unsigned char TargetFlags = 0) {
640    return getBlockAddress(BA, VT, Offset, true, TargetFlags);
641  }
642
643  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
644                       SDValue N) {
645    return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
646                   getRegister(Reg, N.getValueType()), N);
647  }
648
649  // This version of the getCopyToReg method takes an extra operand, which
650  // indicates that there is potentially an incoming glue value (if Glue is not
651  // null) and that there should be a glue result.
652  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
653                       SDValue Glue) {
654    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
655    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
656    return getNode(ISD::CopyToReg, dl, VTs,
657                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
658  }
659
660  // Similar to last getCopyToReg() except parameter Reg is a SDValue
661  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
662                       SDValue Glue) {
663    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
664    SDValue Ops[] = { Chain, Reg, N, Glue };
665    return getNode(ISD::CopyToReg, dl, VTs,
666                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
667  }
668
669  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
670    SDVTList VTs = getVTList(VT, MVT::Other);
671    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
672    return getNode(ISD::CopyFromReg, dl, VTs, Ops);
673  }
674
675  // This version of the getCopyFromReg method takes an extra operand, which
676  // indicates that there is potentially an incoming glue value (if Glue is not
677  // null) and that there should be a glue result.
678  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
679                         SDValue Glue) {
680    SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
681    SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
682    return getNode(ISD::CopyFromReg, dl, VTs,
683                   makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
684  }
685
686  SDValue getCondCode(ISD::CondCode Cond);
687
688  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
689  /// which must be a vector type, must match the number of mask elements
690  /// NumElts. An integer mask element equal to -1 is treated as undefined.
691  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
692                           ArrayRef<int> Mask);
693
694  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
695  /// which must be a vector type, must match the number of operands in Ops.
696  /// The operands must have the same type as (or, for integers, a type wider
697  /// than) VT's element type.
698  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
699    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
700    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
701  }
702
703  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
704  /// which must be a vector type, must match the number of operands in Ops.
705  /// The operands must have the same type as (or, for integers, a type wider
706  /// than) VT's element type.
707  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
708    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
709    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
710  }
711
712  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
713  /// elements. VT must be a vector type. Op's type must be the same as (or,
714  /// for integers, a type wider than) VT's element type.
715  SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
716    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
717    if (Op.getOpcode() == ISD::UNDEF) {
718      assert((VT.getVectorElementType() == Op.getValueType() ||
719              (VT.isInteger() &&
720               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
721             "A splatted value must have a width equal or (for integers) "
722             "greater than the vector element type!");
723      return getNode(ISD::UNDEF, SDLoc(), VT);
724    }
725
726    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
727    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
728  }
729
730  /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
731  /// the shuffle node in input but with swapped operands.
732  ///
733  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
734  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
735
736  /// Convert Op, which must be of float type, to the
737  /// float type VT, by either extending or rounding (by truncation).
738  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
739
740  /// Convert Op, which must be of integer type, to the
741  /// integer type VT, by either any-extending or truncating it.
742  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
743
744  /// Convert Op, which must be of integer type, to the
745  /// integer type VT, by either sign-extending or truncating it.
746  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
747
748  /// Convert Op, which must be of integer type, to the
749  /// integer type VT, by either zero-extending or truncating it.
750  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
751
752  /// Return the expression required to zero extend the Op
753  /// value assuming it was the smaller SrcTy value.
754  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
755
756  /// Return an operation which will any-extend the low lanes of the operand
757  /// into the specified vector type. For example,
758  /// this can convert a v16i8 into a v4i32 by any-extending the low four
759  /// lanes of the operand from i8 to i32.
760  SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
761
762  /// Return an operation which will sign extend the low lanes of the operand
763  /// into the specified vector type. For example,
764  /// this can convert a v16i8 into a v4i32 by sign extending the low four
765  /// lanes of the operand from i8 to i32.
766  SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
767
768  /// Return an operation which will zero extend the low lanes of the operand
769  /// into the specified vector type. For example,
770  /// this can convert a v16i8 into a v4i32 by zero extending the low four
771  /// lanes of the operand from i8 to i32.
772  SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
773
774  /// Convert Op, which must be of integer type, to the integer type VT,
775  /// by using an extension appropriate for the target's
776  /// BooleanContent for type OpVT or truncating it.
777  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
778
779  /// Create a bitwise NOT operation as (XOR Val, -1).
780  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
781
782  /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
783  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
784
785  /// Return a new CALLSEQ_START node, that starts new call frame, in which
786  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
787  /// OutSize specifies part of the frame set up prior to the sequence.
788  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
789                           const SDLoc &DL) {
790    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
791    SDValue Ops[] = { Chain,
792                      getIntPtrConstant(InSize, DL, true),
793                      getIntPtrConstant(OutSize, DL, true) };
794    return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
795  }
796
797  /// Return a new CALLSEQ_END node, which always must have a
798  /// glue result (to ensure it's not CSE'd).
799  /// CALLSEQ_END does not have a useful SDLoc.
800  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
801                         SDValue InGlue, const SDLoc &DL) {
802    SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
803    SmallVector<SDValue, 4> Ops;
804    Ops.push_back(Chain);
805    Ops.push_back(Op1);
806    Ops.push_back(Op2);
807    if (InGlue.getNode())
808      Ops.push_back(InGlue);
809    return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
810  }
811
812  /// Return true if the result of this operation is always undefined.
813  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
814
815  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
816  SDValue getUNDEF(EVT VT) {
817    return getNode(ISD::UNDEF, SDLoc(), VT);
818  }
819
820  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
821  SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
822    return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
823  }
824
825  /// Gets or creates the specified node.
826  ///
827  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
828                  ArrayRef<SDUse> Ops);
829  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
830                  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
831  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
832                  ArrayRef<SDValue> Ops);
833  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
834                  ArrayRef<SDValue> Ops);
835
836  // Specialize based on number of operands.
837  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
838  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N,
839                  const SDNodeFlags Flags = SDNodeFlags());
840  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
841                  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
842  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
843                  SDValue N2, SDValue N3);
844  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
845                  SDValue N2, SDValue N3, SDValue N4);
846  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
847                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
848
849  // Specialize again based on number of operands for nodes with a VTList
850  // rather than a single VT.
851  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
852  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
853  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
854                  SDValue N2);
855  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
856                  SDValue N2, SDValue N3);
857  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
858                  SDValue N2, SDValue N3, SDValue N4);
859  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
860                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
861
862  /// Compute a TokenFactor to force all the incoming stack arguments to be
863  /// loaded from the stack. This is used in tail call lowering to protect
864  /// stack arguments from being clobbered.
865  SDValue getStackArgumentTokenFactor(SDValue Chain);
866
867  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
868                    SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
869                    bool isTailCall, MachinePointerInfo DstPtrInfo,
870                    MachinePointerInfo SrcPtrInfo);
871
872  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
873                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
874                     MachinePointerInfo DstPtrInfo,
875                     MachinePointerInfo SrcPtrInfo);
876
877  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
878                    SDValue Size, unsigned Align, bool isVol, bool isTailCall,
879                    MachinePointerInfo DstPtrInfo);
880
881  /// Helper function to make it easier to build SetCC's if you just
882  /// have an ISD::CondCode instead of an SDValue.
883  ///
884  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
885                   ISD::CondCode Cond) {
886    assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
887      "Cannot compare scalars to vectors");
888    assert(LHS.getValueType().isVector() == VT.isVector() &&
889      "Cannot compare scalars to vectors");
890    assert(Cond != ISD::SETCC_INVALID &&
891        "Cannot create a setCC of an invalid node.");
892    return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
893  }
894
895  /// Helper function to make it easier to build Select's if you just
896  /// have operands and don't want to check for vector.
897  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
898                    SDValue RHS) {
899    assert(LHS.getValueType() == RHS.getValueType() &&
900           "Cannot use select on differing types");
901    assert(VT.isVector() == LHS.getValueType().isVector() &&
902           "Cannot mix vectors and scalars");
903    return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
904                   Cond, LHS, RHS);
905  }
906
907  /// Helper function to make it easier to build SelectCC's if you
908  /// just have an ISD::CondCode instead of an SDValue.
909  ///
910  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
911                      SDValue False, ISD::CondCode Cond) {
912    return getNode(ISD::SELECT_CC, DL, True.getValueType(),
913                   LHS, RHS, True, False, getCondCode(Cond));
914  }
915
916  /// VAArg produces a result and token chain, and takes a pointer
917  /// and a source value as input.
918  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
919                   SDValue SV, unsigned Align);
920
921  /// Gets a node for an atomic cmpxchg op. There are two
922  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
923  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
924  /// a success flag (initially i1), and a chain.
925  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
926                           SDVTList VTs, SDValue Chain, SDValue Ptr,
927                           SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
928                           unsigned Alignment, AtomicOrdering SuccessOrdering,
929                           AtomicOrdering FailureOrdering,
930                           SynchronizationScope SynchScope);
931  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
932                           SDVTList VTs, SDValue Chain, SDValue Ptr,
933                           SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
934
935  /// Gets a node for an atomic op, produces result (if relevant)
936  /// and chain and takes 2 operands.
937  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
938                    SDValue Ptr, SDValue Val, const Value *PtrVal,
939                    unsigned Alignment, AtomicOrdering Ordering,
940                    SynchronizationScope SynchScope);
941  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
942                    SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
943
944  /// Gets a node for an atomic op, produces result and chain and
945  /// takes 1 operand.
946  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
947                    SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
948
949  /// Gets a node for an atomic op, produces result and chain and takes N
950  /// operands.
951  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
952                    SDVTList VTList, ArrayRef<SDValue> Ops,
953                    MachineMemOperand *MMO);
954
955  /// Creates a MemIntrinsicNode that may produce a
956  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
957  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
958  /// less than FIRST_TARGET_MEMORY_OPCODE.
959  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
960                              ArrayRef<SDValue> Ops, EVT MemVT,
961                              MachinePointerInfo PtrInfo, unsigned Align = 0,
962                              bool Vol = false, bool ReadMem = true,
963                              bool WriteMem = true, unsigned Size = 0);
964
965  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
966                              ArrayRef<SDValue> Ops, EVT MemVT,
967                              MachineMemOperand *MMO);
968
969  /// Create a MERGE_VALUES node from the given operands.
970  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
971
972  /// Loads are not normal binary operators: their result type is not
973  /// determined by their operands, and they produce a value AND a token chain.
974  ///
975  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
976  /// you want.  The MOStore flag must not be set.
977  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
978                  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
979                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
980                  const AAMDNodes &AAInfo = AAMDNodes(),
981                  const MDNode *Ranges = nullptr);
982  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
983                  MachineMemOperand *MMO);
984  SDValue
985  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
986             SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
987             unsigned Alignment = 0,
988             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
989             const AAMDNodes &AAInfo = AAMDNodes());
990  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
991                     SDValue Chain, SDValue Ptr, EVT MemVT,
992                     MachineMemOperand *MMO);
993  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
994                         SDValue Offset, ISD::MemIndexedMode AM);
995  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
996                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
997                  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
998                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
999                  const AAMDNodes &AAInfo = AAMDNodes(),
1000                  const MDNode *Ranges = nullptr);
1001  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1002                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1003                  EVT MemVT, MachineMemOperand *MMO);
1004
1005  /// Helper function to build ISD::STORE nodes.
1006  ///
1007  /// This function will set the MOStore flag on MMOFlags, but you can set it if
1008  /// you want.  The MOLoad and MOInvariant flags must not be set.
1009  SDValue
1010  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1011           MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1012           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1013           const AAMDNodes &AAInfo = AAMDNodes());
1014  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1015                   MachineMemOperand *MMO);
1016  SDValue
1017  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1018                MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
1019                MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1020                const AAMDNodes &AAInfo = AAMDNodes());
1021  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1022                        SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
1023  SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
1024                          SDValue Offset, ISD::MemIndexedMode AM);
1025
1026  /// Returns sum of the base pointer and offset.
1027  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1028
1029  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1030                        SDValue Mask, SDValue Src0, EVT MemVT,
1031                        MachineMemOperand *MMO, ISD::LoadExtType,
1032                        bool IsExpanding = false);
1033  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1034                         SDValue Ptr, SDValue Mask, EVT MemVT,
1035                         MachineMemOperand *MMO, bool IsTruncating = false,
1036                         bool IsCompressing = false);
1037  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1038                          ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1039  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1040                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1041
1042  /// Return (create a new or find existing) a target-specific node.
1043  /// TargetMemSDNode should be derived class from MemSDNode.
1044  template <class TargetMemSDNode>
1045  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1046                             const SDLoc &dl, EVT MemVT,
1047                             MachineMemOperand *MMO);
1048
1049  /// Construct a node to track a Value* through the backend.
1050  SDValue getSrcValue(const Value *v);
1051
1052  /// Return an MDNodeSDNode which holds an MDNode.
1053  SDValue getMDNode(const MDNode *MD);
1054
1055  /// Return a bitcast using the SDLoc of the value operand, and casting to the
1056  /// provided type. Use getNode to set a custom SDLoc.
1057  SDValue getBitcast(EVT VT, SDValue V);
1058
1059  /// Return an AddrSpaceCastSDNode.
1060  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1061                           unsigned DestAS);
1062
1063  /// Return the specified value casted to
1064  /// the target's desired shift amount type.
1065  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1066
1067  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1068  SDValue expandVAArg(SDNode *Node);
1069
1070  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1071  SDValue expandVACopy(SDNode *Node);
1072
1073  /// *Mutate* the specified node in-place to have the
1074  /// specified operands.  If the resultant node already exists in the DAG,
1075  /// this does not modify the specified node, instead it returns the node that
1076  /// already exists.  If the resultant node does not exist in the DAG, the
1077  /// input node is returned.  As a degenerate case, if you specify the same
1078  /// input operands as the node already has, the input node is returned.
1079  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1080  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1081  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1082                               SDValue Op3);
1083  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1084                               SDValue Op3, SDValue Op4);
1085  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1086                               SDValue Op3, SDValue Op4, SDValue Op5);
1087  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1088
1089  /// These are used for target selectors to *mutate* the
1090  /// specified node to have the specified return type, Target opcode, and
1091  /// operands.  Note that target opcodes are stored as
1092  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1093  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
1094  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
1095  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1096                       SDValue Op1, SDValue Op2);
1097  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1098                       SDValue Op1, SDValue Op2, SDValue Op3);
1099  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1100                       ArrayRef<SDValue> Ops);
1101  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
1102  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1103                       EVT VT2, ArrayRef<SDValue> Ops);
1104  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1105                       EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1106  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1107                       EVT VT2, SDValue Op1);
1108  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1109                       EVT VT2, SDValue Op1, SDValue Op2);
1110  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
1111                       ArrayRef<SDValue> Ops);
1112
1113  /// This *mutates* the specified node to have the specified
1114  /// return type, opcode, and operands.
1115  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1116                      ArrayRef<SDValue> Ops);
1117
1118  /// Mutate the specified strict FP node to its non-strict equivalent,
1119  /// unlinking the node from its chain and dropping the metadata arguments.
1120  /// The node must be a strict FP node.
1121  SDNode *mutateStrictFPToFP(SDNode *Node);
1122
1123  /// These are used for target selectors to create a new node
1124  /// with specified return type(s), MachineInstr opcode, and operands.
1125  ///
1126  /// Note that getMachineNode returns the resultant node.  If there is already
1127  /// a node of the specified opcode and operands, it returns that node instead
1128  /// of the current one.
1129  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1130  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1131                                SDValue Op1);
1132  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1133                                SDValue Op1, SDValue Op2);
1134  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1135                                SDValue Op1, SDValue Op2, SDValue Op3);
1136  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1137                                ArrayRef<SDValue> Ops);
1138  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1139                                EVT VT2, SDValue Op1, SDValue Op2);
1140  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1141                                EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1142  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1143                                EVT VT2, ArrayRef<SDValue> Ops);
1144  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1145                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1146  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1147                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1148                                SDValue Op3);
1149  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1150                                EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1151  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1152                                ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1153  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1154                                ArrayRef<SDValue> Ops);
1155
1156  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1157  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1158                                 SDValue Operand);
1159
1160  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1161  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1162                                SDValue Operand, SDValue Subreg);
1163
1164  /// Get the specified node if it's already available, or else return NULL.
1165  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
1166                          const SDNodeFlags Flags = SDNodeFlags());
1167
1168  /// Creates a SDDbgValue node.
1169  SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
1170                          bool IsIndirect, uint64_t Off, const DebugLoc &DL,
1171                          unsigned O);
1172
1173  /// Constant
1174  SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
1175                                  uint64_t Off, const DebugLoc &DL, unsigned O);
1176
1177  /// FrameIndex
1178  SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
1179                                    uint64_t Off, const DebugLoc &DL,
1180                                    unsigned O);
1181
1182  /// Remove the specified node from the system. If any of its
1183  /// operands then becomes dead, remove them as well. Inform UpdateListener
1184  /// for each node deleted.
1185  void RemoveDeadNode(SDNode *N);
1186
1187  /// This method deletes the unreachable nodes in the
1188  /// given list, and any nodes that become unreachable as a result.
1189  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1190
1191  /// Modify anything using 'From' to use 'To' instead.
1192  /// This can cause recursive merging of nodes in the DAG.  Use the first
1193  /// version if 'From' is known to have a single result, use the second
1194  /// if you have two nodes with identical results (or if 'To' has a superset
1195  /// of the results of 'From'), use the third otherwise.
1196  ///
1197  /// These methods all take an optional UpdateListener, which (if not null) is
1198  /// informed about nodes that are deleted and modified due to recursive
1199  /// changes in the dag.
1200  ///
1201  /// These functions only replace all existing uses. It's possible that as
1202  /// these replacements are being performed, CSE may cause the From node
1203  /// to be given new uses. These new uses of From are left in place, and
1204  /// not automatically transferred to To.
1205  ///
1206  void ReplaceAllUsesWith(SDValue From, SDValue Op);
1207  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1208  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1209
1210  /// Replace any uses of From with To, leaving
1211  /// uses of other values produced by From.Val alone.
1212  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1213
1214  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1215  /// This correctly handles the case where
1216  /// there is an overlap between the From values and the To values.
1217  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1218                                  unsigned Num);
1219
1220  /// If an existing load has uses of its chain, create a token factor node with
1221  /// that chain and the new memory node's chain and update users of the old
1222  /// chain to the token factor. This ensures that the new memory node will have
1223  /// the same relative memory dependency position as the old load.
1224  void makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1225
1226  /// Topological-sort the AllNodes list and a
1227  /// assign a unique node id for each node in the DAG based on their
1228  /// topological order. Returns the number of nodes.
1229  unsigned AssignTopologicalOrder();
1230
1231  /// Move node N in the AllNodes list to be immediately
1232  /// before the given iterator Position. This may be used to update the
1233  /// topological ordering when the list of nodes is modified.
1234  void RepositionNode(allnodes_iterator Position, SDNode *N) {
1235    AllNodes.insert(Position, AllNodes.remove(N));
1236  }
1237
1238  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1239  /// a vector type, the element semantics are returned.
1240  static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1241    switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1242    default: llvm_unreachable("Unknown FP format");
1243    case MVT::f16:     return APFloat::IEEEhalf();
1244    case MVT::f32:     return APFloat::IEEEsingle();
1245    case MVT::f64:     return APFloat::IEEEdouble();
1246    case MVT::f80:     return APFloat::x87DoubleExtended();
1247    case MVT::f128:    return APFloat::IEEEquad();
1248    case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1249    }
1250  }
1251
1252  /// Add a dbg_value SDNode. If SD is non-null that means the
1253  /// value is produced by SD.
1254  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1255
1256  /// Get the debug values which reference the given SDNode.
1257  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
1258    return DbgInfo->getSDDbgValues(SD);
1259  }
1260
1261private:
1262  /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
1263  void TransferDbgValues(SDValue From, SDValue To);
1264
1265public:
1266  /// Return true if there are any SDDbgValue nodes associated
1267  /// with this SelectionDAG.
1268  bool hasDebugValues() const { return !DbgInfo->empty(); }
1269
1270  SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
1271  SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
1272
1273  SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
1274    return DbgInfo->ByvalParmDbgBegin();
1275  }
1276
1277  SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
1278    return DbgInfo->ByvalParmDbgEnd();
1279  }
1280
1281  void dump() const;
1282
1283  /// Create a stack temporary, suitable for holding the specified value type.
1284  /// If minAlign is specified, the slot size will have at least that alignment.
1285  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1286
1287  /// Create a stack temporary suitable for holding either of the specified
1288  /// value types.
1289  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1290
1291  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1292                           const GlobalAddressSDNode *GA,
1293                           const SDNode *N2);
1294
1295  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1296                                 SDNode *Cst1, SDNode *Cst2);
1297
1298  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1299                                 const ConstantSDNode *Cst1,
1300                                 const ConstantSDNode *Cst2);
1301
1302  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1303                                       ArrayRef<SDValue> Ops,
1304                                       const SDNodeFlags Flags = SDNodeFlags());
1305
1306  /// Constant fold a setcc to true or false.
1307  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1308                    const SDLoc &dl);
1309
1310  /// Return true if the sign bit of Op is known to be zero.
1311  /// We use this predicate to simplify operations downstream.
1312  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1313
1314  /// Return true if 'Op & Mask' is known to be zero.  We
1315  /// use this predicate to simplify operations downstream.  Op and Mask are
1316  /// known to be the same type.
1317  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1318    const;
1319
1320  /// Determine which bits of Op are known to be either zero or one and return
1321  /// them in Known. For vectors, the known bits are those that are shared by
1322  /// every vector element.
1323  /// Targets can implement the computeKnownBitsForTargetNode method in the
1324  /// TargetLowering class to allow target nodes to be understood.
1325  void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
1326
1327  /// Determine which bits of Op are known to be either zero or one and return
1328  /// them in Known. The DemandedElts argument allows us to only collect the
1329  /// known bits that are shared by the requested vector elements.
1330  /// Targets can implement the computeKnownBitsForTargetNode method in the
1331  /// TargetLowering class to allow target nodes to be understood.
1332  void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1333                        unsigned Depth = 0) const;
1334
1335  /// Used to represent the possible overflow behavior of an operation.
1336  /// Never: the operation cannot overflow.
1337  /// Always: the operation will always overflow.
1338  /// Sometime: the operation may or may not overflow.
1339  enum OverflowKind {
1340    OFK_Never,
1341    OFK_Sometime,
1342    OFK_Always,
1343  };
1344
1345  /// Determine if the result of the addition of 2 node can overflow.
1346  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1347
1348  /// Test if the given value is known to have exactly one bit set. This differs
1349  /// from computeKnownBits in that it doesn't necessarily determine which bit
1350  /// is set.
1351  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1352
1353  /// Return the number of times the sign bit of the register is replicated into
1354  /// the other bits. We know that at least 1 bit is always equal to the sign
1355  /// bit (itself), but other cases can give us information. For example,
1356  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1357  /// to each other, so we return 3. Targets can implement the
1358  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1359  /// target nodes to be understood.
1360  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1361
1362  /// Return the number of times the sign bit of the register is replicated into
1363  /// the other bits. We know that at least 1 bit is always equal to the sign
1364  /// bit (itself), but other cases can give us information. For example,
1365  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1366  /// to each other, so we return 3. The DemandedElts argument allows
1367  /// us to only collect the minimum sign bits of the requested vector elements.
1368  /// Targets can implement the ComputeNumSignBitsForTarget method in the
1369  /// TargetLowering class to allow target nodes to be understood.
1370  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1371                              unsigned Depth = 0) const;
1372
1373  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1374  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1375  /// is guaranteed to have the same semantics as an ADD. This handles the
1376  /// equivalence:
1377  ///     X|Cst == X+Cst iff X&Cst = 0.
1378  bool isBaseWithConstantOffset(SDValue Op) const;
1379
1380  /// Test whether the given SDValue is known to never be NaN.
1381  bool isKnownNeverNaN(SDValue Op) const;
1382
1383  /// Test whether the given SDValue is known to never be positive or negative
1384  /// zero.
1385  bool isKnownNeverZero(SDValue Op) const;
1386
1387  /// Test whether two SDValues are known to compare equal. This
1388  /// is true if they are the same value, or if one is negative zero and the
1389  /// other positive zero.
1390  bool isEqualTo(SDValue A, SDValue B) const;
1391
1392  /// Return true if A and B have no common bits set. As an example, this can
1393  /// allow an 'add' to be transformed into an 'or'.
1394  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1395
1396  /// Utility function used by legalize and lowering to
1397  /// "unroll" a vector operation by splitting out the scalars and operating
1398  /// on each element individually.  If the ResNE is 0, fully unroll the vector
1399  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1400  /// If the  ResNE is greater than the width of the vector op, unroll the
1401  /// vector op and fill the end of the resulting vector with UNDEFS.
1402  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1403
1404  /// Return true if loads are next to each other and can be
1405  /// merged. Check that both are nonvolatile and if LD is loading
1406  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1407  /// location that the 'Base' load is loading from.
1408  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1409                                      unsigned Bytes, int Dist) const;
1410
1411  /// Infer alignment of a load / store address. Return 0 if
1412  /// it cannot be inferred.
1413  unsigned InferPtrAlignment(SDValue Ptr) const;
1414
1415  /// Compute the VTs needed for the low/hi parts of a type
1416  /// which is split (or expanded) into two not necessarily identical pieces.
1417  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1418
1419  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1420  /// VTs and return the low/high part.
1421  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1422                                          const EVT &LoVT, const EVT &HiVT);
1423
1424  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1425  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1426    EVT LoVT, HiVT;
1427    std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1428    return SplitVector(N, DL, LoVT, HiVT);
1429  }
1430
1431  /// Split the node's operand with EXTRACT_SUBVECTOR and
1432  /// return the low/high part.
1433  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1434  {
1435    return SplitVector(N->getOperand(OpNo), SDLoc(N));
1436  }
1437
1438  /// Append the extracted elements from Start to Count out of the vector Op
1439  /// in Args. If Count is 0, all of the elements will be extracted.
1440  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1441                             unsigned Start = 0, unsigned Count = 0);
1442
1443  /// Compute the default alignment value for the given type.
1444  unsigned getEVTAlignment(EVT MemoryVT) const;
1445
1446  /// Test whether the given value is a constant int or similar node.
1447  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1448
1449  /// Test whether the given value is a constant FP or similar node.
1450  SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1451
1452  /// \returns true if \p N is any kind of constant or build_vector of
1453  /// constants, int or float. If a vector, it may not necessarily be a splat.
1454  inline bool isConstantValueOfAnyType(SDValue N) {
1455    return isConstantIntBuildVectorOrConstantInt(N) ||
1456           isConstantFPBuildVectorOrConstantFP(N);
1457  }
1458
1459private:
1460  void InsertNode(SDNode *N);
1461  bool RemoveNodeFromCSEMaps(SDNode *N);
1462  void AddModifiedNodeToCSEMaps(SDNode *N);
1463  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1464  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1465                               void *&InsertPos);
1466  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1467                               void *&InsertPos);
1468  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1469
1470  void DeleteNodeNotInCSEMaps(SDNode *N);
1471  void DeallocateNode(SDNode *N);
1472
1473  void allnodes_clear();
1474
1475  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1476  /// not, return the insertion token that will make insertion faster.  This
1477  /// overload is for nodes other than Constant or ConstantFP, use the other one
1478  /// for those.
1479  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1480
1481  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1482  /// not, return the insertion token that will make insertion faster.  Performs
1483  /// additional processing for constant nodes.
1484  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1485                              void *&InsertPos);
1486
1487  /// List of non-single value types.
1488  FoldingSet<SDVTListNode> VTListMap;
1489
1490  /// Maps to auto-CSE operations.
1491  std::vector<CondCodeSDNode*> CondCodeNodes;
1492
1493  std::vector<SDNode*> ValueTypeNodes;
1494  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1495  StringMap<SDNode*> ExternalSymbols;
1496
1497  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1498  DenseMap<MCSymbol *, SDNode *> MCSymbols;
1499};
1500
1501template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1502  using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1503
1504  static nodes_iterator nodes_begin(SelectionDAG *G) {
1505    return nodes_iterator(G->allnodes_begin());
1506  }
1507
1508  static nodes_iterator nodes_end(SelectionDAG *G) {
1509    return nodes_iterator(G->allnodes_end());
1510  }
1511};
1512
1513template <class TargetMemSDNode>
1514SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1515                                         ArrayRef<SDValue> Ops,
1516                                         const SDLoc &dl, EVT MemVT,
1517                                         MachineMemOperand *MMO) {
1518  /// Compose node ID and try to find an existing node.
1519  FoldingSetNodeID ID;
1520  unsigned Opcode =
1521    TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1522  ID.AddInteger(Opcode);
1523  ID.AddPointer(VTs.VTs);
1524  for (auto& Op : Ops) {
1525    ID.AddPointer(Op.getNode());
1526    ID.AddInteger(Op.getResNo());
1527  }
1528  ID.AddInteger(MemVT.getRawBits());
1529  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1530  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1531    dl.getIROrder(), VTs, MemVT, MMO));
1532
1533  void *IP = nullptr;
1534  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1535    cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1536    return SDValue(E, 0);
1537  }
1538
1539  /// Existing node was not found. Create a new one.
1540  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1541                                       MemVT, MMO);
1542  createOperands(N, Ops);
1543  CSEMap.InsertNode(N, IP);
1544  InsertNode(N);
1545  return SDValue(N, 0);
1546}
1547
1548} // end namespace llvm
1549
1550#endif // LLVM_CODEGEN_SELECTIONDAG_H
1551