1//===-- llvm/CallingConvLower.h - Calling Conventions -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the CCState and CCValAssign classes, used for lowering
11// and implementing calling conventions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
16#define LLVM_CODEGEN_CALLINGCONVLOWER_H
17
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/IR/CallingConv.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/Target/TargetCallingConv.h"
24
25namespace llvm {
26class CCState;
27class MVT;
28class TargetMachine;
29class TargetRegisterInfo;
30
31/// CCValAssign - Represent assignment of one arg/retval to a location.
32class CCValAssign {
33public:
34  enum LocInfo {
35    Full,      // The value fills the full location.
36    SExt,      // The value is sign extended in the location.
37    ZExt,      // The value is zero extended in the location.
38    AExt,      // The value is extended with undefined upper bits.
39    SExtUpper, // The value is in the upper bits of the location and should be
40               // sign extended when retrieved.
41    ZExtUpper, // The value is in the upper bits of the location and should be
42               // zero extended when retrieved.
43    AExtUpper, // The value is in the upper bits of the location and should be
44               // extended with undefined upper bits when retrieved.
45    BCvt,      // The value is bit-converted in the location.
46    VExt,      // The value is vector-widened in the location.
47               // FIXME: Not implemented yet. Code that uses AExt to mean
48               // vector-widen should be fixed to use VExt instead.
49    FPExt,     // The floating-point value is fp-extended in the location.
50    Indirect   // The location contains pointer to the value.
51    // TODO: a subset of the value is in the location.
52  };
53
54private:
55  /// ValNo - This is the value number begin assigned (e.g. an argument number).
56  unsigned ValNo;
57
58  /// Loc is either a stack offset or a register number.
59  unsigned Loc;
60
61  /// isMem - True if this is a memory loc, false if it is a register loc.
62  unsigned isMem : 1;
63
64  /// isCustom - True if this arg/retval requires special handling.
65  unsigned isCustom : 1;
66
67  /// Information about how the value is assigned.
68  LocInfo HTP : 6;
69
70  /// ValVT - The type of the value being assigned.
71  MVT ValVT;
72
73  /// LocVT - The type of the location being assigned to.
74  MVT LocVT;
75public:
76
77  static CCValAssign getReg(unsigned ValNo, MVT ValVT,
78                            unsigned RegNo, MVT LocVT,
79                            LocInfo HTP) {
80    CCValAssign Ret;
81    Ret.ValNo = ValNo;
82    Ret.Loc = RegNo;
83    Ret.isMem = false;
84    Ret.isCustom = false;
85    Ret.HTP = HTP;
86    Ret.ValVT = ValVT;
87    Ret.LocVT = LocVT;
88    return Ret;
89  }
90
91  static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
92                                  unsigned RegNo, MVT LocVT,
93                                  LocInfo HTP) {
94    CCValAssign Ret;
95    Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
96    Ret.isCustom = true;
97    return Ret;
98  }
99
100  static CCValAssign getMem(unsigned ValNo, MVT ValVT,
101                            unsigned Offset, MVT LocVT,
102                            LocInfo HTP) {
103    CCValAssign Ret;
104    Ret.ValNo = ValNo;
105    Ret.Loc = Offset;
106    Ret.isMem = true;
107    Ret.isCustom = false;
108    Ret.HTP = HTP;
109    Ret.ValVT = ValVT;
110    Ret.LocVT = LocVT;
111    return Ret;
112  }
113
114  static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
115                                  unsigned Offset, MVT LocVT,
116                                  LocInfo HTP) {
117    CCValAssign Ret;
118    Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
119    Ret.isCustom = true;
120    return Ret;
121  }
122
123  // There is no need to differentiate between a pending CCValAssign and other
124  // kinds, as they are stored in a different list.
125  static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
126                                LocInfo HTP, unsigned ExtraInfo = 0) {
127    return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
128  }
129
130  void convertToReg(unsigned RegNo) {
131    Loc = RegNo;
132    isMem = false;
133  }
134
135  void convertToMem(unsigned Offset) {
136    Loc = Offset;
137    isMem = true;
138  }
139
140  unsigned getValNo() const { return ValNo; }
141  MVT getValVT() const { return ValVT; }
142
143  bool isRegLoc() const { return !isMem; }
144  bool isMemLoc() const { return isMem; }
145
146  bool needsCustom() const { return isCustom; }
147
148  unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
149  unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
150  unsigned getExtraInfo() const { return Loc; }
151  MVT getLocVT() const { return LocVT; }
152
153  LocInfo getLocInfo() const { return HTP; }
154  bool isExtInLoc() const {
155    return (HTP == AExt || HTP == SExt || HTP == ZExt);
156  }
157
158  bool isUpperBitsInLoc() const {
159    return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
160  }
161};
162
163/// Describes a register that needs to be forwarded from the prologue to a
164/// musttail call.
165struct ForwardedRegister {
166  ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
167      : VReg(VReg), PReg(PReg), VT(VT) {}
168  unsigned VReg;
169  MCPhysReg PReg;
170  MVT VT;
171};
172
173/// CCAssignFn - This function assigns a location for Val, updating State to
174/// reflect the change.  It returns 'true' if it failed to handle Val.
175typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
176                        MVT LocVT, CCValAssign::LocInfo LocInfo,
177                        ISD::ArgFlagsTy ArgFlags, CCState &State);
178
179/// CCCustomFn - This function assigns a location for Val, possibly updating
180/// all args to reflect changes and indicates if it handled it. It must set
181/// isCustom if it handles the arg and returns true.
182typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
183                        MVT &LocVT, CCValAssign::LocInfo &LocInfo,
184                        ISD::ArgFlagsTy &ArgFlags, CCState &State);
185
186/// CCState - This class holds information needed while lowering arguments and
187/// return values.  It captures which registers are already assigned and which
188/// stack slots are used.  It provides accessors to allocate these values.
189class CCState {
190private:
191  CallingConv::ID CallingConv;
192  bool IsVarArg;
193  bool AnalyzingMustTailForwardedRegs = false;
194  MachineFunction &MF;
195  const TargetRegisterInfo &TRI;
196  SmallVectorImpl<CCValAssign> &Locs;
197  LLVMContext &Context;
198
199  unsigned StackOffset;
200  unsigned MaxStackArgAlign;
201  SmallVector<uint32_t, 16> UsedRegs;
202  SmallVector<CCValAssign, 4> PendingLocs;
203
204  // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
205  //
206  // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
207  // tracking.
208  // Or, in another words it tracks byval parameters that are stored in
209  // general purpose registers.
210  //
211  // For 4 byte stack alignment,
212  // instance index means byval parameter number in formal
213  // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
214  // then, for function "foo":
215  //
216  // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
217  //
218  // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
219  // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
220  //
221  // In case of 8 bytes stack alignment,
222  // ByValRegs may also contain information about wasted registers.
223  // In function shown above, r3 would be wasted according to AAPCS rules.
224  // And in that case ByValRegs[1].Waste would be "true".
225  // ByValRegs vector size still would be 2,
226  // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
227  //
228  // Supposed use-case for this collection:
229  // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
230  // 2. HandleByVal fillups ByValRegs.
231  // 3. Argument analysis (LowerFormatArguments, for example). After
232  // some byval argument was analyzed, InRegsParamsProcessed is increased.
233  struct ByValInfo {
234    ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
235      Begin(B), End(E), Waste(IsWaste) {}
236    // First register allocated for current parameter.
237    unsigned Begin;
238
239    // First after last register allocated for current parameter.
240    unsigned End;
241
242    // Means that current range of registers doesn't belong to any
243    // parameters. It was wasted due to stack alignment rules.
244    // For more information see:
245    // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
246    bool Waste;
247  };
248  SmallVector<ByValInfo, 4 > ByValRegs;
249
250  // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
251  // during argument analysis.
252  unsigned InRegsParamsProcessed;
253
254public:
255  CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
256          SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
257
258  void addLoc(const CCValAssign &V) {
259    Locs.push_back(V);
260  }
261
262  LLVMContext &getContext() const { return Context; }
263  MachineFunction &getMachineFunction() const { return MF; }
264  CallingConv::ID getCallingConv() const { return CallingConv; }
265  bool isVarArg() const { return IsVarArg; }
266
267  /// getNextStackOffset - Return the next stack offset such that all stack
268  /// slots satisfy their alignment requirements.
269  unsigned getNextStackOffset() const {
270    return StackOffset;
271  }
272
273  /// getAlignedCallFrameSize - Return the size of the call frame needed to
274  /// be able to store all arguments and such that the alignment requirement
275  /// of each of the arguments is satisfied.
276  unsigned getAlignedCallFrameSize() const {
277    return alignTo(StackOffset, MaxStackArgAlign);
278  }
279
280  /// isAllocated - Return true if the specified register (or an alias) is
281  /// allocated.
282  bool isAllocated(unsigned Reg) const {
283    return UsedRegs[Reg/32] & (1 << (Reg&31));
284  }
285
286  /// AnalyzeFormalArguments - Analyze an array of argument values,
287  /// incorporating info about the formals into this state.
288  void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
289                              CCAssignFn Fn);
290
291  /// The function will invoke AnalyzeFormalArguments.
292  void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
293                        CCAssignFn Fn) {
294    AnalyzeFormalArguments(Ins, Fn);
295  }
296
297  /// AnalyzeReturn - Analyze the returned values of a return,
298  /// incorporating info about the result values into this state.
299  void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
300                     CCAssignFn Fn);
301
302  /// CheckReturn - Analyze the return values of a function, returning
303  /// true if the return can be performed without sret-demotion, and
304  /// false otherwise.
305  bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
306                   CCAssignFn Fn);
307
308  /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
309  /// incorporating info about the passed values into this state.
310  void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
311                           CCAssignFn Fn);
312
313  /// AnalyzeCallOperands - Same as above except it takes vectors of types
314  /// and argument flags.
315  void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
316                           SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
317                           CCAssignFn Fn);
318
319  /// The function will invoke AnalyzeCallOperands.
320  void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
321                        CCAssignFn Fn) {
322    AnalyzeCallOperands(Outs, Fn);
323  }
324
325  /// AnalyzeCallResult - Analyze the return values of a call,
326  /// incorporating info about the passed values into this state.
327  void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
328                         CCAssignFn Fn);
329
330  /// A shadow allocated register is a register that was allocated
331  /// but wasn't added to the location list (Locs).
332  /// \returns true if the register was allocated as shadow or false otherwise.
333  bool IsShadowAllocatedReg(unsigned Reg) const;
334
335  /// AnalyzeCallResult - Same as above except it's specialized for calls which
336  /// produce a single value.
337  void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
338
339  /// getFirstUnallocated - Return the index of the first unallocated register
340  /// in the set, or Regs.size() if they are all allocated.
341  unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
342    for (unsigned i = 0; i < Regs.size(); ++i)
343      if (!isAllocated(Regs[i]))
344        return i;
345    return Regs.size();
346  }
347
348  /// AllocateReg - Attempt to allocate one register.  If it is not available,
349  /// return zero.  Otherwise, return the register, marking it and any aliases
350  /// as allocated.
351  unsigned AllocateReg(unsigned Reg) {
352    if (isAllocated(Reg)) return 0;
353    MarkAllocated(Reg);
354    return Reg;
355  }
356
357  /// Version of AllocateReg with extra register to be shadowed.
358  unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
359    if (isAllocated(Reg)) return 0;
360    MarkAllocated(Reg);
361    MarkAllocated(ShadowReg);
362    return Reg;
363  }
364
365  /// AllocateReg - Attempt to allocate one of the specified registers.  If none
366  /// are available, return zero.  Otherwise, return the first one available,
367  /// marking it and any aliases as allocated.
368  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
369    unsigned FirstUnalloc = getFirstUnallocated(Regs);
370    if (FirstUnalloc == Regs.size())
371      return 0;    // Didn't find the reg.
372
373    // Mark the register and any aliases as allocated.
374    unsigned Reg = Regs[FirstUnalloc];
375    MarkAllocated(Reg);
376    return Reg;
377  }
378
379  /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
380  /// registers. If this is not possible, return zero. Otherwise, return the first
381  /// register of the block that were allocated, marking the entire block as allocated.
382  unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
383    if (RegsRequired > Regs.size())
384      return 0;
385
386    for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
387         ++StartIdx) {
388      bool BlockAvailable = true;
389      // Check for already-allocated regs in this block
390      for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
391        if (isAllocated(Regs[StartIdx + BlockIdx])) {
392          BlockAvailable = false;
393          break;
394        }
395      }
396      if (BlockAvailable) {
397        // Mark the entire block as allocated
398        for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
399          MarkAllocated(Regs[StartIdx + BlockIdx]);
400        }
401        return Regs[StartIdx];
402      }
403    }
404    // No block was available
405    return 0;
406  }
407
408  /// Version of AllocateReg with list of registers to be shadowed.
409  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
410    unsigned FirstUnalloc = getFirstUnallocated(Regs);
411    if (FirstUnalloc == Regs.size())
412      return 0;    // Didn't find the reg.
413
414    // Mark the register and any aliases as allocated.
415    unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
416    MarkAllocated(Reg);
417    MarkAllocated(ShadowReg);
418    return Reg;
419  }
420
421  /// AllocateStack - Allocate a chunk of stack space with the specified size
422  /// and alignment.
423  unsigned AllocateStack(unsigned Size, unsigned Align) {
424    assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
425    StackOffset = alignTo(StackOffset, Align);
426    unsigned Result = StackOffset;
427    StackOffset += Size;
428    MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
429    ensureMaxAlignment(Align);
430    return Result;
431  }
432
433  void ensureMaxAlignment(unsigned Align) {
434    if (!AnalyzingMustTailForwardedRegs)
435      MF.getFrameInfo().ensureMaxAlignment(Align);
436  }
437
438  /// Version of AllocateStack with extra register to be shadowed.
439  unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
440    MarkAllocated(ShadowReg);
441    return AllocateStack(Size, Align);
442  }
443
444  /// Version of AllocateStack with list of extra registers to be shadowed.
445  /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
446  unsigned AllocateStack(unsigned Size, unsigned Align,
447                         ArrayRef<MCPhysReg> ShadowRegs) {
448    for (unsigned i = 0; i < ShadowRegs.size(); ++i)
449      MarkAllocated(ShadowRegs[i]);
450    return AllocateStack(Size, Align);
451  }
452
453  // HandleByVal - Allocate a stack slot large enough to pass an argument by
454  // value. The size and alignment information of the argument is encoded in its
455  // parameter attribute.
456  void HandleByVal(unsigned ValNo, MVT ValVT,
457                   MVT LocVT, CCValAssign::LocInfo LocInfo,
458                   int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
459
460  // Returns count of byval arguments that are to be stored (even partly)
461  // in registers.
462  unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
463
464  // Returns count of byval in-regs arguments proceed.
465  unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
466
467  // Get information about N-th byval parameter that is stored in registers.
468  // Here "ByValParamIndex" is N.
469  void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
470                          unsigned& BeginReg, unsigned& EndReg) const {
471    assert(InRegsParamRecordIndex < ByValRegs.size() &&
472           "Wrong ByVal parameter index");
473
474    const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
475    BeginReg = info.Begin;
476    EndReg = info.End;
477  }
478
479  // Add information about parameter that is kept in registers.
480  void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
481    ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
482  }
483
484  // Goes either to next byval parameter (excluding "waste" record), or
485  // to the end of collection.
486  // Returns false, if end is reached.
487  bool nextInRegsParam() {
488    unsigned e = ByValRegs.size();
489    if (InRegsParamsProcessed < e)
490      ++InRegsParamsProcessed;
491    return InRegsParamsProcessed < e;
492  }
493
494  // Clear byval registers tracking info.
495  void clearByValRegsInfo() {
496    InRegsParamsProcessed = 0;
497    ByValRegs.clear();
498  }
499
500  // Rewind byval registers tracking info.
501  void rewindByValRegsInfo() {
502    InRegsParamsProcessed = 0;
503  }
504
505  // Get list of pending assignments
506  SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() {
507    return PendingLocs;
508  }
509
510  /// Compute the remaining unused register parameters that would be used for
511  /// the given value type. This is useful when varargs are passed in the
512  /// registers that normal prototyped parameters would be passed in, or for
513  /// implementing perfect forwarding.
514  void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
515                                   CCAssignFn Fn);
516
517  /// Compute the set of registers that need to be preserved and forwarded to
518  /// any musttail calls.
519  void analyzeMustTailForwardedRegisters(
520      SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
521      CCAssignFn Fn);
522
523  /// Returns true if the results of the two calling conventions are compatible.
524  /// This is usually part of the check for tailcall eligibility.
525  static bool resultsCompatible(CallingConv::ID CalleeCC,
526                                CallingConv::ID CallerCC, MachineFunction &MF,
527                                LLVMContext &C,
528                                const SmallVectorImpl<ISD::InputArg> &Ins,
529                                CCAssignFn CalleeFn, CCAssignFn CallerFn);
530
531  /// The function runs an additional analysis pass over function arguments.
532  /// It will mark each argument with the attribute flag SecArgPass.
533  /// After running, it will sort the locs list.
534  template <class T>
535  void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
536                                  CCAssignFn Fn) {
537    unsigned NumFirstPassLocs = Locs.size();
538
539    /// Creates similar argument list to \p Args in which each argument is
540    /// marked using SecArgPass flag.
541    SmallVector<T, 16> SecPassArg;
542    // SmallVector<ISD::InputArg, 16> SecPassArg;
543    for (auto Arg : Args) {
544      Arg.Flags.setSecArgPass();
545      SecPassArg.push_back(Arg);
546    }
547
548    // Run the second argument pass
549    AnalyzeArguments(SecPassArg, Fn);
550
551    // Sort the locations of the arguments according to their original position.
552    SmallVector<CCValAssign, 16> TmpArgLocs;
553    std::swap(TmpArgLocs, Locs);
554    auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
555    std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
556               std::back_inserter(Locs),
557               [](const CCValAssign &A, const CCValAssign &B) -> bool {
558                 return A.getValNo() < B.getValNo();
559               });
560  }
561
562private:
563  /// MarkAllocated - Mark a register and all of its aliases as allocated.
564  void MarkAllocated(unsigned Reg);
565};
566
567
568
569} // end namespace llvm
570
571#endif
572