1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/LangOptions.h"
27#include "clang/Basic/SyncScope.h"
28#include "clang/Basic/TypeTraits.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/APSInt.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/Support/AtomicOrdering.h"
34#include "llvm/Support/Compiler.h"
35
36namespace clang {
37  class APValue;
38  class ASTContext;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXMemberCallExpr;
42  class CXXOperatorCallExpr;
43  class CastExpr;
44  class Decl;
45  class IdentifierInfo;
46  class MaterializeTemporaryExpr;
47  class NamedDecl;
48  class ObjCPropertyRefExpr;
49  class OpaqueValueExpr;
50  class ParmVarDecl;
51  class StringLiteral;
52  class TargetInfo;
53  class ValueDecl;
54
55/// \brief A simple array of base specifiers.
56typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
57
58/// \brief An adjustment to be made to the temporary created when emitting a
59/// reference binding, which accesses a particular subobject of that temporary.
60struct SubobjectAdjustment {
61  enum {
62    DerivedToBaseAdjustment,
63    FieldAdjustment,
64    MemberPointerAdjustment
65  } Kind;
66
67  struct DTB {
68    const CastExpr *BasePath;
69    const CXXRecordDecl *DerivedClass;
70  };
71
72  struct P {
73    const MemberPointerType *MPT;
74    Expr *RHS;
75  };
76
77  union {
78    struct DTB DerivedToBase;
79    FieldDecl *Field;
80    struct P Ptr;
81  };
82
83  SubobjectAdjustment(const CastExpr *BasePath,
84                      const CXXRecordDecl *DerivedClass)
85    : Kind(DerivedToBaseAdjustment) {
86    DerivedToBase.BasePath = BasePath;
87    DerivedToBase.DerivedClass = DerivedClass;
88  }
89
90  SubobjectAdjustment(FieldDecl *Field)
91    : Kind(FieldAdjustment) {
92    this->Field = Field;
93  }
94
95  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
96    : Kind(MemberPointerAdjustment) {
97    this->Ptr.MPT = MPT;
98    this->Ptr.RHS = RHS;
99  }
100};
101
102/// Expr - This represents one expression.  Note that Expr's are subclasses of
103/// Stmt.  This allows an expression to be transparently used any place a Stmt
104/// is required.
105///
106class Expr : public Stmt {
107  QualType TR;
108
109protected:
110  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
111       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
112    : Stmt(SC)
113  {
114    ExprBits.TypeDependent = TD;
115    ExprBits.ValueDependent = VD;
116    ExprBits.InstantiationDependent = ID;
117    ExprBits.ValueKind = VK;
118    ExprBits.ObjectKind = OK;
119    assert(ExprBits.ObjectKind == OK && "truncated kind");
120    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
121    setType(T);
122  }
123
124  /// \brief Construct an empty expression.
125  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
126
127public:
128  QualType getType() const { return TR; }
129  void setType(QualType t) {
130    // In C++, the type of an expression is always adjusted so that it
131    // will not have reference type (C++ [expr]p6). Use
132    // QualType::getNonReferenceType() to retrieve the non-reference
133    // type. Additionally, inspect Expr::isLvalue to determine whether
134    // an expression that is adjusted in this manner should be
135    // considered an lvalue.
136    assert((t.isNull() || !t->isReferenceType()) &&
137           "Expressions can't have reference type");
138
139    TR = t;
140  }
141
142  /// isValueDependent - Determines whether this expression is
143  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
144  /// array bound of "Chars" in the following example is
145  /// value-dependent.
146  /// @code
147  /// template<int Size, char (&Chars)[Size]> struct meta_string;
148  /// @endcode
149  bool isValueDependent() const { return ExprBits.ValueDependent; }
150
151  /// \brief Set whether this expression is value-dependent or not.
152  void setValueDependent(bool VD) {
153    ExprBits.ValueDependent = VD;
154  }
155
156  /// isTypeDependent - Determines whether this expression is
157  /// type-dependent (C++ [temp.dep.expr]), which means that its type
158  /// could change from one template instantiation to the next. For
159  /// example, the expressions "x" and "x + y" are type-dependent in
160  /// the following code, but "y" is not type-dependent:
161  /// @code
162  /// template<typename T>
163  /// void add(T x, int y) {
164  ///   x + y;
165  /// }
166  /// @endcode
167  bool isTypeDependent() const { return ExprBits.TypeDependent; }
168
169  /// \brief Set whether this expression is type-dependent or not.
170  void setTypeDependent(bool TD) {
171    ExprBits.TypeDependent = TD;
172  }
173
174  /// \brief Whether this expression is instantiation-dependent, meaning that
175  /// it depends in some way on a template parameter, even if neither its type
176  /// nor (constant) value can change due to the template instantiation.
177  ///
178  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
179  /// instantiation-dependent (since it involves a template parameter \c T), but
180  /// is neither type- nor value-dependent, since the type of the inner
181  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
182  /// \c sizeof is known.
183  ///
184  /// \code
185  /// template<typename T>
186  /// void f(T x, T y) {
187  ///   sizeof(sizeof(T() + T());
188  /// }
189  /// \endcode
190  ///
191  bool isInstantiationDependent() const {
192    return ExprBits.InstantiationDependent;
193  }
194
195  /// \brief Set whether this expression is instantiation-dependent or not.
196  void setInstantiationDependent(bool ID) {
197    ExprBits.InstantiationDependent = ID;
198  }
199
200  /// \brief Whether this expression contains an unexpanded parameter
201  /// pack (for C++11 variadic templates).
202  ///
203  /// Given the following function template:
204  ///
205  /// \code
206  /// template<typename F, typename ...Types>
207  /// void forward(const F &f, Types &&...args) {
208  ///   f(static_cast<Types&&>(args)...);
209  /// }
210  /// \endcode
211  ///
212  /// The expressions \c args and \c static_cast<Types&&>(args) both
213  /// contain parameter packs.
214  bool containsUnexpandedParameterPack() const {
215    return ExprBits.ContainsUnexpandedParameterPack;
216  }
217
218  /// \brief Set the bit that describes whether this expression
219  /// contains an unexpanded parameter pack.
220  void setContainsUnexpandedParameterPack(bool PP = true) {
221    ExprBits.ContainsUnexpandedParameterPack = PP;
222  }
223
224  /// getExprLoc - Return the preferred location for the arrow when diagnosing
225  /// a problem with a generic expression.
226  SourceLocation getExprLoc() const LLVM_READONLY;
227
228  /// isUnusedResultAWarning - Return true if this immediate expression should
229  /// be warned about if the result is unused.  If so, fill in expr, location,
230  /// and ranges with expr to warn on and source locations/ranges appropriate
231  /// for a warning.
232  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
233                              SourceRange &R1, SourceRange &R2,
234                              ASTContext &Ctx) const;
235
236  /// isLValue - True if this expression is an "l-value" according to
237  /// the rules of the current language.  C and C++ give somewhat
238  /// different rules for this concept, but in general, the result of
239  /// an l-value expression identifies a specific object whereas the
240  /// result of an r-value expression is a value detached from any
241  /// specific storage.
242  ///
243  /// C++11 divides the concept of "r-value" into pure r-values
244  /// ("pr-values") and so-called expiring values ("x-values"), which
245  /// identify specific objects that can be safely cannibalized for
246  /// their resources.  This is an unfortunate abuse of terminology on
247  /// the part of the C++ committee.  In Clang, when we say "r-value",
248  /// we generally mean a pr-value.
249  bool isLValue() const { return getValueKind() == VK_LValue; }
250  bool isRValue() const { return getValueKind() == VK_RValue; }
251  bool isXValue() const { return getValueKind() == VK_XValue; }
252  bool isGLValue() const { return getValueKind() != VK_RValue; }
253
254  enum LValueClassification {
255    LV_Valid,
256    LV_NotObjectType,
257    LV_IncompleteVoidType,
258    LV_DuplicateVectorComponents,
259    LV_InvalidExpression,
260    LV_InvalidMessageExpression,
261    LV_MemberFunction,
262    LV_SubObjCPropertySetting,
263    LV_ClassTemporary,
264    LV_ArrayTemporary
265  };
266  /// Reasons why an expression might not be an l-value.
267  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
268
269  enum isModifiableLvalueResult {
270    MLV_Valid,
271    MLV_NotObjectType,
272    MLV_IncompleteVoidType,
273    MLV_DuplicateVectorComponents,
274    MLV_InvalidExpression,
275    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
276    MLV_IncompleteType,
277    MLV_ConstQualified,
278    MLV_ConstQualifiedField,
279    MLV_ConstAddrSpace,
280    MLV_ArrayType,
281    MLV_NoSetterProperty,
282    MLV_MemberFunction,
283    MLV_SubObjCPropertySetting,
284    MLV_InvalidMessageExpression,
285    MLV_ClassTemporary,
286    MLV_ArrayTemporary
287  };
288  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289  /// does not have an incomplete type, does not have a const-qualified type,
290  /// and if it is a structure or union, does not have any member (including,
291  /// recursively, any member or element of all contained aggregates or unions)
292  /// with a const-qualified type.
293  ///
294  /// \param Loc [in,out] - A source location which *may* be filled
295  /// in with the location of the expression making this a
296  /// non-modifiable lvalue, if specified.
297  isModifiableLvalueResult
298  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299
300  /// \brief The return type of classify(). Represents the C++11 expression
301  ///        taxonomy.
302  class Classification {
303  public:
304    /// \brief The various classification results. Most of these mean prvalue.
305    enum Kinds {
306      CL_LValue,
307      CL_XValue,
308      CL_Function, // Functions cannot be lvalues in C.
309      CL_Void, // Void cannot be an lvalue in C.
310      CL_AddressableVoid, // Void expression whose address can be taken in C.
311      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312      CL_MemberFunction, // An expression referring to a member function
313      CL_SubObjCPropertySetting,
314      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315      CL_ArrayTemporary, // A temporary of array type.
316      CL_ObjCMessageRValue, // ObjC message is an rvalue
317      CL_PRValue // A prvalue for any other reason, of any other type
318    };
319    /// \brief The results of modification testing.
320    enum ModifiableType {
321      CM_Untested, // testModifiable was false.
322      CM_Modifiable,
323      CM_RValue, // Not modifiable because it's an rvalue
324      CM_Function, // Not modifiable because it's a function; C++ only
325      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
327      CM_ConstQualified,
328      CM_ConstQualifiedField,
329      CM_ConstAddrSpace,
330      CM_ArrayType,
331      CM_IncompleteType
332    };
333
334  private:
335    friend class Expr;
336
337    unsigned short Kind;
338    unsigned short Modifiable;
339
340    explicit Classification(Kinds k, ModifiableType m)
341      : Kind(k), Modifiable(m)
342    {}
343
344  public:
345    Classification() {}
346
347    Kinds getKind() const { return static_cast<Kinds>(Kind); }
348    ModifiableType getModifiable() const {
349      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
350      return static_cast<ModifiableType>(Modifiable);
351    }
352    bool isLValue() const { return Kind == CL_LValue; }
353    bool isXValue() const { return Kind == CL_XValue; }
354    bool isGLValue() const { return Kind <= CL_XValue; }
355    bool isPRValue() const { return Kind >= CL_Function; }
356    bool isRValue() const { return Kind >= CL_XValue; }
357    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
358
359    /// \brief Create a simple, modifiably lvalue
360    static Classification makeSimpleLValue() {
361      return Classification(CL_LValue, CM_Modifiable);
362    }
363
364  };
365  /// \brief Classify - Classify this expression according to the C++11
366  ///        expression taxonomy.
367  ///
368  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
369  /// old lvalue vs rvalue. This function determines the type of expression this
370  /// is. There are three expression types:
371  /// - lvalues are classical lvalues as in C++03.
372  /// - prvalues are equivalent to rvalues in C++03.
373  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
374  ///   function returning an rvalue reference.
375  /// lvalues and xvalues are collectively referred to as glvalues, while
376  /// prvalues and xvalues together form rvalues.
377  Classification Classify(ASTContext &Ctx) const {
378    return ClassifyImpl(Ctx, nullptr);
379  }
380
381  /// \brief ClassifyModifiable - Classify this expression according to the
382  ///        C++11 expression taxonomy, and see if it is valid on the left side
383  ///        of an assignment.
384  ///
385  /// This function extends classify in that it also tests whether the
386  /// expression is modifiable (C99 6.3.2.1p1).
387  /// \param Loc A source location that might be filled with a relevant location
388  ///            if the expression is not modifiable.
389  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
390    return ClassifyImpl(Ctx, &Loc);
391  }
392
393  /// getValueKindForType - Given a formal return or parameter type,
394  /// give its value kind.
395  static ExprValueKind getValueKindForType(QualType T) {
396    if (const ReferenceType *RT = T->getAs<ReferenceType>())
397      return (isa<LValueReferenceType>(RT)
398                ? VK_LValue
399                : (RT->getPointeeType()->isFunctionType()
400                     ? VK_LValue : VK_XValue));
401    return VK_RValue;
402  }
403
404  /// getValueKind - The value kind that this expression produces.
405  ExprValueKind getValueKind() const {
406    return static_cast<ExprValueKind>(ExprBits.ValueKind);
407  }
408
409  /// getObjectKind - The object kind that this expression produces.
410  /// Object kinds are meaningful only for expressions that yield an
411  /// l-value or x-value.
412  ExprObjectKind getObjectKind() const {
413    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
414  }
415
416  bool isOrdinaryOrBitFieldObject() const {
417    ExprObjectKind OK = getObjectKind();
418    return (OK == OK_Ordinary || OK == OK_BitField);
419  }
420
421  /// setValueKind - Set the value kind produced by this expression.
422  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
423
424  /// setObjectKind - Set the object kind produced by this expression.
425  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
426
427private:
428  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
429
430public:
431
432  /// \brief Returns true if this expression is a gl-value that
433  /// potentially refers to a bit-field.
434  ///
435  /// In C++, whether a gl-value refers to a bitfield is essentially
436  /// an aspect of the value-kind type system.
437  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
438
439  /// \brief If this expression refers to a bit-field, retrieve the
440  /// declaration of that bit-field.
441  ///
442  /// Note that this returns a non-null pointer in subtly different
443  /// places than refersToBitField returns true.  In particular, this can
444  /// return a non-null pointer even for r-values loaded from
445  /// bit-fields, but it will return null for a conditional bit-field.
446  FieldDecl *getSourceBitField();
447
448  const FieldDecl *getSourceBitField() const {
449    return const_cast<Expr*>(this)->getSourceBitField();
450  }
451
452  Decl *getReferencedDeclOfCallee();
453  const Decl *getReferencedDeclOfCallee() const {
454    return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
455  }
456
457  /// \brief If this expression is an l-value for an Objective C
458  /// property, find the underlying property reference expression.
459  const ObjCPropertyRefExpr *getObjCProperty() const;
460
461  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
462  bool isObjCSelfExpr() const;
463
464  /// \brief Returns whether this expression refers to a vector element.
465  bool refersToVectorElement() const;
466
467  /// \brief Returns whether this expression refers to a global register
468  /// variable.
469  bool refersToGlobalRegisterVar() const;
470
471  /// \brief Returns whether this expression has a placeholder type.
472  bool hasPlaceholderType() const {
473    return getType()->isPlaceholderType();
474  }
475
476  /// \brief Returns whether this expression has a specific placeholder type.
477  bool hasPlaceholderType(BuiltinType::Kind K) const {
478    assert(BuiltinType::isPlaceholderTypeKind(K));
479    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
480      return BT->getKind() == K;
481    return false;
482  }
483
484  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
485  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
486  /// but also int expressions which are produced by things like comparisons in
487  /// C.
488  bool isKnownToHaveBooleanValue() const;
489
490  /// isIntegerConstantExpr - Return true if this expression is a valid integer
491  /// constant expression, and, if so, return its value in Result.  If not a
492  /// valid i-c-e, return false and fill in Loc (if specified) with the location
493  /// of the invalid expression.
494  ///
495  /// Note: This does not perform the implicit conversions required by C++11
496  /// [expr.const]p5.
497  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
498                             SourceLocation *Loc = nullptr,
499                             bool isEvaluated = true) const;
500  bool isIntegerConstantExpr(const ASTContext &Ctx,
501                             SourceLocation *Loc = nullptr) const;
502
503  /// isCXX98IntegralConstantExpr - Return true if this expression is an
504  /// integral constant expression in C++98. Can only be used in C++.
505  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
506
507  /// isCXX11ConstantExpr - Return true if this expression is a constant
508  /// expression in C++11. Can only be used in C++.
509  ///
510  /// Note: This does not perform the implicit conversions required by C++11
511  /// [expr.const]p5.
512  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
513                           SourceLocation *Loc = nullptr) const;
514
515  /// isPotentialConstantExpr - Return true if this function's definition
516  /// might be usable in a constant expression in C++11, if it were marked
517  /// constexpr. Return false if the function can never produce a constant
518  /// expression, along with diagnostics describing why not.
519  static bool isPotentialConstantExpr(const FunctionDecl *FD,
520                                      SmallVectorImpl<
521                                        PartialDiagnosticAt> &Diags);
522
523  /// isPotentialConstantExprUnevaluted - Return true if this expression might
524  /// be usable in a constant expression in C++11 in an unevaluated context, if
525  /// it were in function FD marked constexpr. Return false if the function can
526  /// never produce a constant expression, along with diagnostics describing
527  /// why not.
528  static bool isPotentialConstantExprUnevaluated(Expr *E,
529                                                 const FunctionDecl *FD,
530                                                 SmallVectorImpl<
531                                                   PartialDiagnosticAt> &Diags);
532
533  /// isConstantInitializer - Returns true if this expression can be emitted to
534  /// IR as a constant, and thus can be used as a constant initializer in C.
535  /// If this expression is not constant and Culprit is non-null,
536  /// it is used to store the address of first non constant expr.
537  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
538                             const Expr **Culprit = nullptr) const;
539
540  /// EvalStatus is a struct with detailed info about an evaluation in progress.
541  struct EvalStatus {
542    /// \brief Whether the evaluated expression has side effects.
543    /// For example, (f() && 0) can be folded, but it still has side effects.
544    bool HasSideEffects;
545
546    /// \brief Whether the evaluation hit undefined behavior.
547    /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
548    /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
549    bool HasUndefinedBehavior;
550
551    /// Diag - If this is non-null, it will be filled in with a stack of notes
552    /// indicating why evaluation failed (or why it failed to produce a constant
553    /// expression).
554    /// If the expression is unfoldable, the notes will indicate why it's not
555    /// foldable. If the expression is foldable, but not a constant expression,
556    /// the notes will describes why it isn't a constant expression. If the
557    /// expression *is* a constant expression, no notes will be produced.
558    SmallVectorImpl<PartialDiagnosticAt> *Diag;
559
560    EvalStatus()
561        : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
562
563    // hasSideEffects - Return true if the evaluated expression has
564    // side effects.
565    bool hasSideEffects() const {
566      return HasSideEffects;
567    }
568  };
569
570  /// EvalResult is a struct with detailed info about an evaluated expression.
571  struct EvalResult : EvalStatus {
572    /// Val - This is the value the expression can be folded to.
573    APValue Val;
574
575    // isGlobalLValue - Return true if the evaluated lvalue expression
576    // is global.
577    bool isGlobalLValue() const;
578  };
579
580  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
581  /// an rvalue using any crazy technique (that has nothing to do with language
582  /// standards) that we want to, even if the expression has side-effects. If
583  /// this function returns true, it returns the folded constant in Result. If
584  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
585  /// applied.
586  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
587
588  /// EvaluateAsBooleanCondition - Return true if this is a constant
589  /// which we we can fold and convert to a boolean condition using
590  /// any crazy technique that we want to, even if the expression has
591  /// side-effects.
592  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
593
594  enum SideEffectsKind {
595    SE_NoSideEffects,          ///< Strictly evaluate the expression.
596    SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
597                               ///< arbitrary unmodeled side effects.
598    SE_AllowSideEffects        ///< Allow any unmodeled side effect.
599  };
600
601  /// EvaluateAsInt - Return true if this is a constant which we can fold and
602  /// convert to an integer, using any crazy technique that we want to.
603  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
604                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
605
606  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
607  /// convert to a floating point value, using any crazy technique that we
608  /// want to.
609  bool
610  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
611                  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
612
613  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
614  /// constant folded without side-effects, but discard the result.
615  bool isEvaluatable(const ASTContext &Ctx,
616                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
617
618  /// HasSideEffects - This routine returns true for all those expressions
619  /// which have any effect other than producing a value. Example is a function
620  /// call, volatile variable read, or throwing an exception. If
621  /// IncludePossibleEffects is false, this call treats certain expressions with
622  /// potential side effects (such as function call-like expressions,
623  /// instantiation-dependent expressions, or invocations from a macro) as not
624  /// having side effects.
625  bool HasSideEffects(const ASTContext &Ctx,
626                      bool IncludePossibleEffects = true) const;
627
628  /// \brief Determine whether this expression involves a call to any function
629  /// that is not trivial.
630  bool hasNonTrivialCall(const ASTContext &Ctx) const;
631
632  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
633  /// integer. This must be called on an expression that constant folds to an
634  /// integer.
635  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
636                    SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
637
638  void EvaluateForOverflow(const ASTContext &Ctx) const;
639
640  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
641  /// lvalue with link time known address, with no side-effects.
642  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
643
644  /// EvaluateAsInitializer - Evaluate an expression as if it were the
645  /// initializer of the given declaration. Returns true if the initializer
646  /// can be folded to a constant, and produces any relevant notes. In C++11,
647  /// notes will be produced if the expression is not a constant expression.
648  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
649                             const VarDecl *VD,
650                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
651
652  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
653  /// of a call to the given function with the given arguments, inside an
654  /// unevaluated context. Returns true if the expression could be folded to a
655  /// constant.
656  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
657                                const FunctionDecl *Callee,
658                                ArrayRef<const Expr*> Args,
659                                const Expr *This = nullptr) const;
660
661  /// \brief If the current Expr is a pointer, this will try to statically
662  /// determine the number of bytes available where the pointer is pointing.
663  /// Returns true if all of the above holds and we were able to figure out the
664  /// size, false otherwise.
665  ///
666  /// \param Type - How to evaluate the size of the Expr, as defined by the
667  /// "type" parameter of __builtin_object_size
668  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
669                             unsigned Type) const;
670
671  /// \brief Enumeration used to describe the kind of Null pointer constant
672  /// returned from \c isNullPointerConstant().
673  enum NullPointerConstantKind {
674    /// \brief Expression is not a Null pointer constant.
675    NPCK_NotNull = 0,
676
677    /// \brief Expression is a Null pointer constant built from a zero integer
678    /// expression that is not a simple, possibly parenthesized, zero literal.
679    /// C++ Core Issue 903 will classify these expressions as "not pointers"
680    /// once it is adopted.
681    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
682    NPCK_ZeroExpression,
683
684    /// \brief Expression is a Null pointer constant built from a literal zero.
685    NPCK_ZeroLiteral,
686
687    /// \brief Expression is a C++11 nullptr.
688    NPCK_CXX11_nullptr,
689
690    /// \brief Expression is a GNU-style __null constant.
691    NPCK_GNUNull
692  };
693
694  /// \brief Enumeration used to describe how \c isNullPointerConstant()
695  /// should cope with value-dependent expressions.
696  enum NullPointerConstantValueDependence {
697    /// \brief Specifies that the expression should never be value-dependent.
698    NPC_NeverValueDependent = 0,
699
700    /// \brief Specifies that a value-dependent expression of integral or
701    /// dependent type should be considered a null pointer constant.
702    NPC_ValueDependentIsNull,
703
704    /// \brief Specifies that a value-dependent expression should be considered
705    /// to never be a null pointer constant.
706    NPC_ValueDependentIsNotNull
707  };
708
709  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
710  /// a Null pointer constant. The return value can further distinguish the
711  /// kind of NULL pointer constant that was detected.
712  NullPointerConstantKind isNullPointerConstant(
713      ASTContext &Ctx,
714      NullPointerConstantValueDependence NPC) const;
715
716  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
717  /// write barrier.
718  bool isOBJCGCCandidate(ASTContext &Ctx) const;
719
720  /// \brief Returns true if this expression is a bound member function.
721  bool isBoundMemberFunction(ASTContext &Ctx) const;
722
723  /// \brief Given an expression of bound-member type, find the type
724  /// of the member.  Returns null if this is an *overloaded* bound
725  /// member expression.
726  static QualType findBoundMemberType(const Expr *expr);
727
728  /// IgnoreImpCasts - Skip past any implicit casts which might
729  /// surround this expression.  Only skips ImplicitCastExprs.
730  Expr *IgnoreImpCasts() LLVM_READONLY;
731
732  /// IgnoreImplicit - Skip past any implicit AST nodes which might
733  /// surround this expression.
734  Expr *IgnoreImplicit() LLVM_READONLY {
735    return cast<Expr>(Stmt::IgnoreImplicit());
736  }
737
738  const Expr *IgnoreImplicit() const LLVM_READONLY {
739    return const_cast<Expr*>(this)->IgnoreImplicit();
740  }
741
742  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
743  ///  its subexpression.  If that subexpression is also a ParenExpr,
744  ///  then this method recursively returns its subexpression, and so forth.
745  ///  Otherwise, the method returns the current Expr.
746  Expr *IgnoreParens() LLVM_READONLY;
747
748  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
749  /// or CastExprs, returning their operand.
750  Expr *IgnoreParenCasts() LLVM_READONLY;
751
752  /// Ignore casts.  Strip off any CastExprs, returning their operand.
753  Expr *IgnoreCasts() LLVM_READONLY;
754
755  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
756  /// any ParenExpr or ImplicitCastExprs, returning their operand.
757  Expr *IgnoreParenImpCasts() LLVM_READONLY;
758
759  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
760  /// call to a conversion operator, return the argument.
761  Expr *IgnoreConversionOperator() LLVM_READONLY;
762
763  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
764    return const_cast<Expr*>(this)->IgnoreConversionOperator();
765  }
766
767  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
768    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
769  }
770
771  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
772  /// CastExprs that represent lvalue casts, returning their operand.
773  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
774
775  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
776    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
777  }
778
779  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
780  /// value (including ptr->int casts of the same size).  Strip off any
781  /// ParenExpr or CastExprs, returning their operand.
782  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
783
784  /// Ignore parentheses and derived-to-base casts.
785  Expr *ignoreParenBaseCasts() LLVM_READONLY;
786
787  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
788    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
789  }
790
791  /// \brief Determine whether this expression is a default function argument.
792  ///
793  /// Default arguments are implicitly generated in the abstract syntax tree
794  /// by semantic analysis for function calls, object constructions, etc. in
795  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
796  /// this routine also looks through any implicit casts to determine whether
797  /// the expression is a default argument.
798  bool isDefaultArgument() const;
799
800  /// \brief Determine whether the result of this expression is a
801  /// temporary object of the given class type.
802  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
803
804  /// \brief Whether this expression is an implicit reference to 'this' in C++.
805  bool isImplicitCXXThis() const;
806
807  const Expr *IgnoreImpCasts() const LLVM_READONLY {
808    return const_cast<Expr*>(this)->IgnoreImpCasts();
809  }
810  const Expr *IgnoreParens() const LLVM_READONLY {
811    return const_cast<Expr*>(this)->IgnoreParens();
812  }
813  const Expr *IgnoreParenCasts() const LLVM_READONLY {
814    return const_cast<Expr*>(this)->IgnoreParenCasts();
815  }
816  /// Strip off casts, but keep parentheses.
817  const Expr *IgnoreCasts() const LLVM_READONLY {
818    return const_cast<Expr*>(this)->IgnoreCasts();
819  }
820
821  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
822    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
823  }
824
825  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
826
827  /// \brief For an expression of class type or pointer to class type,
828  /// return the most derived class decl the expression is known to refer to.
829  ///
830  /// If this expression is a cast, this method looks through it to find the
831  /// most derived decl that can be inferred from the expression.
832  /// This is valid because derived-to-base conversions have undefined
833  /// behavior if the object isn't dynamically of the derived type.
834  const CXXRecordDecl *getBestDynamicClassType() const;
835
836  /// \brief Get the inner expression that determines the best dynamic class.
837  /// If this is a prvalue, we guarantee that it is of the most-derived type
838  /// for the object itself.
839  const Expr *getBestDynamicClassTypeExpr() const;
840
841  /// Walk outwards from an expression we want to bind a reference to and
842  /// find the expression whose lifetime needs to be extended. Record
843  /// the LHSs of comma expressions and adjustments needed along the path.
844  const Expr *skipRValueSubobjectAdjustments(
845      SmallVectorImpl<const Expr *> &CommaLHS,
846      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
847  const Expr *skipRValueSubobjectAdjustments() const {
848    SmallVector<const Expr *, 8> CommaLHSs;
849    SmallVector<SubobjectAdjustment, 8> Adjustments;
850    return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
851  }
852
853  static bool classof(const Stmt *T) {
854    return T->getStmtClass() >= firstExprConstant &&
855           T->getStmtClass() <= lastExprConstant;
856  }
857};
858
859//===----------------------------------------------------------------------===//
860// Primary Expressions.
861//===----------------------------------------------------------------------===//
862
863/// OpaqueValueExpr - An expression referring to an opaque object of a
864/// fixed type and value class.  These don't correspond to concrete
865/// syntax; instead they're used to express operations (usually copy
866/// operations) on values whose source is generally obvious from
867/// context.
868class OpaqueValueExpr : public Expr {
869  friend class ASTStmtReader;
870  Expr *SourceExpr;
871  SourceLocation Loc;
872
873public:
874  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
875                  ExprObjectKind OK = OK_Ordinary,
876                  Expr *SourceExpr = nullptr)
877    : Expr(OpaqueValueExprClass, T, VK, OK,
878           T->isDependentType() ||
879           (SourceExpr && SourceExpr->isTypeDependent()),
880           T->isDependentType() ||
881           (SourceExpr && SourceExpr->isValueDependent()),
882           T->isInstantiationDependentType() ||
883           (SourceExpr && SourceExpr->isInstantiationDependent()),
884           false),
885      SourceExpr(SourceExpr), Loc(Loc) {
886  }
887
888  /// Given an expression which invokes a copy constructor --- i.e.  a
889  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
890  /// find the OpaqueValueExpr that's the source of the construction.
891  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
892
893  explicit OpaqueValueExpr(EmptyShell Empty)
894    : Expr(OpaqueValueExprClass, Empty) { }
895
896  /// \brief Retrieve the location of this expression.
897  SourceLocation getLocation() const { return Loc; }
898
899  SourceLocation getLocStart() const LLVM_READONLY {
900    return SourceExpr ? SourceExpr->getLocStart() : Loc;
901  }
902  SourceLocation getLocEnd() const LLVM_READONLY {
903    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
904  }
905  SourceLocation getExprLoc() const LLVM_READONLY {
906    if (SourceExpr) return SourceExpr->getExprLoc();
907    return Loc;
908  }
909
910  child_range children() {
911    return child_range(child_iterator(), child_iterator());
912  }
913
914  const_child_range children() const {
915    return const_child_range(const_child_iterator(), const_child_iterator());
916  }
917
918  /// The source expression of an opaque value expression is the
919  /// expression which originally generated the value.  This is
920  /// provided as a convenience for analyses that don't wish to
921  /// precisely model the execution behavior of the program.
922  ///
923  /// The source expression is typically set when building the
924  /// expression which binds the opaque value expression in the first
925  /// place.
926  Expr *getSourceExpr() const { return SourceExpr; }
927
928  static bool classof(const Stmt *T) {
929    return T->getStmtClass() == OpaqueValueExprClass;
930  }
931};
932
933/// \brief A reference to a declared variable, function, enum, etc.
934/// [C99 6.5.1p2]
935///
936/// This encodes all the information about how a declaration is referenced
937/// within an expression.
938///
939/// There are several optional constructs attached to DeclRefExprs only when
940/// they apply in order to conserve memory. These are laid out past the end of
941/// the object, and flags in the DeclRefExprBitfield track whether they exist:
942///
943///   DeclRefExprBits.HasQualifier:
944///       Specifies when this declaration reference expression has a C++
945///       nested-name-specifier.
946///   DeclRefExprBits.HasFoundDecl:
947///       Specifies when this declaration reference expression has a record of
948///       a NamedDecl (different from the referenced ValueDecl) which was found
949///       during name lookup and/or overload resolution.
950///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
951///       Specifies when this declaration reference expression has an explicit
952///       C++ template keyword and/or template argument list.
953///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
954///       Specifies when this declaration reference expression (validly)
955///       refers to an enclosed local or a captured variable.
956class DeclRefExpr final
957    : public Expr,
958      private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
959                                    NamedDecl *, ASTTemplateKWAndArgsInfo,
960                                    TemplateArgumentLoc> {
961  /// \brief The declaration that we are referencing.
962  ValueDecl *D;
963
964  /// \brief The location of the declaration name itself.
965  SourceLocation Loc;
966
967  /// \brief Provides source/type location info for the declaration name
968  /// embedded in D.
969  DeclarationNameLoc DNLoc;
970
971  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
972    return hasQualifier() ? 1 : 0;
973  }
974
975  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
976    return hasFoundDecl() ? 1 : 0;
977  }
978
979  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
980    return hasTemplateKWAndArgsInfo() ? 1 : 0;
981  }
982
983  /// \brief Test whether there is a distinct FoundDecl attached to the end of
984  /// this DRE.
985  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
986
987  DeclRefExpr(const ASTContext &Ctx,
988              NestedNameSpecifierLoc QualifierLoc,
989              SourceLocation TemplateKWLoc,
990              ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
991              const DeclarationNameInfo &NameInfo,
992              NamedDecl *FoundD,
993              const TemplateArgumentListInfo *TemplateArgs,
994              QualType T, ExprValueKind VK);
995
996  /// \brief Construct an empty declaration reference expression.
997  explicit DeclRefExpr(EmptyShell Empty)
998    : Expr(DeclRefExprClass, Empty) { }
999
1000  /// \brief Computes the type- and value-dependence flags for this
1001  /// declaration reference expression.
1002  void computeDependence(const ASTContext &C);
1003
1004public:
1005  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
1006              ExprValueKind VK, SourceLocation L,
1007              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
1008    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
1009      D(D), Loc(L), DNLoc(LocInfo) {
1010    DeclRefExprBits.HasQualifier = 0;
1011    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
1012    DeclRefExprBits.HasFoundDecl = 0;
1013    DeclRefExprBits.HadMultipleCandidates = 0;
1014    DeclRefExprBits.RefersToEnclosingVariableOrCapture =
1015        RefersToEnclosingVariableOrCapture;
1016    computeDependence(D->getASTContext());
1017  }
1018
1019  static DeclRefExpr *
1020  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1021         SourceLocation TemplateKWLoc, ValueDecl *D,
1022         bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1023         QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1024         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1025
1026  static DeclRefExpr *
1027  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1028         SourceLocation TemplateKWLoc, ValueDecl *D,
1029         bool RefersToEnclosingVariableOrCapture,
1030         const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1031         NamedDecl *FoundD = nullptr,
1032         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1033
1034  /// \brief Construct an empty declaration reference expression.
1035  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1036                                  bool HasQualifier,
1037                                  bool HasFoundDecl,
1038                                  bool HasTemplateKWAndArgsInfo,
1039                                  unsigned NumTemplateArgs);
1040
1041  ValueDecl *getDecl() { return D; }
1042  const ValueDecl *getDecl() const { return D; }
1043  void setDecl(ValueDecl *NewD) { D = NewD; }
1044
1045  DeclarationNameInfo getNameInfo() const {
1046    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1047  }
1048
1049  SourceLocation getLocation() const { return Loc; }
1050  void setLocation(SourceLocation L) { Loc = L; }
1051  SourceLocation getLocStart() const LLVM_READONLY;
1052  SourceLocation getLocEnd() const LLVM_READONLY;
1053
1054  /// \brief Determine whether this declaration reference was preceded by a
1055  /// C++ nested-name-specifier, e.g., \c N::foo.
1056  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1057
1058  /// \brief If the name was qualified, retrieves the nested-name-specifier
1059  /// that precedes the name, with source-location information.
1060  NestedNameSpecifierLoc getQualifierLoc() const {
1061    if (!hasQualifier())
1062      return NestedNameSpecifierLoc();
1063    return *getTrailingObjects<NestedNameSpecifierLoc>();
1064  }
1065
1066  /// \brief If the name was qualified, retrieves the nested-name-specifier
1067  /// that precedes the name. Otherwise, returns NULL.
1068  NestedNameSpecifier *getQualifier() const {
1069    return getQualifierLoc().getNestedNameSpecifier();
1070  }
1071
1072  /// \brief Get the NamedDecl through which this reference occurred.
1073  ///
1074  /// This Decl may be different from the ValueDecl actually referred to in the
1075  /// presence of using declarations, etc. It always returns non-NULL, and may
1076  /// simple return the ValueDecl when appropriate.
1077
1078  NamedDecl *getFoundDecl() {
1079    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1080  }
1081
1082  /// \brief Get the NamedDecl through which this reference occurred.
1083  /// See non-const variant.
1084  const NamedDecl *getFoundDecl() const {
1085    return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1086  }
1087
1088  bool hasTemplateKWAndArgsInfo() const {
1089    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1090  }
1091
1092  /// \brief Retrieve the location of the template keyword preceding
1093  /// this name, if any.
1094  SourceLocation getTemplateKeywordLoc() const {
1095    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1096    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1097  }
1098
1099  /// \brief Retrieve the location of the left angle bracket starting the
1100  /// explicit template argument list following the name, if any.
1101  SourceLocation getLAngleLoc() const {
1102    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1103    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1104  }
1105
1106  /// \brief Retrieve the location of the right angle bracket ending the
1107  /// explicit template argument list following the name, if any.
1108  SourceLocation getRAngleLoc() const {
1109    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1110    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1111  }
1112
1113  /// \brief Determines whether the name in this declaration reference
1114  /// was preceded by the template keyword.
1115  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1116
1117  /// \brief Determines whether this declaration reference was followed by an
1118  /// explicit template argument list.
1119  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1120
1121  /// \brief Copies the template arguments (if present) into the given
1122  /// structure.
1123  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1124    if (hasExplicitTemplateArgs())
1125      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1126          getTrailingObjects<TemplateArgumentLoc>(), List);
1127  }
1128
1129  /// \brief Retrieve the template arguments provided as part of this
1130  /// template-id.
1131  const TemplateArgumentLoc *getTemplateArgs() const {
1132    if (!hasExplicitTemplateArgs())
1133      return nullptr;
1134
1135    return getTrailingObjects<TemplateArgumentLoc>();
1136  }
1137
1138  /// \brief Retrieve the number of template arguments provided as part of this
1139  /// template-id.
1140  unsigned getNumTemplateArgs() const {
1141    if (!hasExplicitTemplateArgs())
1142      return 0;
1143
1144    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1145  }
1146
1147  ArrayRef<TemplateArgumentLoc> template_arguments() const {
1148    return {getTemplateArgs(), getNumTemplateArgs()};
1149  }
1150
1151  /// \brief Returns true if this expression refers to a function that
1152  /// was resolved from an overloaded set having size greater than 1.
1153  bool hadMultipleCandidates() const {
1154    return DeclRefExprBits.HadMultipleCandidates;
1155  }
1156  /// \brief Sets the flag telling whether this expression refers to
1157  /// a function that was resolved from an overloaded set having size
1158  /// greater than 1.
1159  void setHadMultipleCandidates(bool V = true) {
1160    DeclRefExprBits.HadMultipleCandidates = V;
1161  }
1162
1163  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1164  /// variable?
1165  bool refersToEnclosingVariableOrCapture() const {
1166    return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1167  }
1168
1169  static bool classof(const Stmt *T) {
1170    return T->getStmtClass() == DeclRefExprClass;
1171  }
1172
1173  // Iterators
1174  child_range children() {
1175    return child_range(child_iterator(), child_iterator());
1176  }
1177
1178  const_child_range children() const {
1179    return const_child_range(const_child_iterator(), const_child_iterator());
1180  }
1181
1182  friend TrailingObjects;
1183  friend class ASTStmtReader;
1184  friend class ASTStmtWriter;
1185};
1186
1187/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1188class PredefinedExpr : public Expr {
1189public:
1190  enum IdentType {
1191    Func,
1192    Function,
1193    LFunction,  // Same as Function, but as wide string.
1194    FuncDName,
1195    FuncSig,
1196    PrettyFunction,
1197    /// \brief The same as PrettyFunction, except that the
1198    /// 'virtual' keyword is omitted for virtual member functions.
1199    PrettyFunctionNoVirtual
1200  };
1201
1202private:
1203  SourceLocation Loc;
1204  IdentType Type;
1205  Stmt *FnName;
1206
1207public:
1208  PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
1209                 StringLiteral *SL);
1210
1211  /// \brief Construct an empty predefined expression.
1212  explicit PredefinedExpr(EmptyShell Empty)
1213      : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1214
1215  IdentType getIdentType() const { return Type; }
1216
1217  SourceLocation getLocation() const { return Loc; }
1218  void setLocation(SourceLocation L) { Loc = L; }
1219
1220  StringLiteral *getFunctionName();
1221  const StringLiteral *getFunctionName() const {
1222    return const_cast<PredefinedExpr *>(this)->getFunctionName();
1223  }
1224
1225  static StringRef getIdentTypeName(IdentType IT);
1226  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1227
1228  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1229  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1230
1231  static bool classof(const Stmt *T) {
1232    return T->getStmtClass() == PredefinedExprClass;
1233  }
1234
1235  // Iterators
1236  child_range children() { return child_range(&FnName, &FnName + 1); }
1237  const_child_range children() const {
1238    return const_child_range(&FnName, &FnName + 1);
1239  }
1240
1241  friend class ASTStmtReader;
1242};
1243
1244/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1245/// leaking memory.
1246///
1247/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1248/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1249/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1250/// the APFloat/APInt values will never get freed. APNumericStorage uses
1251/// ASTContext's allocator for memory allocation.
1252class APNumericStorage {
1253  union {
1254    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1255    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1256  };
1257  unsigned BitWidth;
1258
1259  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1260
1261  APNumericStorage(const APNumericStorage &) = delete;
1262  void operator=(const APNumericStorage &) = delete;
1263
1264protected:
1265  APNumericStorage() : VAL(0), BitWidth(0) { }
1266
1267  llvm::APInt getIntValue() const {
1268    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1269    if (NumWords > 1)
1270      return llvm::APInt(BitWidth, NumWords, pVal);
1271    else
1272      return llvm::APInt(BitWidth, VAL);
1273  }
1274  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1275};
1276
1277class APIntStorage : private APNumericStorage {
1278public:
1279  llvm::APInt getValue() const { return getIntValue(); }
1280  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1281    setIntValue(C, Val);
1282  }
1283};
1284
1285class APFloatStorage : private APNumericStorage {
1286public:
1287  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1288    return llvm::APFloat(Semantics, getIntValue());
1289  }
1290  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1291    setIntValue(C, Val.bitcastToAPInt());
1292  }
1293};
1294
1295class IntegerLiteral : public Expr, public APIntStorage {
1296  SourceLocation Loc;
1297
1298  /// \brief Construct an empty integer literal.
1299  explicit IntegerLiteral(EmptyShell Empty)
1300    : Expr(IntegerLiteralClass, Empty) { }
1301
1302public:
1303  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1304  // or UnsignedLongLongTy
1305  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1306                 SourceLocation l);
1307
1308  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1309  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1310  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1311  /// \param V - the value that the returned integer literal contains.
1312  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1313                                QualType type, SourceLocation l);
1314  /// \brief Returns a new empty integer literal.
1315  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1316
1317  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1318  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1319
1320  /// \brief Retrieve the location of the literal.
1321  SourceLocation getLocation() const { return Loc; }
1322
1323  void setLocation(SourceLocation Location) { Loc = Location; }
1324
1325  static bool classof(const Stmt *T) {
1326    return T->getStmtClass() == IntegerLiteralClass;
1327  }
1328
1329  // Iterators
1330  child_range children() {
1331    return child_range(child_iterator(), child_iterator());
1332  }
1333  const_child_range children() const {
1334    return const_child_range(const_child_iterator(), const_child_iterator());
1335  }
1336};
1337
1338class CharacterLiteral : public Expr {
1339public:
1340  enum CharacterKind {
1341    Ascii,
1342    Wide,
1343    UTF8,
1344    UTF16,
1345    UTF32
1346  };
1347
1348private:
1349  unsigned Value;
1350  SourceLocation Loc;
1351public:
1352  // type should be IntTy
1353  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1354                   SourceLocation l)
1355    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1356           false, false),
1357      Value(value), Loc(l) {
1358    CharacterLiteralBits.Kind = kind;
1359  }
1360
1361  /// \brief Construct an empty character literal.
1362  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1363
1364  SourceLocation getLocation() const { return Loc; }
1365  CharacterKind getKind() const {
1366    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1367  }
1368
1369  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1370  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1371
1372  unsigned getValue() const { return Value; }
1373
1374  void setLocation(SourceLocation Location) { Loc = Location; }
1375  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1376  void setValue(unsigned Val) { Value = Val; }
1377
1378  static bool classof(const Stmt *T) {
1379    return T->getStmtClass() == CharacterLiteralClass;
1380  }
1381
1382  // Iterators
1383  child_range children() {
1384    return child_range(child_iterator(), child_iterator());
1385  }
1386  const_child_range children() const {
1387    return const_child_range(const_child_iterator(), const_child_iterator());
1388  }
1389};
1390
1391class FloatingLiteral : public Expr, private APFloatStorage {
1392  SourceLocation Loc;
1393
1394  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1395                  QualType Type, SourceLocation L);
1396
1397  /// \brief Construct an empty floating-point literal.
1398  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1399
1400public:
1401  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1402                                 bool isexact, QualType Type, SourceLocation L);
1403  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1404
1405  llvm::APFloat getValue() const {
1406    return APFloatStorage::getValue(getSemantics());
1407  }
1408  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1409    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1410    APFloatStorage::setValue(C, Val);
1411  }
1412
1413  /// Get a raw enumeration value representing the floating-point semantics of
1414  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1415  APFloatSemantics getRawSemantics() const {
1416    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1417  }
1418
1419  /// Set the raw enumeration value representing the floating-point semantics of
1420  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1421  void setRawSemantics(APFloatSemantics Sem) {
1422    FloatingLiteralBits.Semantics = Sem;
1423  }
1424
1425  /// Return the APFloat semantics this literal uses.
1426  const llvm::fltSemantics &getSemantics() const;
1427
1428  /// Set the APFloat semantics this literal uses.
1429  void setSemantics(const llvm::fltSemantics &Sem);
1430
1431  bool isExact() const { return FloatingLiteralBits.IsExact; }
1432  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1433
1434  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1435  /// double.  Note that this may cause loss of precision, but is useful for
1436  /// debugging dumps, etc.
1437  double getValueAsApproximateDouble() const;
1438
1439  SourceLocation getLocation() const { return Loc; }
1440  void setLocation(SourceLocation L) { Loc = L; }
1441
1442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1444
1445  static bool classof(const Stmt *T) {
1446    return T->getStmtClass() == FloatingLiteralClass;
1447  }
1448
1449  // Iterators
1450  child_range children() {
1451    return child_range(child_iterator(), child_iterator());
1452  }
1453  const_child_range children() const {
1454    return const_child_range(const_child_iterator(), const_child_iterator());
1455  }
1456};
1457
1458/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1459/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1460/// IntegerLiteral classes.  Instances of this class always have a Complex type
1461/// whose element type matches the subexpression.
1462///
1463class ImaginaryLiteral : public Expr {
1464  Stmt *Val;
1465public:
1466  ImaginaryLiteral(Expr *val, QualType Ty)
1467    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1468           false, false),
1469      Val(val) {}
1470
1471  /// \brief Build an empty imaginary literal.
1472  explicit ImaginaryLiteral(EmptyShell Empty)
1473    : Expr(ImaginaryLiteralClass, Empty) { }
1474
1475  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1476  Expr *getSubExpr() { return cast<Expr>(Val); }
1477  void setSubExpr(Expr *E) { Val = E; }
1478
1479  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1480  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1481
1482  static bool classof(const Stmt *T) {
1483    return T->getStmtClass() == ImaginaryLiteralClass;
1484  }
1485
1486  // Iterators
1487  child_range children() { return child_range(&Val, &Val+1); }
1488  const_child_range children() const {
1489    return const_child_range(&Val, &Val + 1);
1490  }
1491};
1492
1493/// StringLiteral - This represents a string literal expression, e.g. "foo"
1494/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1495/// is NOT null-terminated, and the length of the string is determined by
1496/// calling getByteLength().  The C type for a string is always a
1497/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1498/// not.
1499///
1500/// Note that strings in C can be formed by concatenation of multiple string
1501/// literal pptokens in translation phase #6.  This keeps track of the locations
1502/// of each of these pieces.
1503///
1504/// Strings in C can also be truncated and extended by assigning into arrays,
1505/// e.g. with constructs like:
1506///   char X[2] = "foobar";
1507/// In this case, getByteLength() will return 6, but the string literal will
1508/// have type "char[2]".
1509class StringLiteral : public Expr {
1510public:
1511  enum StringKind {
1512    Ascii,
1513    Wide,
1514    UTF8,
1515    UTF16,
1516    UTF32
1517  };
1518
1519private:
1520  friend class ASTStmtReader;
1521
1522  union {
1523    const char *asChar;
1524    const uint16_t *asUInt16;
1525    const uint32_t *asUInt32;
1526  } StrData;
1527  unsigned Length;
1528  unsigned CharByteWidth : 4;
1529  unsigned Kind : 3;
1530  unsigned IsPascal : 1;
1531  unsigned NumConcatenated;
1532  SourceLocation TokLocs[1];
1533
1534  StringLiteral(QualType Ty) :
1535    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1536         false) {}
1537
1538  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1539
1540public:
1541  /// This is the "fully general" constructor that allows representation of
1542  /// strings formed from multiple concatenated tokens.
1543  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1544                               StringKind Kind, bool Pascal, QualType Ty,
1545                               const SourceLocation *Loc, unsigned NumStrs);
1546
1547  /// Simple constructor for string literals made from one token.
1548  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1549                               StringKind Kind, bool Pascal, QualType Ty,
1550                               SourceLocation Loc) {
1551    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1552  }
1553
1554  /// \brief Construct an empty string literal.
1555  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1556
1557  StringRef getString() const {
1558    assert(CharByteWidth==1
1559           && "This function is used in places that assume strings use char");
1560    return StringRef(StrData.asChar, getByteLength());
1561  }
1562
1563  /// Allow access to clients that need the byte representation, such as
1564  /// ASTWriterStmt::VisitStringLiteral().
1565  StringRef getBytes() const {
1566    // FIXME: StringRef may not be the right type to use as a result for this.
1567    if (CharByteWidth == 1)
1568      return StringRef(StrData.asChar, getByteLength());
1569    if (CharByteWidth == 4)
1570      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1571                       getByteLength());
1572    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1573    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1574                     getByteLength());
1575  }
1576
1577  void outputString(raw_ostream &OS) const;
1578
1579  uint32_t getCodeUnit(size_t i) const {
1580    assert(i < Length && "out of bounds access");
1581    if (CharByteWidth == 1)
1582      return static_cast<unsigned char>(StrData.asChar[i]);
1583    if (CharByteWidth == 4)
1584      return StrData.asUInt32[i];
1585    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1586    return StrData.asUInt16[i];
1587  }
1588
1589  unsigned getByteLength() const { return CharByteWidth*Length; }
1590  unsigned getLength() const { return Length; }
1591  unsigned getCharByteWidth() const { return CharByteWidth; }
1592
1593  /// \brief Sets the string data to the given string data.
1594  void setString(const ASTContext &C, StringRef Str,
1595                 StringKind Kind, bool IsPascal);
1596
1597  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1598
1599
1600  bool isAscii() const { return Kind == Ascii; }
1601  bool isWide() const { return Kind == Wide; }
1602  bool isUTF8() const { return Kind == UTF8; }
1603  bool isUTF16() const { return Kind == UTF16; }
1604  bool isUTF32() const { return Kind == UTF32; }
1605  bool isPascal() const { return IsPascal; }
1606
1607  bool containsNonAsciiOrNull() const {
1608    StringRef Str = getString();
1609    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1610      if (!isASCII(Str[i]) || !Str[i])
1611        return true;
1612    return false;
1613  }
1614
1615  /// getNumConcatenated - Get the number of string literal tokens that were
1616  /// concatenated in translation phase #6 to form this string literal.
1617  unsigned getNumConcatenated() const { return NumConcatenated; }
1618
1619  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1620    assert(TokNum < NumConcatenated && "Invalid tok number");
1621    return TokLocs[TokNum];
1622  }
1623  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1624    assert(TokNum < NumConcatenated && "Invalid tok number");
1625    TokLocs[TokNum] = L;
1626  }
1627
1628  /// getLocationOfByte - Return a source location that points to the specified
1629  /// byte of this string literal.
1630  ///
1631  /// Strings are amazingly complex.  They can be formed from multiple tokens
1632  /// and can have escape sequences in them in addition to the usual trigraph
1633  /// and escaped newline business.  This routine handles this complexity.
1634  ///
1635  SourceLocation
1636  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1637                    const LangOptions &Features, const TargetInfo &Target,
1638                    unsigned *StartToken = nullptr,
1639                    unsigned *StartTokenByteOffset = nullptr) const;
1640
1641  typedef const SourceLocation *tokloc_iterator;
1642  tokloc_iterator tokloc_begin() const { return TokLocs; }
1643  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1644
1645  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1646  SourceLocation getLocEnd() const LLVM_READONLY {
1647    return TokLocs[NumConcatenated - 1];
1648  }
1649
1650  static bool classof(const Stmt *T) {
1651    return T->getStmtClass() == StringLiteralClass;
1652  }
1653
1654  // Iterators
1655  child_range children() {
1656    return child_range(child_iterator(), child_iterator());
1657  }
1658  const_child_range children() const {
1659    return const_child_range(const_child_iterator(), const_child_iterator());
1660  }
1661};
1662
1663/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1664/// AST node is only formed if full location information is requested.
1665class ParenExpr : public Expr {
1666  SourceLocation L, R;
1667  Stmt *Val;
1668public:
1669  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1670    : Expr(ParenExprClass, val->getType(),
1671           val->getValueKind(), val->getObjectKind(),
1672           val->isTypeDependent(), val->isValueDependent(),
1673           val->isInstantiationDependent(),
1674           val->containsUnexpandedParameterPack()),
1675      L(l), R(r), Val(val) {}
1676
1677  /// \brief Construct an empty parenthesized expression.
1678  explicit ParenExpr(EmptyShell Empty)
1679    : Expr(ParenExprClass, Empty) { }
1680
1681  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1682  Expr *getSubExpr() { return cast<Expr>(Val); }
1683  void setSubExpr(Expr *E) { Val = E; }
1684
1685  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1686  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1687
1688  /// \brief Get the location of the left parentheses '('.
1689  SourceLocation getLParen() const { return L; }
1690  void setLParen(SourceLocation Loc) { L = Loc; }
1691
1692  /// \brief Get the location of the right parentheses ')'.
1693  SourceLocation getRParen() const { return R; }
1694  void setRParen(SourceLocation Loc) { R = Loc; }
1695
1696  static bool classof(const Stmt *T) {
1697    return T->getStmtClass() == ParenExprClass;
1698  }
1699
1700  // Iterators
1701  child_range children() { return child_range(&Val, &Val+1); }
1702  const_child_range children() const {
1703    return const_child_range(&Val, &Val + 1);
1704  }
1705};
1706
1707/// UnaryOperator - This represents the unary-expression's (except sizeof and
1708/// alignof), the postinc/postdec operators from postfix-expression, and various
1709/// extensions.
1710///
1711/// Notes on various nodes:
1712///
1713/// Real/Imag - These return the real/imag part of a complex operand.  If
1714///   applied to a non-complex value, the former returns its operand and the
1715///   later returns zero in the type of the operand.
1716///
1717class UnaryOperator : public Expr {
1718public:
1719  typedef UnaryOperatorKind Opcode;
1720
1721private:
1722  unsigned Opc : 5;
1723  SourceLocation Loc;
1724  Stmt *Val;
1725public:
1726
1727  UnaryOperator(Expr *input, Opcode opc, QualType type,
1728                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1729    : Expr(UnaryOperatorClass, type, VK, OK,
1730           input->isTypeDependent() || type->isDependentType(),
1731           input->isValueDependent(),
1732           (input->isInstantiationDependent() ||
1733            type->isInstantiationDependentType()),
1734           input->containsUnexpandedParameterPack()),
1735      Opc(opc), Loc(l), Val(input) {}
1736
1737  /// \brief Build an empty unary operator.
1738  explicit UnaryOperator(EmptyShell Empty)
1739    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1740
1741  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1742  void setOpcode(Opcode O) { Opc = O; }
1743
1744  Expr *getSubExpr() const { return cast<Expr>(Val); }
1745  void setSubExpr(Expr *E) { Val = E; }
1746
1747  /// getOperatorLoc - Return the location of the operator.
1748  SourceLocation getOperatorLoc() const { return Loc; }
1749  void setOperatorLoc(SourceLocation L) { Loc = L; }
1750
1751  /// isPostfix - Return true if this is a postfix operation, like x++.
1752  static bool isPostfix(Opcode Op) {
1753    return Op == UO_PostInc || Op == UO_PostDec;
1754  }
1755
1756  /// isPrefix - Return true if this is a prefix operation, like --x.
1757  static bool isPrefix(Opcode Op) {
1758    return Op == UO_PreInc || Op == UO_PreDec;
1759  }
1760
1761  bool isPrefix() const { return isPrefix(getOpcode()); }
1762  bool isPostfix() const { return isPostfix(getOpcode()); }
1763
1764  static bool isIncrementOp(Opcode Op) {
1765    return Op == UO_PreInc || Op == UO_PostInc;
1766  }
1767  bool isIncrementOp() const {
1768    return isIncrementOp(getOpcode());
1769  }
1770
1771  static bool isDecrementOp(Opcode Op) {
1772    return Op == UO_PreDec || Op == UO_PostDec;
1773  }
1774  bool isDecrementOp() const {
1775    return isDecrementOp(getOpcode());
1776  }
1777
1778  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1779  bool isIncrementDecrementOp() const {
1780    return isIncrementDecrementOp(getOpcode());
1781  }
1782
1783  static bool isArithmeticOp(Opcode Op) {
1784    return Op >= UO_Plus && Op <= UO_LNot;
1785  }
1786  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1787
1788  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1789  /// corresponds to, e.g. "sizeof" or "[pre]++"
1790  static StringRef getOpcodeStr(Opcode Op);
1791
1792  /// \brief Retrieve the unary opcode that corresponds to the given
1793  /// overloaded operator.
1794  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1795
1796  /// \brief Retrieve the overloaded operator kind that corresponds to
1797  /// the given unary opcode.
1798  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1799
1800  SourceLocation getLocStart() const LLVM_READONLY {
1801    return isPostfix() ? Val->getLocStart() : Loc;
1802  }
1803  SourceLocation getLocEnd() const LLVM_READONLY {
1804    return isPostfix() ? Loc : Val->getLocEnd();
1805  }
1806  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1807
1808  static bool classof(const Stmt *T) {
1809    return T->getStmtClass() == UnaryOperatorClass;
1810  }
1811
1812  // Iterators
1813  child_range children() { return child_range(&Val, &Val+1); }
1814  const_child_range children() const {
1815    return const_child_range(&Val, &Val + 1);
1816  }
1817};
1818
1819/// Helper class for OffsetOfExpr.
1820
1821// __builtin_offsetof(type, identifier(.identifier|[expr])*)
1822class OffsetOfNode {
1823public:
1824  /// \brief The kind of offsetof node we have.
1825  enum Kind {
1826    /// \brief An index into an array.
1827    Array = 0x00,
1828    /// \brief A field.
1829    Field = 0x01,
1830    /// \brief A field in a dependent type, known only by its name.
1831    Identifier = 0x02,
1832    /// \brief An implicit indirection through a C++ base class, when the
1833    /// field found is in a base class.
1834    Base = 0x03
1835  };
1836
1837private:
1838  enum { MaskBits = 2, Mask = 0x03 };
1839
1840  /// \brief The source range that covers this part of the designator.
1841  SourceRange Range;
1842
1843  /// \brief The data describing the designator, which comes in three
1844  /// different forms, depending on the lower two bits.
1845  ///   - An unsigned index into the array of Expr*'s stored after this node
1846  ///     in memory, for [constant-expression] designators.
1847  ///   - A FieldDecl*, for references to a known field.
1848  ///   - An IdentifierInfo*, for references to a field with a given name
1849  ///     when the class type is dependent.
1850  ///   - A CXXBaseSpecifier*, for references that look at a field in a
1851  ///     base class.
1852  uintptr_t Data;
1853
1854public:
1855  /// \brief Create an offsetof node that refers to an array element.
1856  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1857               SourceLocation RBracketLoc)
1858      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
1859
1860  /// \brief Create an offsetof node that refers to a field.
1861  OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
1862      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1863        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
1864
1865  /// \brief Create an offsetof node that refers to an identifier.
1866  OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1867               SourceLocation NameLoc)
1868      : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1869        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
1870
1871  /// \brief Create an offsetof node that refers into a C++ base class.
1872  explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1873      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1874
1875  /// \brief Determine what kind of offsetof node this is.
1876  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
1877
1878  /// \brief For an array element node, returns the index into the array
1879  /// of expressions.
1880  unsigned getArrayExprIndex() const {
1881    assert(getKind() == Array);
1882    return Data >> 2;
1883  }
1884
1885  /// \brief For a field offsetof node, returns the field.
1886  FieldDecl *getField() const {
1887    assert(getKind() == Field);
1888    return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1889  }
1890
1891  /// \brief For a field or identifier offsetof node, returns the name of
1892  /// the field.
1893  IdentifierInfo *getFieldName() const;
1894
1895  /// \brief For a base class node, returns the base specifier.
1896  CXXBaseSpecifier *getBase() const {
1897    assert(getKind() == Base);
1898    return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1899  }
1900
1901  /// \brief Retrieve the source range that covers this offsetof node.
1902  ///
1903  /// For an array element node, the source range contains the locations of
1904  /// the square brackets. For a field or identifier node, the source range
1905  /// contains the location of the period (if there is one) and the
1906  /// identifier.
1907  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1908  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1909  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1910};
1911
1912/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1913/// offsetof(record-type, member-designator). For example, given:
1914/// @code
1915/// struct S {
1916///   float f;
1917///   double d;
1918/// };
1919/// struct T {
1920///   int i;
1921///   struct S s[10];
1922/// };
1923/// @endcode
1924/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1925
1926class OffsetOfExpr final
1927    : public Expr,
1928      private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
1929  SourceLocation OperatorLoc, RParenLoc;
1930  // Base type;
1931  TypeSourceInfo *TSInfo;
1932  // Number of sub-components (i.e. instances of OffsetOfNode).
1933  unsigned NumComps;
1934  // Number of sub-expressions (i.e. array subscript expressions).
1935  unsigned NumExprs;
1936
1937  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
1938    return NumComps;
1939  }
1940
1941  OffsetOfExpr(const ASTContext &C, QualType type,
1942               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1943               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1944               SourceLocation RParenLoc);
1945
1946  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1947    : Expr(OffsetOfExprClass, EmptyShell()),
1948      TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1949
1950public:
1951
1952  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1953                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1954                              ArrayRef<OffsetOfNode> comps,
1955                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1956
1957  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1958                                   unsigned NumComps, unsigned NumExprs);
1959
1960  /// getOperatorLoc - Return the location of the operator.
1961  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1962  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1963
1964  /// \brief Return the location of the right parentheses.
1965  SourceLocation getRParenLoc() const { return RParenLoc; }
1966  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1967
1968  TypeSourceInfo *getTypeSourceInfo() const {
1969    return TSInfo;
1970  }
1971  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1972    TSInfo = tsi;
1973  }
1974
1975  const OffsetOfNode &getComponent(unsigned Idx) const {
1976    assert(Idx < NumComps && "Subscript out of range");
1977    return getTrailingObjects<OffsetOfNode>()[Idx];
1978  }
1979
1980  void setComponent(unsigned Idx, OffsetOfNode ON) {
1981    assert(Idx < NumComps && "Subscript out of range");
1982    getTrailingObjects<OffsetOfNode>()[Idx] = ON;
1983  }
1984
1985  unsigned getNumComponents() const {
1986    return NumComps;
1987  }
1988
1989  Expr* getIndexExpr(unsigned Idx) {
1990    assert(Idx < NumExprs && "Subscript out of range");
1991    return getTrailingObjects<Expr *>()[Idx];
1992  }
1993
1994  const Expr *getIndexExpr(unsigned Idx) const {
1995    assert(Idx < NumExprs && "Subscript out of range");
1996    return getTrailingObjects<Expr *>()[Idx];
1997  }
1998
1999  void setIndexExpr(unsigned Idx, Expr* E) {
2000    assert(Idx < NumComps && "Subscript out of range");
2001    getTrailingObjects<Expr *>()[Idx] = E;
2002  }
2003
2004  unsigned getNumExpressions() const {
2005    return NumExprs;
2006  }
2007
2008  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
2009  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2010
2011  static bool classof(const Stmt *T) {
2012    return T->getStmtClass() == OffsetOfExprClass;
2013  }
2014
2015  // Iterators
2016  child_range children() {
2017    Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2018    return child_range(begin, begin + NumExprs);
2019  }
2020  const_child_range children() const {
2021    Stmt *const *begin =
2022        reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2023    return const_child_range(begin, begin + NumExprs);
2024  }
2025  friend TrailingObjects;
2026};
2027
2028/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2029/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
2030/// vec_step (OpenCL 1.1 6.11.12).
2031class UnaryExprOrTypeTraitExpr : public Expr {
2032  union {
2033    TypeSourceInfo *Ty;
2034    Stmt *Ex;
2035  } Argument;
2036  SourceLocation OpLoc, RParenLoc;
2037
2038public:
2039  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
2040                           QualType resultType, SourceLocation op,
2041                           SourceLocation rp) :
2042      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2043           false, // Never type-dependent (C++ [temp.dep.expr]p3).
2044           // Value-dependent if the argument is type-dependent.
2045           TInfo->getType()->isDependentType(),
2046           TInfo->getType()->isInstantiationDependentType(),
2047           TInfo->getType()->containsUnexpandedParameterPack()),
2048      OpLoc(op), RParenLoc(rp) {
2049    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2050    UnaryExprOrTypeTraitExprBits.IsType = true;
2051    Argument.Ty = TInfo;
2052  }
2053
2054  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
2055                           QualType resultType, SourceLocation op,
2056                           SourceLocation rp);
2057
2058  /// \brief Construct an empty sizeof/alignof expression.
2059  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
2060    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2061
2062  UnaryExprOrTypeTrait getKind() const {
2063    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2064  }
2065  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2066
2067  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2068  QualType getArgumentType() const {
2069    return getArgumentTypeInfo()->getType();
2070  }
2071  TypeSourceInfo *getArgumentTypeInfo() const {
2072    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2073    return Argument.Ty;
2074  }
2075  Expr *getArgumentExpr() {
2076    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2077    return static_cast<Expr*>(Argument.Ex);
2078  }
2079  const Expr *getArgumentExpr() const {
2080    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2081  }
2082
2083  void setArgument(Expr *E) {
2084    Argument.Ex = E;
2085    UnaryExprOrTypeTraitExprBits.IsType = false;
2086  }
2087  void setArgument(TypeSourceInfo *TInfo) {
2088    Argument.Ty = TInfo;
2089    UnaryExprOrTypeTraitExprBits.IsType = true;
2090  }
2091
2092  /// Gets the argument type, or the type of the argument expression, whichever
2093  /// is appropriate.
2094  QualType getTypeOfArgument() const {
2095    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2096  }
2097
2098  SourceLocation getOperatorLoc() const { return OpLoc; }
2099  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2100
2101  SourceLocation getRParenLoc() const { return RParenLoc; }
2102  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2103
2104  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2105  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2106
2107  static bool classof(const Stmt *T) {
2108    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2109  }
2110
2111  // Iterators
2112  child_range children();
2113  const_child_range children() const;
2114};
2115
2116//===----------------------------------------------------------------------===//
2117// Postfix Operators.
2118//===----------------------------------------------------------------------===//
2119
2120/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2121class ArraySubscriptExpr : public Expr {
2122  enum { LHS, RHS, END_EXPR=2 };
2123  Stmt* SubExprs[END_EXPR];
2124  SourceLocation RBracketLoc;
2125public:
2126  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2127                     ExprValueKind VK, ExprObjectKind OK,
2128                     SourceLocation rbracketloc)
2129  : Expr(ArraySubscriptExprClass, t, VK, OK,
2130         lhs->isTypeDependent() || rhs->isTypeDependent(),
2131         lhs->isValueDependent() || rhs->isValueDependent(),
2132         (lhs->isInstantiationDependent() ||
2133          rhs->isInstantiationDependent()),
2134         (lhs->containsUnexpandedParameterPack() ||
2135          rhs->containsUnexpandedParameterPack())),
2136    RBracketLoc(rbracketloc) {
2137    SubExprs[LHS] = lhs;
2138    SubExprs[RHS] = rhs;
2139  }
2140
2141  /// \brief Create an empty array subscript expression.
2142  explicit ArraySubscriptExpr(EmptyShell Shell)
2143    : Expr(ArraySubscriptExprClass, Shell) { }
2144
2145  /// An array access can be written A[4] or 4[A] (both are equivalent).
2146  /// - getBase() and getIdx() always present the normalized view: A[4].
2147  ///    In this case getBase() returns "A" and getIdx() returns "4".
2148  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2149  ///    4[A] getLHS() returns "4".
2150  /// Note: Because vector element access is also written A[4] we must
2151  /// predicate the format conversion in getBase and getIdx only on the
2152  /// the type of the RHS, as it is possible for the LHS to be a vector of
2153  /// integer type
2154  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2155  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2156  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2157
2158  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2159  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2160  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2161
2162  Expr *getBase() {
2163    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2164  }
2165
2166  const Expr *getBase() const {
2167    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2168  }
2169
2170  Expr *getIdx() {
2171    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2172  }
2173
2174  const Expr *getIdx() const {
2175    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2176  }
2177
2178  SourceLocation getLocStart() const LLVM_READONLY {
2179    return getLHS()->getLocStart();
2180  }
2181  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2182
2183  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2184  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2185
2186  SourceLocation getExprLoc() const LLVM_READONLY {
2187    return getBase()->getExprLoc();
2188  }
2189
2190  static bool classof(const Stmt *T) {
2191    return T->getStmtClass() == ArraySubscriptExprClass;
2192  }
2193
2194  // Iterators
2195  child_range children() {
2196    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2197  }
2198  const_child_range children() const {
2199    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2200  }
2201};
2202
2203/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2204/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2205/// while its subclasses may represent alternative syntax that (semantically)
2206/// results in a function call. For example, CXXOperatorCallExpr is
2207/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2208/// "str1 + str2" to resolve to a function call.
2209class CallExpr : public Expr {
2210  enum { FN=0, PREARGS_START=1 };
2211  Stmt **SubExprs;
2212  unsigned NumArgs;
2213  SourceLocation RParenLoc;
2214
2215  void updateDependenciesFromArg(Expr *Arg);
2216
2217protected:
2218  // These versions of the constructor are for derived classes.
2219  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
2220           ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
2221           ExprValueKind VK, SourceLocation rparenloc);
2222  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
2223           QualType t, ExprValueKind VK, SourceLocation rparenloc);
2224  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2225           EmptyShell Empty);
2226
2227  Stmt *getPreArg(unsigned i) {
2228    assert(i < getNumPreArgs() && "Prearg access out of range!");
2229    return SubExprs[PREARGS_START+i];
2230  }
2231  const Stmt *getPreArg(unsigned i) const {
2232    assert(i < getNumPreArgs() && "Prearg access out of range!");
2233    return SubExprs[PREARGS_START+i];
2234  }
2235  void setPreArg(unsigned i, Stmt *PreArg) {
2236    assert(i < getNumPreArgs() && "Prearg access out of range!");
2237    SubExprs[PREARGS_START+i] = PreArg;
2238  }
2239
2240  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2241
2242public:
2243  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2244           ExprValueKind VK, SourceLocation rparenloc);
2245
2246  /// \brief Build an empty call expression.
2247  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2248
2249  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2250  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2251  void setCallee(Expr *F) { SubExprs[FN] = F; }
2252
2253  Decl *getCalleeDecl();
2254  const Decl *getCalleeDecl() const {
2255    return const_cast<CallExpr*>(this)->getCalleeDecl();
2256  }
2257
2258  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2259  FunctionDecl *getDirectCallee();
2260  const FunctionDecl *getDirectCallee() const {
2261    return const_cast<CallExpr*>(this)->getDirectCallee();
2262  }
2263
2264  /// getNumArgs - Return the number of actual arguments to this call.
2265  ///
2266  unsigned getNumArgs() const { return NumArgs; }
2267
2268  /// \brief Retrieve the call arguments.
2269  Expr **getArgs() {
2270    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2271  }
2272  const Expr *const *getArgs() const {
2273    return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
2274                                     PREARGS_START);
2275  }
2276
2277  /// getArg - Return the specified argument.
2278  Expr *getArg(unsigned Arg) {
2279    assert(Arg < NumArgs && "Arg access out of range!");
2280    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2281  }
2282  const Expr *getArg(unsigned Arg) const {
2283    assert(Arg < NumArgs && "Arg access out of range!");
2284    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2285  }
2286
2287  /// setArg - Set the specified argument.
2288  void setArg(unsigned Arg, Expr *ArgExpr) {
2289    assert(Arg < NumArgs && "Arg access out of range!");
2290    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2291  }
2292
2293  /// setNumArgs - This changes the number of arguments present in this call.
2294  /// Any orphaned expressions are deleted by this, and any new operands are set
2295  /// to null.
2296  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2297
2298  typedef ExprIterator arg_iterator;
2299  typedef ConstExprIterator const_arg_iterator;
2300  typedef llvm::iterator_range<arg_iterator> arg_range;
2301  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2302
2303  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2304  arg_const_range arguments() const {
2305    return arg_const_range(arg_begin(), arg_end());
2306  }
2307
2308  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2309  arg_iterator arg_end() {
2310    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2311  }
2312  const_arg_iterator arg_begin() const {
2313    return SubExprs+PREARGS_START+getNumPreArgs();
2314  }
2315  const_arg_iterator arg_end() const {
2316    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2317  }
2318
2319  /// This method provides fast access to all the subexpressions of
2320  /// a CallExpr without going through the slower virtual child_iterator
2321  /// interface.  This provides efficient reverse iteration of the
2322  /// subexpressions.  This is currently used for CFG construction.
2323  ArrayRef<Stmt*> getRawSubExprs() {
2324    return llvm::makeArrayRef(SubExprs,
2325                              getNumPreArgs() + PREARGS_START + getNumArgs());
2326  }
2327
2328  /// getNumCommas - Return the number of commas that must have been present in
2329  /// this function call.
2330  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2331
2332  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2333  /// of the callee. If not, return 0.
2334  unsigned getBuiltinCallee() const;
2335
2336  /// \brief Returns \c true if this is a call to a builtin which does not
2337  /// evaluate side-effects within its arguments.
2338  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2339
2340  /// getCallReturnType - Get the return type of the call expr. This is not
2341  /// always the type of the expr itself, if the return type is a reference
2342  /// type.
2343  QualType getCallReturnType(const ASTContext &Ctx) const;
2344
2345  SourceLocation getRParenLoc() const { return RParenLoc; }
2346  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2347
2348  SourceLocation getLocStart() const LLVM_READONLY;
2349  SourceLocation getLocEnd() const LLVM_READONLY;
2350
2351  bool isCallToStdMove() const {
2352    const FunctionDecl* FD = getDirectCallee();
2353    return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2354           FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2355  }
2356
2357  static bool classof(const Stmt *T) {
2358    return T->getStmtClass() >= firstCallExprConstant &&
2359           T->getStmtClass() <= lastCallExprConstant;
2360  }
2361
2362  // Iterators
2363  child_range children() {
2364    return child_range(&SubExprs[0],
2365                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2366  }
2367
2368  const_child_range children() const {
2369    return const_child_range(&SubExprs[0], &SubExprs[0] + NumArgs +
2370                                               getNumPreArgs() + PREARGS_START);
2371  }
2372};
2373
2374/// Extra data stored in some MemberExpr objects.
2375struct MemberExprNameQualifier {
2376  /// \brief The nested-name-specifier that qualifies the name, including
2377  /// source-location information.
2378  NestedNameSpecifierLoc QualifierLoc;
2379
2380  /// \brief The DeclAccessPair through which the MemberDecl was found due to
2381  /// name qualifiers.
2382  DeclAccessPair FoundDecl;
2383};
2384
2385/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2386///
2387class MemberExpr final
2388    : public Expr,
2389      private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2390                                    ASTTemplateKWAndArgsInfo,
2391                                    TemplateArgumentLoc> {
2392  /// Base - the expression for the base pointer or structure references.  In
2393  /// X.F, this is "X".
2394  Stmt *Base;
2395
2396  /// MemberDecl - This is the decl being referenced by the field/member name.
2397  /// In X.F, this is the decl referenced by F.
2398  ValueDecl *MemberDecl;
2399
2400  /// MemberDNLoc - Provides source/type location info for the
2401  /// declaration name embedded in MemberDecl.
2402  DeclarationNameLoc MemberDNLoc;
2403
2404  /// MemberLoc - This is the location of the member name.
2405  SourceLocation MemberLoc;
2406
2407  /// This is the location of the -> or . in the expression.
2408  SourceLocation OperatorLoc;
2409
2410  /// IsArrow - True if this is "X->F", false if this is "X.F".
2411  bool IsArrow : 1;
2412
2413  /// \brief True if this member expression used a nested-name-specifier to
2414  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2415  /// declaration.  When true, a MemberExprNameQualifier
2416  /// structure is allocated immediately after the MemberExpr.
2417  bool HasQualifierOrFoundDecl : 1;
2418
2419  /// \brief True if this member expression specified a template keyword
2420  /// and/or a template argument list explicitly, e.g., x->f<int>,
2421  /// x->template f, x->template f<int>.
2422  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2423  /// TemplateArguments (if any) are present.
2424  bool HasTemplateKWAndArgsInfo : 1;
2425
2426  /// \brief True if this member expression refers to a method that
2427  /// was resolved from an overloaded set having size greater than 1.
2428  bool HadMultipleCandidates : 1;
2429
2430  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2431    return HasQualifierOrFoundDecl ? 1 : 0;
2432  }
2433
2434  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2435    return HasTemplateKWAndArgsInfo ? 1 : 0;
2436  }
2437
2438public:
2439  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2440             ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2441             QualType ty, ExprValueKind VK, ExprObjectKind OK)
2442      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2443             base->isValueDependent(), base->isInstantiationDependent(),
2444             base->containsUnexpandedParameterPack()),
2445        Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2446        MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2447        IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2448        HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2449    assert(memberdecl->getDeclName() == NameInfo.getName());
2450  }
2451
2452  // NOTE: this constructor should be used only when it is known that
2453  // the member name can not provide additional syntactic info
2454  // (i.e., source locations for C++ operator names or type source info
2455  // for constructors, destructors and conversion operators).
2456  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2457             ValueDecl *memberdecl, SourceLocation l, QualType ty,
2458             ExprValueKind VK, ExprObjectKind OK)
2459      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2460             base->isValueDependent(), base->isInstantiationDependent(),
2461             base->containsUnexpandedParameterPack()),
2462        Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2463        OperatorLoc(operatorloc), IsArrow(isarrow),
2464        HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2465        HadMultipleCandidates(false) {}
2466
2467  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2468                            SourceLocation OperatorLoc,
2469                            NestedNameSpecifierLoc QualifierLoc,
2470                            SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2471                            DeclAccessPair founddecl,
2472                            DeclarationNameInfo MemberNameInfo,
2473                            const TemplateArgumentListInfo *targs, QualType ty,
2474                            ExprValueKind VK, ExprObjectKind OK);
2475
2476  void setBase(Expr *E) { Base = E; }
2477  Expr *getBase() const { return cast<Expr>(Base); }
2478
2479  /// \brief Retrieve the member declaration to which this expression refers.
2480  ///
2481  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2482  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2483  ValueDecl *getMemberDecl() const { return MemberDecl; }
2484  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2485
2486  /// \brief Retrieves the declaration found by lookup.
2487  DeclAccessPair getFoundDecl() const {
2488    if (!HasQualifierOrFoundDecl)
2489      return DeclAccessPair::make(getMemberDecl(),
2490                                  getMemberDecl()->getAccess());
2491    return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2492  }
2493
2494  /// \brief Determines whether this member expression actually had
2495  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2496  /// x->Base::foo.
2497  bool hasQualifier() const { return getQualifier() != nullptr; }
2498
2499  /// \brief If the member name was qualified, retrieves the
2500  /// nested-name-specifier that precedes the member name, with source-location
2501  /// information.
2502  NestedNameSpecifierLoc getQualifierLoc() const {
2503    if (!HasQualifierOrFoundDecl)
2504      return NestedNameSpecifierLoc();
2505
2506    return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2507  }
2508
2509  /// \brief If the member name was qualified, retrieves the
2510  /// nested-name-specifier that precedes the member name. Otherwise, returns
2511  /// NULL.
2512  NestedNameSpecifier *getQualifier() const {
2513    return getQualifierLoc().getNestedNameSpecifier();
2514  }
2515
2516  /// \brief Retrieve the location of the template keyword preceding
2517  /// the member name, if any.
2518  SourceLocation getTemplateKeywordLoc() const {
2519    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2520    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2521  }
2522
2523  /// \brief Retrieve the location of the left angle bracket starting the
2524  /// explicit template argument list following the member name, if any.
2525  SourceLocation getLAngleLoc() const {
2526    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2527    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2528  }
2529
2530  /// \brief Retrieve the location of the right angle bracket ending the
2531  /// explicit template argument list following the member name, if any.
2532  SourceLocation getRAngleLoc() const {
2533    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2534    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2535  }
2536
2537  /// Determines whether the member name was preceded by the template keyword.
2538  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2539
2540  /// \brief Determines whether the member name was followed by an
2541  /// explicit template argument list.
2542  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2543
2544  /// \brief Copies the template arguments (if present) into the given
2545  /// structure.
2546  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2547    if (hasExplicitTemplateArgs())
2548      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2549          getTrailingObjects<TemplateArgumentLoc>(), List);
2550  }
2551
2552  /// \brief Retrieve the template arguments provided as part of this
2553  /// template-id.
2554  const TemplateArgumentLoc *getTemplateArgs() const {
2555    if (!hasExplicitTemplateArgs())
2556      return nullptr;
2557
2558    return getTrailingObjects<TemplateArgumentLoc>();
2559  }
2560
2561  /// \brief Retrieve the number of template arguments provided as part of this
2562  /// template-id.
2563  unsigned getNumTemplateArgs() const {
2564    if (!hasExplicitTemplateArgs())
2565      return 0;
2566
2567    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2568  }
2569
2570  ArrayRef<TemplateArgumentLoc> template_arguments() const {
2571    return {getTemplateArgs(), getNumTemplateArgs()};
2572  }
2573
2574  /// \brief Retrieve the member declaration name info.
2575  DeclarationNameInfo getMemberNameInfo() const {
2576    return DeclarationNameInfo(MemberDecl->getDeclName(),
2577                               MemberLoc, MemberDNLoc);
2578  }
2579
2580  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2581
2582  bool isArrow() const { return IsArrow; }
2583  void setArrow(bool A) { IsArrow = A; }
2584
2585  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2586  /// location of 'F'.
2587  SourceLocation getMemberLoc() const { return MemberLoc; }
2588  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2589
2590  SourceLocation getLocStart() const LLVM_READONLY;
2591  SourceLocation getLocEnd() const LLVM_READONLY;
2592
2593  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2594
2595  /// \brief Determine whether the base of this explicit is implicit.
2596  bool isImplicitAccess() const {
2597    return getBase() && getBase()->isImplicitCXXThis();
2598  }
2599
2600  /// \brief Returns true if this member expression refers to a method that
2601  /// was resolved from an overloaded set having size greater than 1.
2602  bool hadMultipleCandidates() const {
2603    return HadMultipleCandidates;
2604  }
2605  /// \brief Sets the flag telling whether this expression refers to
2606  /// a method that was resolved from an overloaded set having size
2607  /// greater than 1.
2608  void setHadMultipleCandidates(bool V = true) {
2609    HadMultipleCandidates = V;
2610  }
2611
2612  /// \brief Returns true if virtual dispatch is performed.
2613  /// If the member access is fully qualified, (i.e. X::f()), virtual
2614  /// dispatching is not performed. In -fapple-kext mode qualified
2615  /// calls to virtual method will still go through the vtable.
2616  bool performsVirtualDispatch(const LangOptions &LO) const {
2617    return LO.AppleKext || !hasQualifier();
2618  }
2619
2620  static bool classof(const Stmt *T) {
2621    return T->getStmtClass() == MemberExprClass;
2622  }
2623
2624  // Iterators
2625  child_range children() { return child_range(&Base, &Base+1); }
2626  const_child_range children() const {
2627    return const_child_range(&Base, &Base + 1);
2628  }
2629
2630  friend TrailingObjects;
2631  friend class ASTReader;
2632  friend class ASTStmtWriter;
2633};
2634
2635/// CompoundLiteralExpr - [C99 6.5.2.5]
2636///
2637class CompoundLiteralExpr : public Expr {
2638  /// LParenLoc - If non-null, this is the location of the left paren in a
2639  /// compound literal like "(int){4}".  This can be null if this is a
2640  /// synthesized compound expression.
2641  SourceLocation LParenLoc;
2642
2643  /// The type as written.  This can be an incomplete array type, in
2644  /// which case the actual expression type will be different.
2645  /// The int part of the pair stores whether this expr is file scope.
2646  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2647  Stmt *Init;
2648public:
2649  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2650                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2651    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2652           tinfo->getType()->isDependentType(),
2653           init->isValueDependent(),
2654           (init->isInstantiationDependent() ||
2655            tinfo->getType()->isInstantiationDependentType()),
2656           init->containsUnexpandedParameterPack()),
2657      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2658
2659  /// \brief Construct an empty compound literal.
2660  explicit CompoundLiteralExpr(EmptyShell Empty)
2661    : Expr(CompoundLiteralExprClass, Empty) { }
2662
2663  const Expr *getInitializer() const { return cast<Expr>(Init); }
2664  Expr *getInitializer() { return cast<Expr>(Init); }
2665  void setInitializer(Expr *E) { Init = E; }
2666
2667  bool isFileScope() const { return TInfoAndScope.getInt(); }
2668  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2669
2670  SourceLocation getLParenLoc() const { return LParenLoc; }
2671  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2672
2673  TypeSourceInfo *getTypeSourceInfo() const {
2674    return TInfoAndScope.getPointer();
2675  }
2676  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2677    TInfoAndScope.setPointer(tinfo);
2678  }
2679
2680  SourceLocation getLocStart() const LLVM_READONLY {
2681    // FIXME: Init should never be null.
2682    if (!Init)
2683      return SourceLocation();
2684    if (LParenLoc.isInvalid())
2685      return Init->getLocStart();
2686    return LParenLoc;
2687  }
2688  SourceLocation getLocEnd() const LLVM_READONLY {
2689    // FIXME: Init should never be null.
2690    if (!Init)
2691      return SourceLocation();
2692    return Init->getLocEnd();
2693  }
2694
2695  static bool classof(const Stmt *T) {
2696    return T->getStmtClass() == CompoundLiteralExprClass;
2697  }
2698
2699  // Iterators
2700  child_range children() { return child_range(&Init, &Init+1); }
2701  const_child_range children() const {
2702    return const_child_range(&Init, &Init + 1);
2703  }
2704};
2705
2706/// CastExpr - Base class for type casts, including both implicit
2707/// casts (ImplicitCastExpr) and explicit casts that have some
2708/// representation in the source code (ExplicitCastExpr's derived
2709/// classes).
2710class CastExpr : public Expr {
2711private:
2712  Stmt *Op;
2713
2714  bool CastConsistency() const;
2715
2716  const CXXBaseSpecifier * const *path_buffer() const {
2717    return const_cast<CastExpr*>(this)->path_buffer();
2718  }
2719  CXXBaseSpecifier **path_buffer();
2720
2721  void setBasePathSize(unsigned basePathSize) {
2722    CastExprBits.BasePathSize = basePathSize;
2723    assert(CastExprBits.BasePathSize == basePathSize &&
2724           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2725  }
2726
2727protected:
2728  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
2729           Expr *op, unsigned BasePathSize)
2730      : Expr(SC, ty, VK, OK_Ordinary,
2731             // Cast expressions are type-dependent if the type is
2732             // dependent (C++ [temp.dep.expr]p3).
2733             ty->isDependentType(),
2734             // Cast expressions are value-dependent if the type is
2735             // dependent or if the subexpression is value-dependent.
2736             ty->isDependentType() || (op && op->isValueDependent()),
2737             (ty->isInstantiationDependentType() ||
2738              (op && op->isInstantiationDependent())),
2739             // An implicit cast expression doesn't (lexically) contain an
2740             // unexpanded pack, even if its target type does.
2741             ((SC != ImplicitCastExprClass &&
2742               ty->containsUnexpandedParameterPack()) ||
2743              (op && op->containsUnexpandedParameterPack()))),
2744        Op(op) {
2745    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2746    CastExprBits.Kind = kind;
2747    setBasePathSize(BasePathSize);
2748    assert(CastConsistency());
2749  }
2750
2751  /// \brief Construct an empty cast.
2752  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2753    : Expr(SC, Empty) {
2754    setBasePathSize(BasePathSize);
2755  }
2756
2757public:
2758  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2759  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2760  const char *getCastKindName() const;
2761
2762  Expr *getSubExpr() { return cast<Expr>(Op); }
2763  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2764  void setSubExpr(Expr *E) { Op = E; }
2765
2766  /// \brief Retrieve the cast subexpression as it was written in the source
2767  /// code, looking through any implicit casts or other intermediate nodes
2768  /// introduced by semantic analysis.
2769  Expr *getSubExprAsWritten();
2770  const Expr *getSubExprAsWritten() const {
2771    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2772  }
2773
2774  typedef CXXBaseSpecifier **path_iterator;
2775  typedef const CXXBaseSpecifier * const *path_const_iterator;
2776  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2777  unsigned path_size() const { return CastExprBits.BasePathSize; }
2778  path_iterator path_begin() { return path_buffer(); }
2779  path_iterator path_end() { return path_buffer() + path_size(); }
2780  path_const_iterator path_begin() const { return path_buffer(); }
2781  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2782
2783  const FieldDecl *getTargetUnionField() const {
2784    assert(getCastKind() == CK_ToUnion);
2785    return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
2786  }
2787
2788  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
2789                                                       QualType opType);
2790  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
2791                                                       QualType opType);
2792
2793  static bool classof(const Stmt *T) {
2794    return T->getStmtClass() >= firstCastExprConstant &&
2795           T->getStmtClass() <= lastCastExprConstant;
2796  }
2797
2798  // Iterators
2799  child_range children() { return child_range(&Op, &Op+1); }
2800  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
2801};
2802
2803/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2804/// conversions, which have no direct representation in the original
2805/// source code. For example: converting T[]->T*, void f()->void
2806/// (*f)(), float->double, short->int, etc.
2807///
2808/// In C, implicit casts always produce rvalues. However, in C++, an
2809/// implicit cast whose result is being bound to a reference will be
2810/// an lvalue or xvalue. For example:
2811///
2812/// @code
2813/// class Base { };
2814/// class Derived : public Base { };
2815/// Derived &&ref();
2816/// void f(Derived d) {
2817///   Base& b = d; // initializer is an ImplicitCastExpr
2818///                // to an lvalue of type Base
2819///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2820///                     // to an xvalue of type Base
2821/// }
2822/// @endcode
2823class ImplicitCastExpr final
2824    : public CastExpr,
2825      private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
2826private:
2827  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2828                   unsigned BasePathLength, ExprValueKind VK)
2829    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2830  }
2831
2832  /// \brief Construct an empty implicit cast.
2833  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2834    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2835
2836public:
2837  enum OnStack_t { OnStack };
2838  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2839                   ExprValueKind VK)
2840    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2841  }
2842
2843  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2844                                  CastKind Kind, Expr *Operand,
2845                                  const CXXCastPath *BasePath,
2846                                  ExprValueKind Cat);
2847
2848  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2849                                       unsigned PathSize);
2850
2851  SourceLocation getLocStart() const LLVM_READONLY {
2852    return getSubExpr()->getLocStart();
2853  }
2854  SourceLocation getLocEnd() const LLVM_READONLY {
2855    return getSubExpr()->getLocEnd();
2856  }
2857
2858  static bool classof(const Stmt *T) {
2859    return T->getStmtClass() == ImplicitCastExprClass;
2860  }
2861
2862  friend TrailingObjects;
2863  friend class CastExpr;
2864};
2865
2866inline Expr *Expr::IgnoreImpCasts() {
2867  Expr *e = this;
2868  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2869    e = ice->getSubExpr();
2870  return e;
2871}
2872
2873/// ExplicitCastExpr - An explicit cast written in the source
2874/// code.
2875///
2876/// This class is effectively an abstract class, because it provides
2877/// the basic representation of an explicitly-written cast without
2878/// specifying which kind of cast (C cast, functional cast, static
2879/// cast, etc.) was written; specific derived classes represent the
2880/// particular style of cast and its location information.
2881///
2882/// Unlike implicit casts, explicit cast nodes have two different
2883/// types: the type that was written into the source code, and the
2884/// actual type of the expression as determined by semantic
2885/// analysis. These types may differ slightly. For example, in C++ one
2886/// can cast to a reference type, which indicates that the resulting
2887/// expression will be an lvalue or xvalue. The reference type, however,
2888/// will not be used as the type of the expression.
2889class ExplicitCastExpr : public CastExpr {
2890  /// TInfo - Source type info for the (written) type
2891  /// this expression is casting to.
2892  TypeSourceInfo *TInfo;
2893
2894protected:
2895  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2896                   CastKind kind, Expr *op, unsigned PathSize,
2897                   TypeSourceInfo *writtenTy)
2898    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2899
2900  /// \brief Construct an empty explicit cast.
2901  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2902    : CastExpr(SC, Shell, PathSize) { }
2903
2904public:
2905  /// getTypeInfoAsWritten - Returns the type source info for the type
2906  /// that this expression is casting to.
2907  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2908  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2909
2910  /// getTypeAsWritten - Returns the type that this expression is
2911  /// casting to, as written in the source code.
2912  QualType getTypeAsWritten() const { return TInfo->getType(); }
2913
2914  static bool classof(const Stmt *T) {
2915     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2916            T->getStmtClass() <= lastExplicitCastExprConstant;
2917  }
2918};
2919
2920/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2921/// cast in C++ (C++ [expr.cast]), which uses the syntax
2922/// (Type)expr. For example: @c (int)f.
2923class CStyleCastExpr final
2924    : public ExplicitCastExpr,
2925      private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
2926  SourceLocation LPLoc; // the location of the left paren
2927  SourceLocation RPLoc; // the location of the right paren
2928
2929  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2930                 unsigned PathSize, TypeSourceInfo *writtenTy,
2931                 SourceLocation l, SourceLocation r)
2932    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2933                       writtenTy), LPLoc(l), RPLoc(r) {}
2934
2935  /// \brief Construct an empty C-style explicit cast.
2936  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2937    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2938
2939public:
2940  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2941                                ExprValueKind VK, CastKind K,
2942                                Expr *Op, const CXXCastPath *BasePath,
2943                                TypeSourceInfo *WrittenTy, SourceLocation L,
2944                                SourceLocation R);
2945
2946  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2947                                     unsigned PathSize);
2948
2949  SourceLocation getLParenLoc() const { return LPLoc; }
2950  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2951
2952  SourceLocation getRParenLoc() const { return RPLoc; }
2953  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2954
2955  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2956  SourceLocation getLocEnd() const LLVM_READONLY {
2957    return getSubExpr()->getLocEnd();
2958  }
2959
2960  static bool classof(const Stmt *T) {
2961    return T->getStmtClass() == CStyleCastExprClass;
2962  }
2963
2964  friend TrailingObjects;
2965  friend class CastExpr;
2966};
2967
2968/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2969///
2970/// This expression node kind describes a builtin binary operation,
2971/// such as "x + y" for integer values "x" and "y". The operands will
2972/// already have been converted to appropriate types (e.g., by
2973/// performing promotions or conversions).
2974///
2975/// In C++, where operators may be overloaded, a different kind of
2976/// expression node (CXXOperatorCallExpr) is used to express the
2977/// invocation of an overloaded operator with operator syntax. Within
2978/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2979/// used to store an expression "x + y" depends on the subexpressions
2980/// for x and y. If neither x or y is type-dependent, and the "+"
2981/// operator resolves to a built-in operation, BinaryOperator will be
2982/// used to express the computation (x and y may still be
2983/// value-dependent). If either x or y is type-dependent, or if the
2984/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2985/// be used to express the computation.
2986class BinaryOperator : public Expr {
2987public:
2988  typedef BinaryOperatorKind Opcode;
2989
2990private:
2991  unsigned Opc : 6;
2992
2993  // This is only meaningful for operations on floating point types and 0
2994  // otherwise.
2995  unsigned FPFeatures : 2;
2996  SourceLocation OpLoc;
2997
2998  enum { LHS, RHS, END_EXPR };
2999  Stmt* SubExprs[END_EXPR];
3000public:
3001
3002  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3003                 ExprValueKind VK, ExprObjectKind OK,
3004                 SourceLocation opLoc, FPOptions FPFeatures)
3005    : Expr(BinaryOperatorClass, ResTy, VK, OK,
3006           lhs->isTypeDependent() || rhs->isTypeDependent(),
3007           lhs->isValueDependent() || rhs->isValueDependent(),
3008           (lhs->isInstantiationDependent() ||
3009            rhs->isInstantiationDependent()),
3010           (lhs->containsUnexpandedParameterPack() ||
3011            rhs->containsUnexpandedParameterPack())),
3012      Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3013    SubExprs[LHS] = lhs;
3014    SubExprs[RHS] = rhs;
3015    assert(!isCompoundAssignmentOp() &&
3016           "Use CompoundAssignOperator for compound assignments");
3017  }
3018
3019  /// \brief Construct an empty binary operator.
3020  explicit BinaryOperator(EmptyShell Empty)
3021    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
3022
3023  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
3024  SourceLocation getOperatorLoc() const { return OpLoc; }
3025  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
3026
3027  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
3028  void setOpcode(Opcode O) { Opc = O; }
3029
3030  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3031  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3032  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3033  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3034
3035  SourceLocation getLocStart() const LLVM_READONLY {
3036    return getLHS()->getLocStart();
3037  }
3038  SourceLocation getLocEnd() const LLVM_READONLY {
3039    return getRHS()->getLocEnd();
3040  }
3041
3042  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3043  /// corresponds to, e.g. "<<=".
3044  static StringRef getOpcodeStr(Opcode Op);
3045
3046  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3047
3048  /// \brief Retrieve the binary opcode that corresponds to the given
3049  /// overloaded operator.
3050  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3051
3052  /// \brief Retrieve the overloaded operator kind that corresponds to
3053  /// the given binary opcode.
3054  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3055
3056  /// predicates to categorize the respective opcodes.
3057  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
3058  static bool isMultiplicativeOp(Opcode Opc) {
3059    return Opc >= BO_Mul && Opc <= BO_Rem;
3060  }
3061  bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
3062  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3063  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3064  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3065  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3066
3067  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3068  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3069
3070  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3071  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3072
3073  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3074  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3075
3076  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
3077  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3078
3079  static Opcode negateComparisonOp(Opcode Opc) {
3080    switch (Opc) {
3081    default:
3082      llvm_unreachable("Not a comparsion operator.");
3083    case BO_LT: return BO_GE;
3084    case BO_GT: return BO_LE;
3085    case BO_LE: return BO_GT;
3086    case BO_GE: return BO_LT;
3087    case BO_EQ: return BO_NE;
3088    case BO_NE: return BO_EQ;
3089    }
3090  }
3091
3092  static Opcode reverseComparisonOp(Opcode Opc) {
3093    switch (Opc) {
3094    default:
3095      llvm_unreachable("Not a comparsion operator.");
3096    case BO_LT: return BO_GT;
3097    case BO_GT: return BO_LT;
3098    case BO_LE: return BO_GE;
3099    case BO_GE: return BO_LE;
3100    case BO_EQ:
3101    case BO_NE:
3102      return Opc;
3103    }
3104  }
3105
3106  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3107  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3108
3109  static bool isAssignmentOp(Opcode Opc) {
3110    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3111  }
3112  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3113
3114  static bool isCompoundAssignmentOp(Opcode Opc) {
3115    return Opc > BO_Assign && Opc <= BO_OrAssign;
3116  }
3117  bool isCompoundAssignmentOp() const {
3118    return isCompoundAssignmentOp(getOpcode());
3119  }
3120  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3121    assert(isCompoundAssignmentOp(Opc));
3122    if (Opc >= BO_AndAssign)
3123      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3124    else
3125      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3126  }
3127
3128  static bool isShiftAssignOp(Opcode Opc) {
3129    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3130  }
3131  bool isShiftAssignOp() const {
3132    return isShiftAssignOp(getOpcode());
3133  }
3134
3135  // Return true if a binary operator using the specified opcode and operands
3136  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3137  // integer to a pointer.
3138  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3139                                               Expr *LHS, Expr *RHS);
3140
3141  static bool classof(const Stmt *S) {
3142    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3143           S->getStmtClass() <= lastBinaryOperatorConstant;
3144  }
3145
3146  // Iterators
3147  child_range children() {
3148    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3149  }
3150  const_child_range children() const {
3151    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3152  }
3153
3154  // Set the FP contractability status of this operator. Only meaningful for
3155  // operations on floating point types.
3156  void setFPFeatures(FPOptions F) { FPFeatures = F.getInt(); }
3157
3158  FPOptions getFPFeatures() const { return FPOptions(FPFeatures); }
3159
3160  // Get the FP contractability status of this operator. Only meaningful for
3161  // operations on floating point types.
3162  bool isFPContractableWithinStatement() const {
3163    return FPOptions(FPFeatures).allowFPContractWithinStatement();
3164  }
3165
3166protected:
3167  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3168                 ExprValueKind VK, ExprObjectKind OK,
3169                 SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3170    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3171           lhs->isTypeDependent() || rhs->isTypeDependent(),
3172           lhs->isValueDependent() || rhs->isValueDependent(),
3173           (lhs->isInstantiationDependent() ||
3174            rhs->isInstantiationDependent()),
3175           (lhs->containsUnexpandedParameterPack() ||
3176            rhs->containsUnexpandedParameterPack())),
3177      Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3178    SubExprs[LHS] = lhs;
3179    SubExprs[RHS] = rhs;
3180  }
3181
3182  BinaryOperator(StmtClass SC, EmptyShell Empty)
3183    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3184};
3185
3186/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3187/// track of the type the operation is performed in.  Due to the semantics of
3188/// these operators, the operands are promoted, the arithmetic performed, an
3189/// implicit conversion back to the result type done, then the assignment takes
3190/// place.  This captures the intermediate type which the computation is done
3191/// in.
3192class CompoundAssignOperator : public BinaryOperator {
3193  QualType ComputationLHSType;
3194  QualType ComputationResultType;
3195public:
3196  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3197                         ExprValueKind VK, ExprObjectKind OK,
3198                         QualType CompLHSType, QualType CompResultType,
3199                         SourceLocation OpLoc, FPOptions FPFeatures)
3200    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3201                     true),
3202      ComputationLHSType(CompLHSType),
3203      ComputationResultType(CompResultType) {
3204    assert(isCompoundAssignmentOp() &&
3205           "Only should be used for compound assignments");
3206  }
3207
3208  /// \brief Build an empty compound assignment operator expression.
3209  explicit CompoundAssignOperator(EmptyShell Empty)
3210    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3211
3212  // The two computation types are the type the LHS is converted
3213  // to for the computation and the type of the result; the two are
3214  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3215  QualType getComputationLHSType() const { return ComputationLHSType; }
3216  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3217
3218  QualType getComputationResultType() const { return ComputationResultType; }
3219  void setComputationResultType(QualType T) { ComputationResultType = T; }
3220
3221  static bool classof(const Stmt *S) {
3222    return S->getStmtClass() == CompoundAssignOperatorClass;
3223  }
3224};
3225
3226/// AbstractConditionalOperator - An abstract base class for
3227/// ConditionalOperator and BinaryConditionalOperator.
3228class AbstractConditionalOperator : public Expr {
3229  SourceLocation QuestionLoc, ColonLoc;
3230  friend class ASTStmtReader;
3231
3232protected:
3233  AbstractConditionalOperator(StmtClass SC, QualType T,
3234                              ExprValueKind VK, ExprObjectKind OK,
3235                              bool TD, bool VD, bool ID,
3236                              bool ContainsUnexpandedParameterPack,
3237                              SourceLocation qloc,
3238                              SourceLocation cloc)
3239    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3240      QuestionLoc(qloc), ColonLoc(cloc) {}
3241
3242  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3243    : Expr(SC, Empty) { }
3244
3245public:
3246  // getCond - Return the expression representing the condition for
3247  //   the ?: operator.
3248  Expr *getCond() const;
3249
3250  // getTrueExpr - Return the subexpression representing the value of
3251  //   the expression if the condition evaluates to true.
3252  Expr *getTrueExpr() const;
3253
3254  // getFalseExpr - Return the subexpression representing the value of
3255  //   the expression if the condition evaluates to false.  This is
3256  //   the same as getRHS.
3257  Expr *getFalseExpr() const;
3258
3259  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3260  SourceLocation getColonLoc() const { return ColonLoc; }
3261
3262  static bool classof(const Stmt *T) {
3263    return T->getStmtClass() == ConditionalOperatorClass ||
3264           T->getStmtClass() == BinaryConditionalOperatorClass;
3265  }
3266};
3267
3268/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3269/// middle" extension is a BinaryConditionalOperator.
3270class ConditionalOperator : public AbstractConditionalOperator {
3271  enum { COND, LHS, RHS, END_EXPR };
3272  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3273
3274  friend class ASTStmtReader;
3275public:
3276  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3277                      SourceLocation CLoc, Expr *rhs,
3278                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3279    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3280           // FIXME: the type of the conditional operator doesn't
3281           // depend on the type of the conditional, but the standard
3282           // seems to imply that it could. File a bug!
3283           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3284           (cond->isValueDependent() || lhs->isValueDependent() ||
3285            rhs->isValueDependent()),
3286           (cond->isInstantiationDependent() ||
3287            lhs->isInstantiationDependent() ||
3288            rhs->isInstantiationDependent()),
3289           (cond->containsUnexpandedParameterPack() ||
3290            lhs->containsUnexpandedParameterPack() ||
3291            rhs->containsUnexpandedParameterPack()),
3292                                  QLoc, CLoc) {
3293    SubExprs[COND] = cond;
3294    SubExprs[LHS] = lhs;
3295    SubExprs[RHS] = rhs;
3296  }
3297
3298  /// \brief Build an empty conditional operator.
3299  explicit ConditionalOperator(EmptyShell Empty)
3300    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3301
3302  // getCond - Return the expression representing the condition for
3303  //   the ?: operator.
3304  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3305
3306  // getTrueExpr - Return the subexpression representing the value of
3307  //   the expression if the condition evaluates to true.
3308  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3309
3310  // getFalseExpr - Return the subexpression representing the value of
3311  //   the expression if the condition evaluates to false.  This is
3312  //   the same as getRHS.
3313  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3314
3315  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3316  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3317
3318  SourceLocation getLocStart() const LLVM_READONLY {
3319    return getCond()->getLocStart();
3320  }
3321  SourceLocation getLocEnd() const LLVM_READONLY {
3322    return getRHS()->getLocEnd();
3323  }
3324
3325  static bool classof(const Stmt *T) {
3326    return T->getStmtClass() == ConditionalOperatorClass;
3327  }
3328
3329  // Iterators
3330  child_range children() {
3331    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3332  }
3333  const_child_range children() const {
3334    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3335  }
3336};
3337
3338/// BinaryConditionalOperator - The GNU extension to the conditional
3339/// operator which allows the middle operand to be omitted.
3340///
3341/// This is a different expression kind on the assumption that almost
3342/// every client ends up needing to know that these are different.
3343class BinaryConditionalOperator : public AbstractConditionalOperator {
3344  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3345
3346  /// - the common condition/left-hand-side expression, which will be
3347  ///   evaluated as the opaque value
3348  /// - the condition, expressed in terms of the opaque value
3349  /// - the left-hand-side, expressed in terms of the opaque value
3350  /// - the right-hand-side
3351  Stmt *SubExprs[NUM_SUBEXPRS];
3352  OpaqueValueExpr *OpaqueValue;
3353
3354  friend class ASTStmtReader;
3355public:
3356  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3357                            Expr *cond, Expr *lhs, Expr *rhs,
3358                            SourceLocation qloc, SourceLocation cloc,
3359                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3360    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3361           (common->isTypeDependent() || rhs->isTypeDependent()),
3362           (common->isValueDependent() || rhs->isValueDependent()),
3363           (common->isInstantiationDependent() ||
3364            rhs->isInstantiationDependent()),
3365           (common->containsUnexpandedParameterPack() ||
3366            rhs->containsUnexpandedParameterPack()),
3367                                  qloc, cloc),
3368      OpaqueValue(opaqueValue) {
3369    SubExprs[COMMON] = common;
3370    SubExprs[COND] = cond;
3371    SubExprs[LHS] = lhs;
3372    SubExprs[RHS] = rhs;
3373    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3374  }
3375
3376  /// \brief Build an empty conditional operator.
3377  explicit BinaryConditionalOperator(EmptyShell Empty)
3378    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3379
3380  /// \brief getCommon - Return the common expression, written to the
3381  ///   left of the condition.  The opaque value will be bound to the
3382  ///   result of this expression.
3383  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3384
3385  /// \brief getOpaqueValue - Return the opaque value placeholder.
3386  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3387
3388  /// \brief getCond - Return the condition expression; this is defined
3389  ///   in terms of the opaque value.
3390  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3391
3392  /// \brief getTrueExpr - Return the subexpression which will be
3393  ///   evaluated if the condition evaluates to true;  this is defined
3394  ///   in terms of the opaque value.
3395  Expr *getTrueExpr() const {
3396    return cast<Expr>(SubExprs[LHS]);
3397  }
3398
3399  /// \brief getFalseExpr - Return the subexpression which will be
3400  ///   evaluated if the condnition evaluates to false; this is
3401  ///   defined in terms of the opaque value.
3402  Expr *getFalseExpr() const {
3403    return cast<Expr>(SubExprs[RHS]);
3404  }
3405
3406  SourceLocation getLocStart() const LLVM_READONLY {
3407    return getCommon()->getLocStart();
3408  }
3409  SourceLocation getLocEnd() const LLVM_READONLY {
3410    return getFalseExpr()->getLocEnd();
3411  }
3412
3413  static bool classof(const Stmt *T) {
3414    return T->getStmtClass() == BinaryConditionalOperatorClass;
3415  }
3416
3417  // Iterators
3418  child_range children() {
3419    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3420  }
3421  const_child_range children() const {
3422    return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3423  }
3424};
3425
3426inline Expr *AbstractConditionalOperator::getCond() const {
3427  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3428    return co->getCond();
3429  return cast<BinaryConditionalOperator>(this)->getCond();
3430}
3431
3432inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3433  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3434    return co->getTrueExpr();
3435  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3436}
3437
3438inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3439  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3440    return co->getFalseExpr();
3441  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3442}
3443
3444/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3445class AddrLabelExpr : public Expr {
3446  SourceLocation AmpAmpLoc, LabelLoc;
3447  LabelDecl *Label;
3448public:
3449  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3450                QualType t)
3451    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3452           false),
3453      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3454
3455  /// \brief Build an empty address of a label expression.
3456  explicit AddrLabelExpr(EmptyShell Empty)
3457    : Expr(AddrLabelExprClass, Empty) { }
3458
3459  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3460  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3461  SourceLocation getLabelLoc() const { return LabelLoc; }
3462  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3463
3464  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3465  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3466
3467  LabelDecl *getLabel() const { return Label; }
3468  void setLabel(LabelDecl *L) { Label = L; }
3469
3470  static bool classof(const Stmt *T) {
3471    return T->getStmtClass() == AddrLabelExprClass;
3472  }
3473
3474  // Iterators
3475  child_range children() {
3476    return child_range(child_iterator(), child_iterator());
3477  }
3478  const_child_range children() const {
3479    return const_child_range(const_child_iterator(), const_child_iterator());
3480  }
3481};
3482
3483/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3484/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3485/// takes the value of the last subexpression.
3486///
3487/// A StmtExpr is always an r-value; values "returned" out of a
3488/// StmtExpr will be copied.
3489class StmtExpr : public Expr {
3490  Stmt *SubStmt;
3491  SourceLocation LParenLoc, RParenLoc;
3492public:
3493  // FIXME: Does type-dependence need to be computed differently?
3494  // FIXME: Do we need to compute instantiation instantiation-dependence for
3495  // statements? (ugh!)
3496  StmtExpr(CompoundStmt *substmt, QualType T,
3497           SourceLocation lp, SourceLocation rp) :
3498    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3499         T->isDependentType(), false, false, false),
3500    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3501
3502  /// \brief Build an empty statement expression.
3503  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3504
3505  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3506  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3507  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3508
3509  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3510  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3511
3512  SourceLocation getLParenLoc() const { return LParenLoc; }
3513  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3514  SourceLocation getRParenLoc() const { return RParenLoc; }
3515  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3516
3517  static bool classof(const Stmt *T) {
3518    return T->getStmtClass() == StmtExprClass;
3519  }
3520
3521  // Iterators
3522  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3523  const_child_range children() const {
3524    return const_child_range(&SubStmt, &SubStmt + 1);
3525  }
3526};
3527
3528/// ShuffleVectorExpr - clang-specific builtin-in function
3529/// __builtin_shufflevector.
3530/// This AST node represents a operator that does a constant
3531/// shuffle, similar to LLVM's shufflevector instruction. It takes
3532/// two vectors and a variable number of constant indices,
3533/// and returns the appropriately shuffled vector.
3534class ShuffleVectorExpr : public Expr {
3535  SourceLocation BuiltinLoc, RParenLoc;
3536
3537  // SubExprs - the list of values passed to the __builtin_shufflevector
3538  // function. The first two are vectors, and the rest are constant
3539  // indices.  The number of values in this list is always
3540  // 2+the number of indices in the vector type.
3541  Stmt **SubExprs;
3542  unsigned NumExprs;
3543
3544public:
3545  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3546                    SourceLocation BLoc, SourceLocation RP);
3547
3548  /// \brief Build an empty vector-shuffle expression.
3549  explicit ShuffleVectorExpr(EmptyShell Empty)
3550    : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3551
3552  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3553  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3554
3555  SourceLocation getRParenLoc() const { return RParenLoc; }
3556  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3557
3558  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3559  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3560
3561  static bool classof(const Stmt *T) {
3562    return T->getStmtClass() == ShuffleVectorExprClass;
3563  }
3564
3565  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3566  /// constant expression, the actual arguments passed in, and the function
3567  /// pointers.
3568  unsigned getNumSubExprs() const { return NumExprs; }
3569
3570  /// \brief Retrieve the array of expressions.
3571  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3572
3573  /// getExpr - Return the Expr at the specified index.
3574  Expr *getExpr(unsigned Index) {
3575    assert((Index < NumExprs) && "Arg access out of range!");
3576    return cast<Expr>(SubExprs[Index]);
3577  }
3578  const Expr *getExpr(unsigned Index) const {
3579    assert((Index < NumExprs) && "Arg access out of range!");
3580    return cast<Expr>(SubExprs[Index]);
3581  }
3582
3583  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3584
3585  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3586    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3587    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3588  }
3589
3590  // Iterators
3591  child_range children() {
3592    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3593  }
3594  const_child_range children() const {
3595    return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
3596  }
3597};
3598
3599/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3600/// This AST node provides support for converting a vector type to another
3601/// vector type of the same arity.
3602class ConvertVectorExpr : public Expr {
3603private:
3604  Stmt *SrcExpr;
3605  TypeSourceInfo *TInfo;
3606  SourceLocation BuiltinLoc, RParenLoc;
3607
3608  friend class ASTReader;
3609  friend class ASTStmtReader;
3610  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3611
3612public:
3613  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3614             ExprValueKind VK, ExprObjectKind OK,
3615             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3616    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3617           DstType->isDependentType(),
3618           DstType->isDependentType() || SrcExpr->isValueDependent(),
3619           (DstType->isInstantiationDependentType() ||
3620            SrcExpr->isInstantiationDependent()),
3621           (DstType->containsUnexpandedParameterPack() ||
3622            SrcExpr->containsUnexpandedParameterPack())),
3623  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3624
3625  /// getSrcExpr - Return the Expr to be converted.
3626  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3627
3628  /// getTypeSourceInfo - Return the destination type.
3629  TypeSourceInfo *getTypeSourceInfo() const {
3630    return TInfo;
3631  }
3632  void setTypeSourceInfo(TypeSourceInfo *ti) {
3633    TInfo = ti;
3634  }
3635
3636  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3637  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3638
3639  /// getRParenLoc - Return the location of final right parenthesis.
3640  SourceLocation getRParenLoc() const { return RParenLoc; }
3641
3642  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3643  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3644
3645  static bool classof(const Stmt *T) {
3646    return T->getStmtClass() == ConvertVectorExprClass;
3647  }
3648
3649  // Iterators
3650  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3651  const_child_range children() const {
3652    return const_child_range(&SrcExpr, &SrcExpr + 1);
3653  }
3654};
3655
3656/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3657/// This AST node is similar to the conditional operator (?:) in C, with
3658/// the following exceptions:
3659/// - the test expression must be a integer constant expression.
3660/// - the expression returned acts like the chosen subexpression in every
3661///   visible way: the type is the same as that of the chosen subexpression,
3662///   and all predicates (whether it's an l-value, whether it's an integer
3663///   constant expression, etc.) return the same result as for the chosen
3664///   sub-expression.
3665class ChooseExpr : public Expr {
3666  enum { COND, LHS, RHS, END_EXPR };
3667  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3668  SourceLocation BuiltinLoc, RParenLoc;
3669  bool CondIsTrue;
3670public:
3671  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3672             QualType t, ExprValueKind VK, ExprObjectKind OK,
3673             SourceLocation RP, bool condIsTrue,
3674             bool TypeDependent, bool ValueDependent)
3675    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3676           (cond->isInstantiationDependent() ||
3677            lhs->isInstantiationDependent() ||
3678            rhs->isInstantiationDependent()),
3679           (cond->containsUnexpandedParameterPack() ||
3680            lhs->containsUnexpandedParameterPack() ||
3681            rhs->containsUnexpandedParameterPack())),
3682      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3683      SubExprs[COND] = cond;
3684      SubExprs[LHS] = lhs;
3685      SubExprs[RHS] = rhs;
3686    }
3687
3688  /// \brief Build an empty __builtin_choose_expr.
3689  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3690
3691  /// isConditionTrue - Return whether the condition is true (i.e. not
3692  /// equal to zero).
3693  bool isConditionTrue() const {
3694    assert(!isConditionDependent() &&
3695           "Dependent condition isn't true or false");
3696    return CondIsTrue;
3697  }
3698  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3699
3700  bool isConditionDependent() const {
3701    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3702  }
3703
3704  /// getChosenSubExpr - Return the subexpression chosen according to the
3705  /// condition.
3706  Expr *getChosenSubExpr() const {
3707    return isConditionTrue() ? getLHS() : getRHS();
3708  }
3709
3710  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3711  void setCond(Expr *E) { SubExprs[COND] = E; }
3712  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3713  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3714  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3715  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3716
3717  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3718  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3719
3720  SourceLocation getRParenLoc() const { return RParenLoc; }
3721  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3722
3723  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3724  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3725
3726  static bool classof(const Stmt *T) {
3727    return T->getStmtClass() == ChooseExprClass;
3728  }
3729
3730  // Iterators
3731  child_range children() {
3732    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3733  }
3734  const_child_range children() const {
3735    return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3736  }
3737};
3738
3739/// GNUNullExpr - Implements the GNU __null extension, which is a name
3740/// for a null pointer constant that has integral type (e.g., int or
3741/// long) and is the same size and alignment as a pointer. The __null
3742/// extension is typically only used by system headers, which define
3743/// NULL as __null in C++ rather than using 0 (which is an integer
3744/// that may not match the size of a pointer).
3745class GNUNullExpr : public Expr {
3746  /// TokenLoc - The location of the __null keyword.
3747  SourceLocation TokenLoc;
3748
3749public:
3750  GNUNullExpr(QualType Ty, SourceLocation Loc)
3751    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3752           false),
3753      TokenLoc(Loc) { }
3754
3755  /// \brief Build an empty GNU __null expression.
3756  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3757
3758  /// getTokenLocation - The location of the __null token.
3759  SourceLocation getTokenLocation() const { return TokenLoc; }
3760  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3761
3762  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3763  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3764
3765  static bool classof(const Stmt *T) {
3766    return T->getStmtClass() == GNUNullExprClass;
3767  }
3768
3769  // Iterators
3770  child_range children() {
3771    return child_range(child_iterator(), child_iterator());
3772  }
3773  const_child_range children() const {
3774    return const_child_range(const_child_iterator(), const_child_iterator());
3775  }
3776};
3777
3778/// Represents a call to the builtin function \c __builtin_va_arg.
3779class VAArgExpr : public Expr {
3780  Stmt *Val;
3781  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3782  SourceLocation BuiltinLoc, RParenLoc;
3783public:
3784  VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
3785            SourceLocation RPLoc, QualType t, bool IsMS)
3786      : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3787             false, (TInfo->getType()->isInstantiationDependentType() ||
3788                     e->isInstantiationDependent()),
3789             (TInfo->getType()->containsUnexpandedParameterPack() ||
3790              e->containsUnexpandedParameterPack())),
3791        Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3792
3793  /// Create an empty __builtin_va_arg expression.
3794  explicit VAArgExpr(EmptyShell Empty)
3795      : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3796
3797  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3798  Expr *getSubExpr() { return cast<Expr>(Val); }
3799  void setSubExpr(Expr *E) { Val = E; }
3800
3801  /// Returns whether this is really a Win64 ABI va_arg expression.
3802  bool isMicrosoftABI() const { return TInfo.getInt(); }
3803  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3804
3805  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3806  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3807
3808  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3809  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3810
3811  SourceLocation getRParenLoc() const { return RParenLoc; }
3812  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3813
3814  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3815  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3816
3817  static bool classof(const Stmt *T) {
3818    return T->getStmtClass() == VAArgExprClass;
3819  }
3820
3821  // Iterators
3822  child_range children() { return child_range(&Val, &Val+1); }
3823  const_child_range children() const {
3824    return const_child_range(&Val, &Val + 1);
3825  }
3826};
3827
3828/// @brief Describes an C or C++ initializer list.
3829///
3830/// InitListExpr describes an initializer list, which can be used to
3831/// initialize objects of different types, including
3832/// struct/class/union types, arrays, and vectors. For example:
3833///
3834/// @code
3835/// struct foo x = { 1, { 2, 3 } };
3836/// @endcode
3837///
3838/// Prior to semantic analysis, an initializer list will represent the
3839/// initializer list as written by the user, but will have the
3840/// placeholder type "void". This initializer list is called the
3841/// syntactic form of the initializer, and may contain C99 designated
3842/// initializers (represented as DesignatedInitExprs), initializations
3843/// of subobject members without explicit braces, and so on. Clients
3844/// interested in the original syntax of the initializer list should
3845/// use the syntactic form of the initializer list.
3846///
3847/// After semantic analysis, the initializer list will represent the
3848/// semantic form of the initializer, where the initializations of all
3849/// subobjects are made explicit with nested InitListExpr nodes and
3850/// C99 designators have been eliminated by placing the designated
3851/// initializations into the subobject they initialize. Additionally,
3852/// any "holes" in the initialization, where no initializer has been
3853/// specified for a particular subobject, will be replaced with
3854/// implicitly-generated ImplicitValueInitExpr expressions that
3855/// value-initialize the subobjects. Note, however, that the
3856/// initializer lists may still have fewer initializers than there are
3857/// elements to initialize within the object.
3858///
3859/// After semantic analysis has completed, given an initializer list,
3860/// method isSemanticForm() returns true if and only if this is the
3861/// semantic form of the initializer list (note: the same AST node
3862/// may at the same time be the syntactic form).
3863/// Given the semantic form of the initializer list, one can retrieve
3864/// the syntactic form of that initializer list (when different)
3865/// using method getSyntacticForm(); the method returns null if applied
3866/// to a initializer list which is already in syntactic form.
3867/// Similarly, given the syntactic form (i.e., an initializer list such
3868/// that isSemanticForm() returns false), one can retrieve the semantic
3869/// form using method getSemanticForm().
3870/// Since many initializer lists have the same syntactic and semantic forms,
3871/// getSyntacticForm() may return NULL, indicating that the current
3872/// semantic initializer list also serves as its syntactic form.
3873class InitListExpr : public Expr {
3874  // FIXME: Eliminate this vector in favor of ASTContext allocation
3875  typedef ASTVector<Stmt *> InitExprsTy;
3876  InitExprsTy InitExprs;
3877  SourceLocation LBraceLoc, RBraceLoc;
3878
3879  /// The alternative form of the initializer list (if it exists).
3880  /// The int part of the pair stores whether this initializer list is
3881  /// in semantic form. If not null, the pointer points to:
3882  ///   - the syntactic form, if this is in semantic form;
3883  ///   - the semantic form, if this is in syntactic form.
3884  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3885
3886  /// \brief Either:
3887  ///  If this initializer list initializes an array with more elements than
3888  ///  there are initializers in the list, specifies an expression to be used
3889  ///  for value initialization of the rest of the elements.
3890  /// Or
3891  ///  If this initializer list initializes a union, specifies which
3892  ///  field within the union will be initialized.
3893  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3894
3895public:
3896  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3897               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3898
3899  /// \brief Build an empty initializer list.
3900  explicit InitListExpr(EmptyShell Empty)
3901    : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
3902
3903  unsigned getNumInits() const { return InitExprs.size(); }
3904
3905  /// \brief Retrieve the set of initializers.
3906  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3907
3908  /// \brief Retrieve the set of initializers.
3909  Expr * const *getInits() const {
3910    return reinterpret_cast<Expr * const *>(InitExprs.data());
3911  }
3912
3913  ArrayRef<Expr *> inits() {
3914    return llvm::makeArrayRef(getInits(), getNumInits());
3915  }
3916
3917  ArrayRef<Expr *> inits() const {
3918    return llvm::makeArrayRef(getInits(), getNumInits());
3919  }
3920
3921  const Expr *getInit(unsigned Init) const {
3922    assert(Init < getNumInits() && "Initializer access out of range!");
3923    return cast_or_null<Expr>(InitExprs[Init]);
3924  }
3925
3926  Expr *getInit(unsigned Init) {
3927    assert(Init < getNumInits() && "Initializer access out of range!");
3928    return cast_or_null<Expr>(InitExprs[Init]);
3929  }
3930
3931  void setInit(unsigned Init, Expr *expr) {
3932    assert(Init < getNumInits() && "Initializer access out of range!");
3933    InitExprs[Init] = expr;
3934
3935    if (expr) {
3936      ExprBits.TypeDependent |= expr->isTypeDependent();
3937      ExprBits.ValueDependent |= expr->isValueDependent();
3938      ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3939      ExprBits.ContainsUnexpandedParameterPack |=
3940          expr->containsUnexpandedParameterPack();
3941    }
3942  }
3943
3944  /// \brief Reserve space for some number of initializers.
3945  void reserveInits(const ASTContext &C, unsigned NumInits);
3946
3947  /// @brief Specify the number of initializers
3948  ///
3949  /// If there are more than @p NumInits initializers, the remaining
3950  /// initializers will be destroyed. If there are fewer than @p
3951  /// NumInits initializers, NULL expressions will be added for the
3952  /// unknown initializers.
3953  void resizeInits(const ASTContext &Context, unsigned NumInits);
3954
3955  /// @brief Updates the initializer at index @p Init with the new
3956  /// expression @p expr, and returns the old expression at that
3957  /// location.
3958  ///
3959  /// When @p Init is out of range for this initializer list, the
3960  /// initializer list will be extended with NULL expressions to
3961  /// accommodate the new entry.
3962  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3963
3964  /// \brief If this initializer list initializes an array with more elements
3965  /// than there are initializers in the list, specifies an expression to be
3966  /// used for value initialization of the rest of the elements.
3967  Expr *getArrayFiller() {
3968    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3969  }
3970  const Expr *getArrayFiller() const {
3971    return const_cast<InitListExpr *>(this)->getArrayFiller();
3972  }
3973  void setArrayFiller(Expr *filler);
3974
3975  /// \brief Return true if this is an array initializer and its array "filler"
3976  /// has been set.
3977  bool hasArrayFiller() const { return getArrayFiller(); }
3978
3979  /// \brief If this initializes a union, specifies which field in the
3980  /// union to initialize.
3981  ///
3982  /// Typically, this field is the first named field within the
3983  /// union. However, a designated initializer can specify the
3984  /// initialization of a different field within the union.
3985  FieldDecl *getInitializedFieldInUnion() {
3986    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3987  }
3988  const FieldDecl *getInitializedFieldInUnion() const {
3989    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3990  }
3991  void setInitializedFieldInUnion(FieldDecl *FD) {
3992    assert((FD == nullptr
3993            || getInitializedFieldInUnion() == nullptr
3994            || getInitializedFieldInUnion() == FD)
3995           && "Only one field of a union may be initialized at a time!");
3996    ArrayFillerOrUnionFieldInit = FD;
3997  }
3998
3999  // Explicit InitListExpr's originate from source code (and have valid source
4000  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4001  bool isExplicit() const {
4002    return LBraceLoc.isValid() && RBraceLoc.isValid();
4003  }
4004
4005  // Is this an initializer for an array of characters, initialized by a string
4006  // literal or an @encode?
4007  bool isStringLiteralInit() const;
4008
4009  /// Is this a transparent initializer list (that is, an InitListExpr that is
4010  /// purely syntactic, and whose semantics are that of the sole contained
4011  /// initializer)?
4012  bool isTransparent() const;
4013
4014  /// Is this the zero initializer {0} in a language which considers it
4015  /// idiomatic?
4016  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4017
4018  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4019  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4020  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4021  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4022
4023  bool isSemanticForm() const { return AltForm.getInt(); }
4024  InitListExpr *getSemanticForm() const {
4025    return isSemanticForm() ? nullptr : AltForm.getPointer();
4026  }
4027  bool isSyntacticForm() const {
4028    return !AltForm.getInt() || !AltForm.getPointer();
4029  }
4030  InitListExpr *getSyntacticForm() const {
4031    return isSemanticForm() ? AltForm.getPointer() : nullptr;
4032  }
4033
4034  void setSyntacticForm(InitListExpr *Init) {
4035    AltForm.setPointer(Init);
4036    AltForm.setInt(true);
4037    Init->AltForm.setPointer(this);
4038    Init->AltForm.setInt(false);
4039  }
4040
4041  bool hadArrayRangeDesignator() const {
4042    return InitListExprBits.HadArrayRangeDesignator != 0;
4043  }
4044  void sawArrayRangeDesignator(bool ARD = true) {
4045    InitListExprBits.HadArrayRangeDesignator = ARD;
4046  }
4047
4048  SourceLocation getLocStart() const LLVM_READONLY;
4049  SourceLocation getLocEnd() const LLVM_READONLY;
4050
4051  static bool classof(const Stmt *T) {
4052    return T->getStmtClass() == InitListExprClass;
4053  }
4054
4055  // Iterators
4056  child_range children() {
4057    const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4058    return child_range(cast_away_const(CCR.begin()),
4059                       cast_away_const(CCR.end()));
4060  }
4061
4062  const_child_range children() const {
4063    // FIXME: This does not include the array filler expression.
4064    if (InitExprs.empty())
4065      return const_child_range(const_child_iterator(), const_child_iterator());
4066    return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4067  }
4068
4069  typedef InitExprsTy::iterator iterator;
4070  typedef InitExprsTy::const_iterator const_iterator;
4071  typedef InitExprsTy::reverse_iterator reverse_iterator;
4072  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
4073
4074  iterator begin() { return InitExprs.begin(); }
4075  const_iterator begin() const { return InitExprs.begin(); }
4076  iterator end() { return InitExprs.end(); }
4077  const_iterator end() const { return InitExprs.end(); }
4078  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4079  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4080  reverse_iterator rend() { return InitExprs.rend(); }
4081  const_reverse_iterator rend() const { return InitExprs.rend(); }
4082
4083  friend class ASTStmtReader;
4084  friend class ASTStmtWriter;
4085};
4086
4087/// @brief Represents a C99 designated initializer expression.
4088///
4089/// A designated initializer expression (C99 6.7.8) contains one or
4090/// more designators (which can be field designators, array
4091/// designators, or GNU array-range designators) followed by an
4092/// expression that initializes the field or element(s) that the
4093/// designators refer to. For example, given:
4094///
4095/// @code
4096/// struct point {
4097///   double x;
4098///   double y;
4099/// };
4100/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4101/// @endcode
4102///
4103/// The InitListExpr contains three DesignatedInitExprs, the first of
4104/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4105/// designators, one array designator for @c [2] followed by one field
4106/// designator for @c .y. The initialization expression will be 1.0.
4107class DesignatedInitExpr final
4108    : public Expr,
4109      private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4110public:
4111  /// \brief Forward declaration of the Designator class.
4112  class Designator;
4113
4114private:
4115  /// The location of the '=' or ':' prior to the actual initializer
4116  /// expression.
4117  SourceLocation EqualOrColonLoc;
4118
4119  /// Whether this designated initializer used the GNU deprecated
4120  /// syntax rather than the C99 '=' syntax.
4121  unsigned GNUSyntax : 1;
4122
4123  /// The number of designators in this initializer expression.
4124  unsigned NumDesignators : 15;
4125
4126  /// The number of subexpressions of this initializer expression,
4127  /// which contains both the initializer and any additional
4128  /// expressions used by array and array-range designators.
4129  unsigned NumSubExprs : 16;
4130
4131  /// \brief The designators in this designated initialization
4132  /// expression.
4133  Designator *Designators;
4134
4135  DesignatedInitExpr(const ASTContext &C, QualType Ty,
4136                     llvm::ArrayRef<Designator> Designators,
4137                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
4138                     ArrayRef<Expr *> IndexExprs, Expr *Init);
4139
4140  explicit DesignatedInitExpr(unsigned NumSubExprs)
4141    : Expr(DesignatedInitExprClass, EmptyShell()),
4142      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4143
4144public:
4145  /// A field designator, e.g., ".x".
4146  struct FieldDesignator {
4147    /// Refers to the field that is being initialized. The low bit
4148    /// of this field determines whether this is actually a pointer
4149    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4150    /// initially constructed, a field designator will store an
4151    /// IdentifierInfo*. After semantic analysis has resolved that
4152    /// name, the field designator will instead store a FieldDecl*.
4153    uintptr_t NameOrField;
4154
4155    /// The location of the '.' in the designated initializer.
4156    unsigned DotLoc;
4157
4158    /// The location of the field name in the designated initializer.
4159    unsigned FieldLoc;
4160  };
4161
4162  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4163  struct ArrayOrRangeDesignator {
4164    /// Location of the first index expression within the designated
4165    /// initializer expression's list of subexpressions.
4166    unsigned Index;
4167    /// The location of the '[' starting the array range designator.
4168    unsigned LBracketLoc;
4169    /// The location of the ellipsis separating the start and end
4170    /// indices. Only valid for GNU array-range designators.
4171    unsigned EllipsisLoc;
4172    /// The location of the ']' terminating the array range designator.
4173    unsigned RBracketLoc;
4174  };
4175
4176  /// @brief Represents a single C99 designator.
4177  ///
4178  /// @todo This class is infuriatingly similar to clang::Designator,
4179  /// but minor differences (storing indices vs. storing pointers)
4180  /// keep us from reusing it. Try harder, later, to rectify these
4181  /// differences.
4182  class Designator {
4183    /// @brief The kind of designator this describes.
4184    enum {
4185      FieldDesignator,
4186      ArrayDesignator,
4187      ArrayRangeDesignator
4188    } Kind;
4189
4190    union {
4191      /// A field designator, e.g., ".x".
4192      struct FieldDesignator Field;
4193      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4194      struct ArrayOrRangeDesignator ArrayOrRange;
4195    };
4196    friend class DesignatedInitExpr;
4197
4198  public:
4199    Designator() {}
4200
4201    /// @brief Initializes a field designator.
4202    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4203               SourceLocation FieldLoc)
4204      : Kind(FieldDesignator) {
4205      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4206      Field.DotLoc = DotLoc.getRawEncoding();
4207      Field.FieldLoc = FieldLoc.getRawEncoding();
4208    }
4209
4210    /// @brief Initializes an array designator.
4211    Designator(unsigned Index, SourceLocation LBracketLoc,
4212               SourceLocation RBracketLoc)
4213      : Kind(ArrayDesignator) {
4214      ArrayOrRange.Index = Index;
4215      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4216      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4217      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4218    }
4219
4220    /// @brief Initializes a GNU array-range designator.
4221    Designator(unsigned Index, SourceLocation LBracketLoc,
4222               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4223      : Kind(ArrayRangeDesignator) {
4224      ArrayOrRange.Index = Index;
4225      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4226      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4227      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4228    }
4229
4230    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4231    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4232    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4233
4234    IdentifierInfo *getFieldName() const;
4235
4236    FieldDecl *getField() const {
4237      assert(Kind == FieldDesignator && "Only valid on a field designator");
4238      if (Field.NameOrField & 0x01)
4239        return nullptr;
4240      else
4241        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4242    }
4243
4244    void setField(FieldDecl *FD) {
4245      assert(Kind == FieldDesignator && "Only valid on a field designator");
4246      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4247    }
4248
4249    SourceLocation getDotLoc() const {
4250      assert(Kind == FieldDesignator && "Only valid on a field designator");
4251      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4252    }
4253
4254    SourceLocation getFieldLoc() const {
4255      assert(Kind == FieldDesignator && "Only valid on a field designator");
4256      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4257    }
4258
4259    SourceLocation getLBracketLoc() const {
4260      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4261             "Only valid on an array or array-range designator");
4262      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4263    }
4264
4265    SourceLocation getRBracketLoc() const {
4266      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4267             "Only valid on an array or array-range designator");
4268      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4269    }
4270
4271    SourceLocation getEllipsisLoc() const {
4272      assert(Kind == ArrayRangeDesignator &&
4273             "Only valid on an array-range designator");
4274      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4275    }
4276
4277    unsigned getFirstExprIndex() const {
4278      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4279             "Only valid on an array or array-range designator");
4280      return ArrayOrRange.Index;
4281    }
4282
4283    SourceLocation getLocStart() const LLVM_READONLY {
4284      if (Kind == FieldDesignator)
4285        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4286      else
4287        return getLBracketLoc();
4288    }
4289    SourceLocation getLocEnd() const LLVM_READONLY {
4290      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4291    }
4292    SourceRange getSourceRange() const LLVM_READONLY {
4293      return SourceRange(getLocStart(), getLocEnd());
4294    }
4295  };
4296
4297  static DesignatedInitExpr *Create(const ASTContext &C,
4298                                    llvm::ArrayRef<Designator> Designators,
4299                                    ArrayRef<Expr*> IndexExprs,
4300                                    SourceLocation EqualOrColonLoc,
4301                                    bool GNUSyntax, Expr *Init);
4302
4303  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4304                                         unsigned NumIndexExprs);
4305
4306  /// @brief Returns the number of designators in this initializer.
4307  unsigned size() const { return NumDesignators; }
4308
4309  // Iterator access to the designators.
4310  llvm::MutableArrayRef<Designator> designators() {
4311    return {Designators, NumDesignators};
4312  }
4313
4314  llvm::ArrayRef<Designator> designators() const {
4315    return {Designators, NumDesignators};
4316  }
4317
4318  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4319  const Designator *getDesignator(unsigned Idx) const {
4320    return &designators()[Idx];
4321  }
4322
4323  void setDesignators(const ASTContext &C, const Designator *Desigs,
4324                      unsigned NumDesigs);
4325
4326  Expr *getArrayIndex(const Designator &D) const;
4327  Expr *getArrayRangeStart(const Designator &D) const;
4328  Expr *getArrayRangeEnd(const Designator &D) const;
4329
4330  /// @brief Retrieve the location of the '=' that precedes the
4331  /// initializer value itself, if present.
4332  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4333  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4334
4335  /// @brief Determines whether this designated initializer used the
4336  /// deprecated GNU syntax for designated initializers.
4337  bool usesGNUSyntax() const { return GNUSyntax; }
4338  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4339
4340  /// @brief Retrieve the initializer value.
4341  Expr *getInit() const {
4342    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4343  }
4344
4345  void setInit(Expr *init) {
4346    *child_begin() = init;
4347  }
4348
4349  /// \brief Retrieve the total number of subexpressions in this
4350  /// designated initializer expression, including the actual
4351  /// initialized value and any expressions that occur within array
4352  /// and array-range designators.
4353  unsigned getNumSubExprs() const { return NumSubExprs; }
4354
4355  Expr *getSubExpr(unsigned Idx) const {
4356    assert(Idx < NumSubExprs && "Subscript out of range");
4357    return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4358  }
4359
4360  void setSubExpr(unsigned Idx, Expr *E) {
4361    assert(Idx < NumSubExprs && "Subscript out of range");
4362    getTrailingObjects<Stmt *>()[Idx] = E;
4363  }
4364
4365  /// \brief Replaces the designator at index @p Idx with the series
4366  /// of designators in [First, Last).
4367  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4368                        const Designator *First, const Designator *Last);
4369
4370  SourceRange getDesignatorsSourceRange() const;
4371
4372  SourceLocation getLocStart() const LLVM_READONLY;
4373  SourceLocation getLocEnd() const LLVM_READONLY;
4374
4375  static bool classof(const Stmt *T) {
4376    return T->getStmtClass() == DesignatedInitExprClass;
4377  }
4378
4379  // Iterators
4380  child_range children() {
4381    Stmt **begin = getTrailingObjects<Stmt *>();
4382    return child_range(begin, begin + NumSubExprs);
4383  }
4384  const_child_range children() const {
4385    Stmt * const *begin = getTrailingObjects<Stmt *>();
4386    return const_child_range(begin, begin + NumSubExprs);
4387  }
4388
4389  friend TrailingObjects;
4390};
4391
4392/// \brief Represents a place-holder for an object not to be initialized by
4393/// anything.
4394///
4395/// This only makes sense when it appears as part of an updater of a
4396/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4397/// initializes a big object, and the NoInitExpr's mark the spots within the
4398/// big object not to be overwritten by the updater.
4399///
4400/// \see DesignatedInitUpdateExpr
4401class NoInitExpr : public Expr {
4402public:
4403  explicit NoInitExpr(QualType ty)
4404    : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4405           false, false, ty->isInstantiationDependentType(), false) { }
4406
4407  explicit NoInitExpr(EmptyShell Empty)
4408    : Expr(NoInitExprClass, Empty) { }
4409
4410  static bool classof(const Stmt *T) {
4411    return T->getStmtClass() == NoInitExprClass;
4412  }
4413
4414  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4415  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4416
4417  // Iterators
4418  child_range children() {
4419    return child_range(child_iterator(), child_iterator());
4420  }
4421  const_child_range children() const {
4422    return const_child_range(const_child_iterator(), const_child_iterator());
4423  }
4424};
4425
4426// In cases like:
4427//   struct Q { int a, b, c; };
4428//   Q *getQ();
4429//   void foo() {
4430//     struct A { Q q; } a = { *getQ(), .q.b = 3 };
4431//   }
4432//
4433// We will have an InitListExpr for a, with type A, and then a
4434// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4435// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4436//
4437class DesignatedInitUpdateExpr : public Expr {
4438  // BaseAndUpdaterExprs[0] is the base expression;
4439  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4440  Stmt *BaseAndUpdaterExprs[2];
4441
4442public:
4443  DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
4444                           Expr *baseExprs, SourceLocation rBraceLoc);
4445
4446  explicit DesignatedInitUpdateExpr(EmptyShell Empty)
4447    : Expr(DesignatedInitUpdateExprClass, Empty) { }
4448
4449  SourceLocation getLocStart() const LLVM_READONLY;
4450  SourceLocation getLocEnd() const LLVM_READONLY;
4451
4452  static bool classof(const Stmt *T) {
4453    return T->getStmtClass() == DesignatedInitUpdateExprClass;
4454  }
4455
4456  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4457  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4458
4459  InitListExpr *getUpdater() const {
4460    return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4461  }
4462  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4463
4464  // Iterators
4465  // children = the base and the updater
4466  child_range children() {
4467    return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4468  }
4469  const_child_range children() const {
4470    return const_child_range(&BaseAndUpdaterExprs[0],
4471                             &BaseAndUpdaterExprs[0] + 2);
4472  }
4473};
4474
4475/// \brief Represents a loop initializing the elements of an array.
4476///
4477/// The need to initialize the elements of an array occurs in a number of
4478/// contexts:
4479///
4480///  * in the implicit copy/move constructor for a class with an array member
4481///  * when a lambda-expression captures an array by value
4482///  * when a decomposition declaration decomposes an array
4483///
4484/// There are two subexpressions: a common expression (the source array)
4485/// that is evaluated once up-front, and a per-element initializer that
4486/// runs once for each array element.
4487///
4488/// Within the per-element initializer, the common expression may be referenced
4489/// via an OpaqueValueExpr, and the current index may be obtained via an
4490/// ArrayInitIndexExpr.
4491class ArrayInitLoopExpr : public Expr {
4492  Stmt *SubExprs[2];
4493
4494  explicit ArrayInitLoopExpr(EmptyShell Empty)
4495      : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
4496
4497public:
4498  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
4499      : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
4500             CommonInit->isValueDependent() || ElementInit->isValueDependent(),
4501             T->isInstantiationDependentType(),
4502             CommonInit->containsUnexpandedParameterPack() ||
4503                 ElementInit->containsUnexpandedParameterPack()),
4504        SubExprs{CommonInit, ElementInit} {}
4505
4506  /// Get the common subexpression shared by all initializations (the source
4507  /// array).
4508  OpaqueValueExpr *getCommonExpr() const {
4509    return cast<OpaqueValueExpr>(SubExprs[0]);
4510  }
4511
4512  /// Get the initializer to use for each array element.
4513  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
4514
4515  llvm::APInt getArraySize() const {
4516    return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
4517        ->getSize();
4518  }
4519
4520  static bool classof(const Stmt *S) {
4521    return S->getStmtClass() == ArrayInitLoopExprClass;
4522  }
4523
4524  SourceLocation getLocStart() const LLVM_READONLY {
4525    return getCommonExpr()->getLocStart();
4526  }
4527  SourceLocation getLocEnd() const LLVM_READONLY {
4528    return getCommonExpr()->getLocEnd();
4529  }
4530
4531  child_range children() {
4532    return child_range(SubExprs, SubExprs + 2);
4533  }
4534  const_child_range children() const {
4535    return const_child_range(SubExprs, SubExprs + 2);
4536  }
4537
4538  friend class ASTReader;
4539  friend class ASTStmtReader;
4540  friend class ASTStmtWriter;
4541};
4542
4543/// \brief Represents the index of the current element of an array being
4544/// initialized by an ArrayInitLoopExpr. This can only appear within the
4545/// subexpression of an ArrayInitLoopExpr.
4546class ArrayInitIndexExpr : public Expr {
4547  explicit ArrayInitIndexExpr(EmptyShell Empty)
4548      : Expr(ArrayInitIndexExprClass, Empty) {}
4549
4550public:
4551  explicit ArrayInitIndexExpr(QualType T)
4552      : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
4553             false, false, false, false) {}
4554
4555  static bool classof(const Stmt *S) {
4556    return S->getStmtClass() == ArrayInitIndexExprClass;
4557  }
4558
4559  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4560  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4561
4562  child_range children() {
4563    return child_range(child_iterator(), child_iterator());
4564  }
4565  const_child_range children() const {
4566    return const_child_range(const_child_iterator(), const_child_iterator());
4567  }
4568
4569  friend class ASTReader;
4570  friend class ASTStmtReader;
4571};
4572
4573/// \brief Represents an implicitly-generated value initialization of
4574/// an object of a given type.
4575///
4576/// Implicit value initializations occur within semantic initializer
4577/// list expressions (InitListExpr) as placeholders for subobject
4578/// initializations not explicitly specified by the user.
4579///
4580/// \see InitListExpr
4581class ImplicitValueInitExpr : public Expr {
4582public:
4583  explicit ImplicitValueInitExpr(QualType ty)
4584    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4585           false, false, ty->isInstantiationDependentType(), false) { }
4586
4587  /// \brief Construct an empty implicit value initialization.
4588  explicit ImplicitValueInitExpr(EmptyShell Empty)
4589    : Expr(ImplicitValueInitExprClass, Empty) { }
4590
4591  static bool classof(const Stmt *T) {
4592    return T->getStmtClass() == ImplicitValueInitExprClass;
4593  }
4594
4595  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4596  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4597
4598  // Iterators
4599  child_range children() {
4600    return child_range(child_iterator(), child_iterator());
4601  }
4602  const_child_range children() const {
4603    return const_child_range(const_child_iterator(), const_child_iterator());
4604  }
4605};
4606
4607class ParenListExpr : public Expr {
4608  Stmt **Exprs;
4609  unsigned NumExprs;
4610  SourceLocation LParenLoc, RParenLoc;
4611
4612public:
4613  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4614                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4615
4616  /// \brief Build an empty paren list.
4617  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4618
4619  unsigned getNumExprs() const { return NumExprs; }
4620
4621  const Expr* getExpr(unsigned Init) const {
4622    assert(Init < getNumExprs() && "Initializer access out of range!");
4623    return cast_or_null<Expr>(Exprs[Init]);
4624  }
4625
4626  Expr* getExpr(unsigned Init) {
4627    assert(Init < getNumExprs() && "Initializer access out of range!");
4628    return cast_or_null<Expr>(Exprs[Init]);
4629  }
4630
4631  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4632
4633  ArrayRef<Expr *> exprs() {
4634    return llvm::makeArrayRef(getExprs(), getNumExprs());
4635  }
4636
4637  SourceLocation getLParenLoc() const { return LParenLoc; }
4638  SourceLocation getRParenLoc() const { return RParenLoc; }
4639
4640  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4641  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4642
4643  static bool classof(const Stmt *T) {
4644    return T->getStmtClass() == ParenListExprClass;
4645  }
4646
4647  // Iterators
4648  child_range children() {
4649    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4650  }
4651  const_child_range children() const {
4652    return const_child_range(&Exprs[0], &Exprs[0] + NumExprs);
4653  }
4654
4655  friend class ASTStmtReader;
4656  friend class ASTStmtWriter;
4657};
4658
4659/// \brief Represents a C11 generic selection.
4660///
4661/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4662/// expression, followed by one or more generic associations.  Each generic
4663/// association specifies a type name and an expression, or "default" and an
4664/// expression (in which case it is known as a default generic association).
4665/// The type and value of the generic selection are identical to those of its
4666/// result expression, which is defined as the expression in the generic
4667/// association with a type name that is compatible with the type of the
4668/// controlling expression, or the expression in the default generic association
4669/// if no types are compatible.  For example:
4670///
4671/// @code
4672/// _Generic(X, double: 1, float: 2, default: 3)
4673/// @endcode
4674///
4675/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4676/// or 3 if "hello".
4677///
4678/// As an extension, generic selections are allowed in C++, where the following
4679/// additional semantics apply:
4680///
4681/// Any generic selection whose controlling expression is type-dependent or
4682/// which names a dependent type in its association list is result-dependent,
4683/// which means that the choice of result expression is dependent.
4684/// Result-dependent generic associations are both type- and value-dependent.
4685class GenericSelectionExpr : public Expr {
4686  enum { CONTROLLING, END_EXPR };
4687  TypeSourceInfo **AssocTypes;
4688  Stmt **SubExprs;
4689  unsigned NumAssocs, ResultIndex;
4690  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4691
4692public:
4693  GenericSelectionExpr(const ASTContext &Context,
4694                       SourceLocation GenericLoc, Expr *ControllingExpr,
4695                       ArrayRef<TypeSourceInfo*> AssocTypes,
4696                       ArrayRef<Expr*> AssocExprs,
4697                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4698                       bool ContainsUnexpandedParameterPack,
4699                       unsigned ResultIndex);
4700
4701  /// This constructor is used in the result-dependent case.
4702  GenericSelectionExpr(const ASTContext &Context,
4703                       SourceLocation GenericLoc, Expr *ControllingExpr,
4704                       ArrayRef<TypeSourceInfo*> AssocTypes,
4705                       ArrayRef<Expr*> AssocExprs,
4706                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4707                       bool ContainsUnexpandedParameterPack);
4708
4709  explicit GenericSelectionExpr(EmptyShell Empty)
4710    : Expr(GenericSelectionExprClass, Empty) { }
4711
4712  unsigned getNumAssocs() const { return NumAssocs; }
4713
4714  SourceLocation getGenericLoc() const { return GenericLoc; }
4715  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4716  SourceLocation getRParenLoc() const { return RParenLoc; }
4717
4718  const Expr *getAssocExpr(unsigned i) const {
4719    return cast<Expr>(SubExprs[END_EXPR+i]);
4720  }
4721  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4722  ArrayRef<Expr *> getAssocExprs() const {
4723    return NumAssocs
4724               ? llvm::makeArrayRef(
4725                     &reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
4726               : None;
4727  }
4728  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4729    return AssocTypes[i];
4730  }
4731  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4732  ArrayRef<TypeSourceInfo *> getAssocTypeSourceInfos() const {
4733    return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
4734  }
4735
4736  QualType getAssocType(unsigned i) const {
4737    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4738      return TS->getType();
4739    else
4740      return QualType();
4741  }
4742
4743  const Expr *getControllingExpr() const {
4744    return cast<Expr>(SubExprs[CONTROLLING]);
4745  }
4746  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4747
4748  /// Whether this generic selection is result-dependent.
4749  bool isResultDependent() const { return ResultIndex == -1U; }
4750
4751  /// The zero-based index of the result expression's generic association in
4752  /// the generic selection's association list.  Defined only if the
4753  /// generic selection is not result-dependent.
4754  unsigned getResultIndex() const {
4755    assert(!isResultDependent() && "Generic selection is result-dependent");
4756    return ResultIndex;
4757  }
4758
4759  /// The generic selection's result expression.  Defined only if the
4760  /// generic selection is not result-dependent.
4761  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4762  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4763
4764  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4765  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4766
4767  static bool classof(const Stmt *T) {
4768    return T->getStmtClass() == GenericSelectionExprClass;
4769  }
4770
4771  child_range children() {
4772    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4773  }
4774  const_child_range children() const {
4775    return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
4776  }
4777  friend class ASTStmtReader;
4778};
4779
4780//===----------------------------------------------------------------------===//
4781// Clang Extensions
4782//===----------------------------------------------------------------------===//
4783
4784/// ExtVectorElementExpr - This represents access to specific elements of a
4785/// vector, and may occur on the left hand side or right hand side.  For example
4786/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4787///
4788/// Note that the base may have either vector or pointer to vector type, just
4789/// like a struct field reference.
4790///
4791class ExtVectorElementExpr : public Expr {
4792  Stmt *Base;
4793  IdentifierInfo *Accessor;
4794  SourceLocation AccessorLoc;
4795public:
4796  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4797                       IdentifierInfo &accessor, SourceLocation loc)
4798    : Expr(ExtVectorElementExprClass, ty, VK,
4799           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4800           base->isTypeDependent(), base->isValueDependent(),
4801           base->isInstantiationDependent(),
4802           base->containsUnexpandedParameterPack()),
4803      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4804
4805  /// \brief Build an empty vector element expression.
4806  explicit ExtVectorElementExpr(EmptyShell Empty)
4807    : Expr(ExtVectorElementExprClass, Empty) { }
4808
4809  const Expr *getBase() const { return cast<Expr>(Base); }
4810  Expr *getBase() { return cast<Expr>(Base); }
4811  void setBase(Expr *E) { Base = E; }
4812
4813  IdentifierInfo &getAccessor() const { return *Accessor; }
4814  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4815
4816  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4817  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4818
4819  /// getNumElements - Get the number of components being selected.
4820  unsigned getNumElements() const;
4821
4822  /// containsDuplicateElements - Return true if any element access is
4823  /// repeated.
4824  bool containsDuplicateElements() const;
4825
4826  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4827  /// aggregate Constant of ConstantInt(s).
4828  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
4829
4830  SourceLocation getLocStart() const LLVM_READONLY {
4831    return getBase()->getLocStart();
4832  }
4833  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4834
4835  /// isArrow - Return true if the base expression is a pointer to vector,
4836  /// return false if the base expression is a vector.
4837  bool isArrow() const;
4838
4839  static bool classof(const Stmt *T) {
4840    return T->getStmtClass() == ExtVectorElementExprClass;
4841  }
4842
4843  // Iterators
4844  child_range children() { return child_range(&Base, &Base+1); }
4845  const_child_range children() const {
4846    return const_child_range(&Base, &Base + 1);
4847  }
4848};
4849
4850/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4851/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4852class BlockExpr : public Expr {
4853protected:
4854  BlockDecl *TheBlock;
4855public:
4856  BlockExpr(BlockDecl *BD, QualType ty)
4857    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4858           ty->isDependentType(), ty->isDependentType(),
4859           ty->isInstantiationDependentType() || BD->isDependentContext(),
4860           false),
4861      TheBlock(BD) {}
4862
4863  /// \brief Build an empty block expression.
4864  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4865
4866  const BlockDecl *getBlockDecl() const { return TheBlock; }
4867  BlockDecl *getBlockDecl() { return TheBlock; }
4868  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4869
4870  // Convenience functions for probing the underlying BlockDecl.
4871  SourceLocation getCaretLocation() const;
4872  const Stmt *getBody() const;
4873  Stmt *getBody();
4874
4875  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4876  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4877
4878  /// getFunctionType - Return the underlying function type for this block.
4879  const FunctionProtoType *getFunctionType() const;
4880
4881  static bool classof(const Stmt *T) {
4882    return T->getStmtClass() == BlockExprClass;
4883  }
4884
4885  // Iterators
4886  child_range children() {
4887    return child_range(child_iterator(), child_iterator());
4888  }
4889  const_child_range children() const {
4890    return const_child_range(const_child_iterator(), const_child_iterator());
4891  }
4892};
4893
4894/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4895/// This AST node provides support for reinterpreting a type to another
4896/// type of the same size.
4897class AsTypeExpr : public Expr {
4898private:
4899  Stmt *SrcExpr;
4900  SourceLocation BuiltinLoc, RParenLoc;
4901
4902  friend class ASTReader;
4903  friend class ASTStmtReader;
4904  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4905
4906public:
4907  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4908             ExprValueKind VK, ExprObjectKind OK,
4909             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4910    : Expr(AsTypeExprClass, DstType, VK, OK,
4911           DstType->isDependentType(),
4912           DstType->isDependentType() || SrcExpr->isValueDependent(),
4913           (DstType->isInstantiationDependentType() ||
4914            SrcExpr->isInstantiationDependent()),
4915           (DstType->containsUnexpandedParameterPack() ||
4916            SrcExpr->containsUnexpandedParameterPack())),
4917  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4918
4919  /// getSrcExpr - Return the Expr to be converted.
4920  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4921
4922  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4923  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4924
4925  /// getRParenLoc - Return the location of final right parenthesis.
4926  SourceLocation getRParenLoc() const { return RParenLoc; }
4927
4928  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4929  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4930
4931  static bool classof(const Stmt *T) {
4932    return T->getStmtClass() == AsTypeExprClass;
4933  }
4934
4935  // Iterators
4936  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4937  const_child_range children() const {
4938    return const_child_range(&SrcExpr, &SrcExpr + 1);
4939  }
4940};
4941
4942/// PseudoObjectExpr - An expression which accesses a pseudo-object
4943/// l-value.  A pseudo-object is an abstract object, accesses to which
4944/// are translated to calls.  The pseudo-object expression has a
4945/// syntactic form, which shows how the expression was actually
4946/// written in the source code, and a semantic form, which is a series
4947/// of expressions to be executed in order which detail how the
4948/// operation is actually evaluated.  Optionally, one of the semantic
4949/// forms may also provide a result value for the expression.
4950///
4951/// If any of the semantic-form expressions is an OpaqueValueExpr,
4952/// that OVE is required to have a source expression, and it is bound
4953/// to the result of that source expression.  Such OVEs may appear
4954/// only in subsequent semantic-form expressions and as
4955/// sub-expressions of the syntactic form.
4956///
4957/// PseudoObjectExpr should be used only when an operation can be
4958/// usefully described in terms of fairly simple rewrite rules on
4959/// objects and functions that are meant to be used by end-developers.
4960/// For example, under the Itanium ABI, dynamic casts are implemented
4961/// as a call to a runtime function called __dynamic_cast; using this
4962/// class to describe that would be inappropriate because that call is
4963/// not really part of the user-visible semantics, and instead the
4964/// cast is properly reflected in the AST and IR-generation has been
4965/// taught to generate the call as necessary.  In contrast, an
4966/// Objective-C property access is semantically defined to be
4967/// equivalent to a particular message send, and this is very much
4968/// part of the user model.  The name of this class encourages this
4969/// modelling design.
4970class PseudoObjectExpr final
4971    : public Expr,
4972      private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
4973  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4974  // Always at least two, because the first sub-expression is the
4975  // syntactic form.
4976
4977  // PseudoObjectExprBits.ResultIndex - The index of the
4978  // sub-expression holding the result.  0 means the result is void,
4979  // which is unambiguous because it's the index of the syntactic
4980  // form.  Note that this is therefore 1 higher than the value passed
4981  // in to Create, which is an index within the semantic forms.
4982  // Note also that ASTStmtWriter assumes this encoding.
4983
4984  Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
4985  const Expr * const *getSubExprsBuffer() const {
4986    return getTrailingObjects<Expr *>();
4987  }
4988
4989  PseudoObjectExpr(QualType type, ExprValueKind VK,
4990                   Expr *syntactic, ArrayRef<Expr*> semantic,
4991                   unsigned resultIndex);
4992
4993  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4994
4995  unsigned getNumSubExprs() const {
4996    return PseudoObjectExprBits.NumSubExprs;
4997  }
4998
4999public:
5000  /// NoResult - A value for the result index indicating that there is
5001  /// no semantic result.
5002  enum : unsigned { NoResult = ~0U };
5003
5004  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
5005                                  ArrayRef<Expr*> semantic,
5006                                  unsigned resultIndex);
5007
5008  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
5009                                  unsigned numSemanticExprs);
5010
5011  /// Return the syntactic form of this expression, i.e. the
5012  /// expression it actually looks like.  Likely to be expressed in
5013  /// terms of OpaqueValueExprs bound in the semantic form.
5014  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
5015  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
5016
5017  /// Return the index of the result-bearing expression into the semantics
5018  /// expressions, or PseudoObjectExpr::NoResult if there is none.
5019  unsigned getResultExprIndex() const {
5020    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
5021    return PseudoObjectExprBits.ResultIndex - 1;
5022  }
5023
5024  /// Return the result-bearing expression, or null if there is none.
5025  Expr *getResultExpr() {
5026    if (PseudoObjectExprBits.ResultIndex == 0)
5027      return nullptr;
5028    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
5029  }
5030  const Expr *getResultExpr() const {
5031    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
5032  }
5033
5034  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
5035
5036  typedef Expr * const *semantics_iterator;
5037  typedef const Expr * const *const_semantics_iterator;
5038  semantics_iterator semantics_begin() {
5039    return getSubExprsBuffer() + 1;
5040  }
5041  const_semantics_iterator semantics_begin() const {
5042    return getSubExprsBuffer() + 1;
5043  }
5044  semantics_iterator semantics_end() {
5045    return getSubExprsBuffer() + getNumSubExprs();
5046  }
5047  const_semantics_iterator semantics_end() const {
5048    return getSubExprsBuffer() + getNumSubExprs();
5049  }
5050
5051  llvm::iterator_range<semantics_iterator> semantics() {
5052    return llvm::make_range(semantics_begin(), semantics_end());
5053  }
5054  llvm::iterator_range<const_semantics_iterator> semantics() const {
5055    return llvm::make_range(semantics_begin(), semantics_end());
5056  }
5057
5058  Expr *getSemanticExpr(unsigned index) {
5059    assert(index + 1 < getNumSubExprs());
5060    return getSubExprsBuffer()[index + 1];
5061  }
5062  const Expr *getSemanticExpr(unsigned index) const {
5063    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
5064  }
5065
5066  SourceLocation getExprLoc() const LLVM_READONLY {
5067    return getSyntacticForm()->getExprLoc();
5068  }
5069
5070  SourceLocation getLocStart() const LLVM_READONLY {
5071    return getSyntacticForm()->getLocStart();
5072  }
5073  SourceLocation getLocEnd() const LLVM_READONLY {
5074    return getSyntacticForm()->getLocEnd();
5075  }
5076
5077  child_range children() {
5078    const_child_range CCR =
5079        const_cast<const PseudoObjectExpr *>(this)->children();
5080    return child_range(cast_away_const(CCR.begin()),
5081                       cast_away_const(CCR.end()));
5082  }
5083  const_child_range children() const {
5084    Stmt *const *cs = const_cast<Stmt *const *>(
5085        reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
5086    return const_child_range(cs, cs + getNumSubExprs());
5087  }
5088
5089  static bool classof(const Stmt *T) {
5090    return T->getStmtClass() == PseudoObjectExprClass;
5091  }
5092
5093  friend TrailingObjects;
5094  friend class ASTStmtReader;
5095};
5096
5097/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
5098/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
5099/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
5100/// and corresponding __opencl_atomic_* for OpenCL 2.0.
5101/// All of these instructions take one primary pointer, at least one memory
5102/// order. The instructions for which getScopeModel returns non-null value
5103/// take one synch scope.
5104class AtomicExpr : public Expr {
5105public:
5106  enum AtomicOp {
5107#define BUILTIN(ID, TYPE, ATTRS)
5108#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
5109#include "clang/Basic/Builtins.def"
5110    // Avoid trailing comma
5111    BI_First = 0
5112  };
5113
5114private:
5115  /// \brief Location of sub-expressions.
5116  /// The location of Scope sub-expression is NumSubExprs - 1, which is
5117  /// not fixed, therefore is not defined in enum.
5118  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
5119  Stmt *SubExprs[END_EXPR + 1];
5120  unsigned NumSubExprs;
5121  SourceLocation BuiltinLoc, RParenLoc;
5122  AtomicOp Op;
5123
5124  friend class ASTStmtReader;
5125public:
5126  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
5127             AtomicOp op, SourceLocation RP);
5128
5129  /// \brief Determine the number of arguments the specified atomic builtin
5130  /// should have.
5131  static unsigned getNumSubExprs(AtomicOp Op);
5132
5133  /// \brief Build an empty AtomicExpr.
5134  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
5135
5136  Expr *getPtr() const {
5137    return cast<Expr>(SubExprs[PTR]);
5138  }
5139  Expr *getOrder() const {
5140    return cast<Expr>(SubExprs[ORDER]);
5141  }
5142  Expr *getScope() const {
5143    assert(getScopeModel() && "No scope");
5144    return cast<Expr>(SubExprs[NumSubExprs - 1]);
5145  }
5146  Expr *getVal1() const {
5147    if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
5148      return cast<Expr>(SubExprs[ORDER]);
5149    assert(NumSubExprs > VAL1);
5150    return cast<Expr>(SubExprs[VAL1]);
5151  }
5152  Expr *getOrderFail() const {
5153    assert(NumSubExprs > ORDER_FAIL);
5154    return cast<Expr>(SubExprs[ORDER_FAIL]);
5155  }
5156  Expr *getVal2() const {
5157    if (Op == AO__atomic_exchange)
5158      return cast<Expr>(SubExprs[ORDER_FAIL]);
5159    assert(NumSubExprs > VAL2);
5160    return cast<Expr>(SubExprs[VAL2]);
5161  }
5162  Expr *getWeak() const {
5163    assert(NumSubExprs > WEAK);
5164    return cast<Expr>(SubExprs[WEAK]);
5165  }
5166  QualType getValueType() const;
5167
5168  AtomicOp getOp() const { return Op; }
5169  unsigned getNumSubExprs() const { return NumSubExprs; }
5170
5171  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
5172  const Expr * const *getSubExprs() const {
5173    return reinterpret_cast<Expr * const *>(SubExprs);
5174  }
5175
5176  bool isVolatile() const {
5177    return getPtr()->getType()->getPointeeType().isVolatileQualified();
5178  }
5179
5180  bool isCmpXChg() const {
5181    return getOp() == AO__c11_atomic_compare_exchange_strong ||
5182           getOp() == AO__c11_atomic_compare_exchange_weak ||
5183           getOp() == AO__opencl_atomic_compare_exchange_strong ||
5184           getOp() == AO__opencl_atomic_compare_exchange_weak ||
5185           getOp() == AO__atomic_compare_exchange ||
5186           getOp() == AO__atomic_compare_exchange_n;
5187  }
5188
5189  bool isOpenCL() const {
5190    return getOp() >= AO__opencl_atomic_init &&
5191           getOp() <= AO__opencl_atomic_fetch_max;
5192  }
5193
5194  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
5195  SourceLocation getRParenLoc() const { return RParenLoc; }
5196
5197  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
5198  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
5199
5200  static bool classof(const Stmt *T) {
5201    return T->getStmtClass() == AtomicExprClass;
5202  }
5203
5204  // Iterators
5205  child_range children() {
5206    return child_range(SubExprs, SubExprs+NumSubExprs);
5207  }
5208  const_child_range children() const {
5209    return const_child_range(SubExprs, SubExprs + NumSubExprs);
5210  }
5211
5212  /// \brief Get atomic scope model for the atomic op code.
5213  /// \return empty atomic scope model if the atomic op code does not have
5214  ///   scope operand.
5215  static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
5216    auto Kind =
5217        (Op >= AO__opencl_atomic_load && Op <= AO__opencl_atomic_fetch_max)
5218            ? AtomicScopeModelKind::OpenCL
5219            : AtomicScopeModelKind::None;
5220    return AtomicScopeModel::create(Kind);
5221  }
5222
5223  /// \brief Get atomic scope model.
5224  /// \return empty atomic scope model if this atomic expression does not have
5225  ///   scope operand.
5226  std::unique_ptr<AtomicScopeModel> getScopeModel() const {
5227    return getScopeModel(getOp());
5228  }
5229};
5230
5231/// TypoExpr - Internal placeholder for expressions where typo correction
5232/// still needs to be performed and/or an error diagnostic emitted.
5233class TypoExpr : public Expr {
5234public:
5235  TypoExpr(QualType T)
5236      : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
5237             /*isTypeDependent*/ true,
5238             /*isValueDependent*/ true,
5239             /*isInstantiationDependent*/ true,
5240             /*containsUnexpandedParameterPack*/ false) {
5241    assert(T->isDependentType() && "TypoExpr given a non-dependent type");
5242  }
5243
5244  child_range children() {
5245    return child_range(child_iterator(), child_iterator());
5246  }
5247  const_child_range children() const {
5248    return const_child_range(const_child_iterator(), const_child_iterator());
5249  }
5250
5251  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
5252  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
5253
5254  static bool classof(const Stmt *T) {
5255    return T->getStmtClass() == TypoExprClass;
5256  }
5257
5258};
5259} // end namespace clang
5260
5261#endif // LLVM_CLANG_AST_EXPR_H
5262