1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_BITVECTOR_H
15#define LLVM_ADT_BITVECTOR_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstdint>
24#include <cstdlib>
25#include <cstring>
26#include <utility>
27
28namespace llvm {
29
30/// ForwardIterator for the bits that are set.
31/// Iterators get invalidated when resize / reserve is called.
32template <typename BitVectorT> class const_set_bits_iterator_impl {
33  const BitVectorT &Parent;
34  int Current = 0;
35
36  void advance() {
37    assert(Current != -1 && "Trying to advance past end.");
38    Current = Parent.find_next(Current);
39  }
40
41public:
42  const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
43      : Parent(Parent), Current(Current) {}
44  explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
45      : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
46  const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
47
48  const_set_bits_iterator_impl operator++(int) {
49    auto Prev = *this;
50    advance();
51    return Prev;
52  }
53
54  const_set_bits_iterator_impl &operator++() {
55    advance();
56    return *this;
57  }
58
59  unsigned operator*() const { return Current; }
60
61  bool operator==(const const_set_bits_iterator_impl &Other) const {
62    assert(&Parent == &Other.Parent &&
63           "Comparing iterators from different BitVectors");
64    return Current == Other.Current;
65  }
66
67  bool operator!=(const const_set_bits_iterator_impl &Other) const {
68    assert(&Parent == &Other.Parent &&
69           "Comparing iterators from different BitVectors");
70    return Current != Other.Current;
71  }
72};
73
74class BitVector {
75  typedef unsigned long BitWord;
76
77  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
78
79  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
80                "Unsupported word size");
81
82  MutableArrayRef<BitWord> Bits; // Actual bits.
83  unsigned Size;                 // Size of bitvector in bits.
84
85public:
86  typedef unsigned size_type;
87  // Encapsulation of a single bit.
88  class reference {
89    friend class BitVector;
90
91    BitWord *WordRef;
92    unsigned BitPos;
93
94  public:
95    reference(BitVector &b, unsigned Idx) {
96      WordRef = &b.Bits[Idx / BITWORD_SIZE];
97      BitPos = Idx % BITWORD_SIZE;
98    }
99
100    reference() = delete;
101    reference(const reference&) = default;
102
103    reference &operator=(reference t) {
104      *this = bool(t);
105      return *this;
106    }
107
108    reference& operator=(bool t) {
109      if (t)
110        *WordRef |= BitWord(1) << BitPos;
111      else
112        *WordRef &= ~(BitWord(1) << BitPos);
113      return *this;
114    }
115
116    operator bool() const {
117      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
118    }
119  };
120
121  typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
122  typedef const_set_bits_iterator set_iterator;
123
124  const_set_bits_iterator set_bits_begin() const {
125    return const_set_bits_iterator(*this);
126  }
127  const_set_bits_iterator set_bits_end() const {
128    return const_set_bits_iterator(*this, -1);
129  }
130  iterator_range<const_set_bits_iterator> set_bits() const {
131    return make_range(set_bits_begin(), set_bits_end());
132  }
133
134  /// BitVector default ctor - Creates an empty bitvector.
135  BitVector() : Size(0) {}
136
137  /// BitVector ctor - Creates a bitvector of specified number of bits. All
138  /// bits are initialized to the specified value.
139  explicit BitVector(unsigned s, bool t = false) : Size(s) {
140    size_t Capacity = NumBitWords(s);
141    Bits = allocate(Capacity);
142    init_words(Bits, t);
143    if (t)
144      clear_unused_bits();
145  }
146
147  /// BitVector copy ctor.
148  BitVector(const BitVector &RHS) : Size(RHS.size()) {
149    if (Size == 0) {
150      Bits = MutableArrayRef<BitWord>();
151      return;
152    }
153
154    size_t Capacity = NumBitWords(RHS.size());
155    Bits = allocate(Capacity);
156    std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
157  }
158
159  BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
160    RHS.Bits = MutableArrayRef<BitWord>();
161    RHS.Size = 0;
162  }
163
164  ~BitVector() { std::free(Bits.data()); }
165
166  /// empty - Tests whether there are no bits in this bitvector.
167  bool empty() const { return Size == 0; }
168
169  /// size - Returns the number of bits in this bitvector.
170  size_type size() const { return Size; }
171
172  /// count - Returns the number of bits which are set.
173  size_type count() const {
174    unsigned NumBits = 0;
175    for (unsigned i = 0; i < NumBitWords(size()); ++i)
176      NumBits += countPopulation(Bits[i]);
177    return NumBits;
178  }
179
180  /// any - Returns true if any bit is set.
181  bool any() const {
182    for (unsigned i = 0; i < NumBitWords(size()); ++i)
183      if (Bits[i] != 0)
184        return true;
185    return false;
186  }
187
188  /// all - Returns true if all bits are set.
189  bool all() const {
190    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
191      if (Bits[i] != ~0UL)
192        return false;
193
194    // If bits remain check that they are ones. The unused bits are always zero.
195    if (unsigned Remainder = Size % BITWORD_SIZE)
196      return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
197
198    return true;
199  }
200
201  /// none - Returns true if none of the bits are set.
202  bool none() const {
203    return !any();
204  }
205
206  /// find_first_in - Returns the index of the first set bit in the range
207  /// [Begin, End).  Returns -1 if all bits in the range are unset.
208  int find_first_in(unsigned Begin, unsigned End) const {
209    assert(Begin <= End && End <= Size);
210    if (Begin == End)
211      return -1;
212
213    unsigned FirstWord = Begin / BITWORD_SIZE;
214    unsigned LastWord = (End - 1) / BITWORD_SIZE;
215
216    // Check subsequent words.
217    for (unsigned i = FirstWord; i <= LastWord; ++i) {
218      BitWord Copy = Bits[i];
219
220      if (i == FirstWord) {
221        unsigned FirstBit = Begin % BITWORD_SIZE;
222        Copy &= maskTrailingZeros<BitWord>(FirstBit);
223      }
224
225      if (i == LastWord) {
226        unsigned LastBit = (End - 1) % BITWORD_SIZE;
227        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
228      }
229      if (Copy != 0)
230        return i * BITWORD_SIZE + countTrailingZeros(Copy);
231    }
232    return -1;
233  }
234
235  /// find_last_in - Returns the index of the last set bit in the range
236  /// [Begin, End).  Returns -1 if all bits in the range are unset.
237  int find_last_in(unsigned Begin, unsigned End) const {
238    assert(Begin <= End && End <= Size);
239    if (Begin == End)
240      return -1;
241
242    unsigned LastWord = (End - 1) / BITWORD_SIZE;
243    unsigned FirstWord = Begin / BITWORD_SIZE;
244
245    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
246      unsigned CurrentWord = i - 1;
247
248      BitWord Copy = Bits[CurrentWord];
249      if (CurrentWord == LastWord) {
250        unsigned LastBit = (End - 1) % BITWORD_SIZE;
251        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
252      }
253
254      if (CurrentWord == FirstWord) {
255        unsigned FirstBit = Begin % BITWORD_SIZE;
256        Copy &= maskTrailingZeros<BitWord>(FirstBit);
257      }
258
259      if (Copy != 0)
260        return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
261    }
262
263    return -1;
264  }
265
266  /// find_first_unset_in - Returns the index of the first unset bit in the
267  /// range [Begin, End).  Returns -1 if all bits in the range are set.
268  int find_first_unset_in(unsigned Begin, unsigned End) const {
269    assert(Begin <= End && End <= Size);
270    if (Begin == End)
271      return -1;
272
273    unsigned FirstWord = Begin / BITWORD_SIZE;
274    unsigned LastWord = (End - 1) / BITWORD_SIZE;
275
276    // Check subsequent words.
277    for (unsigned i = FirstWord; i <= LastWord; ++i) {
278      BitWord Copy = Bits[i];
279
280      if (i == FirstWord) {
281        unsigned FirstBit = Begin % BITWORD_SIZE;
282        Copy |= maskTrailingOnes<BitWord>(FirstBit);
283      }
284
285      if (i == LastWord) {
286        unsigned LastBit = (End - 1) % BITWORD_SIZE;
287        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
288      }
289      if (Copy != ~0UL) {
290        unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy);
291        return Result < size() ? Result : -1;
292      }
293    }
294    return -1;
295  }
296
297  /// find_last_unset_in - Returns the index of the last unset bit in the
298  /// range [Begin, End).  Returns -1 if all bits in the range are set.
299  int find_last_unset_in(unsigned Begin, unsigned End) const {
300    assert(Begin <= End && End <= Size);
301    if (Begin == End)
302      return -1;
303
304    unsigned LastWord = (End - 1) / BITWORD_SIZE;
305    unsigned FirstWord = Begin / BITWORD_SIZE;
306
307    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
308      unsigned CurrentWord = i - 1;
309
310      BitWord Copy = Bits[CurrentWord];
311      if (CurrentWord == LastWord) {
312        unsigned LastBit = (End - 1) % BITWORD_SIZE;
313        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
314      }
315
316      if (CurrentWord == FirstWord) {
317        unsigned FirstBit = Begin % BITWORD_SIZE;
318        Copy |= maskTrailingOnes<BitWord>(FirstBit);
319      }
320
321      if (Copy != ~0UL) {
322        unsigned Result =
323            (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
324        return Result < Size ? Result : -1;
325      }
326    }
327    return -1;
328  }
329
330  /// find_first - Returns the index of the first set bit, -1 if none
331  /// of the bits are set.
332  int find_first() const { return find_first_in(0, Size); }
333
334  /// find_last - Returns the index of the last set bit, -1 if none of the bits
335  /// are set.
336  int find_last() const { return find_last_in(0, Size); }
337
338  /// find_next - Returns the index of the next set bit following the
339  /// "Prev" bit. Returns -1 if the next set bit is not found.
340  int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
341
342  /// find_prev - Returns the index of the first set bit that precedes the
343  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
344  int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
345
346  /// find_first_unset - Returns the index of the first unset bit, -1 if all
347  /// of the bits are set.
348  int find_first_unset() const { return find_first_unset_in(0, Size); }
349
350  /// find_next_unset - Returns the index of the next unset bit following the
351  /// "Prev" bit.  Returns -1 if all remaining bits are set.
352  int find_next_unset(unsigned Prev) const {
353    return find_first_unset_in(Prev + 1, Size);
354  }
355
356  /// find_last_unset - Returns the index of the last unset bit, -1 if all of
357  /// the bits are set.
358  int find_last_unset() const { return find_last_unset_in(0, Size); }
359
360  /// find_prev_unset - Returns the index of the first unset bit that precedes
361  /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
362  int find_prev_unset(unsigned PriorTo) {
363    return find_last_unset_in(0, PriorTo);
364  }
365
366  /// clear - Removes all bits from the bitvector. Does not change capacity.
367  void clear() {
368    Size = 0;
369  }
370
371  /// resize - Grow or shrink the bitvector.
372  void resize(unsigned N, bool t = false) {
373    if (N > getBitCapacity()) {
374      unsigned OldCapacity = Bits.size();
375      grow(N);
376      init_words(Bits.drop_front(OldCapacity), t);
377    }
378
379    // Set any old unused bits that are now included in the BitVector. This
380    // may set bits that are not included in the new vector, but we will clear
381    // them back out below.
382    if (N > Size)
383      set_unused_bits(t);
384
385    // Update the size, and clear out any bits that are now unused
386    unsigned OldSize = Size;
387    Size = N;
388    if (t || N < OldSize)
389      clear_unused_bits();
390  }
391
392  void reserve(unsigned N) {
393    if (N > getBitCapacity())
394      grow(N);
395  }
396
397  // Set, reset, flip
398  BitVector &set() {
399    init_words(Bits, true);
400    clear_unused_bits();
401    return *this;
402  }
403
404  BitVector &set(unsigned Idx) {
405    assert(Bits.data() && "Bits never allocated");
406    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
407    return *this;
408  }
409
410  /// set - Efficiently set a range of bits in [I, E)
411  BitVector &set(unsigned I, unsigned E) {
412    assert(I <= E && "Attempted to set backwards range!");
413    assert(E <= size() && "Attempted to set out-of-bounds range!");
414
415    if (I == E) return *this;
416
417    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
418      BitWord EMask = 1UL << (E % BITWORD_SIZE);
419      BitWord IMask = 1UL << (I % BITWORD_SIZE);
420      BitWord Mask = EMask - IMask;
421      Bits[I / BITWORD_SIZE] |= Mask;
422      return *this;
423    }
424
425    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
426    Bits[I / BITWORD_SIZE] |= PrefixMask;
427    I = alignTo(I, BITWORD_SIZE);
428
429    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
430      Bits[I / BITWORD_SIZE] = ~0UL;
431
432    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
433    if (I < E)
434      Bits[I / BITWORD_SIZE] |= PostfixMask;
435
436    return *this;
437  }
438
439  BitVector &reset() {
440    init_words(Bits, false);
441    return *this;
442  }
443
444  BitVector &reset(unsigned Idx) {
445    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
446    return *this;
447  }
448
449  /// reset - Efficiently reset a range of bits in [I, E)
450  BitVector &reset(unsigned I, unsigned E) {
451    assert(I <= E && "Attempted to reset backwards range!");
452    assert(E <= size() && "Attempted to reset out-of-bounds range!");
453
454    if (I == E) return *this;
455
456    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
457      BitWord EMask = 1UL << (E % BITWORD_SIZE);
458      BitWord IMask = 1UL << (I % BITWORD_SIZE);
459      BitWord Mask = EMask - IMask;
460      Bits[I / BITWORD_SIZE] &= ~Mask;
461      return *this;
462    }
463
464    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
465    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
466    I = alignTo(I, BITWORD_SIZE);
467
468    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
469      Bits[I / BITWORD_SIZE] = 0UL;
470
471    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
472    if (I < E)
473      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
474
475    return *this;
476  }
477
478  BitVector &flip() {
479    for (unsigned i = 0; i < NumBitWords(size()); ++i)
480      Bits[i] = ~Bits[i];
481    clear_unused_bits();
482    return *this;
483  }
484
485  BitVector &flip(unsigned Idx) {
486    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
487    return *this;
488  }
489
490  // Indexing.
491  reference operator[](unsigned Idx) {
492    assert (Idx < Size && "Out-of-bounds Bit access.");
493    return reference(*this, Idx);
494  }
495
496  bool operator[](unsigned Idx) const {
497    assert (Idx < Size && "Out-of-bounds Bit access.");
498    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
499    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
500  }
501
502  bool test(unsigned Idx) const {
503    return (*this)[Idx];
504  }
505
506  /// Test if any common bits are set.
507  bool anyCommon(const BitVector &RHS) const {
508    unsigned ThisWords = NumBitWords(size());
509    unsigned RHSWords  = NumBitWords(RHS.size());
510    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
511      if (Bits[i] & RHS.Bits[i])
512        return true;
513    return false;
514  }
515
516  // Comparison operators.
517  bool operator==(const BitVector &RHS) const {
518    unsigned ThisWords = NumBitWords(size());
519    unsigned RHSWords  = NumBitWords(RHS.size());
520    unsigned i;
521    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
522      if (Bits[i] != RHS.Bits[i])
523        return false;
524
525    // Verify that any extra words are all zeros.
526    if (i != ThisWords) {
527      for (; i != ThisWords; ++i)
528        if (Bits[i])
529          return false;
530    } else if (i != RHSWords) {
531      for (; i != RHSWords; ++i)
532        if (RHS.Bits[i])
533          return false;
534    }
535    return true;
536  }
537
538  bool operator!=(const BitVector &RHS) const {
539    return !(*this == RHS);
540  }
541
542  /// Intersection, union, disjoint union.
543  BitVector &operator&=(const BitVector &RHS) {
544    unsigned ThisWords = NumBitWords(size());
545    unsigned RHSWords  = NumBitWords(RHS.size());
546    unsigned i;
547    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
548      Bits[i] &= RHS.Bits[i];
549
550    // Any bits that are just in this bitvector become zero, because they aren't
551    // in the RHS bit vector.  Any words only in RHS are ignored because they
552    // are already zero in the LHS.
553    for (; i != ThisWords; ++i)
554      Bits[i] = 0;
555
556    return *this;
557  }
558
559  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
560  BitVector &reset(const BitVector &RHS) {
561    unsigned ThisWords = NumBitWords(size());
562    unsigned RHSWords  = NumBitWords(RHS.size());
563    unsigned i;
564    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
565      Bits[i] &= ~RHS.Bits[i];
566    return *this;
567  }
568
569  /// test - Check if (This - RHS) is zero.
570  /// This is the same as reset(RHS) and any().
571  bool test(const BitVector &RHS) const {
572    unsigned ThisWords = NumBitWords(size());
573    unsigned RHSWords  = NumBitWords(RHS.size());
574    unsigned i;
575    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
576      if ((Bits[i] & ~RHS.Bits[i]) != 0)
577        return true;
578
579    for (; i != ThisWords ; ++i)
580      if (Bits[i] != 0)
581        return true;
582
583    return false;
584  }
585
586  BitVector &operator|=(const BitVector &RHS) {
587    if (size() < RHS.size())
588      resize(RHS.size());
589    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
590      Bits[i] |= RHS.Bits[i];
591    return *this;
592  }
593
594  BitVector &operator^=(const BitVector &RHS) {
595    if (size() < RHS.size())
596      resize(RHS.size());
597    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
598      Bits[i] ^= RHS.Bits[i];
599    return *this;
600  }
601
602  BitVector &operator>>=(unsigned N) {
603    assert(N <= Size);
604    if (LLVM_UNLIKELY(empty() || N == 0))
605      return *this;
606
607    unsigned NumWords = NumBitWords(Size);
608    assert(NumWords >= 1);
609
610    wordShr(N / BITWORD_SIZE);
611
612    unsigned BitDistance = N % BITWORD_SIZE;
613    if (BitDistance == 0)
614      return *this;
615
616    // When the shift size is not a multiple of the word size, then we have
617    // a tricky situation where each word in succession needs to extract some
618    // of the bits from the next word and or them into this word while
619    // shifting this word to make room for the new bits.  This has to be done
620    // for every word in the array.
621
622    // Since we're shifting each word right, some bits will fall off the end
623    // of each word to the right, and empty space will be created on the left.
624    // The final word in the array will lose bits permanently, so starting at
625    // the beginning, work forwards shifting each word to the right, and
626    // OR'ing in the bits from the end of the next word to the beginning of
627    // the current word.
628
629    // Example:
630    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
631    //   by 4 bits.
632    // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
633    // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
634    // Step 3: Word[1] >>= 4           ; 0x0EEFF001
635    // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
636    // Step 5: Word[2] >>= 4           ; 0x02334455
637    // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
638    const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
639    const unsigned LSH = BITWORD_SIZE - BitDistance;
640
641    for (unsigned I = 0; I < NumWords - 1; ++I) {
642      Bits[I] >>= BitDistance;
643      Bits[I] |= (Bits[I + 1] & Mask) << LSH;
644    }
645
646    Bits[NumWords - 1] >>= BitDistance;
647
648    return *this;
649  }
650
651  BitVector &operator<<=(unsigned N) {
652    assert(N <= Size);
653    if (LLVM_UNLIKELY(empty() || N == 0))
654      return *this;
655
656    unsigned NumWords = NumBitWords(Size);
657    assert(NumWords >= 1);
658
659    wordShl(N / BITWORD_SIZE);
660
661    unsigned BitDistance = N % BITWORD_SIZE;
662    if (BitDistance == 0)
663      return *this;
664
665    // When the shift size is not a multiple of the word size, then we have
666    // a tricky situation where each word in succession needs to extract some
667    // of the bits from the previous word and or them into this word while
668    // shifting this word to make room for the new bits.  This has to be done
669    // for every word in the array.  This is similar to the algorithm outlined
670    // in operator>>=, but backwards.
671
672    // Since we're shifting each word left, some bits will fall off the end
673    // of each word to the left, and empty space will be created on the right.
674    // The first word in the array will lose bits permanently, so starting at
675    // the end, work backwards shifting each word to the left, and OR'ing
676    // in the bits from the end of the next word to the beginning of the
677    // current word.
678
679    // Example:
680    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
681    //   by 4 bits.
682    // Step 1: Word[2] <<= 4           ; 0x23344550
683    // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
684    // Step 3: Word[1] <<= 4           ; 0xEFF00110
685    // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
686    // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
687    // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
688    const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
689    const unsigned RSH = BITWORD_SIZE - BitDistance;
690
691    for (int I = NumWords - 1; I > 0; --I) {
692      Bits[I] <<= BitDistance;
693      Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
694    }
695    Bits[0] <<= BitDistance;
696    clear_unused_bits();
697
698    return *this;
699  }
700
701  // Assignment operator.
702  const BitVector &operator=(const BitVector &RHS) {
703    if (this == &RHS) return *this;
704
705    Size = RHS.size();
706    unsigned RHSWords = NumBitWords(Size);
707    if (Size <= getBitCapacity()) {
708      if (Size)
709        std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
710      clear_unused_bits();
711      return *this;
712    }
713
714    // Grow the bitvector to have enough elements.
715    unsigned NewCapacity = RHSWords;
716    assert(NewCapacity > 0 && "negative capacity?");
717    auto NewBits = allocate(NewCapacity);
718    std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
719
720    // Destroy the old bits.
721    std::free(Bits.data());
722    Bits = NewBits;
723
724    return *this;
725  }
726
727  const BitVector &operator=(BitVector &&RHS) {
728    if (this == &RHS) return *this;
729
730    std::free(Bits.data());
731    Bits = RHS.Bits;
732    Size = RHS.Size;
733
734    RHS.Bits = MutableArrayRef<BitWord>();
735    RHS.Size = 0;
736
737    return *this;
738  }
739
740  void swap(BitVector &RHS) {
741    std::swap(Bits, RHS.Bits);
742    std::swap(Size, RHS.Size);
743  }
744
745  //===--------------------------------------------------------------------===//
746  // Portable bit mask operations.
747  //===--------------------------------------------------------------------===//
748  //
749  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
750  // fixed word size makes it easier to work with literal bit vector constants
751  // in portable code.
752  //
753  // The LSB in each word is the lowest numbered bit.  The size of a portable
754  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
755  // given, the bit mask is assumed to cover the entire BitVector.
756
757  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
758  /// This computes "*this |= Mask".
759  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
760    applyMask<true, false>(Mask, MaskWords);
761  }
762
763  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
764  /// Don't resize. This computes "*this &= ~Mask".
765  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
766    applyMask<false, false>(Mask, MaskWords);
767  }
768
769  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
770  /// Don't resize.  This computes "*this |= ~Mask".
771  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
772    applyMask<true, true>(Mask, MaskWords);
773  }
774
775  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
776  /// Don't resize.  This computes "*this &= Mask".
777  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
778    applyMask<false, true>(Mask, MaskWords);
779  }
780
781private:
782  /// \brief Perform a logical left shift of \p Count words by moving everything
783  /// \p Count words to the right in memory.
784  ///
785  /// While confusing, words are stored from least significant at Bits[0] to
786  /// most significant at Bits[NumWords-1].  A logical shift left, however,
787  /// moves the current least significant bit to a higher logical index, and
788  /// fills the previous least significant bits with 0.  Thus, we actually
789  /// need to move the bytes of the memory to the right, not to the left.
790  /// Example:
791  ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
792  /// represents a BitVector where 0xBBBBAAAA contain the least significant
793  /// bits.  So if we want to shift the BitVector left by 2 words, we need to
794  /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
795  /// memmove which moves right, not left.
796  void wordShl(uint32_t Count) {
797    if (Count == 0)
798      return;
799
800    uint32_t NumWords = NumBitWords(Size);
801
802    auto Src = Bits.take_front(NumWords).drop_back(Count);
803    auto Dest = Bits.take_front(NumWords).drop_front(Count);
804
805    // Since we always move Word-sized chunks of data with src and dest both
806    // aligned to a word-boundary, we don't need to worry about endianness
807    // here.
808    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
809    std::memset(Bits.data(), 0, Count * sizeof(BitWord));
810    clear_unused_bits();
811  }
812
813  /// \brief Perform a logical right shift of \p Count words by moving those
814  /// words to the left in memory.  See wordShl for more information.
815  ///
816  void wordShr(uint32_t Count) {
817    if (Count == 0)
818      return;
819
820    uint32_t NumWords = NumBitWords(Size);
821
822    auto Src = Bits.take_front(NumWords).drop_front(Count);
823    auto Dest = Bits.take_front(NumWords).drop_back(Count);
824    assert(Dest.size() == Src.size());
825
826    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
827    std::memset(Dest.end(), 0, Count * sizeof(BitWord));
828  }
829
830  MutableArrayRef<BitWord> allocate(size_t NumWords) {
831    BitWord *RawBits = (BitWord *)std::malloc(NumWords * sizeof(BitWord));
832    return MutableArrayRef<BitWord>(RawBits, NumWords);
833  }
834
835  int next_unset_in_word(int WordIndex, BitWord Word) const {
836    unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
837    return Result < size() ? Result : -1;
838  }
839
840  unsigned NumBitWords(unsigned S) const {
841    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
842  }
843
844  // Set the unused bits in the high words.
845  void set_unused_bits(bool t = true) {
846    //  Set high words first.
847    unsigned UsedWords = NumBitWords(Size);
848    if (Bits.size() > UsedWords)
849      init_words(Bits.drop_front(UsedWords), t);
850
851    //  Then set any stray high bits of the last used word.
852    unsigned ExtraBits = Size % BITWORD_SIZE;
853    if (ExtraBits) {
854      BitWord ExtraBitMask = ~0UL << ExtraBits;
855      if (t)
856        Bits[UsedWords-1] |= ExtraBitMask;
857      else
858        Bits[UsedWords-1] &= ~ExtraBitMask;
859    }
860  }
861
862  // Clear the unused bits in the high words.
863  void clear_unused_bits() {
864    set_unused_bits(false);
865  }
866
867  void grow(unsigned NewSize) {
868    size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
869    assert(NewCapacity > 0 && "realloc-ing zero space");
870    BitWord *NewBits =
871        (BitWord *)std::realloc(Bits.data(), NewCapacity * sizeof(BitWord));
872    Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
873    clear_unused_bits();
874  }
875
876  void init_words(MutableArrayRef<BitWord> B, bool t) {
877    if (B.size() > 0)
878      memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
879  }
880
881  template<bool AddBits, bool InvertMask>
882  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
883    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
884    MaskWords = std::min(MaskWords, (size() + 31) / 32);
885    const unsigned Scale = BITWORD_SIZE / 32;
886    unsigned i;
887    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
888      BitWord BW = Bits[i];
889      // This inner loop should unroll completely when BITWORD_SIZE > 32.
890      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
891        uint32_t M = *Mask++;
892        if (InvertMask) M = ~M;
893        if (AddBits) BW |=   BitWord(M) << b;
894        else         BW &= ~(BitWord(M) << b);
895      }
896      Bits[i] = BW;
897    }
898    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
899      uint32_t M = *Mask++;
900      if (InvertMask) M = ~M;
901      if (AddBits) Bits[i] |=   BitWord(M) << b;
902      else         Bits[i] &= ~(BitWord(M) << b);
903    }
904    if (AddBits)
905      clear_unused_bits();
906  }
907
908public:
909  /// Return the size (in bytes) of the bit vector.
910  size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
911  size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
912};
913
914static inline size_t capacity_in_bytes(const BitVector &X) {
915  return X.getMemorySize();
916}
917
918} // end namespace llvm
919
920namespace std {
921  /// Implement std::swap in terms of BitVector swap.
922  inline void
923  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
924    LHS.swap(RHS);
925  }
926} // end namespace std
927
928#endif // LLVM_ADT_BITVECTOR_H
929