1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the BitVector class. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef LLVM_ADT_BITVECTOR_H 15#define LLVM_ADT_BITVECTOR_H 16 17#include "llvm/ADT/ArrayRef.h" 18#include "llvm/ADT/iterator_range.h" 19#include "llvm/Support/MathExtras.h" 20#include <algorithm> 21#include <cassert> 22#include <climits> 23#include <cstdint> 24#include <cstdlib> 25#include <cstring> 26#include <utility> 27 28namespace llvm { 29 30/// ForwardIterator for the bits that are set. 31/// Iterators get invalidated when resize / reserve is called. 32template <typename BitVectorT> class const_set_bits_iterator_impl { 33 const BitVectorT &Parent; 34 int Current = 0; 35 36 void advance() { 37 assert(Current != -1 && "Trying to advance past end."); 38 Current = Parent.find_next(Current); 39 } 40 41public: 42 const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) 43 : Parent(Parent), Current(Current) {} 44 explicit const_set_bits_iterator_impl(const BitVectorT &Parent) 45 : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} 46 const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; 47 48 const_set_bits_iterator_impl operator++(int) { 49 auto Prev = *this; 50 advance(); 51 return Prev; 52 } 53 54 const_set_bits_iterator_impl &operator++() { 55 advance(); 56 return *this; 57 } 58 59 unsigned operator*() const { return Current; } 60 61 bool operator==(const const_set_bits_iterator_impl &Other) const { 62 assert(&Parent == &Other.Parent && 63 "Comparing iterators from different BitVectors"); 64 return Current == Other.Current; 65 } 66 67 bool operator!=(const const_set_bits_iterator_impl &Other) const { 68 assert(&Parent == &Other.Parent && 69 "Comparing iterators from different BitVectors"); 70 return Current != Other.Current; 71 } 72}; 73 74class BitVector { 75 typedef unsigned long BitWord; 76 77 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; 78 79 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, 80 "Unsupported word size"); 81 82 MutableArrayRef<BitWord> Bits; // Actual bits. 83 unsigned Size; // Size of bitvector in bits. 84 85public: 86 typedef unsigned size_type; 87 // Encapsulation of a single bit. 88 class reference { 89 friend class BitVector; 90 91 BitWord *WordRef; 92 unsigned BitPos; 93 94 public: 95 reference(BitVector &b, unsigned Idx) { 96 WordRef = &b.Bits[Idx / BITWORD_SIZE]; 97 BitPos = Idx % BITWORD_SIZE; 98 } 99 100 reference() = delete; 101 reference(const reference&) = default; 102 103 reference &operator=(reference t) { 104 *this = bool(t); 105 return *this; 106 } 107 108 reference& operator=(bool t) { 109 if (t) 110 *WordRef |= BitWord(1) << BitPos; 111 else 112 *WordRef &= ~(BitWord(1) << BitPos); 113 return *this; 114 } 115 116 operator bool() const { 117 return ((*WordRef) & (BitWord(1) << BitPos)) != 0; 118 } 119 }; 120 121 typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator; 122 typedef const_set_bits_iterator set_iterator; 123 124 const_set_bits_iterator set_bits_begin() const { 125 return const_set_bits_iterator(*this); 126 } 127 const_set_bits_iterator set_bits_end() const { 128 return const_set_bits_iterator(*this, -1); 129 } 130 iterator_range<const_set_bits_iterator> set_bits() const { 131 return make_range(set_bits_begin(), set_bits_end()); 132 } 133 134 /// BitVector default ctor - Creates an empty bitvector. 135 BitVector() : Size(0) {} 136 137 /// BitVector ctor - Creates a bitvector of specified number of bits. All 138 /// bits are initialized to the specified value. 139 explicit BitVector(unsigned s, bool t = false) : Size(s) { 140 size_t Capacity = NumBitWords(s); 141 Bits = allocate(Capacity); 142 init_words(Bits, t); 143 if (t) 144 clear_unused_bits(); 145 } 146 147 /// BitVector copy ctor. 148 BitVector(const BitVector &RHS) : Size(RHS.size()) { 149 if (Size == 0) { 150 Bits = MutableArrayRef<BitWord>(); 151 return; 152 } 153 154 size_t Capacity = NumBitWords(RHS.size()); 155 Bits = allocate(Capacity); 156 std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord)); 157 } 158 159 BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) { 160 RHS.Bits = MutableArrayRef<BitWord>(); 161 RHS.Size = 0; 162 } 163 164 ~BitVector() { std::free(Bits.data()); } 165 166 /// empty - Tests whether there are no bits in this bitvector. 167 bool empty() const { return Size == 0; } 168 169 /// size - Returns the number of bits in this bitvector. 170 size_type size() const { return Size; } 171 172 /// count - Returns the number of bits which are set. 173 size_type count() const { 174 unsigned NumBits = 0; 175 for (unsigned i = 0; i < NumBitWords(size()); ++i) 176 NumBits += countPopulation(Bits[i]); 177 return NumBits; 178 } 179 180 /// any - Returns true if any bit is set. 181 bool any() const { 182 for (unsigned i = 0; i < NumBitWords(size()); ++i) 183 if (Bits[i] != 0) 184 return true; 185 return false; 186 } 187 188 /// all - Returns true if all bits are set. 189 bool all() const { 190 for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) 191 if (Bits[i] != ~0UL) 192 return false; 193 194 // If bits remain check that they are ones. The unused bits are always zero. 195 if (unsigned Remainder = Size % BITWORD_SIZE) 196 return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; 197 198 return true; 199 } 200 201 /// none - Returns true if none of the bits are set. 202 bool none() const { 203 return !any(); 204 } 205 206 /// find_first_in - Returns the index of the first set bit in the range 207 /// [Begin, End). Returns -1 if all bits in the range are unset. 208 int find_first_in(unsigned Begin, unsigned End) const { 209 assert(Begin <= End && End <= Size); 210 if (Begin == End) 211 return -1; 212 213 unsigned FirstWord = Begin / BITWORD_SIZE; 214 unsigned LastWord = (End - 1) / BITWORD_SIZE; 215 216 // Check subsequent words. 217 for (unsigned i = FirstWord; i <= LastWord; ++i) { 218 BitWord Copy = Bits[i]; 219 220 if (i == FirstWord) { 221 unsigned FirstBit = Begin % BITWORD_SIZE; 222 Copy &= maskTrailingZeros<BitWord>(FirstBit); 223 } 224 225 if (i == LastWord) { 226 unsigned LastBit = (End - 1) % BITWORD_SIZE; 227 Copy &= maskTrailingOnes<BitWord>(LastBit + 1); 228 } 229 if (Copy != 0) 230 return i * BITWORD_SIZE + countTrailingZeros(Copy); 231 } 232 return -1; 233 } 234 235 /// find_last_in - Returns the index of the last set bit in the range 236 /// [Begin, End). Returns -1 if all bits in the range are unset. 237 int find_last_in(unsigned Begin, unsigned End) const { 238 assert(Begin <= End && End <= Size); 239 if (Begin == End) 240 return -1; 241 242 unsigned LastWord = (End - 1) / BITWORD_SIZE; 243 unsigned FirstWord = Begin / BITWORD_SIZE; 244 245 for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { 246 unsigned CurrentWord = i - 1; 247 248 BitWord Copy = Bits[CurrentWord]; 249 if (CurrentWord == LastWord) { 250 unsigned LastBit = (End - 1) % BITWORD_SIZE; 251 Copy &= maskTrailingOnes<BitWord>(LastBit + 1); 252 } 253 254 if (CurrentWord == FirstWord) { 255 unsigned FirstBit = Begin % BITWORD_SIZE; 256 Copy &= maskTrailingZeros<BitWord>(FirstBit); 257 } 258 259 if (Copy != 0) 260 return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1; 261 } 262 263 return -1; 264 } 265 266 /// find_first_unset_in - Returns the index of the first unset bit in the 267 /// range [Begin, End). Returns -1 if all bits in the range are set. 268 int find_first_unset_in(unsigned Begin, unsigned End) const { 269 assert(Begin <= End && End <= Size); 270 if (Begin == End) 271 return -1; 272 273 unsigned FirstWord = Begin / BITWORD_SIZE; 274 unsigned LastWord = (End - 1) / BITWORD_SIZE; 275 276 // Check subsequent words. 277 for (unsigned i = FirstWord; i <= LastWord; ++i) { 278 BitWord Copy = Bits[i]; 279 280 if (i == FirstWord) { 281 unsigned FirstBit = Begin % BITWORD_SIZE; 282 Copy |= maskTrailingOnes<BitWord>(FirstBit); 283 } 284 285 if (i == LastWord) { 286 unsigned LastBit = (End - 1) % BITWORD_SIZE; 287 Copy |= maskTrailingZeros<BitWord>(LastBit + 1); 288 } 289 if (Copy != ~0UL) { 290 unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy); 291 return Result < size() ? Result : -1; 292 } 293 } 294 return -1; 295 } 296 297 /// find_last_unset_in - Returns the index of the last unset bit in the 298 /// range [Begin, End). Returns -1 if all bits in the range are set. 299 int find_last_unset_in(unsigned Begin, unsigned End) const { 300 assert(Begin <= End && End <= Size); 301 if (Begin == End) 302 return -1; 303 304 unsigned LastWord = (End - 1) / BITWORD_SIZE; 305 unsigned FirstWord = Begin / BITWORD_SIZE; 306 307 for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { 308 unsigned CurrentWord = i - 1; 309 310 BitWord Copy = Bits[CurrentWord]; 311 if (CurrentWord == LastWord) { 312 unsigned LastBit = (End - 1) % BITWORD_SIZE; 313 Copy |= maskTrailingZeros<BitWord>(LastBit + 1); 314 } 315 316 if (CurrentWord == FirstWord) { 317 unsigned FirstBit = Begin % BITWORD_SIZE; 318 Copy |= maskTrailingOnes<BitWord>(FirstBit); 319 } 320 321 if (Copy != ~0UL) { 322 unsigned Result = 323 (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1; 324 return Result < Size ? Result : -1; 325 } 326 } 327 return -1; 328 } 329 330 /// find_first - Returns the index of the first set bit, -1 if none 331 /// of the bits are set. 332 int find_first() const { return find_first_in(0, Size); } 333 334 /// find_last - Returns the index of the last set bit, -1 if none of the bits 335 /// are set. 336 int find_last() const { return find_last_in(0, Size); } 337 338 /// find_next - Returns the index of the next set bit following the 339 /// "Prev" bit. Returns -1 if the next set bit is not found. 340 int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); } 341 342 /// find_prev - Returns the index of the first set bit that precedes the 343 /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. 344 int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); } 345 346 /// find_first_unset - Returns the index of the first unset bit, -1 if all 347 /// of the bits are set. 348 int find_first_unset() const { return find_first_unset_in(0, Size); } 349 350 /// find_next_unset - Returns the index of the next unset bit following the 351 /// "Prev" bit. Returns -1 if all remaining bits are set. 352 int find_next_unset(unsigned Prev) const { 353 return find_first_unset_in(Prev + 1, Size); 354 } 355 356 /// find_last_unset - Returns the index of the last unset bit, -1 if all of 357 /// the bits are set. 358 int find_last_unset() const { return find_last_unset_in(0, Size); } 359 360 /// find_prev_unset - Returns the index of the first unset bit that precedes 361 /// the bit at \p PriorTo. Returns -1 if all previous bits are set. 362 int find_prev_unset(unsigned PriorTo) { 363 return find_last_unset_in(0, PriorTo); 364 } 365 366 /// clear - Removes all bits from the bitvector. Does not change capacity. 367 void clear() { 368 Size = 0; 369 } 370 371 /// resize - Grow or shrink the bitvector. 372 void resize(unsigned N, bool t = false) { 373 if (N > getBitCapacity()) { 374 unsigned OldCapacity = Bits.size(); 375 grow(N); 376 init_words(Bits.drop_front(OldCapacity), t); 377 } 378 379 // Set any old unused bits that are now included in the BitVector. This 380 // may set bits that are not included in the new vector, but we will clear 381 // them back out below. 382 if (N > Size) 383 set_unused_bits(t); 384 385 // Update the size, and clear out any bits that are now unused 386 unsigned OldSize = Size; 387 Size = N; 388 if (t || N < OldSize) 389 clear_unused_bits(); 390 } 391 392 void reserve(unsigned N) { 393 if (N > getBitCapacity()) 394 grow(N); 395 } 396 397 // Set, reset, flip 398 BitVector &set() { 399 init_words(Bits, true); 400 clear_unused_bits(); 401 return *this; 402 } 403 404 BitVector &set(unsigned Idx) { 405 assert(Bits.data() && "Bits never allocated"); 406 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); 407 return *this; 408 } 409 410 /// set - Efficiently set a range of bits in [I, E) 411 BitVector &set(unsigned I, unsigned E) { 412 assert(I <= E && "Attempted to set backwards range!"); 413 assert(E <= size() && "Attempted to set out-of-bounds range!"); 414 415 if (I == E) return *this; 416 417 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { 418 BitWord EMask = 1UL << (E % BITWORD_SIZE); 419 BitWord IMask = 1UL << (I % BITWORD_SIZE); 420 BitWord Mask = EMask - IMask; 421 Bits[I / BITWORD_SIZE] |= Mask; 422 return *this; 423 } 424 425 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); 426 Bits[I / BITWORD_SIZE] |= PrefixMask; 427 I = alignTo(I, BITWORD_SIZE); 428 429 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) 430 Bits[I / BITWORD_SIZE] = ~0UL; 431 432 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; 433 if (I < E) 434 Bits[I / BITWORD_SIZE] |= PostfixMask; 435 436 return *this; 437 } 438 439 BitVector &reset() { 440 init_words(Bits, false); 441 return *this; 442 } 443 444 BitVector &reset(unsigned Idx) { 445 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); 446 return *this; 447 } 448 449 /// reset - Efficiently reset a range of bits in [I, E) 450 BitVector &reset(unsigned I, unsigned E) { 451 assert(I <= E && "Attempted to reset backwards range!"); 452 assert(E <= size() && "Attempted to reset out-of-bounds range!"); 453 454 if (I == E) return *this; 455 456 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { 457 BitWord EMask = 1UL << (E % BITWORD_SIZE); 458 BitWord IMask = 1UL << (I % BITWORD_SIZE); 459 BitWord Mask = EMask - IMask; 460 Bits[I / BITWORD_SIZE] &= ~Mask; 461 return *this; 462 } 463 464 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); 465 Bits[I / BITWORD_SIZE] &= ~PrefixMask; 466 I = alignTo(I, BITWORD_SIZE); 467 468 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) 469 Bits[I / BITWORD_SIZE] = 0UL; 470 471 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; 472 if (I < E) 473 Bits[I / BITWORD_SIZE] &= ~PostfixMask; 474 475 return *this; 476 } 477 478 BitVector &flip() { 479 for (unsigned i = 0; i < NumBitWords(size()); ++i) 480 Bits[i] = ~Bits[i]; 481 clear_unused_bits(); 482 return *this; 483 } 484 485 BitVector &flip(unsigned Idx) { 486 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); 487 return *this; 488 } 489 490 // Indexing. 491 reference operator[](unsigned Idx) { 492 assert (Idx < Size && "Out-of-bounds Bit access."); 493 return reference(*this, Idx); 494 } 495 496 bool operator[](unsigned Idx) const { 497 assert (Idx < Size && "Out-of-bounds Bit access."); 498 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); 499 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; 500 } 501 502 bool test(unsigned Idx) const { 503 return (*this)[Idx]; 504 } 505 506 /// Test if any common bits are set. 507 bool anyCommon(const BitVector &RHS) const { 508 unsigned ThisWords = NumBitWords(size()); 509 unsigned RHSWords = NumBitWords(RHS.size()); 510 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) 511 if (Bits[i] & RHS.Bits[i]) 512 return true; 513 return false; 514 } 515 516 // Comparison operators. 517 bool operator==(const BitVector &RHS) const { 518 unsigned ThisWords = NumBitWords(size()); 519 unsigned RHSWords = NumBitWords(RHS.size()); 520 unsigned i; 521 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 522 if (Bits[i] != RHS.Bits[i]) 523 return false; 524 525 // Verify that any extra words are all zeros. 526 if (i != ThisWords) { 527 for (; i != ThisWords; ++i) 528 if (Bits[i]) 529 return false; 530 } else if (i != RHSWords) { 531 for (; i != RHSWords; ++i) 532 if (RHS.Bits[i]) 533 return false; 534 } 535 return true; 536 } 537 538 bool operator!=(const BitVector &RHS) const { 539 return !(*this == RHS); 540 } 541 542 /// Intersection, union, disjoint union. 543 BitVector &operator&=(const BitVector &RHS) { 544 unsigned ThisWords = NumBitWords(size()); 545 unsigned RHSWords = NumBitWords(RHS.size()); 546 unsigned i; 547 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 548 Bits[i] &= RHS.Bits[i]; 549 550 // Any bits that are just in this bitvector become zero, because they aren't 551 // in the RHS bit vector. Any words only in RHS are ignored because they 552 // are already zero in the LHS. 553 for (; i != ThisWords; ++i) 554 Bits[i] = 0; 555 556 return *this; 557 } 558 559 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. 560 BitVector &reset(const BitVector &RHS) { 561 unsigned ThisWords = NumBitWords(size()); 562 unsigned RHSWords = NumBitWords(RHS.size()); 563 unsigned i; 564 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 565 Bits[i] &= ~RHS.Bits[i]; 566 return *this; 567 } 568 569 /// test - Check if (This - RHS) is zero. 570 /// This is the same as reset(RHS) and any(). 571 bool test(const BitVector &RHS) const { 572 unsigned ThisWords = NumBitWords(size()); 573 unsigned RHSWords = NumBitWords(RHS.size()); 574 unsigned i; 575 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 576 if ((Bits[i] & ~RHS.Bits[i]) != 0) 577 return true; 578 579 for (; i != ThisWords ; ++i) 580 if (Bits[i] != 0) 581 return true; 582 583 return false; 584 } 585 586 BitVector &operator|=(const BitVector &RHS) { 587 if (size() < RHS.size()) 588 resize(RHS.size()); 589 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) 590 Bits[i] |= RHS.Bits[i]; 591 return *this; 592 } 593 594 BitVector &operator^=(const BitVector &RHS) { 595 if (size() < RHS.size()) 596 resize(RHS.size()); 597 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) 598 Bits[i] ^= RHS.Bits[i]; 599 return *this; 600 } 601 602 BitVector &operator>>=(unsigned N) { 603 assert(N <= Size); 604 if (LLVM_UNLIKELY(empty() || N == 0)) 605 return *this; 606 607 unsigned NumWords = NumBitWords(Size); 608 assert(NumWords >= 1); 609 610 wordShr(N / BITWORD_SIZE); 611 612 unsigned BitDistance = N % BITWORD_SIZE; 613 if (BitDistance == 0) 614 return *this; 615 616 // When the shift size is not a multiple of the word size, then we have 617 // a tricky situation where each word in succession needs to extract some 618 // of the bits from the next word and or them into this word while 619 // shifting this word to make room for the new bits. This has to be done 620 // for every word in the array. 621 622 // Since we're shifting each word right, some bits will fall off the end 623 // of each word to the right, and empty space will be created on the left. 624 // The final word in the array will lose bits permanently, so starting at 625 // the beginning, work forwards shifting each word to the right, and 626 // OR'ing in the bits from the end of the next word to the beginning of 627 // the current word. 628 629 // Example: 630 // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right 631 // by 4 bits. 632 // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD 633 // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD 634 // Step 3: Word[1] >>= 4 ; 0x0EEFF001 635 // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 636 // Step 5: Word[2] >>= 4 ; 0x02334455 637 // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } 638 const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance); 639 const unsigned LSH = BITWORD_SIZE - BitDistance; 640 641 for (unsigned I = 0; I < NumWords - 1; ++I) { 642 Bits[I] >>= BitDistance; 643 Bits[I] |= (Bits[I + 1] & Mask) << LSH; 644 } 645 646 Bits[NumWords - 1] >>= BitDistance; 647 648 return *this; 649 } 650 651 BitVector &operator<<=(unsigned N) { 652 assert(N <= Size); 653 if (LLVM_UNLIKELY(empty() || N == 0)) 654 return *this; 655 656 unsigned NumWords = NumBitWords(Size); 657 assert(NumWords >= 1); 658 659 wordShl(N / BITWORD_SIZE); 660 661 unsigned BitDistance = N % BITWORD_SIZE; 662 if (BitDistance == 0) 663 return *this; 664 665 // When the shift size is not a multiple of the word size, then we have 666 // a tricky situation where each word in succession needs to extract some 667 // of the bits from the previous word and or them into this word while 668 // shifting this word to make room for the new bits. This has to be done 669 // for every word in the array. This is similar to the algorithm outlined 670 // in operator>>=, but backwards. 671 672 // Since we're shifting each word left, some bits will fall off the end 673 // of each word to the left, and empty space will be created on the right. 674 // The first word in the array will lose bits permanently, so starting at 675 // the end, work backwards shifting each word to the left, and OR'ing 676 // in the bits from the end of the next word to the beginning of the 677 // current word. 678 679 // Example: 680 // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left 681 // by 4 bits. 682 // Step 1: Word[2] <<= 4 ; 0x23344550 683 // Step 2: Word[2] |= 0x0000000E ; 0x2334455E 684 // Step 3: Word[1] <<= 4 ; 0xEFF00110 685 // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A 686 // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 687 // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } 688 const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance); 689 const unsigned RSH = BITWORD_SIZE - BitDistance; 690 691 for (int I = NumWords - 1; I > 0; --I) { 692 Bits[I] <<= BitDistance; 693 Bits[I] |= (Bits[I - 1] & Mask) >> RSH; 694 } 695 Bits[0] <<= BitDistance; 696 clear_unused_bits(); 697 698 return *this; 699 } 700 701 // Assignment operator. 702 const BitVector &operator=(const BitVector &RHS) { 703 if (this == &RHS) return *this; 704 705 Size = RHS.size(); 706 unsigned RHSWords = NumBitWords(Size); 707 if (Size <= getBitCapacity()) { 708 if (Size) 709 std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord)); 710 clear_unused_bits(); 711 return *this; 712 } 713 714 // Grow the bitvector to have enough elements. 715 unsigned NewCapacity = RHSWords; 716 assert(NewCapacity > 0 && "negative capacity?"); 717 auto NewBits = allocate(NewCapacity); 718 std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord)); 719 720 // Destroy the old bits. 721 std::free(Bits.data()); 722 Bits = NewBits; 723 724 return *this; 725 } 726 727 const BitVector &operator=(BitVector &&RHS) { 728 if (this == &RHS) return *this; 729 730 std::free(Bits.data()); 731 Bits = RHS.Bits; 732 Size = RHS.Size; 733 734 RHS.Bits = MutableArrayRef<BitWord>(); 735 RHS.Size = 0; 736 737 return *this; 738 } 739 740 void swap(BitVector &RHS) { 741 std::swap(Bits, RHS.Bits); 742 std::swap(Size, RHS.Size); 743 } 744 745 //===--------------------------------------------------------------------===// 746 // Portable bit mask operations. 747 //===--------------------------------------------------------------------===// 748 // 749 // These methods all operate on arrays of uint32_t, each holding 32 bits. The 750 // fixed word size makes it easier to work with literal bit vector constants 751 // in portable code. 752 // 753 // The LSB in each word is the lowest numbered bit. The size of a portable 754 // bit mask is always a whole multiple of 32 bits. If no bit mask size is 755 // given, the bit mask is assumed to cover the entire BitVector. 756 757 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. 758 /// This computes "*this |= Mask". 759 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 760 applyMask<true, false>(Mask, MaskWords); 761 } 762 763 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. 764 /// Don't resize. This computes "*this &= ~Mask". 765 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 766 applyMask<false, false>(Mask, MaskWords); 767 } 768 769 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. 770 /// Don't resize. This computes "*this |= ~Mask". 771 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 772 applyMask<true, true>(Mask, MaskWords); 773 } 774 775 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. 776 /// Don't resize. This computes "*this &= Mask". 777 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 778 applyMask<false, true>(Mask, MaskWords); 779 } 780 781private: 782 /// \brief Perform a logical left shift of \p Count words by moving everything 783 /// \p Count words to the right in memory. 784 /// 785 /// While confusing, words are stored from least significant at Bits[0] to 786 /// most significant at Bits[NumWords-1]. A logical shift left, however, 787 /// moves the current least significant bit to a higher logical index, and 788 /// fills the previous least significant bits with 0. Thus, we actually 789 /// need to move the bytes of the memory to the right, not to the left. 790 /// Example: 791 /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] 792 /// represents a BitVector where 0xBBBBAAAA contain the least significant 793 /// bits. So if we want to shift the BitVector left by 2 words, we need to 794 /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a 795 /// memmove which moves right, not left. 796 void wordShl(uint32_t Count) { 797 if (Count == 0) 798 return; 799 800 uint32_t NumWords = NumBitWords(Size); 801 802 auto Src = Bits.take_front(NumWords).drop_back(Count); 803 auto Dest = Bits.take_front(NumWords).drop_front(Count); 804 805 // Since we always move Word-sized chunks of data with src and dest both 806 // aligned to a word-boundary, we don't need to worry about endianness 807 // here. 808 std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); 809 std::memset(Bits.data(), 0, Count * sizeof(BitWord)); 810 clear_unused_bits(); 811 } 812 813 /// \brief Perform a logical right shift of \p Count words by moving those 814 /// words to the left in memory. See wordShl for more information. 815 /// 816 void wordShr(uint32_t Count) { 817 if (Count == 0) 818 return; 819 820 uint32_t NumWords = NumBitWords(Size); 821 822 auto Src = Bits.take_front(NumWords).drop_front(Count); 823 auto Dest = Bits.take_front(NumWords).drop_back(Count); 824 assert(Dest.size() == Src.size()); 825 826 std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); 827 std::memset(Dest.end(), 0, Count * sizeof(BitWord)); 828 } 829 830 MutableArrayRef<BitWord> allocate(size_t NumWords) { 831 BitWord *RawBits = (BitWord *)std::malloc(NumWords * sizeof(BitWord)); 832 return MutableArrayRef<BitWord>(RawBits, NumWords); 833 } 834 835 int next_unset_in_word(int WordIndex, BitWord Word) const { 836 unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); 837 return Result < size() ? Result : -1; 838 } 839 840 unsigned NumBitWords(unsigned S) const { 841 return (S + BITWORD_SIZE-1) / BITWORD_SIZE; 842 } 843 844 // Set the unused bits in the high words. 845 void set_unused_bits(bool t = true) { 846 // Set high words first. 847 unsigned UsedWords = NumBitWords(Size); 848 if (Bits.size() > UsedWords) 849 init_words(Bits.drop_front(UsedWords), t); 850 851 // Then set any stray high bits of the last used word. 852 unsigned ExtraBits = Size % BITWORD_SIZE; 853 if (ExtraBits) { 854 BitWord ExtraBitMask = ~0UL << ExtraBits; 855 if (t) 856 Bits[UsedWords-1] |= ExtraBitMask; 857 else 858 Bits[UsedWords-1] &= ~ExtraBitMask; 859 } 860 } 861 862 // Clear the unused bits in the high words. 863 void clear_unused_bits() { 864 set_unused_bits(false); 865 } 866 867 void grow(unsigned NewSize) { 868 size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2); 869 assert(NewCapacity > 0 && "realloc-ing zero space"); 870 BitWord *NewBits = 871 (BitWord *)std::realloc(Bits.data(), NewCapacity * sizeof(BitWord)); 872 Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity); 873 clear_unused_bits(); 874 } 875 876 void init_words(MutableArrayRef<BitWord> B, bool t) { 877 if (B.size() > 0) 878 memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord)); 879 } 880 881 template<bool AddBits, bool InvertMask> 882 void applyMask(const uint32_t *Mask, unsigned MaskWords) { 883 static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); 884 MaskWords = std::min(MaskWords, (size() + 31) / 32); 885 const unsigned Scale = BITWORD_SIZE / 32; 886 unsigned i; 887 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { 888 BitWord BW = Bits[i]; 889 // This inner loop should unroll completely when BITWORD_SIZE > 32. 890 for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { 891 uint32_t M = *Mask++; 892 if (InvertMask) M = ~M; 893 if (AddBits) BW |= BitWord(M) << b; 894 else BW &= ~(BitWord(M) << b); 895 } 896 Bits[i] = BW; 897 } 898 for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { 899 uint32_t M = *Mask++; 900 if (InvertMask) M = ~M; 901 if (AddBits) Bits[i] |= BitWord(M) << b; 902 else Bits[i] &= ~(BitWord(M) << b); 903 } 904 if (AddBits) 905 clear_unused_bits(); 906 } 907 908public: 909 /// Return the size (in bytes) of the bit vector. 910 size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); } 911 size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } 912}; 913 914static inline size_t capacity_in_bytes(const BitVector &X) { 915 return X.getMemorySize(); 916} 917 918} // end namespace llvm 919 920namespace std { 921 /// Implement std::swap in terms of BitVector swap. 922 inline void 923 swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { 924 LHS.swap(RHS); 925 } 926} // end namespace std 927 928#endif // LLVM_ADT_BITVECTOR_H 929