1//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SmallBitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_SMALLBITVECTOR_H
15#define LLVM_ADT_SMALLBITVECTOR_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstddef>
24#include <cstdint>
25#include <limits>
26#include <utility>
27
28namespace llvm {
29
30/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
31/// the case when the array is small. It contains one pointer-sized field, which
32/// is directly used as a plain collection of bits when possible, or as a
33/// pointer to a larger heap-allocated array when necessary. This allows normal
34/// "small" cases to be fast without losing generality for large inputs.
35class SmallBitVector {
36  // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
37  // unnecessary level of indirection. It would be more efficient to use a
38  // pointer to memory containing size, allocation size, and the array of bits.
39  uintptr_t X = 1;
40
41  enum {
42    // The number of bits in this class.
43    NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
44
45    // One bit is used to discriminate between small and large mode. The
46    // remaining bits are used for the small-mode representation.
47    SmallNumRawBits = NumBaseBits - 1,
48
49    // A few more bits are used to store the size of the bit set in small mode.
50    // Theoretically this is a ceil-log2. These bits are encoded in the most
51    // significant bits of the raw bits.
52    SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
53                        NumBaseBits == 64 ? 6 :
54                        SmallNumRawBits),
55
56    // The remaining bits are used to store the actual set in small mode.
57    SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
58  };
59
60  static_assert(NumBaseBits == 64 || NumBaseBits == 32,
61                "Unsupported word size");
62
63public:
64  using size_type = unsigned;
65
66  // Encapsulation of a single bit.
67  class reference {
68    SmallBitVector &TheVector;
69    unsigned BitPos;
70
71  public:
72    reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
73
74    reference(const reference&) = default;
75
76    reference& operator=(reference t) {
77      *this = bool(t);
78      return *this;
79    }
80
81    reference& operator=(bool t) {
82      if (t)
83        TheVector.set(BitPos);
84      else
85        TheVector.reset(BitPos);
86      return *this;
87    }
88
89    operator bool() const {
90      return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
91    }
92  };
93
94private:
95  bool isSmall() const {
96    return X & uintptr_t(1);
97  }
98
99  BitVector *getPointer() const {
100    assert(!isSmall());
101    return reinterpret_cast<BitVector *>(X);
102  }
103
104  void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
105    X = 1;
106    setSmallSize(NewSize);
107    setSmallBits(NewSmallBits);
108  }
109
110  void switchToLarge(BitVector *BV) {
111    X = reinterpret_cast<uintptr_t>(BV);
112    assert(!isSmall() && "Tried to use an unaligned pointer");
113  }
114
115  // Return all the bits used for the "small" representation; this includes
116  // bits for the size as well as the element bits.
117  uintptr_t getSmallRawBits() const {
118    assert(isSmall());
119    return X >> 1;
120  }
121
122  void setSmallRawBits(uintptr_t NewRawBits) {
123    assert(isSmall());
124    X = (NewRawBits << 1) | uintptr_t(1);
125  }
126
127  // Return the size.
128  size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
129
130  void setSmallSize(size_t Size) {
131    setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
132  }
133
134  // Return the element bits.
135  uintptr_t getSmallBits() const {
136    return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
137  }
138
139  void setSmallBits(uintptr_t NewBits) {
140    setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
141                    (getSmallSize() << SmallNumDataBits));
142  }
143
144public:
145  /// Creates an empty bitvector.
146  SmallBitVector() = default;
147
148  /// Creates a bitvector of specified number of bits. All bits are initialized
149  /// to the specified value.
150  explicit SmallBitVector(unsigned s, bool t = false) {
151    if (s <= SmallNumDataBits)
152      switchToSmall(t ? ~uintptr_t(0) : 0, s);
153    else
154      switchToLarge(new BitVector(s, t));
155  }
156
157  /// SmallBitVector copy ctor.
158  SmallBitVector(const SmallBitVector &RHS) {
159    if (RHS.isSmall())
160      X = RHS.X;
161    else
162      switchToLarge(new BitVector(*RHS.getPointer()));
163  }
164
165  SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
166    RHS.X = 1;
167  }
168
169  ~SmallBitVector() {
170    if (!isSmall())
171      delete getPointer();
172  }
173
174  using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
175  using set_iterator = const_set_bits_iterator;
176
177  const_set_bits_iterator set_bits_begin() const {
178    return const_set_bits_iterator(*this);
179  }
180
181  const_set_bits_iterator set_bits_end() const {
182    return const_set_bits_iterator(*this, -1);
183  }
184
185  iterator_range<const_set_bits_iterator> set_bits() const {
186    return make_range(set_bits_begin(), set_bits_end());
187  }
188
189  /// Tests whether there are no bits in this bitvector.
190  bool empty() const {
191    return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
192  }
193
194  /// Returns the number of bits in this bitvector.
195  size_t size() const {
196    return isSmall() ? getSmallSize() : getPointer()->size();
197  }
198
199  /// Returns the number of bits which are set.
200  size_type count() const {
201    if (isSmall()) {
202      uintptr_t Bits = getSmallBits();
203      return countPopulation(Bits);
204    }
205    return getPointer()->count();
206  }
207
208  /// Returns true if any bit is set.
209  bool any() const {
210    if (isSmall())
211      return getSmallBits() != 0;
212    return getPointer()->any();
213  }
214
215  /// Returns true if all bits are set.
216  bool all() const {
217    if (isSmall())
218      return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
219    return getPointer()->all();
220  }
221
222  /// Returns true if none of the bits are set.
223  bool none() const {
224    if (isSmall())
225      return getSmallBits() == 0;
226    return getPointer()->none();
227  }
228
229  /// Returns the index of the first set bit, -1 if none of the bits are set.
230  int find_first() const {
231    if (isSmall()) {
232      uintptr_t Bits = getSmallBits();
233      if (Bits == 0)
234        return -1;
235      return countTrailingZeros(Bits);
236    }
237    return getPointer()->find_first();
238  }
239
240  int find_last() const {
241    if (isSmall()) {
242      uintptr_t Bits = getSmallBits();
243      if (Bits == 0)
244        return -1;
245      return NumBaseBits - countLeadingZeros(Bits);
246    }
247    return getPointer()->find_last();
248  }
249
250  /// Returns the index of the first unset bit, -1 if all of the bits are set.
251  int find_first_unset() const {
252    if (isSmall()) {
253      if (count() == getSmallSize())
254        return -1;
255
256      uintptr_t Bits = getSmallBits();
257      return countTrailingOnes(Bits);
258    }
259    return getPointer()->find_first_unset();
260  }
261
262  int find_last_unset() const {
263    if (isSmall()) {
264      if (count() == getSmallSize())
265        return -1;
266
267      uintptr_t Bits = getSmallBits();
268      return NumBaseBits - countLeadingOnes(Bits);
269    }
270    return getPointer()->find_last_unset();
271  }
272
273  /// Returns the index of the next set bit following the "Prev" bit.
274  /// Returns -1 if the next set bit is not found.
275  int find_next(unsigned Prev) const {
276    if (isSmall()) {
277      uintptr_t Bits = getSmallBits();
278      // Mask off previous bits.
279      Bits &= ~uintptr_t(0) << (Prev + 1);
280      if (Bits == 0 || Prev + 1 >= getSmallSize())
281        return -1;
282      return countTrailingZeros(Bits);
283    }
284    return getPointer()->find_next(Prev);
285  }
286
287  /// Returns the index of the next unset bit following the "Prev" bit.
288  /// Returns -1 if the next unset bit is not found.
289  int find_next_unset(unsigned Prev) const {
290    if (isSmall()) {
291      ++Prev;
292      uintptr_t Bits = getSmallBits();
293      // Mask in previous bits.
294      uintptr_t Mask = (1 << Prev) - 1;
295      Bits |= Mask;
296
297      if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
298        return -1;
299      return countTrailingOnes(Bits);
300    }
301    return getPointer()->find_next_unset(Prev);
302  }
303
304  /// find_prev - Returns the index of the first set bit that precedes the
305  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
306  int find_prev(unsigned PriorTo) const {
307    if (isSmall()) {
308      if (PriorTo == 0)
309        return -1;
310
311      --PriorTo;
312      uintptr_t Bits = getSmallBits();
313      Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
314      if (Bits == 0)
315        return -1;
316
317      return NumBaseBits - countLeadingZeros(Bits) - 1;
318    }
319    return getPointer()->find_prev(PriorTo);
320  }
321
322  /// Clear all bits.
323  void clear() {
324    if (!isSmall())
325      delete getPointer();
326    switchToSmall(0, 0);
327  }
328
329  /// Grow or shrink the bitvector.
330  void resize(unsigned N, bool t = false) {
331    if (!isSmall()) {
332      getPointer()->resize(N, t);
333    } else if (SmallNumDataBits >= N) {
334      uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
335      setSmallSize(N);
336      setSmallBits(NewBits | getSmallBits());
337    } else {
338      BitVector *BV = new BitVector(N, t);
339      uintptr_t OldBits = getSmallBits();
340      for (size_t i = 0, e = getSmallSize(); i != e; ++i)
341        (*BV)[i] = (OldBits >> i) & 1;
342      switchToLarge(BV);
343    }
344  }
345
346  void reserve(unsigned N) {
347    if (isSmall()) {
348      if (N > SmallNumDataBits) {
349        uintptr_t OldBits = getSmallRawBits();
350        size_t SmallSize = getSmallSize();
351        BitVector *BV = new BitVector(SmallSize);
352        for (size_t i = 0; i < SmallSize; ++i)
353          if ((OldBits >> i) & 1)
354            BV->set(i);
355        BV->reserve(N);
356        switchToLarge(BV);
357      }
358    } else {
359      getPointer()->reserve(N);
360    }
361  }
362
363  // Set, reset, flip
364  SmallBitVector &set() {
365    if (isSmall())
366      setSmallBits(~uintptr_t(0));
367    else
368      getPointer()->set();
369    return *this;
370  }
371
372  SmallBitVector &set(unsigned Idx) {
373    if (isSmall()) {
374      assert(Idx <= static_cast<unsigned>(
375                        std::numeric_limits<uintptr_t>::digits) &&
376             "undefined behavior");
377      setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
378    }
379    else
380      getPointer()->set(Idx);
381    return *this;
382  }
383
384  /// Efficiently set a range of bits in [I, E)
385  SmallBitVector &set(unsigned I, unsigned E) {
386    assert(I <= E && "Attempted to set backwards range!");
387    assert(E <= size() && "Attempted to set out-of-bounds range!");
388    if (I == E) return *this;
389    if (isSmall()) {
390      uintptr_t EMask = ((uintptr_t)1) << E;
391      uintptr_t IMask = ((uintptr_t)1) << I;
392      uintptr_t Mask = EMask - IMask;
393      setSmallBits(getSmallBits() | Mask);
394    } else
395      getPointer()->set(I, E);
396    return *this;
397  }
398
399  SmallBitVector &reset() {
400    if (isSmall())
401      setSmallBits(0);
402    else
403      getPointer()->reset();
404    return *this;
405  }
406
407  SmallBitVector &reset(unsigned Idx) {
408    if (isSmall())
409      setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
410    else
411      getPointer()->reset(Idx);
412    return *this;
413  }
414
415  /// Efficiently reset a range of bits in [I, E)
416  SmallBitVector &reset(unsigned I, unsigned E) {
417    assert(I <= E && "Attempted to reset backwards range!");
418    assert(E <= size() && "Attempted to reset out-of-bounds range!");
419    if (I == E) return *this;
420    if (isSmall()) {
421      uintptr_t EMask = ((uintptr_t)1) << E;
422      uintptr_t IMask = ((uintptr_t)1) << I;
423      uintptr_t Mask = EMask - IMask;
424      setSmallBits(getSmallBits() & ~Mask);
425    } else
426      getPointer()->reset(I, E);
427    return *this;
428  }
429
430  SmallBitVector &flip() {
431    if (isSmall())
432      setSmallBits(~getSmallBits());
433    else
434      getPointer()->flip();
435    return *this;
436  }
437
438  SmallBitVector &flip(unsigned Idx) {
439    if (isSmall())
440      setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
441    else
442      getPointer()->flip(Idx);
443    return *this;
444  }
445
446  // No argument flip.
447  SmallBitVector operator~() const {
448    return SmallBitVector(*this).flip();
449  }
450
451  // Indexing.
452  reference operator[](unsigned Idx) {
453    assert(Idx < size() && "Out-of-bounds Bit access.");
454    return reference(*this, Idx);
455  }
456
457  bool operator[](unsigned Idx) const {
458    assert(Idx < size() && "Out-of-bounds Bit access.");
459    if (isSmall())
460      return ((getSmallBits() >> Idx) & 1) != 0;
461    return getPointer()->operator[](Idx);
462  }
463
464  bool test(unsigned Idx) const {
465    return (*this)[Idx];
466  }
467
468  /// Test if any common bits are set.
469  bool anyCommon(const SmallBitVector &RHS) const {
470    if (isSmall() && RHS.isSmall())
471      return (getSmallBits() & RHS.getSmallBits()) != 0;
472    if (!isSmall() && !RHS.isSmall())
473      return getPointer()->anyCommon(*RHS.getPointer());
474
475    for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
476      if (test(i) && RHS.test(i))
477        return true;
478    return false;
479  }
480
481  // Comparison operators.
482  bool operator==(const SmallBitVector &RHS) const {
483    if (size() != RHS.size())
484      return false;
485    if (isSmall())
486      return getSmallBits() == RHS.getSmallBits();
487    else
488      return *getPointer() == *RHS.getPointer();
489  }
490
491  bool operator!=(const SmallBitVector &RHS) const {
492    return !(*this == RHS);
493  }
494
495  // Intersection, union, disjoint union.
496  SmallBitVector &operator&=(const SmallBitVector &RHS) {
497    resize(std::max(size(), RHS.size()));
498    if (isSmall())
499      setSmallBits(getSmallBits() & RHS.getSmallBits());
500    else if (!RHS.isSmall())
501      getPointer()->operator&=(*RHS.getPointer());
502    else {
503      SmallBitVector Copy = RHS;
504      Copy.resize(size());
505      getPointer()->operator&=(*Copy.getPointer());
506    }
507    return *this;
508  }
509
510  /// Reset bits that are set in RHS. Same as *this &= ~RHS.
511  SmallBitVector &reset(const SmallBitVector &RHS) {
512    if (isSmall() && RHS.isSmall())
513      setSmallBits(getSmallBits() & ~RHS.getSmallBits());
514    else if (!isSmall() && !RHS.isSmall())
515      getPointer()->reset(*RHS.getPointer());
516    else
517      for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
518        if (RHS.test(i))
519          reset(i);
520
521    return *this;
522  }
523
524  /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
525  bool test(const SmallBitVector &RHS) const {
526    if (isSmall() && RHS.isSmall())
527      return (getSmallBits() & ~RHS.getSmallBits()) != 0;
528    if (!isSmall() && !RHS.isSmall())
529      return getPointer()->test(*RHS.getPointer());
530
531    unsigned i, e;
532    for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
533      if (test(i) && !RHS.test(i))
534        return true;
535
536    for (e = size(); i != e; ++i)
537      if (test(i))
538        return true;
539
540    return false;
541  }
542
543  SmallBitVector &operator|=(const SmallBitVector &RHS) {
544    resize(std::max(size(), RHS.size()));
545    if (isSmall())
546      setSmallBits(getSmallBits() | RHS.getSmallBits());
547    else if (!RHS.isSmall())
548      getPointer()->operator|=(*RHS.getPointer());
549    else {
550      SmallBitVector Copy = RHS;
551      Copy.resize(size());
552      getPointer()->operator|=(*Copy.getPointer());
553    }
554    return *this;
555  }
556
557  SmallBitVector &operator^=(const SmallBitVector &RHS) {
558    resize(std::max(size(), RHS.size()));
559    if (isSmall())
560      setSmallBits(getSmallBits() ^ RHS.getSmallBits());
561    else if (!RHS.isSmall())
562      getPointer()->operator^=(*RHS.getPointer());
563    else {
564      SmallBitVector Copy = RHS;
565      Copy.resize(size());
566      getPointer()->operator^=(*Copy.getPointer());
567    }
568    return *this;
569  }
570
571  SmallBitVector &operator<<=(unsigned N) {
572    if (isSmall())
573      setSmallBits(getSmallBits() << N);
574    else
575      getPointer()->operator<<=(N);
576    return *this;
577  }
578
579  SmallBitVector &operator>>=(unsigned N) {
580    if (isSmall())
581      setSmallBits(getSmallBits() >> N);
582    else
583      getPointer()->operator>>=(N);
584    return *this;
585  }
586
587  // Assignment operator.
588  const SmallBitVector &operator=(const SmallBitVector &RHS) {
589    if (isSmall()) {
590      if (RHS.isSmall())
591        X = RHS.X;
592      else
593        switchToLarge(new BitVector(*RHS.getPointer()));
594    } else {
595      if (!RHS.isSmall())
596        *getPointer() = *RHS.getPointer();
597      else {
598        delete getPointer();
599        X = RHS.X;
600      }
601    }
602    return *this;
603  }
604
605  const SmallBitVector &operator=(SmallBitVector &&RHS) {
606    if (this != &RHS) {
607      clear();
608      swap(RHS);
609    }
610    return *this;
611  }
612
613  void swap(SmallBitVector &RHS) {
614    std::swap(X, RHS.X);
615  }
616
617  /// Add '1' bits from Mask to this vector. Don't resize.
618  /// This computes "*this |= Mask".
619  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
620    if (isSmall())
621      applyMask<true, false>(Mask, MaskWords);
622    else
623      getPointer()->setBitsInMask(Mask, MaskWords);
624  }
625
626  /// Clear any bits in this vector that are set in Mask. Don't resize.
627  /// This computes "*this &= ~Mask".
628  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
629    if (isSmall())
630      applyMask<false, false>(Mask, MaskWords);
631    else
632      getPointer()->clearBitsInMask(Mask, MaskWords);
633  }
634
635  /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
636  /// This computes "*this |= ~Mask".
637  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
638    if (isSmall())
639      applyMask<true, true>(Mask, MaskWords);
640    else
641      getPointer()->setBitsNotInMask(Mask, MaskWords);
642  }
643
644  /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
645  /// This computes "*this &= Mask".
646  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
647    if (isSmall())
648      applyMask<false, true>(Mask, MaskWords);
649    else
650      getPointer()->clearBitsNotInMask(Mask, MaskWords);
651  }
652
653private:
654  template <bool AddBits, bool InvertMask>
655  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
656    assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
657    uintptr_t M = Mask[0];
658    if (NumBaseBits == 64)
659      M |= uint64_t(Mask[1]) << 32;
660    if (InvertMask)
661      M = ~M;
662    if (AddBits)
663      setSmallBits(getSmallBits() | M);
664    else
665      setSmallBits(getSmallBits() & ~M);
666  }
667};
668
669inline SmallBitVector
670operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
671  SmallBitVector Result(LHS);
672  Result &= RHS;
673  return Result;
674}
675
676inline SmallBitVector
677operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
678  SmallBitVector Result(LHS);
679  Result |= RHS;
680  return Result;
681}
682
683inline SmallBitVector
684operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
685  SmallBitVector Result(LHS);
686  Result ^= RHS;
687  return Result;
688}
689
690} // end namespace llvm
691
692namespace std {
693
694/// Implement std::swap in terms of BitVector swap.
695inline void
696swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
697  LHS.swap(RHS);
698}
699
700} // end namespace std
701
702#endif // LLVM_ADT_SMALLBITVECTOR_H
703