1//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements an abstract sparse conditional propagation algorithm, 11// modeled after SCCP, but with a customizable lattice function. 12// 13//===----------------------------------------------------------------------===// 14 15#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H 16#define LLVM_ANALYSIS_SPARSEPROPAGATION_H 17 18#include "llvm/IR/Instructions.h" 19#include "llvm/Support/Debug.h" 20#include <set> 21 22#define DEBUG_TYPE "sparseprop" 23 24namespace llvm { 25 26/// A template for translating between LLVM Values and LatticeKeys. Clients must 27/// provide a specialization of LatticeKeyInfo for their LatticeKey type. 28template <class LatticeKey> struct LatticeKeyInfo { 29 // static inline Value *getValueFromLatticeKey(LatticeKey Key); 30 // static inline LatticeKey getLatticeKeyFromValue(Value *V); 31}; 32 33template <class LatticeKey, class LatticeVal, 34 class KeyInfo = LatticeKeyInfo<LatticeKey>> 35class SparseSolver; 36 37/// AbstractLatticeFunction - This class is implemented by the dataflow instance 38/// to specify what the lattice values are and how they handle merges etc. This 39/// gives the client the power to compute lattice values from instructions, 40/// constants, etc. The current requirement is that lattice values must be 41/// copyable. At the moment, nothing tries to avoid copying. Additionally, 42/// lattice keys must be able to be used as keys of a mapping data structure. 43/// Internally, the generic solver currently uses a DenseMap to map lattice keys 44/// to lattice values. If the lattice key is a non-standard type, a 45/// specialization of DenseMapInfo must be provided. 46template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { 47private: 48 LatticeVal UndefVal, OverdefinedVal, UntrackedVal; 49 50public: 51 AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, 52 LatticeVal untrackedVal) { 53 UndefVal = undefVal; 54 OverdefinedVal = overdefinedVal; 55 UntrackedVal = untrackedVal; 56 } 57 58 virtual ~AbstractLatticeFunction() = default; 59 60 LatticeVal getUndefVal() const { return UndefVal; } 61 LatticeVal getOverdefinedVal() const { return OverdefinedVal; } 62 LatticeVal getUntrackedVal() const { return UntrackedVal; } 63 64 /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting 65 /// to the analysis (i.e., it would always return UntrackedVal), this 66 /// function can return true to avoid pointless work. 67 virtual bool IsUntrackedValue(LatticeKey Key) { return false; } 68 69 /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the 70 /// given LatticeKey. 71 virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { 72 return getOverdefinedVal(); 73 } 74 75 /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is 76 /// one that the we want to handle through ComputeInstructionState. 77 virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } 78 79 /// MergeValues - Compute and return the merge of the two specified lattice 80 /// values. Merging should only move one direction down the lattice to 81 /// guarantee convergence (toward overdefined). 82 virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { 83 return getOverdefinedVal(); // always safe, never useful. 84 } 85 86 /// ComputeInstructionState - Compute the LatticeKeys that change as a result 87 /// of executing instruction \p I. Their associated LatticeVals are store in 88 /// \p ChangedValues. 89 virtual void 90 ComputeInstructionState(Instruction &I, 91 DenseMap<LatticeKey, LatticeVal> &ChangedValues, 92 SparseSolver<LatticeKey, LatticeVal> &SS) = 0; 93 94 /// PrintLatticeVal - Render the given LatticeVal to the specified stream. 95 virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); 96 97 /// PrintLatticeKey - Render the given LatticeKey to the specified stream. 98 virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); 99 100 /// GetValueFromLatticeVal - If the given LatticeVal is representable as an 101 /// LLVM value, return it; otherwise, return nullptr. If a type is given, the 102 /// returned value must have the same type. This function is used by the 103 /// generic solver in attempting to resolve branch and switch conditions. 104 virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { 105 return nullptr; 106 } 107}; 108 109/// SparseSolver - This class is a general purpose solver for Sparse Conditional 110/// Propagation with a programmable lattice function. 111template <class LatticeKey, class LatticeVal, class KeyInfo> 112class SparseSolver { 113 114 /// LatticeFunc - This is the object that knows the lattice and how to 115 /// compute transfer functions. 116 AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; 117 118 /// ValueState - Holds the LatticeVals associated with LatticeKeys. 119 DenseMap<LatticeKey, LatticeVal> ValueState; 120 121 /// BBExecutable - Holds the basic blocks that are executable. 122 SmallPtrSet<BasicBlock *, 16> BBExecutable; 123 124 /// ValueWorkList - Holds values that should be processed. 125 SmallVector<Value *, 64> ValueWorkList; 126 127 /// BBWorkList - Holds basic blocks that should be processed. 128 SmallVector<BasicBlock *, 64> BBWorkList; 129 130 using Edge = std::pair<BasicBlock *, BasicBlock *>; 131 132 /// KnownFeasibleEdges - Entries in this set are edges which have already had 133 /// PHI nodes retriggered. 134 std::set<Edge> KnownFeasibleEdges; 135 136public: 137 explicit SparseSolver( 138 AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) 139 : LatticeFunc(Lattice) {} 140 SparseSolver(const SparseSolver &) = delete; 141 SparseSolver &operator=(const SparseSolver &) = delete; 142 143 /// Solve - Solve for constants and executable blocks. 144 void Solve(); 145 146 void Print(raw_ostream &OS) const; 147 148 /// getExistingValueState - Return the LatticeVal object corresponding to the 149 /// given value from the ValueState map. If the value is not in the map, 150 /// UntrackedVal is returned, unlike the getValueState method. 151 LatticeVal getExistingValueState(LatticeKey Key) const { 152 auto I = ValueState.find(Key); 153 return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); 154 } 155 156 /// getValueState - Return the LatticeVal object corresponding to the given 157 /// value from the ValueState map. If the value is not in the map, its state 158 /// is initialized. 159 LatticeVal getValueState(LatticeKey Key); 160 161 /// isEdgeFeasible - Return true if the control flow edge from the 'From' 162 /// basic block to the 'To' basic block is currently feasible. If 163 /// AggressiveUndef is true, then this treats values with unknown lattice 164 /// values as undefined. This is generally only useful when solving the 165 /// lattice, not when querying it. 166 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, 167 bool AggressiveUndef = false); 168 169 /// isBlockExecutable - Return true if there are any known feasible 170 /// edges into the basic block. This is generally only useful when 171 /// querying the lattice. 172 bool isBlockExecutable(BasicBlock *BB) const { 173 return BBExecutable.count(BB); 174 } 175 176 /// MarkBlockExecutable - This method can be used by clients to mark all of 177 /// the blocks that are known to be intrinsically live in the processed unit. 178 void MarkBlockExecutable(BasicBlock *BB); 179 180private: 181 /// UpdateState - When the state of some LatticeKey is potentially updated to 182 /// the given LatticeVal, this function notices and adds the LLVM value 183 /// corresponding the key to the work list, if needed. 184 void UpdateState(LatticeKey Key, LatticeVal LV); 185 186 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 187 /// work list if it is not already executable. 188 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 189 190 /// getFeasibleSuccessors - Return a vector of booleans to indicate which 191 /// successors are reachable from a given terminator instruction. 192 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, 193 bool AggressiveUndef); 194 195 void visitInst(Instruction &I); 196 void visitPHINode(PHINode &I); 197 void visitTerminatorInst(TerminatorInst &TI); 198}; 199 200//===----------------------------------------------------------------------===// 201// AbstractLatticeFunction Implementation 202//===----------------------------------------------------------------------===// 203 204template <class LatticeKey, class LatticeVal> 205void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( 206 LatticeVal V, raw_ostream &OS) { 207 if (V == UndefVal) 208 OS << "undefined"; 209 else if (V == OverdefinedVal) 210 OS << "overdefined"; 211 else if (V == UntrackedVal) 212 OS << "untracked"; 213 else 214 OS << "unknown lattice value"; 215} 216 217template <class LatticeKey, class LatticeVal> 218void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( 219 LatticeKey Key, raw_ostream &OS) { 220 OS << "unknown lattice key"; 221} 222 223//===----------------------------------------------------------------------===// 224// SparseSolver Implementation 225//===----------------------------------------------------------------------===// 226 227template <class LatticeKey, class LatticeVal, class KeyInfo> 228LatticeVal 229SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { 230 auto I = ValueState.find(Key); 231 if (I != ValueState.end()) 232 return I->second; // Common case, in the map 233 234 if (LatticeFunc->IsUntrackedValue(Key)) 235 return LatticeFunc->getUntrackedVal(); 236 LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); 237 238 // If this value is untracked, don't add it to the map. 239 if (LV == LatticeFunc->getUntrackedVal()) 240 return LV; 241 return ValueState[Key] = LV; 242} 243 244template <class LatticeKey, class LatticeVal, class KeyInfo> 245void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, 246 LatticeVal LV) { 247 auto I = ValueState.find(Key); 248 if (I != ValueState.end() && I->second == LV) 249 return; // No change. 250 251 // Update the state of the given LatticeKey and add its corresponding LLVM 252 // value to the work list. 253 ValueState[Key] = LV; 254 if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) 255 ValueWorkList.push_back(V); 256} 257 258template <class LatticeKey, class LatticeVal, class KeyInfo> 259void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( 260 BasicBlock *BB) { 261 if (!BBExecutable.insert(BB).second) 262 return; 263 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 264 BBWorkList.push_back(BB); // Add the block to the work list! 265} 266 267template <class LatticeKey, class LatticeVal, class KeyInfo> 268void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( 269 BasicBlock *Source, BasicBlock *Dest) { 270 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 271 return; // This edge is already known to be executable! 272 273 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " 274 << Dest->getName() << "\n"); 275 276 if (BBExecutable.count(Dest)) { 277 // The destination is already executable, but we just made an edge 278 // feasible that wasn't before. Revisit the PHI nodes in the block 279 // because they have potentially new operands. 280 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 281 visitPHINode(*cast<PHINode>(I)); 282 } else { 283 MarkBlockExecutable(Dest); 284 } 285} 286 287template <class LatticeKey, class LatticeVal, class KeyInfo> 288void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( 289 TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { 290 Succs.resize(TI.getNumSuccessors()); 291 if (TI.getNumSuccessors() == 0) 292 return; 293 294 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 295 if (BI->isUnconditional()) { 296 Succs[0] = true; 297 return; 298 } 299 300 LatticeVal BCValue; 301 if (AggressiveUndef) 302 BCValue = 303 getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); 304 else 305 BCValue = getExistingValueState( 306 KeyInfo::getLatticeKeyFromValue(BI->getCondition())); 307 308 if (BCValue == LatticeFunc->getOverdefinedVal() || 309 BCValue == LatticeFunc->getUntrackedVal()) { 310 // Overdefined condition variables can branch either way. 311 Succs[0] = Succs[1] = true; 312 return; 313 } 314 315 // If undefined, neither is feasible yet. 316 if (BCValue == LatticeFunc->getUndefVal()) 317 return; 318 319 Constant *C = 320 dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( 321 BCValue, BI->getCondition()->getType())); 322 if (!C || !isa<ConstantInt>(C)) { 323 // Non-constant values can go either way. 324 Succs[0] = Succs[1] = true; 325 return; 326 } 327 328 // Constant condition variables mean the branch can only go a single way 329 Succs[C->isNullValue()] = true; 330 return; 331 } 332 333 if (TI.isExceptional()) { 334 Succs.assign(Succs.size(), true); 335 return; 336 } 337 338 if (isa<IndirectBrInst>(TI)) { 339 Succs.assign(Succs.size(), true); 340 return; 341 } 342 343 SwitchInst &SI = cast<SwitchInst>(TI); 344 LatticeVal SCValue; 345 if (AggressiveUndef) 346 SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); 347 else 348 SCValue = getExistingValueState( 349 KeyInfo::getLatticeKeyFromValue(SI.getCondition())); 350 351 if (SCValue == LatticeFunc->getOverdefinedVal() || 352 SCValue == LatticeFunc->getUntrackedVal()) { 353 // All destinations are executable! 354 Succs.assign(TI.getNumSuccessors(), true); 355 return; 356 } 357 358 // If undefined, neither is feasible yet. 359 if (SCValue == LatticeFunc->getUndefVal()) 360 return; 361 362 Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( 363 SCValue, SI.getCondition()->getType())); 364 if (!C || !isa<ConstantInt>(C)) { 365 // All destinations are executable! 366 Succs.assign(TI.getNumSuccessors(), true); 367 return; 368 } 369 SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); 370 Succs[Case.getSuccessorIndex()] = true; 371} 372 373template <class LatticeKey, class LatticeVal, class KeyInfo> 374bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( 375 BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { 376 SmallVector<bool, 16> SuccFeasible; 377 TerminatorInst *TI = From->getTerminator(); 378 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); 379 380 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 381 if (TI->getSuccessor(i) == To && SuccFeasible[i]) 382 return true; 383 384 return false; 385} 386 387template <class LatticeKey, class LatticeVal, class KeyInfo> 388void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst( 389 TerminatorInst &TI) { 390 SmallVector<bool, 16> SuccFeasible; 391 getFeasibleSuccessors(TI, SuccFeasible, true); 392 393 BasicBlock *BB = TI.getParent(); 394 395 // Mark all feasible successors executable... 396 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 397 if (SuccFeasible[i]) 398 markEdgeExecutable(BB, TI.getSuccessor(i)); 399} 400 401template <class LatticeKey, class LatticeVal, class KeyInfo> 402void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { 403 // The lattice function may store more information on a PHINode than could be 404 // computed from its incoming values. For example, SSI form stores its sigma 405 // functions as PHINodes with a single incoming value. 406 if (LatticeFunc->IsSpecialCasedPHI(&PN)) { 407 DenseMap<LatticeKey, LatticeVal> ChangedValues; 408 LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); 409 for (auto &ChangedValue : ChangedValues) 410 if (ChangedValue.second != LatticeFunc->getUntrackedVal()) 411 UpdateState(ChangedValue.first, ChangedValue.second); 412 return; 413 } 414 415 LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); 416 LatticeVal PNIV = getValueState(Key); 417 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); 418 419 // If this value is already overdefined (common) just return. 420 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) 421 return; // Quick exit 422 423 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, 424 // and slow us down a lot. Just mark them overdefined. 425 if (PN.getNumIncomingValues() > 64) { 426 UpdateState(Key, Overdefined); 427 return; 428 } 429 430 // Look at all of the executable operands of the PHI node. If any of them 431 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the 432 // transfer function to give us the merge of the incoming values. 433 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 434 // If the edge is not yet known to be feasible, it doesn't impact the PHI. 435 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) 436 continue; 437 438 // Merge in this value. 439 LatticeVal OpVal = 440 getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); 441 if (OpVal != PNIV) 442 PNIV = LatticeFunc->MergeValues(PNIV, OpVal); 443 444 if (PNIV == Overdefined) 445 break; // Rest of input values don't matter. 446 } 447 448 // Update the PHI with the compute value, which is the merge of the inputs. 449 UpdateState(Key, PNIV); 450} 451 452template <class LatticeKey, class LatticeVal, class KeyInfo> 453void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { 454 // PHIs are handled by the propagation logic, they are never passed into the 455 // transfer functions. 456 if (PHINode *PN = dyn_cast<PHINode>(&I)) 457 return visitPHINode(*PN); 458 459 // Otherwise, ask the transfer function what the result is. If this is 460 // something that we care about, remember it. 461 DenseMap<LatticeKey, LatticeVal> ChangedValues; 462 LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); 463 for (auto &ChangedValue : ChangedValues) 464 if (ChangedValue.second != LatticeFunc->getUntrackedVal()) 465 UpdateState(ChangedValue.first, ChangedValue.second); 466 467 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) 468 visitTerminatorInst(*TI); 469} 470 471template <class LatticeKey, class LatticeVal, class KeyInfo> 472void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { 473 // Process the work lists until they are empty! 474 while (!BBWorkList.empty() || !ValueWorkList.empty()) { 475 // Process the value work list. 476 while (!ValueWorkList.empty()) { 477 Value *V = ValueWorkList.back(); 478 ValueWorkList.pop_back(); 479 480 DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); 481 482 // "V" got into the work list because it made a transition. See if any 483 // users are both live and in need of updating. 484 for (User *U : V->users()) 485 if (Instruction *Inst = dyn_cast<Instruction>(U)) 486 if (BBExecutable.count(Inst->getParent())) // Inst is executable? 487 visitInst(*Inst); 488 } 489 490 // Process the basic block work list. 491 while (!BBWorkList.empty()) { 492 BasicBlock *BB = BBWorkList.back(); 493 BBWorkList.pop_back(); 494 495 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); 496 497 // Notify all instructions in this basic block that they are newly 498 // executable. 499 for (Instruction &I : *BB) 500 visitInst(I); 501 } 502 } 503} 504 505template <class LatticeKey, class LatticeVal, class KeyInfo> 506void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( 507 raw_ostream &OS) const { 508 if (ValueState.empty()) 509 return; 510 511 LatticeKey Key; 512 LatticeVal LV; 513 514 OS << "ValueState:\n"; 515 for (auto &Entry : ValueState) { 516 std::tie(Key, LV) = Entry; 517 if (LV == LatticeFunc->getUntrackedVal()) 518 continue; 519 OS << "\t"; 520 LatticeFunc->PrintLatticeVal(LV, OS); 521 OS << ": "; 522 LatticeFunc->PrintLatticeKey(Key, OS); 523 OS << "\n"; 524 } 525} 526} // end namespace llvm 527 528#undef DEBUG_TYPE 529 530#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H 531