1//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the newly proposed standard C++ interfaces for hashing
11// arbitrary data and building hash functions for user-defined types. This
12// interface was originally proposed in N3333[1] and is currently under review
13// for inclusion in a future TR and/or standard.
14//
15// The primary interfaces provide are comprised of one type and three functions:
16//
17//  -- 'hash_code' class is an opaque type representing the hash code for some
18//     data. It is the intended product of hashing, and can be used to implement
19//     hash tables, checksumming, and other common uses of hashes. It is not an
20//     integer type (although it can be converted to one) because it is risky
21//     to assume much about the internals of a hash_code. In particular, each
22//     execution of the program has a high probability of producing a different
23//     hash_code for a given input. Thus their values are not stable to save or
24//     persist, and should only be used during the execution for the
25//     construction of hashing datastructures.
26//
27//  -- 'hash_value' is a function designed to be overloaded for each
28//     user-defined type which wishes to be used within a hashing context. It
29//     should be overloaded within the user-defined type's namespace and found
30//     via ADL. Overloads for primitive types are provided by this library.
31//
32//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
33//      programmers in easily and intuitively combining a set of data into
34//      a single hash_code for their object. They should only logically be used
35//      within the implementation of a 'hash_value' routine or similar context.
36//
37// Note that 'hash_combine_range' contains very special logic for hashing
38// a contiguous array of integers or pointers. This logic is *extremely* fast,
39// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
40// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
41// under 32-bytes.
42//
43//===----------------------------------------------------------------------===//
44
45#ifndef LLVM_ADT_HASHING_H
46#define LLVM_ADT_HASHING_H
47
48#include "llvm/Support/DataTypes.h"
49#include "llvm/Support/Host.h"
50#include "llvm/Support/SwapByteOrder.h"
51#include "llvm/Support/type_traits.h"
52#include <algorithm>
53#include <cassert>
54#include <cstring>
55#include <string>
56#include <utility>
57
58namespace llvm {
59
60/// \brief An opaque object representing a hash code.
61///
62/// This object represents the result of hashing some entity. It is intended to
63/// be used to implement hashtables or other hashing-based data structures.
64/// While it wraps and exposes a numeric value, this value should not be
65/// trusted to be stable or predictable across processes or executions.
66///
67/// In order to obtain the hash_code for an object 'x':
68/// \code
69///   using llvm::hash_value;
70///   llvm::hash_code code = hash_value(x);
71/// \endcode
72class hash_code {
73  size_t value;
74
75public:
76  /// \brief Default construct a hash_code.
77  /// Note that this leaves the value uninitialized.
78  hash_code() = default;
79
80  /// \brief Form a hash code directly from a numerical value.
81  hash_code(size_t value) : value(value) {}
82
83  /// \brief Convert the hash code to its numerical value for use.
84  /*explicit*/ operator size_t() const { return value; }
85
86  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
87    return lhs.value == rhs.value;
88  }
89  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
90    return lhs.value != rhs.value;
91  }
92
93  /// \brief Allow a hash_code to be directly run through hash_value.
94  friend size_t hash_value(const hash_code &code) { return code.value; }
95};
96
97/// \brief Compute a hash_code for any integer value.
98///
99/// Note that this function is intended to compute the same hash_code for
100/// a particular value without regard to the pre-promotion type. This is in
101/// contrast to hash_combine which may produce different hash_codes for
102/// differing argument types even if they would implicit promote to a common
103/// type without changing the value.
104template <typename T>
105typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
106hash_value(T value);
107
108/// \brief Compute a hash_code for a pointer's address.
109///
110/// N.B.: This hashes the *address*. Not the value and not the type.
111template <typename T> hash_code hash_value(const T *ptr);
112
113/// \brief Compute a hash_code for a pair of objects.
114template <typename T, typename U>
115hash_code hash_value(const std::pair<T, U> &arg);
116
117/// \brief Compute a hash_code for a standard string.
118template <typename T>
119hash_code hash_value(const std::basic_string<T> &arg);
120
121
122/// \brief Override the execution seed with a fixed value.
123///
124/// This hashing library uses a per-execution seed designed to change on each
125/// run with high probability in order to ensure that the hash codes are not
126/// attackable and to ensure that output which is intended to be stable does
127/// not rely on the particulars of the hash codes produced.
128///
129/// That said, there are use cases where it is important to be able to
130/// reproduce *exactly* a specific behavior. To that end, we provide a function
131/// which will forcibly set the seed to a fixed value. This must be done at the
132/// start of the program, before any hashes are computed. Also, it cannot be
133/// undone. This makes it thread-hostile and very hard to use outside of
134/// immediately on start of a simple program designed for reproducible
135/// behavior.
136void set_fixed_execution_hash_seed(size_t fixed_value);
137
138
139// All of the implementation details of actually computing the various hash
140// code values are held within this namespace. These routines are included in
141// the header file mainly to allow inlining and constant propagation.
142namespace hashing {
143namespace detail {
144
145inline uint64_t fetch64(const char *p) {
146  uint64_t result;
147  memcpy(&result, p, sizeof(result));
148  if (sys::IsBigEndianHost)
149    sys::swapByteOrder(result);
150  return result;
151}
152
153inline uint32_t fetch32(const char *p) {
154  uint32_t result;
155  memcpy(&result, p, sizeof(result));
156  if (sys::IsBigEndianHost)
157    sys::swapByteOrder(result);
158  return result;
159}
160
161/// Some primes between 2^63 and 2^64 for various uses.
162static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
163static const uint64_t k1 = 0xb492b66fbe98f273ULL;
164static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
165static const uint64_t k3 = 0xc949d7c7509e6557ULL;
166
167/// \brief Bitwise right rotate.
168/// Normally this will compile to a single instruction, especially if the
169/// shift is a manifest constant.
170inline uint64_t rotate(uint64_t val, size_t shift) {
171  // Avoid shifting by 64: doing so yields an undefined result.
172  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
173}
174
175inline uint64_t shift_mix(uint64_t val) {
176  return val ^ (val >> 47);
177}
178
179inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
180  // Murmur-inspired hashing.
181  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
182  uint64_t a = (low ^ high) * kMul;
183  a ^= (a >> 47);
184  uint64_t b = (high ^ a) * kMul;
185  b ^= (b >> 47);
186  b *= kMul;
187  return b;
188}
189
190inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
191  uint8_t a = s[0];
192  uint8_t b = s[len >> 1];
193  uint8_t c = s[len - 1];
194  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
195  uint32_t z = len + (static_cast<uint32_t>(c) << 2);
196  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
197}
198
199inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
200  uint64_t a = fetch32(s);
201  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
202}
203
204inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
205  uint64_t a = fetch64(s);
206  uint64_t b = fetch64(s + len - 8);
207  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
208}
209
210inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
211  uint64_t a = fetch64(s) * k1;
212  uint64_t b = fetch64(s + 8);
213  uint64_t c = fetch64(s + len - 8) * k2;
214  uint64_t d = fetch64(s + len - 16) * k0;
215  return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
216                       a + rotate(b ^ k3, 20) - c + len + seed);
217}
218
219inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
220  uint64_t z = fetch64(s + 24);
221  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
222  uint64_t b = rotate(a + z, 52);
223  uint64_t c = rotate(a, 37);
224  a += fetch64(s + 8);
225  c += rotate(a, 7);
226  a += fetch64(s + 16);
227  uint64_t vf = a + z;
228  uint64_t vs = b + rotate(a, 31) + c;
229  a = fetch64(s + 16) + fetch64(s + len - 32);
230  z = fetch64(s + len - 8);
231  b = rotate(a + z, 52);
232  c = rotate(a, 37);
233  a += fetch64(s + len - 24);
234  c += rotate(a, 7);
235  a += fetch64(s + len - 16);
236  uint64_t wf = a + z;
237  uint64_t ws = b + rotate(a, 31) + c;
238  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
239  return shift_mix((seed ^ (r * k0)) + vs) * k2;
240}
241
242inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
243  if (length >= 4 && length <= 8)
244    return hash_4to8_bytes(s, length, seed);
245  if (length > 8 && length <= 16)
246    return hash_9to16_bytes(s, length, seed);
247  if (length > 16 && length <= 32)
248    return hash_17to32_bytes(s, length, seed);
249  if (length > 32)
250    return hash_33to64_bytes(s, length, seed);
251  if (length != 0)
252    return hash_1to3_bytes(s, length, seed);
253
254  return k2 ^ seed;
255}
256
257/// \brief The intermediate state used during hashing.
258/// Currently, the algorithm for computing hash codes is based on CityHash and
259/// keeps 56 bytes of arbitrary state.
260struct hash_state {
261  uint64_t h0, h1, h2, h3, h4, h5, h6;
262
263  /// \brief Create a new hash_state structure and initialize it based on the
264  /// seed and the first 64-byte chunk.
265  /// This effectively performs the initial mix.
266  static hash_state create(const char *s, uint64_t seed) {
267    hash_state state = {
268      0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
269      seed * k1, shift_mix(seed), 0 };
270    state.h6 = hash_16_bytes(state.h4, state.h5);
271    state.mix(s);
272    return state;
273  }
274
275  /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
276  /// and 'b', including whatever is already in 'a' and 'b'.
277  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
278    a += fetch64(s);
279    uint64_t c = fetch64(s + 24);
280    b = rotate(b + a + c, 21);
281    uint64_t d = a;
282    a += fetch64(s + 8) + fetch64(s + 16);
283    b += rotate(a, 44) + d;
284    a += c;
285  }
286
287  /// \brief Mix in a 64-byte buffer of data.
288  /// We mix all 64 bytes even when the chunk length is smaller, but we
289  /// record the actual length.
290  void mix(const char *s) {
291    h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
292    h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
293    h0 ^= h6;
294    h1 += h3 + fetch64(s + 40);
295    h2 = rotate(h2 + h5, 33) * k1;
296    h3 = h4 * k1;
297    h4 = h0 + h5;
298    mix_32_bytes(s, h3, h4);
299    h5 = h2 + h6;
300    h6 = h1 + fetch64(s + 16);
301    mix_32_bytes(s + 32, h5, h6);
302    std::swap(h2, h0);
303  }
304
305  /// \brief Compute the final 64-bit hash code value based on the current
306  /// state and the length of bytes hashed.
307  uint64_t finalize(size_t length) {
308    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
309                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
310  }
311};
312
313
314/// \brief A global, fixed seed-override variable.
315///
316/// This variable can be set using the \see llvm::set_fixed_execution_seed
317/// function. See that function for details. Do not, under any circumstances,
318/// set or read this variable.
319extern size_t fixed_seed_override;
320
321inline size_t get_execution_seed() {
322  // FIXME: This needs to be a per-execution seed. This is just a placeholder
323  // implementation. Switching to a per-execution seed is likely to flush out
324  // instability bugs and so will happen as its own commit.
325  //
326  // However, if there is a fixed seed override set the first time this is
327  // called, return that instead of the per-execution seed.
328  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
329  static size_t seed = fixed_seed_override ? fixed_seed_override
330                                           : (size_t)seed_prime;
331  return seed;
332}
333
334
335/// \brief Trait to indicate whether a type's bits can be hashed directly.
336///
337/// A type trait which is true if we want to combine values for hashing by
338/// reading the underlying data. It is false if values of this type must
339/// first be passed to hash_value, and the resulting hash_codes combined.
340//
341// FIXME: We want to replace is_integral_or_enum and is_pointer here with
342// a predicate which asserts that comparing the underlying storage of two
343// values of the type for equality is equivalent to comparing the two values
344// for equality. For all the platforms we care about, this holds for integers
345// and pointers, but there are platforms where it doesn't and we would like to
346// support user-defined types which happen to satisfy this property.
347template <typename T> struct is_hashable_data
348  : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
349                                   std::is_pointer<T>::value) &&
350                                  64 % sizeof(T) == 0)> {};
351
352// Special case std::pair to detect when both types are viable and when there
353// is no alignment-derived padding in the pair. This is a bit of a lie because
354// std::pair isn't truly POD, but it's close enough in all reasonable
355// implementations for our use case of hashing the underlying data.
356template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
357  : std::integral_constant<bool, (is_hashable_data<T>::value &&
358                                  is_hashable_data<U>::value &&
359                                  (sizeof(T) + sizeof(U)) ==
360                                   sizeof(std::pair<T, U>))> {};
361
362/// \brief Helper to get the hashable data representation for a type.
363/// This variant is enabled when the type itself can be used.
364template <typename T>
365typename std::enable_if<is_hashable_data<T>::value, T>::type
366get_hashable_data(const T &value) {
367  return value;
368}
369/// \brief Helper to get the hashable data representation for a type.
370/// This variant is enabled when we must first call hash_value and use the
371/// result as our data.
372template <typename T>
373typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
374get_hashable_data(const T &value) {
375  using ::llvm::hash_value;
376  return hash_value(value);
377}
378
379/// \brief Helper to store data from a value into a buffer and advance the
380/// pointer into that buffer.
381///
382/// This routine first checks whether there is enough space in the provided
383/// buffer, and if not immediately returns false. If there is space, it
384/// copies the underlying bytes of value into the buffer, advances the
385/// buffer_ptr past the copied bytes, and returns true.
386template <typename T>
387bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
388                       size_t offset = 0) {
389  size_t store_size = sizeof(value) - offset;
390  if (buffer_ptr + store_size > buffer_end)
391    return false;
392  const char *value_data = reinterpret_cast<const char *>(&value);
393  memcpy(buffer_ptr, value_data + offset, store_size);
394  buffer_ptr += store_size;
395  return true;
396}
397
398/// \brief Implement the combining of integral values into a hash_code.
399///
400/// This overload is selected when the value type of the iterator is
401/// integral. Rather than computing a hash_code for each object and then
402/// combining them, this (as an optimization) directly combines the integers.
403template <typename InputIteratorT>
404hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
405  const size_t seed = get_execution_seed();
406  char buffer[64], *buffer_ptr = buffer;
407  char *const buffer_end = std::end(buffer);
408  while (first != last && store_and_advance(buffer_ptr, buffer_end,
409                                            get_hashable_data(*first)))
410    ++first;
411  if (first == last)
412    return hash_short(buffer, buffer_ptr - buffer, seed);
413  assert(buffer_ptr == buffer_end);
414
415  hash_state state = state.create(buffer, seed);
416  size_t length = 64;
417  while (first != last) {
418    // Fill up the buffer. We don't clear it, which re-mixes the last round
419    // when only a partial 64-byte chunk is left.
420    buffer_ptr = buffer;
421    while (first != last && store_and_advance(buffer_ptr, buffer_end,
422                                              get_hashable_data(*first)))
423      ++first;
424
425    // Rotate the buffer if we did a partial fill in order to simulate doing
426    // a mix of the last 64-bytes. That is how the algorithm works when we
427    // have a contiguous byte sequence, and we want to emulate that here.
428    std::rotate(buffer, buffer_ptr, buffer_end);
429
430    // Mix this chunk into the current state.
431    state.mix(buffer);
432    length += buffer_ptr - buffer;
433  };
434
435  return state.finalize(length);
436}
437
438/// \brief Implement the combining of integral values into a hash_code.
439///
440/// This overload is selected when the value type of the iterator is integral
441/// and when the input iterator is actually a pointer. Rather than computing
442/// a hash_code for each object and then combining them, this (as an
443/// optimization) directly combines the integers. Also, because the integers
444/// are stored in contiguous memory, this routine avoids copying each value
445/// and directly reads from the underlying memory.
446template <typename ValueT>
447typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
448hash_combine_range_impl(ValueT *first, ValueT *last) {
449  const size_t seed = get_execution_seed();
450  const char *s_begin = reinterpret_cast<const char *>(first);
451  const char *s_end = reinterpret_cast<const char *>(last);
452  const size_t length = std::distance(s_begin, s_end);
453  if (length <= 64)
454    return hash_short(s_begin, length, seed);
455
456  const char *s_aligned_end = s_begin + (length & ~63);
457  hash_state state = state.create(s_begin, seed);
458  s_begin += 64;
459  while (s_begin != s_aligned_end) {
460    state.mix(s_begin);
461    s_begin += 64;
462  }
463  if (length & 63)
464    state.mix(s_end - 64);
465
466  return state.finalize(length);
467}
468
469} // namespace detail
470} // namespace hashing
471
472
473/// \brief Compute a hash_code for a sequence of values.
474///
475/// This hashes a sequence of values. It produces the same hash_code as
476/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
477/// and is significantly faster given pointers and types which can be hashed as
478/// a sequence of bytes.
479template <typename InputIteratorT>
480hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
481  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
482}
483
484
485// Implementation details for hash_combine.
486namespace hashing {
487namespace detail {
488
489/// \brief Helper class to manage the recursive combining of hash_combine
490/// arguments.
491///
492/// This class exists to manage the state and various calls involved in the
493/// recursive combining of arguments used in hash_combine. It is particularly
494/// useful at minimizing the code in the recursive calls to ease the pain
495/// caused by a lack of variadic functions.
496struct hash_combine_recursive_helper {
497  char buffer[64];
498  hash_state state;
499  const size_t seed;
500
501public:
502  /// \brief Construct a recursive hash combining helper.
503  ///
504  /// This sets up the state for a recursive hash combine, including getting
505  /// the seed and buffer setup.
506  hash_combine_recursive_helper()
507    : seed(get_execution_seed()) {}
508
509  /// \brief Combine one chunk of data into the current in-flight hash.
510  ///
511  /// This merges one chunk of data into the hash. First it tries to buffer
512  /// the data. If the buffer is full, it hashes the buffer into its
513  /// hash_state, empties it, and then merges the new chunk in. This also
514  /// handles cases where the data straddles the end of the buffer.
515  template <typename T>
516  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
517    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
518      // Check for skew which prevents the buffer from being packed, and do
519      // a partial store into the buffer to fill it. This is only a concern
520      // with the variadic combine because that formation can have varying
521      // argument types.
522      size_t partial_store_size = buffer_end - buffer_ptr;
523      memcpy(buffer_ptr, &data, partial_store_size);
524
525      // If the store fails, our buffer is full and ready to hash. We have to
526      // either initialize the hash state (on the first full buffer) or mix
527      // this buffer into the existing hash state. Length tracks the *hashed*
528      // length, not the buffered length.
529      if (length == 0) {
530        state = state.create(buffer, seed);
531        length = 64;
532      } else {
533        // Mix this chunk into the current state and bump length up by 64.
534        state.mix(buffer);
535        length += 64;
536      }
537      // Reset the buffer_ptr to the head of the buffer for the next chunk of
538      // data.
539      buffer_ptr = buffer;
540
541      // Try again to store into the buffer -- this cannot fail as we only
542      // store types smaller than the buffer.
543      if (!store_and_advance(buffer_ptr, buffer_end, data,
544                             partial_store_size))
545        abort();
546    }
547    return buffer_ptr;
548  }
549
550  /// \brief Recursive, variadic combining method.
551  ///
552  /// This function recurses through each argument, combining that argument
553  /// into a single hash.
554  template <typename T, typename ...Ts>
555  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
556                    const T &arg, const Ts &...args) {
557    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
558
559    // Recurse to the next argument.
560    return combine(length, buffer_ptr, buffer_end, args...);
561  }
562
563  /// \brief Base case for recursive, variadic combining.
564  ///
565  /// The base case when combining arguments recursively is reached when all
566  /// arguments have been handled. It flushes the remaining buffer and
567  /// constructs a hash_code.
568  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
569    // Check whether the entire set of values fit in the buffer. If so, we'll
570    // use the optimized short hashing routine and skip state entirely.
571    if (length == 0)
572      return hash_short(buffer, buffer_ptr - buffer, seed);
573
574    // Mix the final buffer, rotating it if we did a partial fill in order to
575    // simulate doing a mix of the last 64-bytes. That is how the algorithm
576    // works when we have a contiguous byte sequence, and we want to emulate
577    // that here.
578    std::rotate(buffer, buffer_ptr, buffer_end);
579
580    // Mix this chunk into the current state.
581    state.mix(buffer);
582    length += buffer_ptr - buffer;
583
584    return state.finalize(length);
585  }
586};
587
588} // namespace detail
589} // namespace hashing
590
591/// \brief Combine values into a single hash_code.
592///
593/// This routine accepts a varying number of arguments of any type. It will
594/// attempt to combine them into a single hash_code. For user-defined types it
595/// attempts to call a \see hash_value overload (via ADL) for the type. For
596/// integer and pointer types it directly combines their data into the
597/// resulting hash_code.
598///
599/// The result is suitable for returning from a user's hash_value
600/// *implementation* for their user-defined type. Consumers of a type should
601/// *not* call this routine, they should instead call 'hash_value'.
602template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
603  // Recursively hash each argument using a helper class.
604  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
605  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
606}
607
608// Implementation details for implementations of hash_value overloads provided
609// here.
610namespace hashing {
611namespace detail {
612
613/// \brief Helper to hash the value of a single integer.
614///
615/// Overloads for smaller integer types are not provided to ensure consistent
616/// behavior in the presence of integral promotions. Essentially,
617/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
618inline hash_code hash_integer_value(uint64_t value) {
619  // Similar to hash_4to8_bytes but using a seed instead of length.
620  const uint64_t seed = get_execution_seed();
621  const char *s = reinterpret_cast<const char *>(&value);
622  const uint64_t a = fetch32(s);
623  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
624}
625
626} // namespace detail
627} // namespace hashing
628
629// Declared and documented above, but defined here so that any of the hashing
630// infrastructure is available.
631template <typename T>
632typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
633hash_value(T value) {
634  return ::llvm::hashing::detail::hash_integer_value(
635      static_cast<uint64_t>(value));
636}
637
638// Declared and documented above, but defined here so that any of the hashing
639// infrastructure is available.
640template <typename T> hash_code hash_value(const T *ptr) {
641  return ::llvm::hashing::detail::hash_integer_value(
642    reinterpret_cast<uintptr_t>(ptr));
643}
644
645// Declared and documented above, but defined here so that any of the hashing
646// infrastructure is available.
647template <typename T, typename U>
648hash_code hash_value(const std::pair<T, U> &arg) {
649  return hash_combine(arg.first, arg.second);
650}
651
652// Declared and documented above, but defined here so that any of the hashing
653// infrastructure is available.
654template <typename T>
655hash_code hash_value(const std::basic_string<T> &arg) {
656  return hash_combine_range(arg.begin(), arg.end());
657}
658
659} // namespace llvm
660
661#endif
662