1//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements SlotIndex and related classes. The purpose of SlotIndex
11// is to describe a position at which a register can become live, or cease to
12// be live.
13//
14// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
15// is held is LiveIntervals and provides the real numbering. This allows
16// LiveIntervals to perform largely transparent renumbering.
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SLOTINDEXES_H
20#define LLVM_CODEGEN_SLOTINDEXES_H
21
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/IntervalMap.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/ilist.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/Allocator.h"
34#include <algorithm>
35#include <cassert>
36#include <iterator>
37#include <utility>
38
39namespace llvm {
40
41class raw_ostream;
42
43  /// This class represents an entry in the slot index list held in the
44  /// SlotIndexes pass. It should not be used directly. See the
45  /// SlotIndex & SlotIndexes classes for the public interface to this
46  /// information.
47  class IndexListEntry : public ilist_node<IndexListEntry> {
48    MachineInstr *mi;
49    unsigned index;
50
51  public:
52    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
53
54    MachineInstr* getInstr() const { return mi; }
55    void setInstr(MachineInstr *mi) {
56      this->mi = mi;
57    }
58
59    unsigned getIndex() const { return index; }
60    void setIndex(unsigned index) {
61      this->index = index;
62    }
63
64#ifdef EXPENSIVE_CHECKS
65    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
66    // actually be moved to a "graveyard" list, and have their pointers
67    // poisoned, so that dangling SlotIndex access can be reliably detected.
68    void setPoison() {
69      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
70      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
71      tmp |= 0x1;
72      mi = reinterpret_cast<MachineInstr*>(tmp);
73    }
74
75    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
76#endif // EXPENSIVE_CHECKS
77  };
78
79  template <>
80  struct ilist_alloc_traits<IndexListEntry>
81      : public ilist_noalloc_traits<IndexListEntry> {};
82
83  /// SlotIndex - An opaque wrapper around machine indexes.
84  class SlotIndex {
85    friend class SlotIndexes;
86
87    enum Slot {
88      /// Basic block boundary.  Used for live ranges entering and leaving a
89      /// block without being live in the layout neighbor.  Also used as the
90      /// def slot of PHI-defs.
91      Slot_Block,
92
93      /// Early-clobber register use/def slot.  A live range defined at
94      /// Slot_EarlyClobber interferes with normal live ranges killed at
95      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
96      /// early-clobber def.
97      Slot_EarlyClobber,
98
99      /// Normal register use/def slot.  Normal instructions kill and define
100      /// register live ranges at this slot.
101      Slot_Register,
102
103      /// Dead def kill point.  Kill slot for a live range that is defined by
104      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
105      /// used anywhere.
106      Slot_Dead,
107
108      Slot_Count
109    };
110
111    PointerIntPair<IndexListEntry*, 2, unsigned> lie;
112
113    SlotIndex(IndexListEntry *entry, unsigned slot)
114      : lie(entry, slot) {}
115
116    IndexListEntry* listEntry() const {
117      assert(isValid() && "Attempt to compare reserved index.");
118#ifdef EXPENSIVE_CHECKS
119      assert(!lie.getPointer()->isPoisoned() &&
120             "Attempt to access deleted list-entry.");
121#endif // EXPENSIVE_CHECKS
122      return lie.getPointer();
123    }
124
125    unsigned getIndex() const {
126      return listEntry()->getIndex() | getSlot();
127    }
128
129    /// Returns the slot for this SlotIndex.
130    Slot getSlot() const {
131      return static_cast<Slot>(lie.getInt());
132    }
133
134  public:
135    enum {
136      /// The default distance between instructions as returned by distance().
137      /// This may vary as instructions are inserted and removed.
138      InstrDist = 4 * Slot_Count
139    };
140
141    /// Construct an invalid index.
142    SlotIndex() = default;
143
144    // Construct a new slot index from the given one, and set the slot.
145    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
146      assert(lie.getPointer() != nullptr &&
147             "Attempt to construct index with 0 pointer.");
148    }
149
150    /// Returns true if this is a valid index. Invalid indices do
151    /// not point into an index table, and cannot be compared.
152    bool isValid() const {
153      return lie.getPointer();
154    }
155
156    /// Return true for a valid index.
157    explicit operator bool() const { return isValid(); }
158
159    /// Print this index to the given raw_ostream.
160    void print(raw_ostream &os) const;
161
162    /// Dump this index to stderr.
163    void dump() const;
164
165    /// Compare two SlotIndex objects for equality.
166    bool operator==(SlotIndex other) const {
167      return lie == other.lie;
168    }
169    /// Compare two SlotIndex objects for inequality.
170    bool operator!=(SlotIndex other) const {
171      return lie != other.lie;
172    }
173
174    /// Compare two SlotIndex objects. Return true if the first index
175    /// is strictly lower than the second.
176    bool operator<(SlotIndex other) const {
177      return getIndex() < other.getIndex();
178    }
179    /// Compare two SlotIndex objects. Return true if the first index
180    /// is lower than, or equal to, the second.
181    bool operator<=(SlotIndex other) const {
182      return getIndex() <= other.getIndex();
183    }
184
185    /// Compare two SlotIndex objects. Return true if the first index
186    /// is greater than the second.
187    bool operator>(SlotIndex other) const {
188      return getIndex() > other.getIndex();
189    }
190
191    /// Compare two SlotIndex objects. Return true if the first index
192    /// is greater than, or equal to, the second.
193    bool operator>=(SlotIndex other) const {
194      return getIndex() >= other.getIndex();
195    }
196
197    /// isSameInstr - Return true if A and B refer to the same instruction.
198    static bool isSameInstr(SlotIndex A, SlotIndex B) {
199      return A.lie.getPointer() == B.lie.getPointer();
200    }
201
202    /// isEarlierInstr - Return true if A refers to an instruction earlier than
203    /// B. This is equivalent to A < B && !isSameInstr(A, B).
204    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
205      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
206    }
207
208    /// Return true if A refers to the same instruction as B or an earlier one.
209    /// This is equivalent to !isEarlierInstr(B, A).
210    static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
211      return !isEarlierInstr(B, A);
212    }
213
214    /// Return the distance from this index to the given one.
215    int distance(SlotIndex other) const {
216      return other.getIndex() - getIndex();
217    }
218
219    /// Return the scaled distance from this index to the given one, where all
220    /// slots on the same instruction have zero distance.
221    int getInstrDistance(SlotIndex other) const {
222      return (other.listEntry()->getIndex() - listEntry()->getIndex())
223        / Slot_Count;
224    }
225
226    /// isBlock - Returns true if this is a block boundary slot.
227    bool isBlock() const { return getSlot() == Slot_Block; }
228
229    /// isEarlyClobber - Returns true if this is an early-clobber slot.
230    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
231
232    /// isRegister - Returns true if this is a normal register use/def slot.
233    /// Note that early-clobber slots may also be used for uses and defs.
234    bool isRegister() const { return getSlot() == Slot_Register; }
235
236    /// isDead - Returns true if this is a dead def kill slot.
237    bool isDead() const { return getSlot() == Slot_Dead; }
238
239    /// Returns the base index for associated with this index. The base index
240    /// is the one associated with the Slot_Block slot for the instruction
241    /// pointed to by this index.
242    SlotIndex getBaseIndex() const {
243      return SlotIndex(listEntry(), Slot_Block);
244    }
245
246    /// Returns the boundary index for associated with this index. The boundary
247    /// index is the one associated with the Slot_Block slot for the instruction
248    /// pointed to by this index.
249    SlotIndex getBoundaryIndex() const {
250      return SlotIndex(listEntry(), Slot_Dead);
251    }
252
253    /// Returns the register use/def slot in the current instruction for a
254    /// normal or early-clobber def.
255    SlotIndex getRegSlot(bool EC = false) const {
256      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
257    }
258
259    /// Returns the dead def kill slot for the current instruction.
260    SlotIndex getDeadSlot() const {
261      return SlotIndex(listEntry(), Slot_Dead);
262    }
263
264    /// Returns the next slot in the index list. This could be either the
265    /// next slot for the instruction pointed to by this index or, if this
266    /// index is a STORE, the first slot for the next instruction.
267    /// WARNING: This method is considerably more expensive than the methods
268    /// that return specific slots (getUseIndex(), etc). If you can - please
269    /// use one of those methods.
270    SlotIndex getNextSlot() const {
271      Slot s = getSlot();
272      if (s == Slot_Dead) {
273        return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
274      }
275      return SlotIndex(listEntry(), s + 1);
276    }
277
278    /// Returns the next index. This is the index corresponding to the this
279    /// index's slot, but for the next instruction.
280    SlotIndex getNextIndex() const {
281      return SlotIndex(&*++listEntry()->getIterator(), getSlot());
282    }
283
284    /// Returns the previous slot in the index list. This could be either the
285    /// previous slot for the instruction pointed to by this index or, if this
286    /// index is a Slot_Block, the last slot for the previous instruction.
287    /// WARNING: This method is considerably more expensive than the methods
288    /// that return specific slots (getUseIndex(), etc). If you can - please
289    /// use one of those methods.
290    SlotIndex getPrevSlot() const {
291      Slot s = getSlot();
292      if (s == Slot_Block) {
293        return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
294      }
295      return SlotIndex(listEntry(), s - 1);
296    }
297
298    /// Returns the previous index. This is the index corresponding to this
299    /// index's slot, but for the previous instruction.
300    SlotIndex getPrevIndex() const {
301      return SlotIndex(&*--listEntry()->getIterator(), getSlot());
302    }
303  };
304
305  template <> struct isPodLike<SlotIndex> { static const bool value = true; };
306
307  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
308    li.print(os);
309    return os;
310  }
311
312  using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>;
313
314  inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
315    return V < IM.first;
316  }
317
318  inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
319    return IM.first < V;
320  }
321
322  struct Idx2MBBCompare {
323    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
324      return LHS.first < RHS.first;
325    }
326  };
327
328  /// SlotIndexes pass.
329  ///
330  /// This pass assigns indexes to each instruction.
331  class SlotIndexes : public MachineFunctionPass {
332  private:
333    // IndexListEntry allocator.
334    BumpPtrAllocator ileAllocator;
335
336    using IndexList = ilist<IndexListEntry>;
337    IndexList indexList;
338
339#ifdef EXPENSIVE_CHECKS
340    IndexList graveyardList;
341#endif // EXPENSIVE_CHECKS
342
343    MachineFunction *mf;
344
345    using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>;
346    Mi2IndexMap mi2iMap;
347
348    /// MBBRanges - Map MBB number to (start, stop) indexes.
349    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
350
351    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
352    /// and MBB id.
353    SmallVector<IdxMBBPair, 8> idx2MBBMap;
354
355    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
356      IndexListEntry *entry =
357          static_cast<IndexListEntry *>(ileAllocator.Allocate(
358              sizeof(IndexListEntry), alignof(IndexListEntry)));
359
360      new (entry) IndexListEntry(mi, index);
361
362      return entry;
363    }
364
365    /// Renumber locally after inserting curItr.
366    void renumberIndexes(IndexList::iterator curItr);
367
368  public:
369    static char ID;
370
371    SlotIndexes() : MachineFunctionPass(ID) {
372      initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
373    }
374
375    ~SlotIndexes() override {
376      // The indexList's nodes are all allocated in the BumpPtrAllocator.
377      indexList.clearAndLeakNodesUnsafely();
378    }
379
380    void getAnalysisUsage(AnalysisUsage &au) const override;
381    void releaseMemory() override;
382
383    bool runOnMachineFunction(MachineFunction &fn) override;
384
385    /// Dump the indexes.
386    void dump() const;
387
388    /// Renumber the index list, providing space for new instructions.
389    void renumberIndexes();
390
391    /// Repair indexes after adding and removing instructions.
392    void repairIndexesInRange(MachineBasicBlock *MBB,
393                              MachineBasicBlock::iterator Begin,
394                              MachineBasicBlock::iterator End);
395
396    /// Returns the zero index for this analysis.
397    SlotIndex getZeroIndex() {
398      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
399      return SlotIndex(&indexList.front(), 0);
400    }
401
402    /// Returns the base index of the last slot in this analysis.
403    SlotIndex getLastIndex() {
404      return SlotIndex(&indexList.back(), 0);
405    }
406
407    /// Returns true if the given machine instr is mapped to an index,
408    /// otherwise returns false.
409    bool hasIndex(const MachineInstr &instr) const {
410      return mi2iMap.count(&instr);
411    }
412
413    /// Returns the base index for the given instruction.
414    SlotIndex getInstructionIndex(const MachineInstr &MI) const {
415      // Instructions inside a bundle have the same number as the bundle itself.
416      const MachineInstr &BundleStart = *getBundleStart(MI.getIterator());
417      Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleStart);
418      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
419      return itr->second;
420    }
421
422    /// Returns the instruction for the given index, or null if the given
423    /// index has no instruction associated with it.
424    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
425      return index.isValid() ? index.listEntry()->getInstr() : nullptr;
426    }
427
428    /// Returns the next non-null index, if one exists.
429    /// Otherwise returns getLastIndex().
430    SlotIndex getNextNonNullIndex(SlotIndex Index) {
431      IndexList::iterator I = Index.listEntry()->getIterator();
432      IndexList::iterator E = indexList.end();
433      while (++I != E)
434        if (I->getInstr())
435          return SlotIndex(&*I, Index.getSlot());
436      // We reached the end of the function.
437      return getLastIndex();
438    }
439
440    /// getIndexBefore - Returns the index of the last indexed instruction
441    /// before MI, or the start index of its basic block.
442    /// MI is not required to have an index.
443    SlotIndex getIndexBefore(const MachineInstr &MI) const {
444      const MachineBasicBlock *MBB = MI.getParent();
445      assert(MBB && "MI must be inserted inna basic block");
446      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
447      while (true) {
448        if (I == B)
449          return getMBBStartIdx(MBB);
450        --I;
451        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
452        if (MapItr != mi2iMap.end())
453          return MapItr->second;
454      }
455    }
456
457    /// getIndexAfter - Returns the index of the first indexed instruction
458    /// after MI, or the end index of its basic block.
459    /// MI is not required to have an index.
460    SlotIndex getIndexAfter(const MachineInstr &MI) const {
461      const MachineBasicBlock *MBB = MI.getParent();
462      assert(MBB && "MI must be inserted inna basic block");
463      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
464      while (true) {
465        ++I;
466        if (I == E)
467          return getMBBEndIdx(MBB);
468        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
469        if (MapItr != mi2iMap.end())
470          return MapItr->second;
471      }
472    }
473
474    /// Return the (start,end) range of the given basic block number.
475    const std::pair<SlotIndex, SlotIndex> &
476    getMBBRange(unsigned Num) const {
477      return MBBRanges[Num];
478    }
479
480    /// Return the (start,end) range of the given basic block.
481    const std::pair<SlotIndex, SlotIndex> &
482    getMBBRange(const MachineBasicBlock *MBB) const {
483      return getMBBRange(MBB->getNumber());
484    }
485
486    /// Returns the first index in the given basic block number.
487    SlotIndex getMBBStartIdx(unsigned Num) const {
488      return getMBBRange(Num).first;
489    }
490
491    /// Returns the first index in the given basic block.
492    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
493      return getMBBRange(mbb).first;
494    }
495
496    /// Returns the last index in the given basic block number.
497    SlotIndex getMBBEndIdx(unsigned Num) const {
498      return getMBBRange(Num).second;
499    }
500
501    /// Returns the last index in the given basic block.
502    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
503      return getMBBRange(mbb).second;
504    }
505
506    /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
507    /// begin and basic block)
508    using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator;
509
510    /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
511    /// equal to \p To.
512    MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
513      return std::lower_bound(I, idx2MBBMap.end(), To);
514    }
515
516    /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
517    /// that is greater or equal to \p Idx.
518    MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
519      return advanceMBBIndex(idx2MBBMap.begin(), Idx);
520    }
521
522    /// Returns an iterator for the begin of the idx2MBBMap.
523    MBBIndexIterator MBBIndexBegin() const {
524      return idx2MBBMap.begin();
525    }
526
527    /// Return an iterator for the end of the idx2MBBMap.
528    MBBIndexIterator MBBIndexEnd() const {
529      return idx2MBBMap.end();
530    }
531
532    /// Returns the basic block which the given index falls in.
533    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
534      if (MachineInstr *MI = getInstructionFromIndex(index))
535        return MI->getParent();
536
537      MBBIndexIterator I = findMBBIndex(index);
538      // Take the pair containing the index
539      MBBIndexIterator J =
540        ((I != MBBIndexEnd() && I->first > index) ||
541         (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
542
543      assert(J != MBBIndexEnd() && J->first <= index &&
544             index < getMBBEndIdx(J->second) &&
545             "index does not correspond to an MBB");
546      return J->second;
547    }
548
549    /// Returns the MBB covering the given range, or null if the range covers
550    /// more than one basic block.
551    MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
552
553      assert(start < end && "Backwards ranges not allowed.");
554      MBBIndexIterator itr = findMBBIndex(start);
555      if (itr == MBBIndexEnd()) {
556        itr = std::prev(itr);
557        return itr->second;
558      }
559
560      // Check that we don't cross the boundary into this block.
561      if (itr->first < end)
562        return nullptr;
563
564      itr = std::prev(itr);
565
566      if (itr->first <= start)
567        return itr->second;
568
569      return nullptr;
570    }
571
572    /// Insert the given machine instruction into the mapping. Returns the
573    /// assigned index.
574    /// If Late is set and there are null indexes between mi's neighboring
575    /// instructions, create the new index after the null indexes instead of
576    /// before them.
577    SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
578      assert(!MI.isInsideBundle() &&
579             "Instructions inside bundles should use bundle start's slot.");
580      assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
581      // Numbering DBG_VALUE instructions could cause code generation to be
582      // affected by debug information.
583      assert(!MI.isDebugValue() && "Cannot number DBG_VALUE instructions.");
584
585      assert(MI.getParent() != nullptr && "Instr must be added to function.");
586
587      // Get the entries where MI should be inserted.
588      IndexList::iterator prevItr, nextItr;
589      if (Late) {
590        // Insert MI's index immediately before the following instruction.
591        nextItr = getIndexAfter(MI).listEntry()->getIterator();
592        prevItr = std::prev(nextItr);
593      } else {
594        // Insert MI's index immediately after the preceding instruction.
595        prevItr = getIndexBefore(MI).listEntry()->getIterator();
596        nextItr = std::next(prevItr);
597      }
598
599      // Get a number for the new instr, or 0 if there's no room currently.
600      // In the latter case we'll force a renumber later.
601      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
602      unsigned newNumber = prevItr->getIndex() + dist;
603
604      // Insert a new list entry for MI.
605      IndexList::iterator newItr =
606          indexList.insert(nextItr, createEntry(&MI, newNumber));
607
608      // Renumber locally if we need to.
609      if (dist == 0)
610        renumberIndexes(newItr);
611
612      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
613      mi2iMap.insert(std::make_pair(&MI, newIndex));
614      return newIndex;
615    }
616
617    /// Removes machine instruction (bundle) \p MI from the mapping.
618    /// This should be called before MachineInstr::eraseFromParent() is used to
619    /// remove a whole bundle or an unbundled instruction.
620    void removeMachineInstrFromMaps(MachineInstr &MI);
621
622    /// Removes a single machine instruction \p MI from the mapping.
623    /// This should be called before MachineInstr::eraseFromBundle() is used to
624    /// remove a single instruction (out of a bundle).
625    void removeSingleMachineInstrFromMaps(MachineInstr &MI);
626
627    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
628    /// maps used by register allocator. \returns the index where the new
629    /// instruction was inserted.
630    SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
631      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
632      if (mi2iItr == mi2iMap.end())
633        return SlotIndex();
634      SlotIndex replaceBaseIndex = mi2iItr->second;
635      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
636      assert(miEntry->getInstr() == &MI &&
637             "Mismatched instruction in index tables.");
638      miEntry->setInstr(&NewMI);
639      mi2iMap.erase(mi2iItr);
640      mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
641      return replaceBaseIndex;
642    }
643
644    /// Add the given MachineBasicBlock into the maps.
645    void insertMBBInMaps(MachineBasicBlock *mbb) {
646      MachineFunction::iterator nextMBB =
647        std::next(MachineFunction::iterator(mbb));
648
649      IndexListEntry *startEntry = nullptr;
650      IndexListEntry *endEntry = nullptr;
651      IndexList::iterator newItr;
652      if (nextMBB == mbb->getParent()->end()) {
653        startEntry = &indexList.back();
654        endEntry = createEntry(nullptr, 0);
655        newItr = indexList.insertAfter(startEntry->getIterator(), endEntry);
656      } else {
657        startEntry = createEntry(nullptr, 0);
658        endEntry = getMBBStartIdx(&*nextMBB).listEntry();
659        newItr = indexList.insert(endEntry->getIterator(), startEntry);
660      }
661
662      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
663      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
664
665      MachineFunction::iterator prevMBB(mbb);
666      assert(prevMBB != mbb->getParent()->end() &&
667             "Can't insert a new block at the beginning of a function.");
668      --prevMBB;
669      MBBRanges[prevMBB->getNumber()].second = startIdx;
670
671      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
672             "Blocks must be added in order");
673      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
674      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
675
676      renumberIndexes(newItr);
677      std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
678    }
679
680    /// \brief Free the resources that were required to maintain a SlotIndex.
681    ///
682    /// Once an index is no longer needed (for instance because the instruction
683    /// at that index has been moved), the resources required to maintain the
684    /// index can be relinquished to reduce memory use and improve renumbering
685    /// performance. Any remaining SlotIndex objects that point to the same
686    /// index are left 'dangling' (much the same as a dangling pointer to a
687    /// freed object) and should not be accessed, except to destruct them.
688    ///
689    /// Like dangling pointers, access to dangling SlotIndexes can cause
690    /// painful-to-track-down bugs, especially if the memory for the index
691    /// previously pointed to has been re-used. To detect dangling SlotIndex
692    /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
693    /// be retained in a graveyard instead of being freed. Operations on indexes
694    /// in the graveyard will trigger an assertion.
695    void eraseIndex(SlotIndex index) {
696      IndexListEntry *entry = index.listEntry();
697#ifdef EXPENSIVE_CHECKS
698      indexList.remove(entry);
699      graveyardList.push_back(entry);
700      entry->setPoison();
701#else
702      indexList.erase(entry);
703#endif
704    }
705  };
706
707  // Specialize IntervalMapInfo for half-open slot index intervals.
708  template <>
709  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
710  };
711
712} // end namespace llvm
713
714#endif // LLVM_CODEGEN_SLOTINDEXES_H
715