1//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declarations of classes that represent "derived
11// types".  These are things like "arrays of x" or "structure of x, y, z" or
12// "function returning x taking (y,z) as parameters", etc...
13//
14// The implementations of these classes live in the Type.cpp file.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_IR_DERIVEDTYPES_H
19#define LLVM_IR_DERIVEDTYPES_H
20
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/Compiler.h"
27#include <cassert>
28#include <cstdint>
29
30namespace llvm {
31
32class Value;
33class APInt;
34class LLVMContext;
35
36/// Class to represent integer types. Note that this class is also used to
37/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38/// Int64Ty.
39/// @brief Integer representation type
40class IntegerType : public Type {
41  friend class LLVMContextImpl;
42
43protected:
44  explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45    setSubclassData(NumBits);
46  }
47
48public:
49  /// This enum is just used to hold constants we need for IntegerType.
50  enum {
51    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52    MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53      ///< Note that bit width is stored in the Type classes SubclassData field
54      ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55      ///< bits.
56  };
57
58  /// This static method is the primary way of constructing an IntegerType.
59  /// If an IntegerType with the same NumBits value was previously instantiated,
60  /// that instance will be returned. Otherwise a new one will be created. Only
61  /// one instance with a given NumBits value is ever created.
62  /// @brief Get or create an IntegerType instance.
63  static IntegerType *get(LLVMContext &C, unsigned NumBits);
64
65  /// @brief Get the number of bits in this IntegerType
66  unsigned getBitWidth() const { return getSubclassData(); }
67
68  /// Return a bitmask with ones set for all of the bits that can be set by an
69  /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
70  uint64_t getBitMask() const {
71    return ~uint64_t(0UL) >> (64-getBitWidth());
72  }
73
74  /// Return a uint64_t with just the most significant bit set (the sign bit, if
75  /// the value is treated as a signed number).
76  uint64_t getSignBit() const {
77    return 1ULL << (getBitWidth()-1);
78  }
79
80  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
81  /// @returns a bit mask with ones set for all the bits of this type.
82  /// @brief Get a bit mask for this type.
83  APInt getMask() const;
84
85  /// This method determines if the width of this IntegerType is a power-of-2
86  /// in terms of 8 bit bytes.
87  /// @returns true if this is a power-of-2 byte width.
88  /// @brief Is this a power-of-2 byte-width IntegerType ?
89  bool isPowerOf2ByteWidth() const;
90
91  /// Methods for support type inquiry through isa, cast, and dyn_cast.
92  static bool classof(const Type *T) {
93    return T->getTypeID() == IntegerTyID;
94  }
95};
96
97unsigned Type::getIntegerBitWidth() const {
98  return cast<IntegerType>(this)->getBitWidth();
99}
100
101/// Class to represent function types
102///
103class FunctionType : public Type {
104  FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105
106public:
107  FunctionType(const FunctionType &) = delete;
108  FunctionType &operator=(const FunctionType &) = delete;
109
110  /// This static method is the primary way of constructing a FunctionType.
111  static FunctionType *get(Type *Result,
112                           ArrayRef<Type*> Params, bool isVarArg);
113
114  /// Create a FunctionType taking no parameters.
115  static FunctionType *get(Type *Result, bool isVarArg);
116
117  /// Return true if the specified type is valid as a return type.
118  static bool isValidReturnType(Type *RetTy);
119
120  /// Return true if the specified type is valid as an argument type.
121  static bool isValidArgumentType(Type *ArgTy);
122
123  bool isVarArg() const { return getSubclassData()!=0; }
124  Type *getReturnType() const { return ContainedTys[0]; }
125
126  using param_iterator = Type::subtype_iterator;
127
128  param_iterator param_begin() const { return ContainedTys + 1; }
129  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
130  ArrayRef<Type *> params() const {
131    return makeArrayRef(param_begin(), param_end());
132  }
133
134  /// Parameter type accessors.
135  Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136
137  /// Return the number of fixed parameters this function type requires.
138  /// This does not consider varargs.
139  unsigned getNumParams() const { return NumContainedTys - 1; }
140
141  /// Methods for support type inquiry through isa, cast, and dyn_cast.
142  static bool classof(const Type *T) {
143    return T->getTypeID() == FunctionTyID;
144  }
145};
146static_assert(alignof(FunctionType) >= alignof(Type *),
147              "Alignment sufficient for objects appended to FunctionType");
148
149bool Type::isFunctionVarArg() const {
150  return cast<FunctionType>(this)->isVarArg();
151}
152
153Type *Type::getFunctionParamType(unsigned i) const {
154  return cast<FunctionType>(this)->getParamType(i);
155}
156
157unsigned Type::getFunctionNumParams() const {
158  return cast<FunctionType>(this)->getNumParams();
159}
160
161/// Common super class of ArrayType, StructType and VectorType.
162class CompositeType : public Type {
163protected:
164  explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
165
166public:
167  /// Given an index value into the type, return the type of the element.
168  Type *getTypeAtIndex(const Value *V) const;
169  Type *getTypeAtIndex(unsigned Idx) const;
170  bool indexValid(const Value *V) const;
171  bool indexValid(unsigned Idx) const;
172
173  /// Methods for support type inquiry through isa, cast, and dyn_cast.
174  static bool classof(const Type *T) {
175    return T->getTypeID() == ArrayTyID ||
176           T->getTypeID() == StructTyID ||
177           T->getTypeID() == VectorTyID;
178  }
179};
180
181/// Class to represent struct types. There are two different kinds of struct
182/// types: Literal structs and Identified structs.
183///
184/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
185/// always have a body when created.  You can get one of these by using one of
186/// the StructType::get() forms.
187///
188/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
189/// uniqued.  The names for identified structs are managed at the LLVMContext
190/// level, so there can only be a single identified struct with a given name in
191/// a particular LLVMContext.  Identified structs may also optionally be opaque
192/// (have no body specified).  You get one of these by using one of the
193/// StructType::create() forms.
194///
195/// Independent of what kind of struct you have, the body of a struct type are
196/// laid out in memory consequtively with the elements directly one after the
197/// other (if the struct is packed) or (if not packed) with padding between the
198/// elements as defined by DataLayout (which is required to match what the code
199/// generator for a target expects).
200///
201class StructType : public CompositeType {
202  StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
203
204  enum {
205    /// This is the contents of the SubClassData field.
206    SCDB_HasBody = 1,
207    SCDB_Packed = 2,
208    SCDB_IsLiteral = 4,
209    SCDB_IsSized = 8
210  };
211
212  /// For a named struct that actually has a name, this is a pointer to the
213  /// symbol table entry (maintained by LLVMContext) for the struct.
214  /// This is null if the type is an literal struct or if it is a identified
215  /// type that has an empty name.
216  void *SymbolTableEntry = nullptr;
217
218public:
219  StructType(const StructType &) = delete;
220  StructType &operator=(const StructType &) = delete;
221
222  /// This creates an identified struct.
223  static StructType *create(LLVMContext &Context, StringRef Name);
224  static StructType *create(LLVMContext &Context);
225
226  static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
227                            bool isPacked = false);
228  static StructType *create(ArrayRef<Type *> Elements);
229  static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
230                            StringRef Name, bool isPacked = false);
231  static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
232  template <class... Tys>
233  static typename std::enable_if<are_base_of<Type, Tys...>::value,
234                                 StructType *>::type
235  create(StringRef Name, Type *elt1, Tys *... elts) {
236    assert(elt1 && "Cannot create a struct type with no elements with this");
237    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
238    return create(StructFields, Name);
239  }
240
241  /// This static method is the primary way to create a literal StructType.
242  static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
243                         bool isPacked = false);
244
245  /// Create an empty structure type.
246  static StructType *get(LLVMContext &Context, bool isPacked = false);
247
248  /// This static method is a convenience method for creating structure types by
249  /// specifying the elements as arguments. Note that this method always returns
250  /// a non-packed struct, and requires at least one element type.
251  template <class... Tys>
252  static typename std::enable_if<are_base_of<Type, Tys...>::value,
253                                 StructType *>::type
254  get(Type *elt1, Tys *... elts) {
255    assert(elt1 && "Cannot create a struct type with no elements with this");
256    LLVMContext &Ctx = elt1->getContext();
257    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
258    return llvm::StructType::get(Ctx, StructFields);
259  }
260
261  bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
262
263  /// Return true if this type is uniqued by structural equivalence, false if it
264  /// is a struct definition.
265  bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
266
267  /// Return true if this is a type with an identity that has no body specified
268  /// yet. These prints as 'opaque' in .ll files.
269  bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
270
271  /// isSized - Return true if this is a sized type.
272  bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
273
274  /// Return true if this is a named struct that has a non-empty name.
275  bool hasName() const { return SymbolTableEntry != nullptr; }
276
277  /// Return the name for this struct type if it has an identity.
278  /// This may return an empty string for an unnamed struct type.  Do not call
279  /// this on an literal type.
280  StringRef getName() const;
281
282  /// Change the name of this type to the specified name, or to a name with a
283  /// suffix if there is a collision. Do not call this on an literal type.
284  void setName(StringRef Name);
285
286  /// Specify a body for an opaque identified type.
287  void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
288
289  template <typename... Tys>
290  typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
291  setBody(Type *elt1, Tys *... elts) {
292    assert(elt1 && "Cannot create a struct type with no elements with this");
293    SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
294    setBody(StructFields);
295  }
296
297  /// Return true if the specified type is valid as a element type.
298  static bool isValidElementType(Type *ElemTy);
299
300  // Iterator access to the elements.
301  using element_iterator = Type::subtype_iterator;
302
303  element_iterator element_begin() const { return ContainedTys; }
304  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
305  ArrayRef<Type *> const elements() const {
306    return makeArrayRef(element_begin(), element_end());
307  }
308
309  /// Return true if this is layout identical to the specified struct.
310  bool isLayoutIdentical(StructType *Other) const;
311
312  /// Random access to the elements
313  unsigned getNumElements() const { return NumContainedTys; }
314  Type *getElementType(unsigned N) const {
315    assert(N < NumContainedTys && "Element number out of range!");
316    return ContainedTys[N];
317  }
318
319  /// Methods for support type inquiry through isa, cast, and dyn_cast.
320  static bool classof(const Type *T) {
321    return T->getTypeID() == StructTyID;
322  }
323};
324
325StringRef Type::getStructName() const {
326  return cast<StructType>(this)->getName();
327}
328
329unsigned Type::getStructNumElements() const {
330  return cast<StructType>(this)->getNumElements();
331}
332
333Type *Type::getStructElementType(unsigned N) const {
334  return cast<StructType>(this)->getElementType(N);
335}
336
337/// This is the superclass of the array and vector type classes. Both of these
338/// represent "arrays" in memory. The array type represents a specifically sized
339/// array, and the vector type represents a specifically sized array that allows
340/// for use of SIMD instructions. SequentialType holds the common features of
341/// both, which stem from the fact that both lay their components out in memory
342/// identically.
343class SequentialType : public CompositeType {
344  Type *ContainedType;               ///< Storage for the single contained type.
345  uint64_t NumElements;
346
347protected:
348  SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
349    : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
350      NumElements(NumElements) {
351    ContainedTys = &ContainedType;
352    NumContainedTys = 1;
353  }
354
355public:
356  SequentialType(const SequentialType &) = delete;
357  SequentialType &operator=(const SequentialType &) = delete;
358
359  uint64_t getNumElements() const { return NumElements; }
360  Type *getElementType() const { return ContainedType; }
361
362  /// Methods for support type inquiry through isa, cast, and dyn_cast.
363  static bool classof(const Type *T) {
364    return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
365  }
366};
367
368/// Class to represent array types.
369class ArrayType : public SequentialType {
370  ArrayType(Type *ElType, uint64_t NumEl);
371
372public:
373  ArrayType(const ArrayType &) = delete;
374  ArrayType &operator=(const ArrayType &) = delete;
375
376  /// This static method is the primary way to construct an ArrayType
377  static ArrayType *get(Type *ElementType, uint64_t NumElements);
378
379  /// Return true if the specified type is valid as a element type.
380  static bool isValidElementType(Type *ElemTy);
381
382  /// Methods for support type inquiry through isa, cast, and dyn_cast.
383  static bool classof(const Type *T) {
384    return T->getTypeID() == ArrayTyID;
385  }
386};
387
388uint64_t Type::getArrayNumElements() const {
389  return cast<ArrayType>(this)->getNumElements();
390}
391
392/// Class to represent vector types.
393class VectorType : public SequentialType {
394  VectorType(Type *ElType, unsigned NumEl);
395
396public:
397  VectorType(const VectorType &) = delete;
398  VectorType &operator=(const VectorType &) = delete;
399
400  /// This static method is the primary way to construct an VectorType.
401  static VectorType *get(Type *ElementType, unsigned NumElements);
402
403  /// This static method gets a VectorType with the same number of elements as
404  /// the input type, and the element type is an integer type of the same width
405  /// as the input element type.
406  static VectorType *getInteger(VectorType *VTy) {
407    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
408    assert(EltBits && "Element size must be of a non-zero size");
409    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
410    return VectorType::get(EltTy, VTy->getNumElements());
411  }
412
413  /// This static method is like getInteger except that the element types are
414  /// twice as wide as the elements in the input type.
415  static VectorType *getExtendedElementVectorType(VectorType *VTy) {
416    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
417    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
418    return VectorType::get(EltTy, VTy->getNumElements());
419  }
420
421  /// This static method is like getInteger except that the element types are
422  /// half as wide as the elements in the input type.
423  static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
424    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
425    assert((EltBits & 1) == 0 &&
426           "Cannot truncate vector element with odd bit-width");
427    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
428    return VectorType::get(EltTy, VTy->getNumElements());
429  }
430
431  /// This static method returns a VectorType with half as many elements as the
432  /// input type and the same element type.
433  static VectorType *getHalfElementsVectorType(VectorType *VTy) {
434    unsigned NumElts = VTy->getNumElements();
435    assert ((NumElts & 1) == 0 &&
436            "Cannot halve vector with odd number of elements.");
437    return VectorType::get(VTy->getElementType(), NumElts/2);
438  }
439
440  /// This static method returns a VectorType with twice as many elements as the
441  /// input type and the same element type.
442  static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
443    unsigned NumElts = VTy->getNumElements();
444    return VectorType::get(VTy->getElementType(), NumElts*2);
445  }
446
447  /// Return true if the specified type is valid as a element type.
448  static bool isValidElementType(Type *ElemTy);
449
450  /// Return the number of bits in the Vector type.
451  /// Returns zero when the vector is a vector of pointers.
452  unsigned getBitWidth() const {
453    return getNumElements() * getElementType()->getPrimitiveSizeInBits();
454  }
455
456  /// Methods for support type inquiry through isa, cast, and dyn_cast.
457  static bool classof(const Type *T) {
458    return T->getTypeID() == VectorTyID;
459  }
460};
461
462unsigned Type::getVectorNumElements() const {
463  return cast<VectorType>(this)->getNumElements();
464}
465
466/// Class to represent pointers.
467class PointerType : public Type {
468  explicit PointerType(Type *ElType, unsigned AddrSpace);
469
470  Type *PointeeTy;
471
472public:
473  PointerType(const PointerType &) = delete;
474  PointerType &operator=(const PointerType &) = delete;
475
476  /// This constructs a pointer to an object of the specified type in a numbered
477  /// address space.
478  static PointerType *get(Type *ElementType, unsigned AddressSpace);
479
480  /// This constructs a pointer to an object of the specified type in the
481  /// generic address space (address space zero).
482  static PointerType *getUnqual(Type *ElementType) {
483    return PointerType::get(ElementType, 0);
484  }
485
486  Type *getElementType() const { return PointeeTy; }
487
488  /// Return true if the specified type is valid as a element type.
489  static bool isValidElementType(Type *ElemTy);
490
491  /// Return true if we can load or store from a pointer to this type.
492  static bool isLoadableOrStorableType(Type *ElemTy);
493
494  /// Return the address space of the Pointer type.
495  inline unsigned getAddressSpace() const { return getSubclassData(); }
496
497  /// Implement support type inquiry through isa, cast, and dyn_cast.
498  static bool classof(const Type *T) {
499    return T->getTypeID() == PointerTyID;
500  }
501};
502
503unsigned Type::getPointerAddressSpace() const {
504  return cast<PointerType>(getScalarType())->getAddressSpace();
505}
506
507} // end namespace llvm
508
509#endif // LLVM_IR_DERIVEDTYPES_H
510