1//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SparseBitVector class.  See the doxygen comment for
11// SparseBitVector for more details on the algorithm used.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_SPARSEBITVECTOR_H
16#define LLVM_ADT_SPARSEBITVECTOR_H
17
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/raw_ostream.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <iterator>
25#include <list>
26
27namespace llvm {
28
29/// SparseBitVector is an implementation of a bitvector that is sparse by only
30/// storing the elements that have non-zero bits set.  In order to make this
31/// fast for the most common cases, SparseBitVector is implemented as a linked
32/// list of SparseBitVectorElements.  We maintain a pointer to the last
33/// SparseBitVectorElement accessed (in the form of a list iterator), in order
34/// to make multiple in-order test/set constant time after the first one is
35/// executed.  Note that using vectors to store SparseBitVectorElement's does
36/// not work out very well because it causes insertion in the middle to take
37/// enormous amounts of time with a large amount of bits.  Other structures that
38/// have better worst cases for insertion in the middle (various balanced trees,
39/// etc) do not perform as well in practice as a linked list with this iterator
40/// kept up to date.  They are also significantly more memory intensive.
41
42template <unsigned ElementSize = 128> struct SparseBitVectorElement {
43public:
44  using BitWord = unsigned long;
45  using size_type = unsigned;
46  enum {
47    BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
48    BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
49    BITS_PER_ELEMENT = ElementSize
50  };
51
52private:
53  // Index of Element in terms of where first bit starts.
54  unsigned ElementIndex;
55  BitWord Bits[BITWORDS_PER_ELEMENT];
56
57  SparseBitVectorElement() {
58    ElementIndex = ~0U;
59    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
60  }
61
62public:
63  explicit SparseBitVectorElement(unsigned Idx) {
64    ElementIndex = Idx;
65    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
66  }
67
68  // Comparison.
69  bool operator==(const SparseBitVectorElement &RHS) const {
70    if (ElementIndex != RHS.ElementIndex)
71      return false;
72    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
73      if (Bits[i] != RHS.Bits[i])
74        return false;
75    return true;
76  }
77
78  bool operator!=(const SparseBitVectorElement &RHS) const {
79    return !(*this == RHS);
80  }
81
82  // Return the bits that make up word Idx in our element.
83  BitWord word(unsigned Idx) const {
84    assert(Idx < BITWORDS_PER_ELEMENT);
85    return Bits[Idx];
86  }
87
88  unsigned index() const {
89    return ElementIndex;
90  }
91
92  bool empty() const {
93    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
94      if (Bits[i])
95        return false;
96    return true;
97  }
98
99  void set(unsigned Idx) {
100    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
101  }
102
103  bool test_and_set(unsigned Idx) {
104    bool old = test(Idx);
105    if (!old) {
106      set(Idx);
107      return true;
108    }
109    return false;
110  }
111
112  void reset(unsigned Idx) {
113    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
114  }
115
116  bool test(unsigned Idx) const {
117    return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
118  }
119
120  size_type count() const {
121    unsigned NumBits = 0;
122    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
123      NumBits += countPopulation(Bits[i]);
124    return NumBits;
125  }
126
127  /// find_first - Returns the index of the first set bit.
128  int find_first() const {
129    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
130      if (Bits[i] != 0)
131        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
132    llvm_unreachable("Illegal empty element");
133  }
134
135  /// find_last - Returns the index of the last set bit.
136  int find_last() const {
137    for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) {
138      unsigned Idx = BITWORDS_PER_ELEMENT - I - 1;
139      if (Bits[Idx] != 0)
140        return Idx * BITWORD_SIZE + BITWORD_SIZE -
141               countLeadingZeros(Bits[Idx]) - 1;
142    }
143    llvm_unreachable("Illegal empty element");
144  }
145
146  /// find_next - Returns the index of the next set bit starting from the
147  /// "Curr" bit. Returns -1 if the next set bit is not found.
148  int find_next(unsigned Curr) const {
149    if (Curr >= BITS_PER_ELEMENT)
150      return -1;
151
152    unsigned WordPos = Curr / BITWORD_SIZE;
153    unsigned BitPos = Curr % BITWORD_SIZE;
154    BitWord Copy = Bits[WordPos];
155    assert(WordPos <= BITWORDS_PER_ELEMENT
156           && "Word Position outside of element");
157
158    // Mask off previous bits.
159    Copy &= ~0UL << BitPos;
160
161    if (Copy != 0)
162      return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
163
164    // Check subsequent words.
165    for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
166      if (Bits[i] != 0)
167        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
168    return -1;
169  }
170
171  // Union this element with RHS and return true if this one changed.
172  bool unionWith(const SparseBitVectorElement &RHS) {
173    bool changed = false;
174    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
175      BitWord old = changed ? 0 : Bits[i];
176
177      Bits[i] |= RHS.Bits[i];
178      if (!changed && old != Bits[i])
179        changed = true;
180    }
181    return changed;
182  }
183
184  // Return true if we have any bits in common with RHS
185  bool intersects(const SparseBitVectorElement &RHS) const {
186    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
187      if (RHS.Bits[i] & Bits[i])
188        return true;
189    }
190    return false;
191  }
192
193  // Intersect this Element with RHS and return true if this one changed.
194  // BecameZero is set to true if this element became all-zero bits.
195  bool intersectWith(const SparseBitVectorElement &RHS,
196                     bool &BecameZero) {
197    bool changed = false;
198    bool allzero = true;
199
200    BecameZero = false;
201    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
202      BitWord old = changed ? 0 : Bits[i];
203
204      Bits[i] &= RHS.Bits[i];
205      if (Bits[i] != 0)
206        allzero = false;
207
208      if (!changed && old != Bits[i])
209        changed = true;
210    }
211    BecameZero = allzero;
212    return changed;
213  }
214
215  // Intersect this Element with the complement of RHS and return true if this
216  // one changed.  BecameZero is set to true if this element became all-zero
217  // bits.
218  bool intersectWithComplement(const SparseBitVectorElement &RHS,
219                               bool &BecameZero) {
220    bool changed = false;
221    bool allzero = true;
222
223    BecameZero = false;
224    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
225      BitWord old = changed ? 0 : Bits[i];
226
227      Bits[i] &= ~RHS.Bits[i];
228      if (Bits[i] != 0)
229        allzero = false;
230
231      if (!changed && old != Bits[i])
232        changed = true;
233    }
234    BecameZero = allzero;
235    return changed;
236  }
237
238  // Three argument version of intersectWithComplement that intersects
239  // RHS1 & ~RHS2 into this element
240  void intersectWithComplement(const SparseBitVectorElement &RHS1,
241                               const SparseBitVectorElement &RHS2,
242                               bool &BecameZero) {
243    bool allzero = true;
244
245    BecameZero = false;
246    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
247      Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
248      if (Bits[i] != 0)
249        allzero = false;
250    }
251    BecameZero = allzero;
252  }
253};
254
255template <unsigned ElementSize = 128>
256class SparseBitVector {
257  using ElementList = std::list<SparseBitVectorElement<ElementSize>>;
258  using ElementListIter = typename ElementList::iterator;
259  using ElementListConstIter = typename ElementList::const_iterator;
260  enum {
261    BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
262  };
263
264  // Pointer to our current Element.
265  ElementListIter CurrElementIter;
266  ElementList Elements;
267
268  // This is like std::lower_bound, except we do linear searching from the
269  // current position.
270  ElementListIter FindLowerBound(unsigned ElementIndex) {
271
272    if (Elements.empty()) {
273      CurrElementIter = Elements.begin();
274      return Elements.begin();
275    }
276
277    // Make sure our current iterator is valid.
278    if (CurrElementIter == Elements.end())
279      --CurrElementIter;
280
281    // Search from our current iterator, either backwards or forwards,
282    // depending on what element we are looking for.
283    ElementListIter ElementIter = CurrElementIter;
284    if (CurrElementIter->index() == ElementIndex) {
285      return ElementIter;
286    } else if (CurrElementIter->index() > ElementIndex) {
287      while (ElementIter != Elements.begin()
288             && ElementIter->index() > ElementIndex)
289        --ElementIter;
290    } else {
291      while (ElementIter != Elements.end() &&
292             ElementIter->index() < ElementIndex)
293        ++ElementIter;
294    }
295    CurrElementIter = ElementIter;
296    return ElementIter;
297  }
298
299  // Iterator to walk set bits in the bitmap.  This iterator is a lot uglier
300  // than it would be, in order to be efficient.
301  class SparseBitVectorIterator {
302  private:
303    bool AtEnd;
304
305    const SparseBitVector<ElementSize> *BitVector = nullptr;
306
307    // Current element inside of bitmap.
308    ElementListConstIter Iter;
309
310    // Current bit number inside of our bitmap.
311    unsigned BitNumber;
312
313    // Current word number inside of our element.
314    unsigned WordNumber;
315
316    // Current bits from the element.
317    typename SparseBitVectorElement<ElementSize>::BitWord Bits;
318
319    // Move our iterator to the first non-zero bit in the bitmap.
320    void AdvanceToFirstNonZero() {
321      if (AtEnd)
322        return;
323      if (BitVector->Elements.empty()) {
324        AtEnd = true;
325        return;
326      }
327      Iter = BitVector->Elements.begin();
328      BitNumber = Iter->index() * ElementSize;
329      unsigned BitPos = Iter->find_first();
330      BitNumber += BitPos;
331      WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
332      Bits = Iter->word(WordNumber);
333      Bits >>= BitPos % BITWORD_SIZE;
334    }
335
336    // Move our iterator to the next non-zero bit.
337    void AdvanceToNextNonZero() {
338      if (AtEnd)
339        return;
340
341      while (Bits && !(Bits & 1)) {
342        Bits >>= 1;
343        BitNumber += 1;
344      }
345
346      // See if we ran out of Bits in this word.
347      if (!Bits) {
348        int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
349        // If we ran out of set bits in this element, move to next element.
350        if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
351          ++Iter;
352          WordNumber = 0;
353
354          // We may run out of elements in the bitmap.
355          if (Iter == BitVector->Elements.end()) {
356            AtEnd = true;
357            return;
358          }
359          // Set up for next non-zero word in bitmap.
360          BitNumber = Iter->index() * ElementSize;
361          NextSetBitNumber = Iter->find_first();
362          BitNumber += NextSetBitNumber;
363          WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
364          Bits = Iter->word(WordNumber);
365          Bits >>= NextSetBitNumber % BITWORD_SIZE;
366        } else {
367          WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
368          Bits = Iter->word(WordNumber);
369          Bits >>= NextSetBitNumber % BITWORD_SIZE;
370          BitNumber = Iter->index() * ElementSize;
371          BitNumber += NextSetBitNumber;
372        }
373      }
374    }
375
376  public:
377    SparseBitVectorIterator() = default;
378
379    SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
380                            bool end = false):BitVector(RHS) {
381      Iter = BitVector->Elements.begin();
382      BitNumber = 0;
383      Bits = 0;
384      WordNumber = ~0;
385      AtEnd = end;
386      AdvanceToFirstNonZero();
387    }
388
389    // Preincrement.
390    inline SparseBitVectorIterator& operator++() {
391      ++BitNumber;
392      Bits >>= 1;
393      AdvanceToNextNonZero();
394      return *this;
395    }
396
397    // Postincrement.
398    inline SparseBitVectorIterator operator++(int) {
399      SparseBitVectorIterator tmp = *this;
400      ++*this;
401      return tmp;
402    }
403
404    // Return the current set bit number.
405    unsigned operator*() const {
406      return BitNumber;
407    }
408
409    bool operator==(const SparseBitVectorIterator &RHS) const {
410      // If they are both at the end, ignore the rest of the fields.
411      if (AtEnd && RHS.AtEnd)
412        return true;
413      // Otherwise they are the same if they have the same bit number and
414      // bitmap.
415      return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
416    }
417
418    bool operator!=(const SparseBitVectorIterator &RHS) const {
419      return !(*this == RHS);
420    }
421  };
422
423public:
424  using iterator = SparseBitVectorIterator;
425
426  SparseBitVector() {
427    CurrElementIter = Elements.begin();
428  }
429
430  // SparseBitVector copy ctor.
431  SparseBitVector(const SparseBitVector &RHS) {
432    ElementListConstIter ElementIter = RHS.Elements.begin();
433    while (ElementIter != RHS.Elements.end()) {
434      Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
435      ++ElementIter;
436    }
437
438    CurrElementIter = Elements.begin ();
439  }
440
441  ~SparseBitVector() = default;
442
443  // Clear.
444  void clear() {
445    Elements.clear();
446  }
447
448  // Assignment
449  SparseBitVector& operator=(const SparseBitVector& RHS) {
450    if (this == &RHS)
451      return *this;
452
453    Elements.clear();
454
455    ElementListConstIter ElementIter = RHS.Elements.begin();
456    while (ElementIter != RHS.Elements.end()) {
457      Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
458      ++ElementIter;
459    }
460
461    CurrElementIter = Elements.begin ();
462
463    return *this;
464  }
465
466  // Test, Reset, and Set a bit in the bitmap.
467  bool test(unsigned Idx) {
468    if (Elements.empty())
469      return false;
470
471    unsigned ElementIndex = Idx / ElementSize;
472    ElementListIter ElementIter = FindLowerBound(ElementIndex);
473
474    // If we can't find an element that is supposed to contain this bit, there
475    // is nothing more to do.
476    if (ElementIter == Elements.end() ||
477        ElementIter->index() != ElementIndex)
478      return false;
479    return ElementIter->test(Idx % ElementSize);
480  }
481
482  void reset(unsigned Idx) {
483    if (Elements.empty())
484      return;
485
486    unsigned ElementIndex = Idx / ElementSize;
487    ElementListIter ElementIter = FindLowerBound(ElementIndex);
488
489    // If we can't find an element that is supposed to contain this bit, there
490    // is nothing more to do.
491    if (ElementIter == Elements.end() ||
492        ElementIter->index() != ElementIndex)
493      return;
494    ElementIter->reset(Idx % ElementSize);
495
496    // When the element is zeroed out, delete it.
497    if (ElementIter->empty()) {
498      ++CurrElementIter;
499      Elements.erase(ElementIter);
500    }
501  }
502
503  void set(unsigned Idx) {
504    unsigned ElementIndex = Idx / ElementSize;
505    ElementListIter ElementIter;
506    if (Elements.empty()) {
507      ElementIter = Elements.emplace(Elements.end(), ElementIndex);
508    } else {
509      ElementIter = FindLowerBound(ElementIndex);
510
511      if (ElementIter == Elements.end() ||
512          ElementIter->index() != ElementIndex) {
513        // We may have hit the beginning of our SparseBitVector, in which case,
514        // we may need to insert right after this element, which requires moving
515        // the current iterator forward one, because insert does insert before.
516        if (ElementIter != Elements.end() &&
517            ElementIter->index() < ElementIndex)
518          ++ElementIter;
519        ElementIter = Elements.emplace(ElementIter, ElementIndex);
520      }
521    }
522    CurrElementIter = ElementIter;
523
524    ElementIter->set(Idx % ElementSize);
525  }
526
527  bool test_and_set(unsigned Idx) {
528    bool old = test(Idx);
529    if (!old) {
530      set(Idx);
531      return true;
532    }
533    return false;
534  }
535
536  bool operator!=(const SparseBitVector &RHS) const {
537    return !(*this == RHS);
538  }
539
540  bool operator==(const SparseBitVector &RHS) const {
541    ElementListConstIter Iter1 = Elements.begin();
542    ElementListConstIter Iter2 = RHS.Elements.begin();
543
544    for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
545         ++Iter1, ++Iter2) {
546      if (*Iter1 != *Iter2)
547        return false;
548    }
549    return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
550  }
551
552  // Union our bitmap with the RHS and return true if we changed.
553  bool operator|=(const SparseBitVector &RHS) {
554    if (this == &RHS)
555      return false;
556
557    bool changed = false;
558    ElementListIter Iter1 = Elements.begin();
559    ElementListConstIter Iter2 = RHS.Elements.begin();
560
561    // If RHS is empty, we are done
562    if (RHS.Elements.empty())
563      return false;
564
565    while (Iter2 != RHS.Elements.end()) {
566      if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
567        Elements.insert(Iter1, *Iter2);
568        ++Iter2;
569        changed = true;
570      } else if (Iter1->index() == Iter2->index()) {
571        changed |= Iter1->unionWith(*Iter2);
572        ++Iter1;
573        ++Iter2;
574      } else {
575        ++Iter1;
576      }
577    }
578    CurrElementIter = Elements.begin();
579    return changed;
580  }
581
582  // Intersect our bitmap with the RHS and return true if ours changed.
583  bool operator&=(const SparseBitVector &RHS) {
584    if (this == &RHS)
585      return false;
586
587    bool changed = false;
588    ElementListIter Iter1 = Elements.begin();
589    ElementListConstIter Iter2 = RHS.Elements.begin();
590
591    // Check if both bitmaps are empty.
592    if (Elements.empty() && RHS.Elements.empty())
593      return false;
594
595    // Loop through, intersecting as we go, erasing elements when necessary.
596    while (Iter2 != RHS.Elements.end()) {
597      if (Iter1 == Elements.end()) {
598        CurrElementIter = Elements.begin();
599        return changed;
600      }
601
602      if (Iter1->index() > Iter2->index()) {
603        ++Iter2;
604      } else if (Iter1->index() == Iter2->index()) {
605        bool BecameZero;
606        changed |= Iter1->intersectWith(*Iter2, BecameZero);
607        if (BecameZero) {
608          ElementListIter IterTmp = Iter1;
609          ++Iter1;
610          Elements.erase(IterTmp);
611        } else {
612          ++Iter1;
613        }
614        ++Iter2;
615      } else {
616        ElementListIter IterTmp = Iter1;
617        ++Iter1;
618        Elements.erase(IterTmp);
619        changed = true;
620      }
621    }
622    if (Iter1 != Elements.end()) {
623      Elements.erase(Iter1, Elements.end());
624      changed = true;
625    }
626    CurrElementIter = Elements.begin();
627    return changed;
628  }
629
630  // Intersect our bitmap with the complement of the RHS and return true
631  // if ours changed.
632  bool intersectWithComplement(const SparseBitVector &RHS) {
633    if (this == &RHS) {
634      if (!empty()) {
635        clear();
636        return true;
637      }
638      return false;
639    }
640
641    bool changed = false;
642    ElementListIter Iter1 = Elements.begin();
643    ElementListConstIter Iter2 = RHS.Elements.begin();
644
645    // If either our bitmap or RHS is empty, we are done
646    if (Elements.empty() || RHS.Elements.empty())
647      return false;
648
649    // Loop through, intersecting as we go, erasing elements when necessary.
650    while (Iter2 != RHS.Elements.end()) {
651      if (Iter1 == Elements.end()) {
652        CurrElementIter = Elements.begin();
653        return changed;
654      }
655
656      if (Iter1->index() > Iter2->index()) {
657        ++Iter2;
658      } else if (Iter1->index() == Iter2->index()) {
659        bool BecameZero;
660        changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
661        if (BecameZero) {
662          ElementListIter IterTmp = Iter1;
663          ++Iter1;
664          Elements.erase(IterTmp);
665        } else {
666          ++Iter1;
667        }
668        ++Iter2;
669      } else {
670        ++Iter1;
671      }
672    }
673    CurrElementIter = Elements.begin();
674    return changed;
675  }
676
677  bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
678    return intersectWithComplement(*RHS);
679  }
680
681  //  Three argument version of intersectWithComplement.
682  //  Result of RHS1 & ~RHS2 is stored into this bitmap.
683  void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
684                               const SparseBitVector<ElementSize> &RHS2)
685  {
686    if (this == &RHS1) {
687      intersectWithComplement(RHS2);
688      return;
689    } else if (this == &RHS2) {
690      SparseBitVector RHS2Copy(RHS2);
691      intersectWithComplement(RHS1, RHS2Copy);
692      return;
693    }
694
695    Elements.clear();
696    CurrElementIter = Elements.begin();
697    ElementListConstIter Iter1 = RHS1.Elements.begin();
698    ElementListConstIter Iter2 = RHS2.Elements.begin();
699
700    // If RHS1 is empty, we are done
701    // If RHS2 is empty, we still have to copy RHS1
702    if (RHS1.Elements.empty())
703      return;
704
705    // Loop through, intersecting as we go, erasing elements when necessary.
706    while (Iter2 != RHS2.Elements.end()) {
707      if (Iter1 == RHS1.Elements.end())
708        return;
709
710      if (Iter1->index() > Iter2->index()) {
711        ++Iter2;
712      } else if (Iter1->index() == Iter2->index()) {
713        bool BecameZero = false;
714        Elements.emplace_back(Iter1->index());
715        Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero);
716        if (BecameZero)
717          Elements.pop_back();
718        ++Iter1;
719        ++Iter2;
720      } else {
721        Elements.push_back(*Iter1++);
722      }
723    }
724
725    // copy the remaining elements
726    std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements));
727  }
728
729  void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
730                               const SparseBitVector<ElementSize> *RHS2) {
731    intersectWithComplement(*RHS1, *RHS2);
732  }
733
734  bool intersects(const SparseBitVector<ElementSize> *RHS) const {
735    return intersects(*RHS);
736  }
737
738  // Return true if we share any bits in common with RHS
739  bool intersects(const SparseBitVector<ElementSize> &RHS) const {
740    ElementListConstIter Iter1 = Elements.begin();
741    ElementListConstIter Iter2 = RHS.Elements.begin();
742
743    // Check if both bitmaps are empty.
744    if (Elements.empty() && RHS.Elements.empty())
745      return false;
746
747    // Loop through, intersecting stopping when we hit bits in common.
748    while (Iter2 != RHS.Elements.end()) {
749      if (Iter1 == Elements.end())
750        return false;
751
752      if (Iter1->index() > Iter2->index()) {
753        ++Iter2;
754      } else if (Iter1->index() == Iter2->index()) {
755        if (Iter1->intersects(*Iter2))
756          return true;
757        ++Iter1;
758        ++Iter2;
759      } else {
760        ++Iter1;
761      }
762    }
763    return false;
764  }
765
766  // Return true iff all bits set in this SparseBitVector are
767  // also set in RHS.
768  bool contains(const SparseBitVector<ElementSize> &RHS) const {
769    SparseBitVector<ElementSize> Result(*this);
770    Result &= RHS;
771    return (Result == RHS);
772  }
773
774  // Return the first set bit in the bitmap.  Return -1 if no bits are set.
775  int find_first() const {
776    if (Elements.empty())
777      return -1;
778    const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
779    return (First.index() * ElementSize) + First.find_first();
780  }
781
782  // Return the last set bit in the bitmap.  Return -1 if no bits are set.
783  int find_last() const {
784    if (Elements.empty())
785      return -1;
786    const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin());
787    return (Last.index() * ElementSize) + Last.find_last();
788  }
789
790  // Return true if the SparseBitVector is empty
791  bool empty() const {
792    return Elements.empty();
793  }
794
795  unsigned count() const {
796    unsigned BitCount = 0;
797    for (ElementListConstIter Iter = Elements.begin();
798         Iter != Elements.end();
799         ++Iter)
800      BitCount += Iter->count();
801
802    return BitCount;
803  }
804
805  iterator begin() const {
806    return iterator(this);
807  }
808
809  iterator end() const {
810    return iterator(this, true);
811  }
812};
813
814// Convenience functions to allow Or and And without dereferencing in the user
815// code.
816
817template <unsigned ElementSize>
818inline bool operator |=(SparseBitVector<ElementSize> &LHS,
819                        const SparseBitVector<ElementSize> *RHS) {
820  return LHS |= *RHS;
821}
822
823template <unsigned ElementSize>
824inline bool operator |=(SparseBitVector<ElementSize> *LHS,
825                        const SparseBitVector<ElementSize> &RHS) {
826  return LHS->operator|=(RHS);
827}
828
829template <unsigned ElementSize>
830inline bool operator &=(SparseBitVector<ElementSize> *LHS,
831                        const SparseBitVector<ElementSize> &RHS) {
832  return LHS->operator&=(RHS);
833}
834
835template <unsigned ElementSize>
836inline bool operator &=(SparseBitVector<ElementSize> &LHS,
837                        const SparseBitVector<ElementSize> *RHS) {
838  return LHS &= *RHS;
839}
840
841// Convenience functions for infix union, intersection, difference operators.
842
843template <unsigned ElementSize>
844inline SparseBitVector<ElementSize>
845operator|(const SparseBitVector<ElementSize> &LHS,
846          const SparseBitVector<ElementSize> &RHS) {
847  SparseBitVector<ElementSize> Result(LHS);
848  Result |= RHS;
849  return Result;
850}
851
852template <unsigned ElementSize>
853inline SparseBitVector<ElementSize>
854operator&(const SparseBitVector<ElementSize> &LHS,
855          const SparseBitVector<ElementSize> &RHS) {
856  SparseBitVector<ElementSize> Result(LHS);
857  Result &= RHS;
858  return Result;
859}
860
861template <unsigned ElementSize>
862inline SparseBitVector<ElementSize>
863operator-(const SparseBitVector<ElementSize> &LHS,
864          const SparseBitVector<ElementSize> &RHS) {
865  SparseBitVector<ElementSize> Result;
866  Result.intersectWithComplement(LHS, RHS);
867  return Result;
868}
869
870// Dump a SparseBitVector to a stream
871template <unsigned ElementSize>
872void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
873  out << "[";
874
875  typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
876    be = LHS.end();
877  if (bi != be) {
878    out << *bi;
879    for (++bi; bi != be; ++bi) {
880      out << " " << *bi;
881    }
882  }
883  out << "]\n";
884}
885
886} // end namespace llvm
887
888#endif // LLVM_ADT_SPARSEBITVECTOR_H
889